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Abstract: The neural network with optimal architecture speeds up the learning process and generalizes the problem well
for further knowledge extraction. As a result researchers have developed various techniques for pruning the
neural networks. This paper provides a survey of existing pruning techniques that optimize the architecture of
neural networks and discusses their advantages and limitations. Also the paper evaluates the effectiveness of
various pruning techniques by comparing the performance of some traditional and recent pruning algorithms
based on sensitivity analysis, mutual information and significance on four real datasets namely Iris, Wisconsin
breast cancer, Hepatitis Domain and Pima Indian Diabetes.
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1. Introduction
Neural networks often achieve high classification accuracy but they have some drawbacks related in particular to their
long training time requirement and the determination of the most efficient network structure. The power of the neural
network depends on how well it generalizes new data following training. Generalization is the ability of the neural
network to interpolate and extrapolate the data that it has not seen before [1]. The generalization capabilities of ANNs
depend on the size of the training data, training epochs, and architecture of the network. The success of ANNs largely
depends on their architecture, which is usually determined by a trial and error process but sometimes by growing method
or pruning method. Many algorithms have been used in numerous ways to optimize the network architecture [2–5].

Researchers have proposed a large number of neural network(NN) structures (such as feedforward neural net-
works(FNN), recurrent neural networks, Hopfield neural networks, etc.) and applied to various real world problems. The
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feedforward neural network is by far the most popular architecture due to its structural flexibility, good representational
capabilities, and the availability of a large number of training algorithms [3]. A typical feedforward neural network
contains an input layer, one or more hidden layers and an output layer. The number of nodes in the input layer is equal
to the number of attributes of the dataset, the number of nodes in the output layer is equal to the number of target
classes of the dataset and the number of hidden layers and the number of nodes in each hidden layer depends on the
complexity of the problem [5].

Generally, the FNN with large number of hidden nodes is able to learn fast and avoids local minima as when
a network has too many free parameters such as weights and/or nodes, a local minima are more easily avoided [6, 7].
But if the network is too large, it yields more nodes, more weights and more layers than necessary; and thus results in
unnecessary arithmetic calculations and high computation cost. Also an oversized network may overfit the training data
and has poor generalization ability for the testing data [8]. The better generalization performance can be achieved only
by the small networks but their training may require lot of effort since the networks may not have enough processing
elements [9]. Moreover a small trained network is easier to interpret and the knowledge can be easily extracted in
the form of simple rules [10]. From the implementation point of view small networks only require limited resources
in any physical environment. At the same time large networks may exhibit a certain degree of fault tolerance under
damage conditions [12]. So both large and small networks exhibit a number of advantages and disadvantages. The
optimal architecture is a network that is large enough to learn the problem and is small enough to generalize well. This
paper discuss on existing algorithms that finds the optimal architecture by pruning method. The paper is organized as
follows: Section 2 discusses various approaches of network pruning, Section 3 provides a survey of existing pruning
methods and discusses its advantages and limitations, Section 4 compares the performance of some existing traditional
and recent pruning algorithms based on sensitivity, mutual information and significance in terms of pruning percentage,
pruning speed and classification accuracy by implementing them on four different real datasets namely iris, breast-cancer,
hepatitis and diabetes.

2. Network pruning approaches
Pruning is defined as a network trimming within the assumed initial architecture. This can be accomplished by estimating
the sensitivity of the total error to the exclusion of each weight in the network. The weights or neurons which are
insensitive to the error changes can be discarded after each step of training. The pruned network is of smaller size and
is likely to give higher accuracy than before its trimming [12]. Pruning algorithms are used to remove the redundant
connections while maintaining the networks performance. Moreover a simple and comprehensible set of rules can be
extracted from the network by removing the input neurons that are not mandatory for solving the problem [13, 14].
Several pruning algorithms are available in the literature to determine irrelevant neurons [15, 16].

Brute-force is the most common approach, to find the neural network with optimal architecture [9]. It is based
on successive training of some smaller networks, until the best smallest topology which still fits the data is found. This
process is very time consuming since many networks have to be trained. In addition, for initially small networks, the
convergence is always not guaranteed [17]. The other common approaches for optimizing neural network architecture are
basically growing, pruning and a combination of two strategies namely growing and pruning [5]. The first, also called
as constructive methods, start with a minimal network and add new hidden nodes during the training process [18–20]. A
drawback of growing methods is that the initial small network can easily be trapped into local minima and the training
time may be increased [15]. The second referred as destructive methods, start with a large network and then remove the
unimportant nodes or weights [21, 22]. This method combines the advantages of both large and small networks. However
it requires the upper bound size of the large networks for the problem at hand, but this is not a serious concern as the
methods have been established to determine the upper bounds on the number of hidden nodes [23].

Castellano et al. have shown that, in any case the overall time required for training a large network and then
pruning it to a small size compares very favorably with that of simply training a small network [17]. So one can use
the larger networks for training and its generalization can be improved by the process of pruning. There are also
hybrid methods which can both add and remove [24, 25]. These hybrid methods start training with a small network and
incrementally add hidden nodes during training when the network cannot reduce the training error.
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3. Survey of pruning algorithms
Researchers have suggested many pruning algorithms [26–29] for optimizing the architecture of neural networks. Based
on the techniques used for pruning, the pruning methods can be classified as penalty term methods, cross validation
methods, magnitude based methods, Mutual Information (MI) based methods, Evolutionary pruning methods, Sensitivity
Analysis (SA) based methods and Significance based pruning methods.

Penalty method (or weight decay method) adds a penalty term to the objective function to be minimized so
that the smaller weights can eventually be forced to zero. Rudy Setiono [21] has proposed the penalty function which
discourages the use of unnecessary connections and prevents the weights of the connections from taking large values. He
also has proposed the simple scheme for removing redundant weights from a network which has been trained to minimize
a penalty function. But this approach may eliminate weights that are actually crucial to the over all architecture of the
networks and may create additional local minima on the error surface during training. Wan et al. [30] have proposed
two algorithms for controlling the hidden layers, one is through adding penalty terms on the error function, in this way
when one weight is updated, the effect of other weights are also considered, that is in the updating rule, the derivatives
of the added terms are function of not only the current weight, but also other weights. The effect of penalty terms is
to make the neural networks robust to the noises in the samples. The second proposed algorithm uses Gauss Schmidt
algorithm to determine which nodes are principal nodes in one epoch, the weights connected to these principal nodes
are given the chance to be updated in this epoch, while the other weights are remained to be unchanged in this epoch.

In cross validation method, the pruning criterion is still based on the magnitude of each weight but a validation
step is additionally used to test the pruned network. The whole dataset is divided into training set and cross validation
set and at each phase of pruning the cross validation set is used to validate the pruned network. If the pruned network
outperforms the unpruned one, then the pruned network is accepted and the pruning process can be continued. Otherwise
the network is restored to the size before the current pruning step. Huynh and Setiono [16] introduced this cross validation
method. Sabo and Yu have proposed a new pruning algorithm which combines the advantages of sensitivity analysis
method, variance sensitivity analysis method and cross fold validation method. They claim that the use of an additional
cross validation set at each phase of the pruning helps to improve the network generalization capacity [8].

The magnitude based pruning (MBP) methods assume that small weights are irrelevant [31, 32]. Hagiwara [31]
suggests three simple and effective strategies called Goodness factor, Consuming energy and Weights power for detecting
both redundant hidden neurons and weights. These measures are much less sophisticated and require significantly less
computational time. However methods based only on weight magnitude often remove important parts of the network also
[33].

In the Mutual Information (MI) based methods [34, 35], singular value decomposition is used to analyze the
hidden unit activation covariance matrix and the rank of the covariance matrix determines the optimal number of hidden
units. Xing-Hu [34] suggests a two phase construction approach for pruning both input and hidden units of MLPs based
on mutual information. First all salient input units are determined according to the order of ranking result and by
considering their contributions to the network’s performance. Then the irrelevant input units are eliminated. Second the
redundant hidden units are removed from trained networks, one after another according to a relevance measure. From the
view of the information entropy and bionics principle, Zhang and Qiao [35] have proposed a node pruning algorithm based
on the neural complexity (PBNC) for feed-forward neural networks. In the process of training, the neural complexity
has been acquired by standard covariance matrix of the neural network’s connection matrix. The algorithm does not
need to train the cost function of the neural network to a local minimum, therefore, it can prune the architecture of the
neural network on-line, and the pre-processing neural network weights is avoided before neural network architecture
adjustment.

Evolutionary pruning methods use Genetic Algorithms (GA) to prune neural networks. Whitley and Bogart [36]
have proposed a method to prune the neural networks using GA terminology. Different pruned networks are created by
application of mutation, reproduction and cross-over operators. These pruned networks, being awarded for using fewer
parameters and for improving generalization. Benardos Vosniakos [37] suggests a method to optimize the feedforward
neural network architecture. It considers the problem as one of multi-objective optimization. The solution space consists
of all the different combinations of hidden layers and hidden neurons. Given the complex nature of the problem, a GA
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is employed to search the solution space for the best architectures. The basic idea behind the GAs is that the optimal
solution will be found in areas of the solution space that contain good solutions and that these areas can be identified
through robust sampling.

Many algorithms have been proposed based on sensitivity analysis to optimize the neural network [5, 6, 38, 39].
The sensitivity based approach attempts to find the contribution of each weight or node in the network and then prunes
the weight or node that have the least effect on the objective function. The most popular sensitivity based pruning
algorithms are OBD [40] and OBS [41]. Lecun et al. [40] have proposed the Optimal Brain Damage (OBD) method
that approximates the measure of ’saliency’ of a weight by estimating the second derivative of the network output error
with respect to that weight. In this method pruning is carried out iteratively on a well trained network to a reasonable
level, compute ’saliencies’, delete low ’saliency’ weights and resume training. This OBD method assumes that the error
function is quadratic and that the Hessian is diagonal. By following the same idea used in OBD method Hassibi et al.
[41] have proposed the Optimal Brain Surgeon (OBS) method. This method removes the diagonal assumption idea used
in OBD, because if the diagonal assumption is inaccurate, it can lead to the removal of wrong weights. However it is
impractical for large networks. An early stopping procedure monitors the error on a validation set and halts learning
when this error starts to increase. There is no guarantee that the learning curve passes through the optimal point and
the final weights are sensitive to the learning dynamics. Today, many pruning algorithms are based on the theory of
OBD and OBS and in many ways beyond them [28, 42].

Castellano et al. [17] have proposed an Iterative Pruning (IP) algorithm to find the most appropriate network
size. This method solves a linear system by least squares identification algorithm. Indeed for large network size, the
output matrix may have deficient rank and for the problems with high norms, infinite solutions may exist. In order to
enhance the efficiency of IP, Fangju Ai [2] has proposed the Improved Iterative Pruning algorithm (IIP) based on the
simple idea of iteratively removing the nodes of the hidden layers in Feedforward Neural Networks and then adjusting
the remaining weights using an Conjugate Gradient Precondition Normal Equation(CGPCNE) algorithm with a view to
maintaining the original input-output behavior. So the pruned networks need not retrain. Ponnapelli et al. [43] have
suggested that the sensitivities of weights should only be compared with those related with the same node in the same
layer. Thus the term Local Relative Sensitivity Index (LRSI) is defined as the ratio of the sensitivity of a particular weight
and the sum of all the sensitivities of the weights that are connected to the same node from the previous layer. But
this algorithm only considers weight removal; node pruning is not included. Engelbrecht [15] has proposed a modified
approach to sensitivity analysis. Instead of using the value of sensitivity directly, Engelbrecht has found the average
sensitivity of a network parameter over all the patterns and then he has developed the new measure called variance
nullity. This Variance Nullity Pruning (VNP) algorithm allows for pruning of both nodes and weights. Lauret et al., [39]
have proposed a new technique to obtain the optimal number of hidden units of a single layer fully connected network.
This technique relies on a global Sensitivity Analysis Model Output (SAMO). Fnaiech et al., [29] have proposed the
modified version of Variance Nullity Pruning algorithm. In this version, contrarily, to the work of Englebrecht where the
pruning is performed on the entire net, the modified algorithm prunes layer by layer with the use of a pruning decision
based on a local parameter variance nullity coefficient (LPW). These coefficients are then classified in an ordered list
which allows the decision making of coefficients and neurons removal in order to get the best neural network pruned. A
global SA method, the Extended Fourier Amplitude Sensitivity Test (EFAST) method, is used to quantify the relevance
of the hidden units. Each hidden unit is assigned a ratio that gives their ranking. This quantitative information therefore
leads to a suggestion of the most favorable units to eliminate.

Zeng and Yeung [38] have proposed a method to prune the hidden neurons of multilayer perceptron network using
a quantified sensitivity measure. It defines the sensitivity of an individual input neuron as the expectation of its output
deviation due to expected input deviation with respect to over all inputs from a continuous interval and it estimates the
relevance of a neuron by finding the summation of the absolute values of its outgoing weights. Then the method prunes
the hidden neurons with the lowest relevance value iteratively. Xua and Hob [6] describes a UB-OBS pruning method,
which prunes hidden units in Feedforward NNs. First, it identifies the dependent hidden nodes using QR factorization,
and then prunes them and recalculates the output weights of the remaining nodes to maintain the input output behavior
of the network.

The Significance based pruning methods calculate the new significant measure based on both the inputs of the
network and the outputs of the hidden neurons and consider all the nodes with significance value below the threshold
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as insignificant and eliminate them. Belue and Bauer have proposed a method that injects a noisy input parameter
into the neural network model and then use statistical tests to decide if the significances of the original neural network
parameters are higher than that of the injected noisy parameter [44]. Parameters with lower significances than the noisy
parameter are pruned. Augasta and Kathirvalavakumar [45] have proposed a novel pruning algorithm namely N2PS
which finds the optimal architecture of multilayered Feedforward neural network by removing both insignificant input
nodes and hidden nodes based on a new significant measure that is calculated by the Sigmoidal activation value of the
node and all the weights of its outgoing connections.

In this literature many pruning algorithms based on different pruning techniques have been discussed and each
algorithm has its own advantages and limitations. Some pruning algorithms [15, 34, 45] prune both irrelevant input
neurons and hidden neurons of the network and some algorithms [17, 38, 39] prune irrelevant hidden neurons only.
Real-world applications prefer simpler and more efficient methods. But a significant drawback of most standard methods
consists in their low efficiency. For example the main weakness of the OBD and OBS techniques are their relatively
low computational efficiency. Magnitude based pruning (MBP) methods often remove important parts of the network as
they assume that small weights are irrelevant. However small weights may be important compared to very large weights
which cause saturation in hidden and output units [15]. Some algorithms [32, 43] require the user to specify the number
of problem dependent threshold parameters or tuning parameters. More sophisticated methods [15, 34, 38] reach better
results, but the precision is usually compensated by unproportional increase in computation time [1]. Unfortunately,
sensitivity analysis based pruning methods are not guaranteed to detect all redundant processing elements as they
assume both the inputs of the network and the outputs of the hidden neurons to be mutually independent [1]. When
there are dependencies between inputs, the Sensitivity Analysis based method can be ineffective while the Mutual
Information based methods and significance based method can successfully avoid this limitation [34].

4. Performance analysis
In this section, the results of some existing pruning algorithms such as N2PS [45], VNP [15], Xing-Hu’s method [34], MBP
[32], OBD [40] and OBS [41] are compared with each other on four well known real datasets 1 and their performances
are evaluated.

4.1. Datasets
The datasets used to test the algorithm are,

1. Iris Plants dataset (iris): Irises are classified into three categories: setosa, versicolor and verginia. Each category
has 50 patterns and each pattern possesses four attributes namely sepal length, sepal width, petal length and
petal width.

2. Wisconsin-breast-cancer dataset (cancer): This dataset was designed to diagonize breast tumors as either benign
or malignant. It contains 699 patterns and each pattern consists of 9 real value attributes as an input vector and
two classes as an output vector. Out of 699 patterns 458 are benign patterns and 241 are malignant patterns.

3. Hepatitis Domain dataset (hepatitis) : This dataset contains 155 patterns and each pattern is described using 19
attributes. Hepatitis data are classified into two categories: DIE and LIVE. There are 123 patterns of class DIE
and 32 patterns of class LIVE.

4. Pima Indians Diabetes dataset (diabetes): The problem posed here is to predict whether a patient would test
positive or negative for diabetes according to the criteria given by World Health Organization (WHO). This is a
two class problem with class value 1 and 2 interpreted as negative and positive results for diabetes. There are
500 patterns of class 1 and 268 of class 2. There are 8 attributes for each pattern.

1 Available: http://weka.wikispaces.com/Datasets
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Table 1. Properties of 4 real datasets.

Datasets
Properties iris cancer hepatitis diabetes

No. of classes 3 2 2 2
No. of examples 150 699 155 768
No. of training examples 75 350 81 384
No. of testing examples 75 349 74 384
No. of attributes 4 9 19 8

The detailed description of the datasets is shown in Table 1. The training and testing patterns are taken randomly
from each class. For example the iris dataset is having 3 classes with 50 patterns for each class. From each class 25
patterns are taken randomly for training and another 25 patterns are taken randomly for testing the network. The N2PS
algorithm uses momentum (µ) as 0.5 and the learning rate (η) as 0.1 for all datasets. The network is trained until the
error converges to predetermined mean squared error(mse) 0.01 or the prespecified maximum number of iterations 200
has expired, whichever is earlier. The OBD, OBS, MBP, Engelbrecht’s and Xing-Hu’s method use momentum (µ) as
0.9, the learning rate (η) as 0.0001 and mse as 0.01 for all datasets. For simplicity, all the algorithms are evaluated
using single hidden layer FNN. Similar to Engelbrecht’s approach [15], the traditional weight-oriented pruning methods
(OBS, OBD, and MBP) are compared with the node pruning algorithms (VNP, Xing-Hu and N2PS) because for the
weight-oriented pruning methods, a hidden neuron is deleted if all incoming or all outgoing links to that neuron are
removed [39]. The performance of the pruning algorithms in this study are evaluated based on the parameters such as
required number of iterations for training, classification accuracy, generalization ability and number of pruned nodes.
Classification accuracy (ACCtst) is identified by computing the percentage of data examples that are correctly classified
by the pruned network on testing dataset. Generalization is the ability to produce accurate results for the inputs that
are not included in the training dataset. The number of pruned nodes is identified by finding the difference between the
total number of nodes in the original network and the pruned network.

4.2. Comparison of pruning methods
The pruning methods OBS and OBD require additional computation for calculating the Hessian matrix of the system.
The efficiency of the MBP method is also low, since it considers only the magnitude of weights to prune the network [15].
The pruning methods OBD, OBS and MBP prune irrelevant hidden neurons only. The sensitivity analysis based method
VNP combines both the input units pruning and hidden units pruning of Multi Layer Perceptrons (MLPs) in a single
formula and achieves satisfying results, but VNP is not guaranteed to detect redundant neurons as it doesn’t consider the
mutual dependency between both the inputs of the network and outputs of the hidden neurons. The Xing-Hu’s method
overcomes this limitation by considering the mutual dependency between them but it performs pruning in two separate
phases [34]. The N2PS method combines the advantages of both VNP and Xing-Hu. It performs both the input units
pruning and hidden units pruning of MLPs in a single formula as VNP and considers the mutual dependency between
the inputs of the network and outputs of the hidden neurons like Xing-Hu’s method. Xing-Hu achieves better results
than VNP with two separate phases for pruning input units and hidden units respectively while N2PS achieves better
results than Xing-Hu in just a single phase for pruning both units. Also N2PS doesn’t require any complex computation
to find the significant measure of each node [45].

The classification accuracy on testing data (ACCtst) of the most popular pruning algorithms in our study has
been compared to evaluate their performance. Experiments were performed 10 times for each dataset by dividing the
original dataset into training and testing using a different random seed every time. The average of the results of the 10
runs was calculated for each set. Table 2 shows the comparison results of six pruning methods on four datasets namely
iris, cancer, hepatitis and diabetes, a pruned network is only accepted if the deterioration in classification accuracy
is less than 5%. For all the classification problems, the N2PS method resulted in better architecture with minimum
number of nodes while having the accuracy similar to or better than that of other architectures obtained from other
pruning methods. Regarding the classification accuracy, the N2PS and Xing-Hu’s method achieve higher accuracy for
the maximum of datasets than other methods. Fig. 1 shows the comparison of the classification accuracies achieved by
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Table 2. Result Comparision of Six Pruning Methods

Datasets Unpruned N2PS VNP Xing-Hu OBD OBS MBP
NN ACCtst NN ACCtst NN ACCtst NN ACCtst NN ACCtst NN ACCtst NN ACCtst

iris 5-10-3 96% 3-3-3 98.67% 2-2-3 97.7% 3-2-3 98.67% 4-4-3 98% 4-4-3 98% 4-4-3 98%
cancer 10-10-2 95.4% 3-2-2 97.1% 3-1-2 97.8% 3-3-2 96.78% 9-8-1 92.5% 9-7-1 90% 9-7-1 94.2%
hepatitis 20-25-2 80.2% 2-3-2 86.4% 4-4-2 83.3% 3-8-2 84.62% 19-9-1 78.7% 19-16-1 73.8% 19-18-1 80.3%
diabetes 9-40-2 68.6% 5-3-2 70.3% 6-8-2 69.1% 6-8-2 74.22% 8-16-1 68.6% 8-26-1 65.4% 8-26-1 68.9%

Figure 1. Comparing classification accuracies of Six pruning algorithms.

six pruning methods in study. It shows that the N2PS method achieves higher accuracy for all datasets than OBS, OBD
and MBP and achieves maximum or equal accuracy for 3 datasets out of 4 than Xing-Hu and VNP.

Considering the removal of neurons, Fig. 2 compares the six pruning methods by the removal of hidden neurons.
It shows that for iris dataset, the number of hidden neurons pruned by N2PS, VNP, Xing-Hu, OBD, OBS and MBP
respectively are 7, 8, 8, 6, 6, 6 and for cancer dataset, the number of hidden neurons pruned by N2PS, VNP, Xing-Hu,
OBD, OBS and MBP respectively are 8, 9, 7, 2, 3, 3 and so on. The number of pruned hidden neurons are idenified
by calculating the difference between the number of hidden neurons in the original network and the number of hidden
neurons in the pruned network. While comparing the removal of hidden neurons of each pruning method, VNP and
N2PS methods remove equal or more hidden neurons for all datasets than other pruning methods in our comparison.
Moreover N2PS achieves better classification accuracy than VNP as it considers the mutual dependency between both
the inputs of the network and outputs of the hidden neurons.

In practical real world applications, a better generalization performance is more important than optimal behavior
over the training data [8]. The generalization of the reduced networks with respect to the original ones was evaluated
based on the classification accuracy computed over the testing data. Fig. 3 shows the generalization ability of all
pruning algorithms in this study. It has been observed that the N2PS, VNP and Xing-Hu achieve networks with better
generalization as the pruned network gives better classification accuracy than the unpruned network for the testing
dataset. Here the pruning algorithms N2PS, VNP and Xing-Hu achieves the better generalization for all datasets
while the pruning algorithms MBP, OBS and OBD fail to achieve the generalization for three datasets namely cancer,
hepatitis and diabetes.

The time complexity for the pruning is determined by the selection criteria which determines the node or con-
nection for elimination. Let p be the number of training examples and n be the number of connections in the network
topology. For MBP, the time complexity of selection is O(n). If one learning step has time complexity O(pn) and e
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Figure 2. Comparing hidden nodes removal of pruning algorithms.

Figure 3. Comparing the generalization ability of pruning algorithms.

be the number of training steps then the time complexity for pruning by MBP is O(epn) ??. For OBD and OBS the
time complexity of selection is O(pn2). Let O(n) be the time complexity for eliminated connections, then the total time
complexity of MBP is O(epn2) and the total time complexity of OBD and OBS is O(pn3). While comparing the time
complexity of traditionally standard pruning algorithms of this study, MBP has the low time complexity.

Considering the pruning speed of input and hidden nodes pruning algorithms, N2Ps requires maximum 200
iterations for training the initial network while VNP and Xing-Hu’s algorithms takes maximum of 10000, 5000, 1000 and
1000 iterations for training the initial networks of iris, hepatities, diabetes and cancer respectively. When a network
is pruned, VNP starts retraining the reduced model on new initial random weights which may lead to the increase in
number of iterations in each pruning step and decrease in classification accuracy [34]. The pruned network re-trained
with the weights inherited from the network obtained from the previous pruning step outperforms the network re-trained
directly with new initial random weights on every pruning step [34]. Xing-Hu and N2PS inherit the initial weights from
previous step for the retraining process of the pruned network [34, 45]. Unfortunately Xing-Hu requires more number of
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pruning and retraining steps for selecting the relevant input units in phase I and for removing the irrelevant hidden units
in phase II. But the N2PS requires maximum 3 pruning steps only. The maximum number of pruning steps required by
N2PS for four data sets iris, cancer, hepatitis and diabetes respectively are 2, 2, 3 and 2 only while VNP requires 3, 7,
3 and 7. While comparing the maximum number of retraining iterations required by Xing-Hu and N2PS for the pruned
network on four data sets iris, cancer, hepatitis and diabetes respectively, Xing-Hu requires 1000, 100, 100 and 100
but N2PS requires only 27, 50, 50 and 50 iterations [34, 46]. The reduction in number of pruning steps and number
of retraining iterations of N2PS resulted in a better generalization than the pruned networks of the other pruning
algorithms.

In summary, the comparative study consistently indicate that the performance of the significance based algo-
rithms are better than other methods in terms of generalization, input and hidden neurons removal, pruning speed, and
classification accuracy.

5. Conclusion
In this paper a survey of pruning algorithms for feedforward neural network have been specified. In addition some of the
existing pruning methods based on sensitivity, mutual information and significance are compared for several real datasets
with regard to their performance in minimizing network size. The standard techniques such as OBD, OBS and MBP
depend heavily on the magnitude of weights. This approach leads to prune minor important weights but may eliminate
weights that are actually crucial to the over all architecture of the networks. Thus creates additional local minima on
the error surface during training and thereby may increase the minimal network size. Results show that the architecture
obtained by those traditional techniques are larger than the resultant architectures of the current pruning algorithms
and also the traditional algorithms can prune irrelevant hidden neurons only. The current pruning algorithms in our
study namely VNP, Xing-Hu and N2PS combines both the input units pruning and hidden units pruning of feedforward
neural network. Section 4 discusses on pruning speed and performance of those algorithms. The size and accuracy
of the network pruned by them are comparable with one another. Though VNP and Xing-Hu reach better results, but
the precision is usually compensated by unproportional increase in computation time. Both requires more number of
iterations and pruning steps to find the optimal network.

The experimental study in section 4 shows that the pruning algorithms based on Mutual Information and Sig-
nificance can be more efficient in pruning than the methods based on sensitive and magnitude, as they consider the
mutual dependency between the inputs of the network and outputs of the hidden neurons. While comparing MI based
and Significance based methods, the computation cost and pruning speed of Significance based methods are lower than
the MI based methods as they require no sorting for ranking the relevant features and prune each node in a single
phase by simply calculating the significance of the node using the mutual information. The performance analysis of six
pruning algorithms on four experimental datasets show that the significance based pruning algorithm N2PS achieves
better classification accuracy with a better topology in smaller number of iterations than other algorithms.

In a nutshell, the comparative study on pruning algorithms based on sensitivity, MI and significance indicate that the
algorithms which are using the significance as a meta heuristic for pruning as in N2PS are the currently available best
optimization methods of feedforward neural network for classifying large datasets.
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