
Pruning neural networks without any data

by iteratively conserving synaptic flow

Hidenori Tanaka⇤

Physics & Informatics Laboratories
NTT Research, Inc.

Department of Applied Physics
Stanford University

Daniel Kunin⇤

Institute for Computational and
Mathematical Engineering

Stanford University

Daniel L. K. Yamins
Department of Psychology

Department of Computer Science
Stanford University

Surya Ganguli
Department of Applied Physics

Stanford University

Abstract

Pruning the parameters of deep neural networks has generated intense interest due
to potential savings in time, memory and energy both during training and at test
time. Recent works have identified, through an expensive sequence of training
and pruning cycles, the existence of winning lottery tickets or sparse trainable
subnetworks at initialization. This raises a foundational question: can we iden-
tify highly sparse trainable subnetworks at initialization, without ever training,
or indeed without ever looking at the data? We provide an affirmative answer
to this question through theory driven algorithm design. We first mathematically
formulate and experimentally verify a conservation law that explains why existing
gradient-based pruning algorithms at initialization suffer from layer-collapse, the
premature pruning of an entire layer rendering a network untrainable. This theory
also elucidates how layer-collapse can be entirely avoided, motivating a novel
pruning algorithm Iterative Synaptic Flow Pruning (SynFlow). This algorithm can
be interpreted as preserving the total flow of synaptic strengths through the network
at initialization subject to a sparsity constraint. Notably, this algorithm makes
no reference to the training data and consistently competes with or outperforms
existing state-of-the-art pruning algorithms at initialization over a range of models
(VGG and ResNet), datasets (CIFAR-10/100 and Tiny ImageNet), and sparsity
constraints (up to 99.99 percent). Thus our data-agnostic pruning algorithm chal-
lenges the existing paradigm that, at initialization, data must be used to quantify
which synapses are important.

1 Introduction

Network pruning, or the compression of neural networks by removing parameters, has been an
important subject both for reasons of practical deployment [1, 2, 3, 4, 5, 6, 7] and for theoretical
understanding of artificial [8] and biological [9] neural networks. Conventionally, pruning algorithms
have focused on compressing pre-trained models [1, 2, 3, 5, 6]. However, recent works [10, 11] have
identified through iterative training and pruning cycles (iterative magnitude pruning) that there exist
sparse subnetworks (winning tickets) in randomly-initialized neural networks that, when trained in

∗Equal contribution. Correspondence to hidenori.tanaka@ntt-research.com and
kunin@stanford.edu.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

isolation, can match the test accuracy of the original network. Moreover, its been shown that some of
these winning ticket subnetworks can generalize across datasets and optimizers [12]. While these
results suggest training can be made more efficient by identifying winning ticket subnetworks at
initialization, they do not provide efficient algorithms to find them. Typically, it requires significantly
more computational costs to identify winning tickets through iterative training and pruning cycles
than simply training the original network from scratch [10, 11]. Thus, the fundamental unanswered
question is: can we identify highly sparse trainable subnetworks at initialization, without ever training,
or indeed without ever looking at the data? Towards this goal, we start by investigating the limitations
of existing pruning algorithms at initialization [13, 14], determine simple strategies for avoiding these
limitations, and provide a novel data-agnostic algorithm that achieves state-of-the-art results. Our
main contributions are:

1. We study layer-collapse, the premature pruning of an entire layer making a network un-
trainable, and formulate the axiom Maximal Critical Compression that posits a pruning
algorithm should avoid layer-collapse whenever possible (Sec. 3).

2. We demonstrate theoretically and empirically that synaptic saliency, a general class of
gradient-based scores for pruning, is conserved at every hidden unit and layer of a neural
network (Sec. 4).

3. We show that these conservation laws imply parameters in large layers receive lower scores
than parameters in small layers, which elucidates why single-shot pruning disproportionately
prunes the largest layer leading to layer-collapse (Sec. 4).

4. We hypothesize that iterative magnitude pruning [10] avoids layer-collapse because gradient
descent effectively encourages the magnitude scores to observe a conservation law, which
combined with iteration results in the relative scores for the largest layers increasing during
pruning (Sec. 5).

5. We prove that a pruning algorithm avoids layer-collapse entirely and satisfies Maximal
Critical Compression if it uses iterative, positive synaptic saliency scores (Sec. 6).

6. We introduce a new data-agnostic algorithm Iterative Synaptic Flow Pruning (SynFlow)
that satisfies Maximal Critical Compression (Sec. 6) and demonstrate empirically2 that
this algorithm achieves state-of-the-art pruning performance on 12 distinct combinations of
models and datasets (Sec. 7).

2 Related work

While there are a variety of approaches to compressing neural networks, such as novel design
of micro-architectures [15, 16, 17], dimensionality reduction of network parameters [18, 19], and
training of dynamic sparse networks [20, 21, 22], in this work we will focus on neural network
pruning.

Pruning after training. Conventional pruning algorithms assign scores to parameters in neural
networks after training and remove the parameters with the lowest scores [5, 23, 24]. Popular scoring
metrics include weight magnitudes [4, 6], its generalization to multi-layers [25], first- [1, 26, 27, 28]
and second-order [2, 3, 28] Taylor coefficients of the training loss with respect to the parameters, and
more sophisticated variants [29, 30, 31]. While these pruning algorithms can indeed compress neural
networks at test time, there is no reduction in the cost of training.

Pruning before Training. Recent works demonstrated that randomly initialized neural networks can
be pruned before training with little or no loss in the final test accuracy [10, 13, 32]. In particular, the
Iterative Magnitude Pruning (IMP) algorithm [10, 11] repeats multiple cycles of training, pruning, and
weight rewinding to identify extremely sparse neural networks at initialization that can be trained to
match the test accuracy of the original network. While IMP is powerful, it requires multiple cycles of
expensive training and pruning with very specific sets of hyperparameters. Avoiding these difficulties,
a different approach uses the gradients of the training loss at initialization to prune the network in
a single-shot [13, 14]. While these single-shot pruning algorithms at initialization are much more
efficient, and work as well as IMP at moderate levels of sparsity, they suffer from layer-collapse, or
the premature pruning of an entire layer rendering a network untrainable [33, 34]. Understanding and
circumventing this layer-collapse issue is the fundamental motivation for our study.

2All code is available at github.com/ganguli-lab/Synaptic-Flow.

2

https://github.com/ganguli-lab/Synaptic-Flow

3 Layer-collapse: the key obstacle to pruning at initialization

Broadly speaking, a pruning algorithm at initialization is defined by two steps. The first step scores
the parameters of a network according to some metric and the second step masks the parameters
(removes or keeps the parameter) according to their scores. The pruning algorithms we consider
will always mask the parameters by simply removing the parameters with the smallest scores. This
ranking process can be applied globally across the network, or layer-wise. Empirically, its been
shown that global-masking performs far better than layer-masking, in part because it introduces fewer
hyperparameters and allows for flexible pruning rates across the network [24]. However, recent works
[33, 14, 34] have identified a key failure mode, layer-collapse, for existing pruning algorithms using
global-masking. Layer-collapse occurs when an algorithm prunes all parameters in a single weight
layer even when prunable parameters remain elsewhere in the network. This renders the network
untrainable, evident by sudden drops in the achievable accuracy for the network as shown in Fig. 1.
To gain insight into the phenomenon of layer-collapse we will define some useful terms inspired by a
recent paper studying the failure mode [34].

M
ax

 C
o
m

p
ressio

n

Figure 1: Layer-collapse leads to a
sudden drop in accuracy. Top-1 test
accuracy as a function of the compres-
sion ratio for a VGG-16 model pruned
at initialization and trained on CIFAR-
100. Colored arrows represent the crit-
ical compression of the corresponding
pruning algorithm. Only our algorithm,
SynFlow, reaches the theoretical limit
of max compression (black dashed line)
without collapsing the network. See
Sec. 7 for more details on the experi-
ments.

Given a network, compression ratio (⇢) is the number of
parameters in the original network divided by the number
of parameters remaining after pruning. For example, when
the compression ratio ⇢ = 103, then only one out of a
thousand of the parameters remain after pruning. Max
compression (⇢max) is the maximal possible compression
ratio for a network that doesn’t lead to layer-collapse. For
example, for a network with L layers and N parameters,
⇢max = N/L, which is the compression ratio associated
with pruning all but one parameter per layer. Critical com-
pression (⇢cr) is the maximal compression ratio a given
algorithm can achieve without inducing layer-collapse.
In particular, the critical compression of an algorithm is
always upper bounded by the max compression of the net-
work: ⇢cr ⇢max. This inequality motivates the follow-
ing axiom we postulate any successful pruning algorithm
should satisfy.

Axiom. Maximal Critical Compression. The critical
compression of a pruning algorithm applied to a network
should always equal the max compression of that network.

In other words, this axiom implies a pruning algorithm
should never prune a set of parameters that results in layer-
collapse if there exists another set of the same cardinality
that will keep the network trainable. To the best of our
knowledge, no existing pruning algorithm with global-masking satisfies this simple axiom. Of course
any pruning algorithm could be modified to satisfy the axiom by introducing specialized layer-wise
pruning rates. However, to retain the benefits of global-masking [24], we will formulate an algorithm,
Iterative Synaptic Flow Pruning (SynFlow), which satisfies this property by construction. SynFlow is
a natural extension of magnitude pruning, that preserves the total flow of synaptic strengths from
input to output rather than the individual synaptic strengths themselves. We will demonstrate that not
only does the SynFlow algorithm achieve Maximal Critical Compression, but it consistently matches
or outperforms existing state-of-the-art pruning algorithms (as shown in Fig. 1 and in Sec. 7), all
while not using the data.

Throughout this work, we benchmark our algorithm, SynFlow, against two simple baselines, random
scoring and scoring based on weight magnitudes, as well as two state-of-the-art single-shot pruning
algorithms, Single-shot Network Pruning based on Connection Sensitivity (SNIP) [13] and Gradient
Signal Preservation (GraSP) [14]. SNIP [13] is a pioneering algorithm to prune neural networks at
initialization by scoring weights based on the gradients of the training loss. GraSP [14] is a more
recent algorithm that aims to preserve gradient flow at initialization by scoring weights based on
the Hessian-gradient product. Both SNIP and GraSP have been thoroughly benchmarked by [14]
against other state-of-the-art pruning algorithms that involve training [2, 35, 10, 11, 36, 21, 20],
demonstrating competitive performance.

3

Magnitude SNIP SynFlowRandom GraSP

Figure 2: Where does layer-collapse occur? Fraction of parameters remaining at each layer of a
VGG-19 model pruned at initialization with ImageNet over a range of compression ratios (10n for
n = 0, 0.5, . . . , 6.0). A higher transparency represents a higher compression ratio. A dashed line
indicates that there is at least one layer with no parameters, implying layer-collapse has occurred.

4 Conservation laws of synaptic saliency

In this section, we will further verify that layer-collapse is a key obstacle to effective pruning at
initialization and explore what is causing this failure mode. As shown in Fig. 2, with increasing com-
pression ratios, existing random, magnitude, and gradient-based pruning algorithms will prematurely
prune an entire layer making the network untrainable. Understanding why certain score metrics lead
to layer-collapse is essential to improve the design of pruning algorithms.

Random pruning prunes every layer in a network by the same amount, evident by the horizontal lines
in Fig. 2. With random pruning the smallest layer, the layer with the least parameters, is the first
to be fully pruned. Conversely, magnitude pruning prunes layers at different rates, evident by the
staircase pattern in Fig. 2. Magnitude pruning effectively prunes parameters based on the variance of
their initialization, which for common network initializations, such as Xavier [37] or Kaiming [38],
are inversely proportional to the width of a layer [34]. With magnitude pruning the widest layers,
the layers with largest input or output dimensions, are the first to be fully pruned. Gradient-based
pruning algorithms SNIP [13] and GraSP [14] also prune layers at different rates, but it is less clear
what the root cause for this preference is. In particular, both SNIP and GraSP aggressively prune
the largest layer, the layer with the most trainable parameters, evident by the sharp peaks in Fig. 2.
Based on this observation, we hypothesize that gradient-based scores averaged within a layer are
inversely proportional to the layer size. We examine this hypothesis by constructing a theoretical
framework grounded in flow networks. We first define a general class of gradient-based scores, prove
a conservation law for these scores, and then use this law to prove that our hypothesis of inverse
proportionality between layer size and average layer score holds exactly.

A general class of gradient-based scores. Synaptic saliency is a class of score metrics that can be
expressed as the Hadamard product

S(✓) =
@R

@✓
� ✓, (1)

where R is a scalar loss function of the output y of a feed-forward network parameterized by ✓. When

R is the training loss L, the resulting synaptic saliency metric is equivalent (modulo sign) to�∂L

∂θ
�✓,

the score metric used in Skeletonization [1], one of the first network pruning algorithms. The resulting

metric is also closely related to
�

�

∂L

∂θ
� ✓
�

� the score used in SNIP [13],�
�

H ∂L

∂θ

�

� ✓ the score used in

GraSP, and
�

∂L

∂θ
� ✓
�2

the score used in the pruning after training algorithm Taylor-FO [28]. When

R = h∂L
∂y , yi, the resulting synaptic saliency metric is closely related to diag(H)✓� ✓, the score used

in Optimal Brain Damage [2]. This general class of score metrics, while not encompassing, exposes
key properties of gradient-based scores used for pruning.

The conservation of synaptic saliency. All synaptic saliency metrics respect two surprising conser-
vation laws, which we prove in Appendix 9, that hold at any initialization and step in training.

Theorem 1. Neuron-wise Conservation of Synaptic Saliency. For a feedforward neural network
with continuous, homogeneous activation functions, �(x) = �0(x)x, (e.g. ReLU, Leaky ReLU, linear),
the sum of the synaptic saliency for the incoming parameters (including the bias) to a hidden neuron
(S in = h ∂R

∂θin , ✓
ini) is equal to the sum of the synaptic saliency for the outgoing parameters from the

hidden neuron (Sout = h ∂R

∂θout , ✓
outi).

4

Magnitude SNIP SynFlowRandom GraSP

Figure 3: Neuron-wise conservation of score. Each dot represents a hidden unit from the feature-
extractor of a VGG-19 model pruned at initialization with ImageNet. The location of each dot
corresponds to the total score for the unit’s incoming and outgoing parameters, (S in,Sout). The black
dotted line represents exact neuron-wise conservation of score.

Magnitude SNIP SynFlowRandom GraSP

Figure 4: Inverse relationship between layer size and average layer score. Each dot represents
a layer from a VGG-19 model pruned at initialization with ImageNet. The location of each dot
corresponds to the layer’s average score4and inverse number of elements. The black dotted line
represents a perfect linear relationship.

Theorem 2. Network-wise Conservation of Synaptic Saliency. The sum of the synaptic saliency
across any set of parameters that exactly3 separates the input neurons x from the output neurons y of
a feedforward neural network with homogeneous activation functions equals h∂R

∂x , xi = h
∂R

∂y , yi.

For example, when considering a simple feedforward network with biases, then these conservation

laws imply the non-trivial relationship: h ∂R

∂W [l] ,W
[l]i +

PL
i=lh

∂R

∂b[i]
, b[i]i = h∂R

∂y , yi. Similar con-

servation properties have been noted in the network complexity [39], implicit regularization [40],
and network interpretability [41, 42] literature with some highlighting the potential applications to
pruning [9, 43]. While the previous literatures have focused on attribution to the input pixels, or have
ignored bias parameters, or have only considered the laws at the layer-level, we have formulated
neuron-wise conservation laws that are more general and applicable to any parameter, including
biases, in a network. Remarkably, these conservation laws of synaptic saliency apply to modern
neural network architectures and a wide variety of neural network layers (e.g. dense, convolutional,
pooling, residual) as visually demonstrated in Fig. 3. In Appendix 10 we discuss the specific setting
of these conservation laws to parameters immediately preceding a batch normalization layer.

Conservation and single-shot pruning leads to layer-collapse. The conservation laws of synaptic
saliency provide us with the theoretical tools to validate our earlier hypothesis of inverse proportion-
ality between layer size and average layer score as a root cause for layer-collapse of gradient-based
pruning methods. Consider the set of parameters in a layer of a simple, fully connected neural
network. This set would exactly separate the input neurons from the output neurons. Thus, by the
network-wise conservation of synaptic saliency (theorem 2), the total score for this set is constant
for all layers, implying the average is inversely proportional to the layer size. We can empirically
evaluate this relationship at scale for existing pruning methods by computing the total score for
each layer of a model, as shown in Fig. 4. While this inverse relationship is exact for synaptic
saliency, other closely related gradient-based scores, such as the scores used in SNIP and GraSP,
also respect this relationship. This validates the empirical observation that for a given compression
ratio, gradient-based pruning methods will disproportionately prune the largest layers. Thus, if the
compression ratio is large enough and the pruning score is only evaluated once, then a gradient-based
pruning method will completely prune the largest layer leading to layer-collapse.

3Every element of the set is needed to separate the input neurons from the output neurons.
4For GraSP we used the absolute value of the average layer score so that we could plot on a log-log plot.

5

5 Magnitude pruning avoids layer-collapse with conservation and iteration

(a) Iteration is needed to avoid layer-collapse

Initialization

Trained

(b) IMP obtains conservation by training

Figure 5: How IMP avoids layer col-
lapse. (a) Multiple iterations of training-
pruning cycles is needed to prevent IMP
from suffering layer-collapse. (b) The
average square magnitude scores per
layer, originally at initialization (blue),
converge through training towards a lin-
ear relationship with the inverse layer
size after training (pink), suggesting
layer-wise conservation. All data is from
a VGG-19 model trained on CIFAR-10.

Having demonstrated and investigated the cause of layer-
collapse in single-shot pruning methods at initialization,
we now explore an iterative pruning method that appears
to avoid the issue entirely. Iterative Magnitude Pruning
(IMP) is a recently proposed pruning algorithm that has
proven to be successful in finding extremely sparse train-
able neural networks at initialization (winning lottery tick-
ets) [10, 11, 12, 44, 45, 46, 47]. The algorithm follows
three simple steps. First train a network, second prune
parameters with the smallest magnitude, third reset the
unpruned parameters to their initialization and repeat until
the desired compression ratio. While simple and power-
ful, IMP is impractical as it involves training the network
several times, essentially defeating the purpose of con-
structing a sparse initialization. That being said it does not
suffer from the same catastrophic layer-collapse that other
pruning at initialization methods are susceptible to. Thus,
understanding better how IMP avoids layer-collapse might
shed light on how to improve pruning at initialization.

As has been noted previously [10, 11], iteration is essen-
tial for stabilizing IMP. In fact, without sufficient pruning
iterations, IMP will suffer from layer-collapse, evident in
the sudden accuracy drops for the darker curves in Fig. 5a.
However, the number of pruning iterations alone cannot
explain IMP’s success at avoiding layer-collapse. Notice
that if IMP didn’t train the network during each prune
cycle, then, no matter the number of pruning iterations,
it would be equivalent to single-shot magnitude pruning.
Thus, something very critical must happen to the magni-
tude of the parameters during training, that when coupled
with sufficient pruning iterations allows IMP to avoid layer-collapse. We hypothesize that gradient
descent training effectively encourages the scores to observe an approximate layer-wise conservation
law, which when coupled with sufficient pruning iterations allows IMP to avoid layer-collapse.

Gradient descent encourages conservation. To better understand the dynamics of the IMP algo-
rithm during training, we will consider a differentiable score S(✓i) =

1
2✓

2
i algorithmically equivalent

to the magnitude score. Consider these scores throughout training with gradient descent on a loss
function L using an infinitesimal step size (i.e. gradient flow). In this setting, the temporal deriva-

tive of the parameters is equivalent to dθ
dt = �∂L

∂θ
, and thus the temporal derivative of the score

is d
dt

1
2✓

2
i = dθi

dt � ✓i = �
∂L

∂θi
� ✓i. Surprisingly, this is a form of synaptic saliency and thus the

neuron-wise and layer-wise conservation laws from Sec. 4 apply. In particular, this implies that for

any two layers l and k of a simple, fully connected network, then d
dt ||W

[l]||2F = d
dt ||W

[k]||2F . This
invariance has been noticed before by [40] as a form of implicit regularization and used to explain the
empirical phenomenon that trained multi-layer models can have similar layer-wise magnitudes. In
the context of pruning, this phenomenon implies that gradient descent training, with a small enough
learning rate, encourages the squared magnitude scores to converge to an approximate layer-wise
conservation, as shown in Fig. 5b.

Conservation and iterative pruning avoids layer-collapse. As explained in section 4, conservation
alone leads to layer-collapse by assigning parameters in the largest layers with lower scores relative
to parameters in smaller layers. However, if conservation is coupled with iterative pruning, then when
the largest layer is pruned, becoming smaller, then in subsequent iterations the remaining parameters
of this layer will be assigned higher relative scores. With sufficient iterations, conservation coupled
with iteration leads to a self-balancing pruning strategy allowing IMP to avoid layer-collapse. This
insight on the importance of conservation and iteration applies more broadly to other algorithms with
exact or approximate conservation properties. Indeed, concurrent work empirically confirms that
iteration improves the performance of SNIP [48, 49].

6

6 A data-agnostic algorithm satisfying Maximal Critical Compression

In the previous section we identified two key ingredients of IMP’s ability to avoid layer-collapse:
(i) approximate layer-wise conservation of the pruning scores, and (ii) the iterative re-evaluation of
these scores. While these properties allow the IMP algorithm to identify high performing and highly
sparse, trainable neural networks, it requires an impractical amount of computation to obtain them.
Thus, we aim to construct a more efficient pruning algorithm while still inheriting the key aspects of
IMP’s success. So what are the essential ingredients for a pruning algorithm to avoid layer-collapse
and provably attain Maximal Critical Compression? We prove the following theorem in Appendix 9.

Theorem 3. Iterative, positive, conservative scoring achieves Maximal Critical Compression. If a
pruning algorithm, with global-masking, assigns positive scores that respect layer-wise conservation
and if the prune size, the total score for the parameters pruned at any iteration, is strictly less than
the cut size, the total score for an entire layer, whenever possible, then the algorithm satisfies the
Maximal Critical Compression axiom.

The Iterative Synaptic Flow Pruning (SynFlow) algorithm. Theorem 3 directly motivates the
design of our novel pruning algorithm, SynFlow, that provably reaches Maximal Critical Compression.
First, the necessity for iterative score evaluation discourages algorithms that involve backpropagation
on batches of data, and instead motivates the development of an efficient data-independent scoring
procedure. Second, positivity and conservation motivates the construction of a loss function that
yields positive synaptic saliency scores. We combine these insights to introduce a new loss function

(where 1 is the all ones vector and |✓[l]| is the element-wise absolute value of parameters in the lth

layer),

RSF = 1
T

L
Y

l=1

|✓[l]|

!

1 (2)

that yields the positive, synaptic saliency scores (∂RSF

∂θ
� ✓) we term Synaptic Flow. For a simple,

fully connected network (i.e. f(x) = W [N] . . .W [1]x), we can factor the Synaptic Flow score for a

parameter w
[l]
ij as

SSF(w
[l]
ij) =

"

1
|

N
Y

k=l+1

�

�

�
W [k]

�

�

�

#

i

�

�

�
w

[l]
ij

�

�

�

"

l�1
Y

k=1

�

�

�
W [k]

�

�

�
1

#

j

. (3)

This perspective demonstrates that Synaptic Flow score is a generalization of magnitude score (|w
[l]
ij |),

where the scores consider the product of synaptic strengths flowing through each parameter, taking
the inter-layer interactions of parameters into account. In fact, this more generalized magnitude has
been discussed previously in literature as a path-norm [50]. The Synaptic Flow loss, equation (2),
is the l1-path norm of a network and the synaptic flow score for a parameter is the portion of the
norm through the parameter. We use the Synaptic Flow score in the Iterative Synaptic Flow Pruning
(SynFlow) algorithm summarized in the pseudocode below.

Algorithm 1: Iterative Synaptic Flow Pruning (SynFlow).

Input: network f(x; ✓0), compression ratio ⇢, iteration steps n
0: f(x; ✓0) ; .Set model to eval modea

1: µ = 1 ; .Initialize binary mask
for k in [1, . . . , n] do

2: ✓µ µ� ✓0 ; .Mask parameters

3: R 1
T
⇣

QL
l=1 |✓

[l]
µ |
⌘

1 ; .Evaluate SynFlow objective

4: S ∂R

∂θµ
� ✓µ ; .Compute SynFlow score

5: ⌧ (1� ⇢�k/n) percentile of S ; .Find threshold
6: µ (⌧ < S) ; .Update mask

end
7: f(x;µ� ✓0) ; .Return masked network

aFor pruning at initialization, whether a model is in eval or train mode can have a significant impact on
a pruning algorithm’s performance, as the batch normalization buffers have not been learned. This is further
explained in Appendix 10.

7

Given a network f(x; ✓0) and specified compression ratio ⇢, the SynFlow algorithm requires only
one additional hyperparameter, the number of pruning iterations n. We demonstrate in Appendix 12,

that an exponential pruning schedule (⇢�k/n) with n = 100 pruning iterations essentially prevents
layer-collapse whenever avoidable (Fig. 1), while remaining computationally feasible, even for large
networks.

Computational cost of SynFlow. The computational cost of a pruning algorithm can be measured
by the number of forward/backward passes (#iterations⇥#examples per iteration). We always run
the data-agnostic SynFlow with 100 iterations, implying it takes 100 passes no matter the dataset.
SNIP and GraSP each involve one iteration, but use ten times the number of classes per iteration
requiring 1000, 2000, and 10,000 passes for CIFAR-100, Tiny-ImageNet, and ImageNet respectively.

7 Experiments

We empirically benchmark the performance of our algorithm, SynFlow (red), against the baselines
random pruning and magnitude pruning, as well as the state-of-the-art algorithms SNIP [13] and
GraSP [14]. In Fig. 6, we test the five algorithms on 12 distinct combinations of modern architec-
tures (VGG-11, VGG-16, ResNet-18, WideResNet-18) and datasets (CIFAR-10, CIFAR-100, Tiny
ImageNet) over an exponential sweep of compression ratios (10α for ↵ = [0, 0.25, . . . , 3.75, 4]).
See Appendix 13 for more details and hyperparameters of the experiments. Consistently, SynFlow
outperforms the other algorithms in the high compression regime (101.5 < ⇢) and demonstrates more
stability, as indicated by its tight intervals. SynFlow is also quite competitive in the low compression
regime (⇢ < 101.5). Although SNIP and GraSP can partially outperform SynFlow in this regime,
both methods suffer from layer-collapse as indicated by their sharp drops in accuracy.

Compression ratio

To
p
-1

 a
cc

u
ra

cy

Compression ratio Compression ratio Compression ratio

To
p
-1

 a
cc

u
ra

cy
To

p
-1

 a
cc

u
ra

cy

SynFlowSNIP GraSPMagnitudeRandom

VGG-11 VGG-16 ResNet-18 WideResNet-18

C
IF

A
R

-1
0

T
in

y
Im

ag
eN

et
C

IF
A

R
-1

0
0

Figure 6: SynFlow consistently outperforms other pruning methods in high compression
regimes avoiding layer collapse. Top-1 test accuracy as a function of different compression ratios
over 12 distinct combinations of models and datasets. We performed three runs with the same
hyperparameter conditions and different random seeds. The solid line represents the mean, the shaded
region represents area between minimum and maximum performance of the three runs.

Comparing to expensive iterative pruning algorithms. Theorem 3 states that iteration is a neces-
sary ingredient for any pruning algorithm, elucidating the success of iterative magnitude pruning
and concurrent work on iterative versions of SNIP [48, 49]. As shown in Fig. 7, iteration helps
SNIP avoid early layer-collapse, but with a multiplicative computational cost. Additionally, these
iterative versions of SNIP still suffer from layer-collapse, long before reaching max compression,
which SynFlow is provably guaranteed to reach.

8

M
ax

 C
o
m

p
ressio

n

Figure 7: Iteration improves SNIP,
but layer-collapse still occurs. Top-
1 test accuracy as a function of the
compression ratio for a VGG-16 model
pruned at initialization and trained on
CIFAR-100.

Ablation studies. The SynFlow algorithm demonstrates
that we do not need to use data to match, and at times
outperform, data-dependent pruning methods at initializa-
tion such as SNIP and GraSP. This result challenges the
effectiveness of how existing algorithms use data at initial-
ization, and provides a concrete algorithmic baseline that
any future algorithms that prune at initialization using data
should surpass. A recent follow-up work [51] confirms
our observation that SynFlow is competitive with SNIP
and GraSP even in the low-compression regime and for
large-scale datasets (ImageNet) and models (ResNet-50).
This work also performs careful ablation studies that offer
concrete evidence supporting the theoretical motivation
for SynFlow and insightful observations for further im-
provements of the algorithm. See Appendix 11 for a more
detailed discussion on these ablation studies presented in
[51].

8 Conclusion

In this paper, we developed a unifying theoretical framework that explains why existing pruning
algorithms at initialization suffer from layer-collapse. We applied our framework to elucidate how
iterative magnitude pruning [10] overcomes layer-collapse to identify winning lottery tickets at ini-
tialization. Building on the theory, we designed a new data-agnostic pruning algorithm, SynFlow, that
provably avoids layer-collapse and reaches Maximal Critical Compression. Finally, we empirically
confirmed that our SynFlow algorithm consistently matches or outperforms existing algorithms across
12 distinct combinations of models and datasets, despite the fact that our algorithm is data-agnostic
and requires no pre-training. Promising future directions for this work are to (i) explore a larger space
of potential pruning algorithms that satisfy Maximal Critical Compression, (ii) harness SynFlow as an
efficient way to compute appropriate per-layer compression ratios to combine with existing scoring
metrics, and (iii) incorporate pruning as a part of neural network initialization schemes. Overall,
our data-agnostic pruning algorithm challenges the existing paradigm that data must be used, at
initialization, to quantify which synapses of a neural network are important.

9

Broader Impact

Neural network pruning has the potential to increase the energy efficiency of neural network models
and decrease the environmental impact of their training. It also has the potential to allow for trained
neural network models to be more easily deployed on edge devices such as mobile phones. Our
work explores neural network pruning mainly from a theoretical angle and thus these impacts are not
directly applicable to our work. However, future work might be able to realize these potentials and
thus must consider their impacts more carefully.

Acknowledgments and Disclosure of Funding

We thank Jonathan M. Bloom, Weihua Hu, Javier Sagastuy-Brena, Chaoqi Wang, Guodong Zhang,
Chengxu Zhuang, and members of the Stanford Neuroscience and Artificial Intelligence Laboratory
for helpful discussions. We thank the Stanford Data Science Scholars program (DK), the Burroughs
Wellcome, Simons and James S. McDonnell foundations, and an NSF career award (SG) for support.
This work was funded in part by the IBM-Watson AI Lab. D.L.K.Y is supported by the McDonnell
Foundation (Understanding Human Cognition Award Grant No. 220020469), the Simons Foundation
(Collaboration on the Global Brain Grant No. 543061), the Sloan Foundation (Fellowship FG-2018-
10963), the National Science Foundation (RI 1703161 and CAREER Award 1844724), the DARPA
Machine Common Sense program, and hardware donation from the NVIDIA Corporation.

References

[1] Michael C Mozer and Paul Smolensky. Skeletonization: A technique for trimming the fat from
a network via relevance assessment. In Advances in neural information processing systems,
pages 107–115, 1989.

[2] Yann LeCun, John S Denker, and Sara A Solla. Optimal brain damage. In Advances in neural
information processing systems, pages 598–605, 1990.

[3] Babak Hassibi and David G Stork. Second order derivatives for network pruning: Optimal brain
surgeon. In Advances in neural information processing systems, pages 164–171, 1993.

[4] Steven A Janowsky. Pruning versus clipping in neural networks. Physical Review A, 39(12):
6600, 1989.

[5] Russell Reed. Pruning algorithms-a survey. IEEE transactions on Neural Networks, 4(5):
740–747, 1993.

[6] Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections
for efficient neural network. In Advances in neural information processing systems, pages
1135–1143, 2015.

[7] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing of deep
neural networks: A tutorial and survey. Proceedings of the IEEE, 105(12):2295–2329, 2017.

[8] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger generalization bounds for
deep nets via a compression approach. In Jennifer Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, volume 80 of Proceedings of
Machine Learning Research, pages 254–263. PMLR, 2018.

[9] Hidenori Tanaka, Aran Nayebi, Niru Maheswaranathan, Lane McIntosh, Stephen Baccus, and
Surya Ganguli. From deep learning to mechanistic understanding in neuroscience: the structure
of retinal prediction. In Advances in Neural Information Processing Systems, pages 8535–8545,
2019.

[10] Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable
neural networks. In International Conference on Learning Representations, 2019.

[11] Jonathan Frankle, G Karolina Dziugaite, DM Roy, and M Carbin. Stabilizing the lottery ticket
hypothesis. arXiv, page, 2019.

10

[12] Ari Morcos, Haonan Yu, Michela Paganini, and Yuandong Tian. One ticket to win them all:
generalizing lottery ticket initializations across datasets and optimizers. In Advances in Neural
Information Processing Systems, pages 4933–4943, 2019.

[13] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip Torr. SNIP: SINGLE-SHOT NETWORK
PRUNING BASED ON CONNECTION SENSITIVITY. In International Conference on
Learning Representations, 2019.

[14] Chaoqi Wang, Guodong Zhang, and Roger Grosse. Picking winning tickets before training by
preserving gradient flow. In International Conference on Learning Representations, 2020.

[15] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J Dally, and
Kurt Keutzer. Squeezenet: Alexnet-level accuracy with 50x fewer parameters and< 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.

[16] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang, Tobias
Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Efficient convolutional neural
networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[17] Ameya Prabhu, Girish Varma, and Anoop Namboodiri. Deep expander networks: Efficient deep
networks from graph theory. In Proceedings of the European Conference on Computer Vision
(ECCV), pages 20–35, 2018.

[18] Max Jaderberg, Andrea Vedaldi, and Andrew Zisserman. Speeding up convolutional neural
networks with low rank expansions. In Proceedings of the British Machine Vision Conference.
BMVA Press, 2014. doi: http://dx.doi.org/10.5244/C.28.88.

[19] Alexander Novikov, Dmitrii Podoprikhin, Anton Osokin, and Dmitry P Vetrov. Tensorizing
neural networks. In Advances in neural information processing systems, pages 442–450, 2015.

[20] Guillaume Bellec, David Kappel, Wolfgang Maass, and Robert Legenstein. Deep rewiring:
Training very sparse deep networks. In International Conference on Learning Representations,
2018.

[21] Decebal Constantin Mocanu, Elena Mocanu, Peter Stone, Phuong H Nguyen, Madeleine
Gibescu, and Antonio Liotta. Scalable training of artificial neural networks with adaptive sparse
connectivity inspired by network science. Nature communications, 9(1):1–12, 2018.

[22] Utku Evci, Trevor Gale, Jacob Menick, Pablo Samuel Castro, and Erich Elsen. Rigging the
lottery: Making all tickets winners. arXiv preprint arXiv:1911.11134, 2019.

[23] Trevor Gale, Erich Elsen, and Sara Hooker. The state of sparsity in deep neural networks. arXiv
preprint arXiv:1902.09574, 2019.

[24] Davis Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John Guttag. What is the
state of neural network pruning? arXiv preprint arXiv:2003.03033, 2020.

[25] Sejun Park*, Jaeho Lee*, Sangwoo Mo, and Jinwoo Shin. Lookahead: A far-sighted alternative
of magnitude-based pruning. In International Conference on Learning Representations, 2020.

[26] Ehud D Karnin. A simple procedure for pruning back-propagation trained neural networks.
IEEE transactions on neural networks, 1(2):239–242, 1990.

[27] Pavlo Molchanov, Stephen Tyree, Tero Karras, Timo Aila, and Jan Kautz. Pruning convolutional
neural networks for resource efficient inference. arXiv preprint arXiv:1611.06440, 2016.

[28] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. Importance
estimation for neural network pruning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 11264–11272, 2019.

[29] Yiwen Guo, Anbang Yao, and Yurong Chen. Dynamic network surgery for efficient dnns. In
Advances in neural information processing systems, pages 1379–1387, 2016.

11

[30] Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-
wise optimal brain surgeon. In Advances in Neural Information Processing Systems, pages
4857–4867, 2017.

[31] Ruichi Yu, Ang Li, Chun-Fu Chen, Jui-Hsin Lai, Vlad I Morariu, Xintong Han, Mingfei
Gao, Ching-Yung Lin, and Larry S Davis. Nisp: Pruning networks using neuron importance
score propagation. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 9194–9203, 2018.

[32] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell. Rethinking the value
of network pruning. In International Conference on Learning Representations, 2019.

[33] Namhoon Lee, Thalaiyasingam Ajanthan, Stephen Gould, and Philip H. S. Torr. A signal propa-
gation perspective for pruning neural networks at initialization. In International Conference on
Learning Representations, 2020.

[34] Soufiane Hayou, Jean-Francois Ton, Arnaud Doucet, and Yee Whye Teh. Pruning untrained
neural networks: Principles and analysis. arXiv preprint arXiv:2002.08797, 2020.

[35] Wenyuan Zeng and Raquel Urtasun. MLPrune: Multi-layer pruning for automated neural
network compression, 2019. URL https://openreview.net/forum?id=r1g5b2RcKm.

[36] Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural
networks by dynamic sparse reparameterization. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research,
pages 4646–4655. PMLR, 2019.

[37] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedfor-
ward neural networks. In Proceedings of the thirteenth international conference on artificial
intelligence and statistics, pages 249–256, 2010.

[38] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[39] Tengyuan Liang, Tomaso Poggio, Alexander Rakhlin, and James Stokes. Fisher-rao metric,
geometry, and complexity of neural networks. In The 22nd International Conference on Artificial
Intelligence and Statistics, pages 888–896, 2019.

[40] Simon S Du, Wei Hu, and Jason D Lee. Algorithmic regularization in learning deep ho-
mogeneous models: Layers are automatically balanced. In Advances in Neural Information
Processing Systems, pages 384–395, 2018.

[41] Sebastian Bach, Alexander Binder, Grégoire Montavon, Frederick Klauschen, Klaus-Robert
Müller, and Wojciech Samek. On pixel-wise explanations for non-linear classifier decisions by
layer-wise relevance propagation. PloS one, 10(7), 2015.

[42] Kedar Dhamdhere, Mukund Sundararajan, and Qiqi Yan. How important is a neuron. In
International Conference on Learning Representations, 2019.

[43] Seul-Ki Yeom, Philipp Seegerer, Sebastian Lapuschkin, Simon Wiedemann, Klaus-Robert
Müller, and Wojciech Samek. Pruning by explaining: A novel criterion for deep neural network
pruning. arXiv preprint arXiv:1912.08881, 2019.

[44] Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets:
Zeros, signs, and the supermask. In Advances in Neural Information Processing Systems, pages
3592–3602, 2019.

[45] Haoran You, Chaojian Li, Pengfei Xu, Yonggan Fu, Yue Wang, Xiaohan Chen, Richard G.
Baraniuk, Zhangyang Wang, and Yingyan Lin. Drawing early-bird tickets: Toward more
efficient training of deep networks. In International Conference on Learning Representations,
2020.

12

https://openreview.net/forum?id=r1g5b2RcKm

[46] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Linear mode
connectivity and the lottery ticket hypothesis. arXiv preprint arXiv:1912.05671, 2019.

[47] Haonan Yu, Sergey Edunov, Yuandong Tian, and Ari S. Morcos. Playing the lottery with
rewards and multiple languages: lottery tickets in rl and nlp. In International Conference on
Learning Representations, 2020.

[48] Stijn Verdenius, Maarten Stol, and Patrick Forré. Pruning via iterative ranking of sensitivity
statistics. arXiv preprint arXiv:2006.00896, 2020.

[49] Pau de Jorge, Amartya Sanyal, Harkirat S Behl, Philip HS Torr, Gregory Rogez, and Puneet K
Dokania. Progressive skeletonization: Trimming more fat from a network at initialization. arXiv
preprint arXiv:2006.09081, 2020.

[50] Behnam Neyshabur, Russ R Salakhutdinov, and Nati Srebro. Path-sgd: Path-normalized
optimization in deep neural networks. In Advances in Neural Information Processing Systems,
pages 2422–2430, 2015.

[51] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Pruning neu-
ral networks at initialization: Why are we missing the mark? arXiv preprint arXiv:2009.08576,
2020.

[52] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[53] Twan Van Laarhoven. L2 regularization versus batch and weight normalization. arXiv preprint
arXiv:1706.05350, 2017.

13

	Introduction
	Related work
	Layer-collapse: the key obstacle to pruning at initialization
	Conservation laws of synaptic saliency
	Magnitude pruning avoids layer-collapse with conservation and iteration
	A data-agnostic algorithm satisfying Maximal Critical Compression
	Experiments
	Conclusion
	Proofs
	Pruning with batch normalization
	Ablation studies
	Hyperparameters choices for the SynFlow algorithm
	Experimental details
	Pruning algorithms
	The importance of pruning in train mode for SNIP and GraSP

	Model architectures
	Training hyperparameters

