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Abstract

Network pruning is an important research field aiming at re-
ducing computational costs of neural networks. Conventional
approaches follow a fixed paradigm which first trains a large
and redundant network, and then determines which units
(e.g., channels) are less important and thus can be removed.
In this work, we find that pre-training an over-parameterized
model is not necessary for obtaining the target pruned struc-
ture. In fact, a fully-trained over-parameterized model will
reduce the search space for the pruned structure. We empir-
ically show that more diverse pruned structures can be di-
rectly pruned from randomly initialized weights, including
potential models with better performance. Therefore, we pro-
pose a novel network pruning pipeline which allows pruning
from scratch with little training overhead. In the experiments
for compressing classification models on CIFAR10 and Im-
ageNet datasets, our approach not only greatly reduces the
pre-training burden of traditional pruning methods, but also
achieves similar or even higher accuracy under the same com-
putation budgets. Our results facilitate the community to re-
think the effectiveness of existing techniques used for net-
work pruning.

Introduction

As deep neural networks are widely deployed in mobile de-
vices, there has been an increasing demand for reducing
model size and run-time latency. Network pruning (Han,
Mao, and Dally 2016; He, Zhang, and Sun 2017; Liu et
al. 2017) techniques are proposed to achieve model com-
pression and inference acceleration by removing redun-
dant structures and parameters. In addition to the early
non-structured pruning methods (LeCun, Denker, and Solla
1990; Han, Mao, and Dally 2016), the structured pruning
method represented by channel pruning (Li et al. 2016;
Luo, Wu, and Lin 2017; He, Zhang, and Sun 2017; Liu
et al. 2017) has been widely adopted in recent years be-
cause of its easy deployment on general-purpose GPUs.
The traditional network pruning methods adopt a three-stage
pipeline, namely pre-training, pruning, and fine-tuning (Liu
et al. 2019), as shown in Figure 1(a). The pre-training and
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Figure 1: Network pruning pipelines. (a) Traditional net-
work pruning needs pre-trained weights and certain prun-
ing strategy for pruned structure learning, and fine-tuning
on full model weights. (b) Recent work (Liu et al. 2019)
shows that the pruned model can be trained from scratch
without fine-tuning to reach comparable performance. How-
ever, the pruned model structure still needs to be obtained by
traditional pruning strategies. (c) We empirically show that
the pruned model structure can be directly learned from ran-
domly initialized weights without the loss of performance.

pruning steps can also be performed alternately with multi-
ple cycles (He et al. 2018a). However, recent study (Liu et
al. 2019) has shown that the pruned model can be trained
from scratch to achieve a comparable prediction perfor-
mance without the need to fine-tune the inherited weights
from the full model (as shown in Figure 1(b)). This obser-
vation implies that the pruned architecture is more impor-
tant for the pruned model performance. Specifically, in the
channel pruning methods, more attention should be paid to
searching the channel number configurations of each layer.

Although it has been confirmed that the weights of the
pruned model do not need to be fine-tuned from the pre-
trained weights, the structure of the pruned model still needs
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to be learned and extracted from a well-trained model ac-
cording to different criteria. This step usually involves cum-
bersome and time-consuming weights optimization process.
Then we naturally ask a question: Is it necessary for learning
the pruned model structure from pre-trained weights?

In this paper, we explored this question through extensive
experiments and found that the answer is quite surprising: an
effective pruned structure does not have to be learned from
pre-trained weights. We empirically show that the pruned
structures discovered from pre-trained weights tend to be
homogeneous, which limits the possibility of searching for
better structure. In fact, more diverse and effective pruned
structures can be discovered by directly pruning from ran-
domly initialized weights, including potential models with
better performance.

Based on the above observations, we propose a novel net-
work pruning pipeline that a pruned network structure can
be directly learned from the randomly initialized weights
(as shown in Figure 1(c)). Specifically, we utilize a sim-
ilar technique in Network Slimming (Liu et al. 2017) to
learn the channel importance by associating scalar gate val-
ues with each layer. The channel importance is optimized
to improve the model performance under the sparsity reg-
ularization. What is different from previous works is that
we do not update the random weights during this process.
After finishing the learning of channel importance, we uti-
lize a simple binary search strategy to determine the channel
number configurations of the pruned model given resource
constraints (e.g., FLOPS). Since we do not need to update
the model weights during optimization, we can discover the
pruned structure at an extremely fast speed. Extensive ex-
periments on CIFAR10 (Krizhevsky and others 2009) and
ImageNet (Russakovsky et al. 2015) show that our method
yields at least 10× and 100× searching speedup while
achieving comparable or even better model accuracy than
traditional pruning methods using complicated strategies.
Our method can free researchers from the time-consuming
training process and provide competitive pruning results in
future work.

Related Work
Network pruning techniques aim to achieve the inference
acceleration of deep neural networks by removing the re-
dundant parameters and structures in the model. Early
works (LeCun, Denker, and Solla 1990; Han, Mao, and
Dally 2016; Han et al. 2015) proposed to remove individ-
ual weight values, resulting in non-structured sparsity in the
network. The runtime acceleration cannot be easily achieved
on a general-purpose GPU, otherwise with a custom infer-
ence engine (Han et al. 2016). Recent works focus more on
the development of structured model pruning (Li et al. 2016;
He, Zhang, and Sun 2017; Liu et al. 2017), especially prun-
ing weight channels. ℓ1-norm based criterion (Li et al. 2016)
prunes model according to the ℓ1-norm of weight channels.
Channel Pruning (He, Zhang, and Sun 2017) learns to ob-
tain sparse weights by minimizing local layer output recon-
struction error. Network Slimming (Liu et al. 2017) uses
LASSO regularization to learn the importance of all chan-
nels and prunes the model based on a global threshold. Au-

tomatic Model Compression (AMC) (He et al. 2018b) ex-
plores the pruning strategy by automatically learning the
compression ratio of each layer through reinforcement learn-
ing (RL). Pruned models often require further fine-tuning
to achieve higher prediction performance. However, recent
works (Liu et al. 2019; Frankle and Carbin 2019) have chal-
lenged this paradigm and show that the compressed model
can be trained from scratch to achieve comparable perfor-
mance without relying on the fine-tuning process.

Recently, neural architecture search (NAS) provides an-
other perspective on the discovery of the compressed model
structure. Recent works (Liu, Simonyan, and Yang 2018;
Cai, Zhu, and Han 2019) follow the top-down pruning pro-
cess by trimming out a small network from a supernet. The
one-shot architecture search methods (Brock et al. 2018;
Bender et al. 2018) further develop this idea and conduct ar-
chitecture search only once after learning the importance of
internal cell connections. However, these methods require a
large amount of training time to search for an efficient struc-
ture.

Rethinking Pruning with Pre-Training

Network pruning aims to reduce the redundant parameters
or structures in an over-parameterized model to obtain an
efficient pruned network. Representative network pruning
methods (Liu et al. 2017; Gordon et al. 2018) utilize chan-
nel importance to evaluate whether a specific weight channel
should be reserved. Specifically, given a pre-trained model,
a set of channel gates are associated with each layer to learn
the channel importance. The channel importance values are
optimized with ℓ1-norm based sparsity regularization. Then
with the learned channel importance values, a global thresh-
old is set to determine which channels are preserved given
a predefined resource constraint. The final pruned model
weights can either be fine-tuned from the original full model
weights or re-trained from scratch. The overall pipeline is
depicted in Figure 1(a) and (b).

In what follows, we show that in the common pipeline
of network pruning, the role of pre-training is quite differ-
ent from what we used to think. Based on this observation,
we present a new pipeline which allows pruning networks
from scratch, i.e., randomly initialized weights, in the next
section.

Effects of Pre-Training on Pruning

The traditional pruning pipeline seems to default to a net-
work that must be fully trained before it can be used for
pruning. Here we will empirically explore the effect of the
pre-trained weights on the final pruned structure. Specifi-
cally, we save the checkpoints after different training epochs
when we train the baseline network. Then we utilize the
weights of different checkpoints as the network initialization
weights, and learn the channel importance of each layer by
adopting the pipeline described above. We want to explore
whether the pre-trained weights at different training stages
have a crucial impact on the final pruned structure learning.

Pruned Structure Similarity First, we compare the struc-
ture similarity between different pruned models. For each
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Figure 2: Exploring the effect of pre-trained weights on the pruned structures. All the pruned models are required to reduce
50% FLOPS of the original VGG16 on CIFAR10 dataset. (a) (Top-left) We display the correlation coefficient matrix of the
pruned models directly learned from randomly initialized weights (“random”) and other pruned models based on different
checkpoints during pre-training (“epochs”). (Right) We display the correlation coefficient matrix of pruned structures from
pre-trained weights on a finer scale. (Bottom-left) We show the channel numbers of each layer of different pruned structures.
Red line denotes the structure from random weights. (b) Similar results from the experiment with a different random seed. (c)
We display correlation coefficient matrices of all the pruned structures from five different random seeds. We mark the names of
initialized weights used to get pruned structures below.

pruned model, we calculate the pruning ratio of each layer,
i.e., the number of remaining channels divided by the num-
ber of original channels. The vector formed by concatenat-
ing the pruning ratios of all layers is then considered to
be the feature representation of the pruned structure. Then
we calculate the correlation coefficient between each of the
two pruned model features as the similarity of their struc-
tures. In order to ensure the validity, we randomly selected
five sets of random seeds for experiments on CIFAR10
dataset with VGG16 (Simonyan and Zisserman 2014) net-
work. We include more visualization results of ResNet20
and ResNet56 (He et al. 2016) in the supplementary mate-
rial.

Figure 2 shows the correlation coefficient matrices for
all pruned models. From this figure, we can observe three
phenomena. First, the pruned structures learned from ran-
dom weights are not similar to all the network structures ob-
tained from pre-trained weights (see top-left figures in Fig-
ure 2(a)(b)). Second, the pruned model structures learned
directly from random weights are more diverse with vari-
ous correlation coefficients. Also, after only ten epochs of
weights update in the pre-training stage, the resulting pruned
network structures become almost homogeneous. (see Fig-
ure 2(c)). Third, the pruned structures based on the check-
points from near epochs are more similar with high correla-

tion coefficients in the same experiment run (see right fig-
ures in Figure 2(a)(b)).

The structure similarity results indicate that the potential
pruned structure space is progressively reduced during the
weights update in the pre-training phase, which may limit
the potential performance accordingly. On the other hand,
the randomly initialized weights allow the pruning algorithm
to explore more diverse pruned structures.

Performance of Pruned Structures We further train each
pruned structure from scratch to compare the final accuracy.
Table 1 summarizes the prediction accuracy of all pruned
structures on the CIFAR10 test set. It can be observed that
the pruned models obtained from the random weights can
always achieve comparable performance with the pruned
structures based on the pre-trained weights. Also, in some
cases (such as ResNet20), the pruned structures directly
learned from random weights achieves even higher predic-
tion accuracy. These results demonstrate that not only the
pruned structures learned directly from random weights are
more diverse, but also that these structures are valid and can
be trained to reach competitive performance.

The pruned model accuracy results also demonstrate that
the pruned structures based on pre-trained weights have little
advantages in the final prediction performance under mild
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Table 1: Pruned model accuracy (%) on the CIFAR10 test
set. All models are trained from scratch based on the training
scheme in (Liu et al. 2019). We report the average accuracy
across five runs. “Rand” stands for pruned structures from
random weights. “RN” stands for ResNet.

Model Rand
Pre-training Epochs

10 20 30 40 80 120 160

VGG16 93.68 93.60 93.83 93.71 93.69 93.64 93.69 93.58
RN20 90.57 90.48 90.50 90.49 90.33 90.42 90.34 90.23
RN56 92.95 92.96 92.90 92.98 93.04 93.03 92.99 93.05

pruning ratio scenario. Considering that the pre-training
phase often requires a cumbersome and time-consuming
computation process, we think that network pruning can di-
rectly start from randomly initialized weights.

Our Solution: Pruning from Scratch

Based on the above analysis, we propose a new pipeline
named pruning from scratch. Different from existing ones, it
enables researchers to obtain pruned structure directly from
randomly initialized weights.

Specifically, we denote a deep neural network as
f(x;W , α), where x is an input sample, W is all trainable
parameters, and α is the model structure. In general, α in-
cludes operator types, data flow topology, and layer hyper-
parameters as modeled in NAS research. In the network
pruning, we mainly focus on the micro-level layer settings,
especially the channel number of each layer in the channel
pruning strategies.

To efficiently learn the channel importance for each layer,
a set of scalar gate values λj are associated with the j-th
layer along the channel dimension. The gate values are mul-
tiplied onto the layer’s output to perform channel-wise mod-
ulation. Therefore, a near-zero gate value will suppress the
corresponding channel output, resulting in a pruning effect.
We denote the scalar gate values across all the K layers as
Λ = {λ1,λ2, · · · ,λK}. The optimization objective for Λ is

min
Λ

N∑

i

L(f(xi;W ,Λ), yi) + γ
K∑

j

|λj |1

s.t. 0 � λj � 1, ∀j = 1, 2, · · · ,K, (1)

where yi is the corresponding label, L is cross-entropy loss
function, γ is a balance factor. Here, the difference from pre-
vious works is two-fold. First, we do not update the weights
during channel importance learning; Second, we use ran-
domly initialized weights without relying on pre-training.

Following the same approach in Network Slimming, we
adopt sub-gradient descent to optimize Λ for the non-smooth
regularization term. However, the naive ℓ1-norm will en-
courage the gates to be zeroes unconstrainedly, which does
not lead to a good pruned structure. Different from the orig-
inal formulation in Network Slimming, we use the element-
wise mean of all the gates to approximate the overall sparsity
ratio, and use the square norm to push the sparsity to a pre-
defined ratio r (Luo and Wu 2018). Therefore, given a target

sparsity ratio r, the regularization term is

Ω(Λ) = (

∑
j |λj |1∑
j Cj

− r)2, (2)

where Cj is the channel number of the j-th layer. Empir-
ically, we find this improvement can obtain more reason-
able pruned structure. During the optimization, there can be
multiple possible gates for pruning. We select the final gates
whose sparsity is below the target ratio r while achieving the
maximum validation accuracy.

After obtaining a set of optimized gate values Λ∗ =
{λ∗

1,λ
∗

2, · · · ,λ
∗

n}, we set a threshold τ to decide which
channels are pruned. In the original Network Slimming
method, the global pruning threshold is determined accord-
ing to a predefined reduction ratio of the target structure’s
parameter size. However, a more practical approach is to
find the pruned structure based on the FLOPS constraints
of the target structure. A global threshold τ can be deter-
mined by binary search until the pruned structure satisfies
the constraints.

Algorithm 1 summarizes the searching strategy. Notice
that a model architecture generator G(·) is required to gen-
erate a model structure given a set of channel number con-
figurations. Here we only decide the channel number of each
convolutional layer and do not change the original layer con-
nection topology.

Algorithm 1 Searching For Pruned Structure

Require: Optimized channel gate values Λ∗, maximum
FLOPS C, model architecture generator G(Λ), itera-
tions T , relative tolerance ratio ǫ, τmin = 0, τmax = 1

Ensure: Final threshold τ∗, pruned model architecture A∗

1: for t ← 1 to T do
2: τt =

1

2
(τmin + τmax)

3: Get pruned channel gates Λt by threshold τt
4: Get pruned model architecture At = G(Λt)
5: Ct = calculate FLOPS(At)
6: if |Ct − C|/C ≤ ǫ then
7: τ∗ = τt, A∗ = At

8: break
9: end if

10: if Ct < C then τmin = τt else τmax = τt
11: end for

Implementations

Channel Expansion The new pruning pipeline allows us
to explore a larger model search space with no cost. We
can change the full model size and then obtain the target
pruned structure by slimming network. The easiest way to
change model capacity is to use uniform channel expansion,
which uniformly enlarges or shrinks the channel numbers of
all layers with a common width multiplier. As for the net-
works with skip connection such as ResNet (He et al. 2016),
the number of final output channels of each block and the
number of channels at the block input are simultaneously
expanded by the same multiplier to ensure that the tensor
dimensions are the same.
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Budget Training A significant finding in (Liu et al. 2019)
is that a pruned network can achieve similar performance to
a full model as long as it is adequately trained for a suf-
ficient period. Therefore, the authors in (Liu et al. 2019)
proposed “Scratch-B” training scheme, which trains the
pruned model for the same amount of computation bud-
get with the full model. For example, if the pruned model
saves 2× FLOPS, we double the number of basic training
epochs, which amounts to a similar computation budget.
Empirically, this training scheme is crucial for improving
the pruned model performance.

Experiments

Settings

We conduct all the experiments on CIFAR10 and ImageNet
datasets. For each dataset, we allocate a separate validation
set for evaluation while learning the channel gates. Specif-
ically, we randomly select 5,000 images from the origi-
nal CIFAR10 training set for validation. For ImageNet, we
randomly select 50,000 images (50 images for each cat-
egory) from the original training set for validation. We
adopt conventional training and testing data augmentation
pipelines (He et al. 2016).

When learning channel importance for the models on CI-
FAR10 dataset, we use Adam optimizer with an initial learn-
ing rate of 0.01 with a batch-size of 128. The balance factor
γ = 0.5 and total epoch is 10. All the models are expanded
by 1.25×, and the predefined sparsity ratio r equals the per-
centage of the pruned model’s FLOPS to the full model. Af-
ter searching for the pruned network architecture, we train
the pruned model from scratch following the same parame-
ter settings and training schedule in (He et al. 2018a).

When learning channel importance for the models on Im-
ageNet dataset, we use Adam optimizer with an initial learn-
ing rate of 0.01 and a batch-size of 100. The balance factor
γ = 0.05 and total epoch is 1. During training, we evaluate
the model performance on the validation set multiple times.
After finishing the architecture search, we train the pruned
model from scratch using SGD optimizer. For MobileNets,
we use cosine learning rate scheduler (Loshchilov and Hut-
ter 2016) with an initial learning rate of 0.05, momentum of
0.9, weight-decay of 4× 10−5. The model is trained for 300
epochs with a batch size of 256. For ResNet50 models, we
follow the same hyper-parameter settings in (He et al. 2016).
To further improve the performance, we add label smooth-
ing (Szegedy et al. 2016) regularization in the total loss.

CIFAR10 Results

We run each experiment five times and report the “mean ±
std.” We compare our method with other pruning methods,
including naive uniform channel number shrinkage (uni-
form), ThiNet (Luo, Wu, and Lin 2017), Channel Prun-
ing (CP) (He, Zhang, and Sun 2017), L1-norm pruning (Li
et al. 2016), Network Slimming (NS) (Liu et al. 2017),
Discrimination-aware Channel Pruning (DCP) (Zhuang et
al. 2018), Soft Filter Pruning (SFP) (He et al. 2018a), re-
thinking the value of network pruning (Rethink) (Liu et al.
2019), and Automatic Model Compression (AMC) (He et al.

Table 2: Network pruning results on CIFAR10 dataset. “Ra-
tio” stands for the percentage of the pruned FLOPS com-
pared to the full model. Larger ratio stands for a more com-
pact model. “Baseline” and “Pruned” columns stand for the
accuracy of baseline and pruned models in percentage. “∆
Acc” stands for the difference of the accuracy level between
baseline and pruned model, and larger is better.

Method Ratio Baseline (%) Pruned (%) ∆ Acc (%)

R
es

N
et

2
0

SFP 40% 92.20 90.83±0.31 -1.37
Rethink 40% 92.41 91.07±0.23 -1.34
Ours 40% 91.75 91.14±0.32 -0.61
uniform 50% 90.50 89.70 -0.80
AMC 50% 90.50 90.20 -0.30
Ours 50% 91.75 90.55±0.14 -1.20

R
es

N
et

5
6

uniform 50% 92.80 89.80 -3.00
ThiNet 50% 93.80 92.98 -0.82
CP 50% 93.80 92.80 -1.00
DCP 50% 93.80 93.49 -0.31
AMC 50% 92.80 91.90 -0.90
SFP 50% 93.59 93.35±0.31 -0.24
Rethink 50% 93.80 93.07±0.25 -0.73
Ours 50% 93.23 93.05±0.19 -0.18

R
es

N
et

1
1

0 L1-norm 40% 93.53 93.30 -0.23

SFP 40% 93.68 93.86±0.30 +0.18

Rethink 40% 93.77 93.92±0.13 +0.15

Ours 40% 93.49 93.69±0.28 +0.20

V
G

G
1

6

L1-norm 34% 93.25 93.40 +0.15
NS 51% 93.99 93.80 -0.19
ThiNet 50% 93.99 93.85 -0.14
CP 50% 93.99 93.67 -0.32
DCP 50% 93.99 94.16 +0.17
Ours 50% 93.44 93.63±0.06 +0.19

V
G

G
1

9 NS 52% 93.53 93.60±0.16 +0.07

Rethink 52% 93.53 93.81±0.14 +0.28

Ours 52% 93.40 93.71±0.08 +0.31

2018b). We compare the performance drop of each method
under the same FLOPS reduction ratio. A smaller accuracy
drop indicates a better pruning method.

Table 2 summarizes the results. Our method achieves less
performance drop across different model architectures com-
pared to the state-of-the-art methods. For large models like
ResNet110 and VGGNets, our pruned model achieves even
better performance than the baseline model. Notably, our
method consistently outperforms Rethink method, which
also utilizes the same budget training scheme. This vali-
dates that our method discovers a more efficient and pow-
erful pruned model architecture.

ImageNet Results

In this section, we test our method on ImageNet dataset. We
mainly prune three types of models: MobileNet-V1 (Howard
et al. 2017), MobileNet-V2 (Sandler et al. 2018), and
ResNet50 (He et al. 2016). We compare our method with
uniform channel expansion, ThiNet, SFP, CP, AMC, and Ne-
tAdapt (Yang et al. 2018). We report the top-1 accuracy of
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Table 3: Network pruning results on ImageNet dataset. For
uniform channel expansion models, we expand the channels
of each layer with a fixed ratio m, denoted as “m×”. “Base-
line 1.0×” stands for the original full model. “Params” col-
umn summarizes the sizes of the total parameters of each
pruned models.

Model Params Latency FLOPS Top-1 Acc (%)

M
o

b
il

eN
et

-V
1

Uniform 0.5× 1.3M 20ms 150M 63.3
Uniform 0.75× 3.5M 23ms 325M 68.4
Baseline 1.0× 4.2M 30ms 569M 70.9

NetAdapt – – 285M 70.1
AMC 2.4M 25ms 294M 70.5

Ours 0.5× 1.0M 20ms 150M 65.5
Ours 0.75× 1.9M 21ms 286M 70.7
Ours 1.0× 4.0M 23ms 567M 71.6

M
o

b
il

eN
et

-V
2

Uniform 0.75× 2.6M 39ms 209M 69.8
Baseline 1.0× 3.5M 42ms 300M 71.8
Uniform 1.3× 5.3M 43ms 509M 74.4

AMC 2.3M 41ms 211M 70.8

Ours 0.75× 2.6M 37ms 210M 70.9
Ours 1.0× 3.5M 41ms 300M 72.1
Ours 1.3× 4.5M 42ms 511M 74.1

R
es

N
et

5
0

Uniform 0.5× 6.8M 50ms 1.1G 72.1
Uniform 0.75× 14.7M 61ms 2.3G 74.9
Uniform 0.85× 18.9M 62ms 3.0G 75.9
Baseline 1.0× 25.5M 76ms 4.1G 76.1

ThiNet-30 – – 1.2G 72.1
ThiNet-50 – – 2.1G 74.7
ThiNet-70 – – 2.9G 75.8
SFP – – 2.9G 75.1
CP – – 2.0G 73.3

Ours 0.5× 4.6M 44ms 1.0G 72.8
Ours 0.75× 9.2M 52ms 2.0G 75.6
Ours 0.85× 17.9M 60ms 3.0G 76.7
Ours 1.0× 21.5M 67ms 4.1G 77.2

each method under the same FLOPS constraint.

Table 3 summarizes the results. When compressing the
models, our method outperforms both uniform expansion
models and other complicated pruning strategies across
all three architectures. Since our method allows the base
channel expansion, we can realize the neural architecture
search by pruning the model from an enlarged supernet. Our
method achieves comparable or even better performance
than the original full model design. We also measure the
model CPU latency under batch size 1 on a server with two
2.40GHz Intel(R) Xeon(R) CPU E5-2680 v4. Results show
that our model achieves similar or even faster model infer-
ence speed than other pruned models. These results validate
that it is both effective and scalable to prune model from a
randomly initialized network directly.

Comparison with Lottery Ticket Hypothesis

According to the Lottery Ticket Hypothesis (LTH) (Fran-
kle and Carbin 2019), a pruned model can only be trained
to a competitive performance level if it is re-initialized to
the original full model initialization weights (“winning tick-

Table 4: We compare the pruned model performance un-
der the same pruning ratio (PR). All the models are trained
for five runs on CIFAR10 dataset. “Random” stands for
our method. “Lottery” stands for lottery-ticket hypothesis,
which uses the original full model initialization for pruning
when re-training the pruned model from scratch.

Model PR Random (Ours) Lottery (Frankle’19)

ResNet20 40% 91.14±0.32 90.94±0.26
ResNet20 50% 90.44±0.14 90.34±0.36
ResNet56 50% 93.05±0.19 92.85±0.14
ResNet110 40% 93.69±0.28 93.55±0.37
VGG16 50% 93.63±0.06 92.95±0.22
VGG19 52% 93.71±0.08 93.51±0.21

ets”). In our pipeline, we do not require that the pruned
model has to be re-initialized to its original states for re-
training the weights. Therefore, we conduct comparison ex-
periments to testify whether LTH applies in our scenario.
Table 4 summarizes the results. We trained all the mod-
els for five runs on CIFAR10 dataset. From the results, we
conclude that our method achieves higher accuracy of the
pruned models in all the cases. For Lottery Ticket Hypoth-
esis, we do not observe the necessity of its usage. Similar
phenomena are also observed in (Liu et al. 2019). There are
several potential explanations. First, our method focuses on
structured pruning, while LTH draws conclusions on the un-
structured pruning, which can be highly sparse and irregu-
lar, and a specific initialization is necessary for successful
training. Second, as pointed by (Liu et al. 2019), LTH uses
Adam optimizer with small learning rate, which is different
from the conventional SGD optimization scheme. Different
optimization settings can substantially influence the pruned
model training. In conclusion, our method is valid under the
mild pruning ratio in the structured pruning situation.

Computational Costs for Pruning

Since our pruning pipeline does not require updating
weights during structure learning, we can significantly re-
duce the pruned model search cost. We compare our ap-
proach to traditional Network Slimming and RL-based
AMC pruning strategies. We measure all model search time
on a single NVIDIA GeForce GTX TITAN Xp GPU.

When pruning ResNet56 on the CIFAR10 dataset, NS and
AMC take 2.3 hours and 1.0 hours, respectively, and our
pipeline only takes 0.12 hours. When pruning ResNet50 on
ImageNet dataset, NS takes approximately 310 hours (in-
cluding progressive training process) to complete the entire
pruning process. For AMC, although the pruning phase takes
about 3.1 hours, a pre-trained full model is required, which is
equivalent to about 300 hours of pre-training. Our pipeline
takes only 2.8 hours to obtain the pruned structure from a
randomly initialized network. These results illustrate the su-
perior pruning speed of our method.

Visualizing Pruned Structures

Figure 3 displays the channel numbers of the pruned models
on CIFAR10 and ImageNet datasets. For each network ar-
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MobileNet-V1

Figure 3: Visualization of channel numbers of the pruned models. For each network architecture, we learn the channel impor-
tance and prune 50% FLOPS compared to the full model under five different random seeds. VGG16 and ResNet56 are trained
on CIFAR10, and MobileNet-V1 and ResNet50 are trained on ImageNet.

MobileNet-V1

MobileNet-V2

Figure 4: Pruned model structure compared with AMC. Both
models are trained on the ImageNet dataset. We include the
top-1 accuracy and FLOPS of each model in the legend.

chitecture, we learn the channel importance and prune 50%
FLOPS compared to the full model under five different ran-
dom seeds. Though there are some apparent differences in
the channel numbers of the intermediate layers, the result-
ing pruned model performance remains similar. This demon-
strates that our method is robust and stable under different
initialization methods.

We also compare the pruned structures with those identi-
fied by AMC (He et al. 2018b), which utilizes a more com-
plicated RL-based strategy to determine layer-wise pruning

ratios. Figure 4 summarizes the difference. On MobileNet-
V1, our method intentionally reduces more channels be-
tween the eighth and eleventh layers, and increases channels
in the early stage and the final two layers. The similar trend
persists in the last ten layers of MobileNet-V2. This demon-
strates that our method can discover more diverse and effi-
cient structures.

Discussion and Conclusions
In this work, we demonstrate that the pipeline of pruning
from scratch is efficient and effective through extensive ex-
periments on various models and datasets. An important ob-
servation is that pre-trained weights reduce the search space
for the pruned structure. Meanwhile, we also observe that
even after a short period of pre-training weights, the possi-
ble pruned structures have become stable and limited. This
perhaps implies that the learning of structure may converge
faster than weights. Although our pruning pipeline fixes the
random initialization weights, it needs to learn the channel
importance. This is equivalent to treating each weight chan-
nel as a single variable and optimizing the weighting coef-
ficients. The pruned structure learning may become easier
with reduced degree of variables.
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