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Abstract.—The presence of rogue taxa (rogues) in a set of trees can frequently have a negative impact on the results of
a bootstrap analysis (e.g., the overall support in consensus trees). We introduce an efficient graph-based algorithm for
rogue taxon identification as well as an interactive webservice implementing this algorithm. Compared with our previous
method, the new algorithm is up to 4 orders of magnitude faster, while returning qualitatively identical results. Because of
this significant improvement in scalability, the new algorithm can now identify substantially more complex and compute-
intensive rogue taxon constellations. On a large and diverse collection of real-world data sets, we show that our method
yields better supported reduced/pruned consensus trees than any competing rogue taxon identification method. Using the
parallel version of our open-source code, we successfully identified rogue taxa in a set of 100 trees with 116 334 taxa each.
For simulated data sets, we show that when removing/pruning rogue taxa with our method from a tree set, we consistently
obtain bootstrap consensus trees as well as maximum-likelihood trees that are topologically closer to the respective true
trees. [Bootstrap support; consensus tree; phylogenetic postanalysis; rogue taxa; software; webservice.]

An important task in phylogenetic analysis is to assess
to which degree inferred phylogenetic relationships
are supported by the underlying data. Irrespective
of the phylogenetic inference method used, support
values are generally extracted from a set of trees.
Bayesian sampling (e.g., Ronquist and Huelsenbeck
2003) produces a set of trees that is used for calculating
Bayesian support values. For inferences under maximum
likelihood (e.g., Stamatakis 2006) or parsimony (e.g.,
Swofford 2003), the nonparametric bootstrap is typically
applied (Felsenstein 1985): the original alignment is
resampled and a so-called bootstrap tree is inferred for
each alignment replicate under the given optimality
criterion. Subsequently, the resulting collection of
bootstrap trees is either used for computing a consensus
tree or for drawing branch support values onto the
best-known tree.

The resolution in a consensus tree and the branch
support on the best-known tree can be substantially
deteriorated by rogues (the term rogue/rogue taxa was
introduced by Wilkinson 1996), which assume varying
and often contradictory positions in the tree set. The
rogue phenomenon is usually attributed to ambiguous
or insufficient phylogenetic signal (Sanderson and
Shaffer 2002).

The degree of resolution in a consensus tree is
also determined by the chosen consensus threshold.
A consensus tree only contains those branches (also
referred to as bipartitions or splits) that occur more
often in all bootstrap trees than specified by the
threshold. Common thresholds are the strict consensus
(SC) threshold (only bipartitions contained in all trees) or
majority-rule consensus (MRC) threshold (bipartitions
that are present in more than half of the trees).

Determining the “correct” position of a rogue in a
phylogenetic tree is tedious (Shafer and Hall 2010) and
therefore rogues, once identified, are mostly simply
excluded (pruned) in current studies. Stability measures
based on triplet frequencies (Thorley and Wilkinson
1999) or node distances (Maddison and Maddison 2008)
are often applied (Dunn et al. 2008; Sperling et al.
2009; Thomson and Shaffer 2010a,b) to identify rogues.
Recently, Pattengale et al. introduced a fast method
to approximate the expected increase of resolution
in the consensus tree when rogues are pruned. We
refer to this algorithm as bipartition merging algorithm
(BMA). Our exact, but significantly slower, single-taxon
algorithm (STA) explicitly calculates the exact support
improvement induced by pruning only one taxon at a
time (Aberer and Stamatakis 2011). We have already
demonstrated that the STA and BMA consistently
identify rogues with a more harmful effect on consensus
tree support than rogues identified by triple frequency
or node distance methods.

Our novel algorithm overcomes the drawbacks of both
the STA and the BMA approach: for each set of putative
rogue taxa, we can now exactly calculate the support
value change induced by pruning the taxa. In contrast
to the STA, our scalable algorithm can resolve complex
rogue taxon constellations, where multiple taxa need to
be pruned simultaneously to improve support values.
Excessive runtime requirements limited the size of trees
that could be analyzed with the STA in reasonable
times to approximately 100 taxa. In addition, for the
BMA, memory consumption represented a significant
limitation with respect to the tree sizes (∼2500 taxa)
that can be handled on desktop systems. For appropriate
parameter settings, our algorithm is several orders of
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magnitude faster than the STA and substantially more
memory-efficient than the BMA (i.e., requiring between
56.2% and 83.5% less memory for data sets with >1000
taxa considered in this study). Therefore, it can be
applied to bootstrap tree sets of extremely large trees
exceeding 100 000 taxa.

We also make available a freely accessible webservice
for rogue taxon analysis that implements our new
algorithm as well as alternative algorithms. It also offers
advanced workbench features that allow systematists
to assess and visually compare results of rogue
taxon inferences using various methods and parameter
settings, before taking a final decision on which taxa to
prune.

ALGORITHM

We outline the fundamental ideas of our algorithm
(referred to as RogueNaRok) omitting technical details.
A more formal problem and algorithm description
is provided in Supplementary Material Online,
Appendix A).

Rogue taxon identification can be formulated as
optimization problem. The task is to identify a set of
taxa that, if pruned from the underlying bootstrap trees,
yields a reduced consensus tree containing additional
bipartitions or increased support values. Compared with
the BMA, we use a more fine-grain optimality criterion,
the relative bipartition information criterion (RBIC). It is
defined as the sum of all support values divided by the
maximum possible support in a fully bifurcating tree
with the initial (i.e., before pruning any rogues) set of
taxa.

If (rogue) taxa are pruned from bootstrap trees, the
support values in the resulting reduced consensus tree
change, because previously distinct bipartitions become
identical (i.e., they merge). As a consequence, such
merged bipartitions are then contained in all trees that
contained any of the previously distinct bipartitions.
If the support of the resulting merged bipartition
exceeds the consensus threshold (e.g., 50% for MRC),
the consensus tree will contain an additional bipartition.
The support of existing consensus bipartitions can also
increase by such mergers.

For each bipartition pair, we can determine the
minimal set of taxa that induces a merger (referred
to as dropset). This is computationally challenging and
previous experiments (Aberer and Stamatakis 2011)
indicate that, for the optimization problem at hand,
small dropsets are sufficient (because, e.g., large dropsets
are likely to induce a merger between consensus
bipartitions, thus decreasing consensus tree resolution).
Because of this, we parameterize our algorithm with
l, dropsets larger than l are not considered. Through
adequate sorting and indexing, dropsets up to a size of l
taxa can be computed efficiently.

We store the information about bipartition merging
behavior in a data structure called merger graph. In such
a graph 2 bipartitions share an edge, if there exists a

dropset no larger than l. Edges are labeled with the
smallest dropset that induces the merger. In the next step,
the algorithm iterates over all dropsets encountered in
the previous labeling phase and determines all mergers
that are induced by the dropset. Finally, we evaluate for
each dropset how our optimality criterion, the RBIC,
changes. The dropset yielding the highest RBIC increase
is then permanently removed from the taxon set and
our algorithm starts over again. Because permanently
pruning a dropset only induces changes in a small part
of the merger graph, we can simply keep most edges
from the first iteration in subsequent iterations and
only update the graph as required. Thus, significant
runtime improvements can be obtained for all but the
first iteration. The algorithm stops, if the RBIC cannot be
further improved by pruning more taxa.

SOFTWARE AND WEBSERVICE

The RogueNaRok algorithm is available as
open-source code at https://github.com/aberer/
RogueNaRok. Apart from the RogueNaRok algorithm,
it also implements the maximum agreement subtree,
the triple frequency (i.e., quartet frequency for unrooted
trees), and node distance methods as well as a tool for
pruning taxa from a set of input trees.

The corresponding webservice for interactive
deployment of RogueNaRok and related methods is
available at http://exelixis-lab.org/roguenarok.html.
After uploading a set of bootstrap trees, the user can
explore how various parameters (e.g., the maximum
dropset size) influence rogue taxon identification.
If a best-known ML tree has also been uploaded,
RogueNaRok can be used to detect rogue taxa that
affect support values on the best-known tree. In
analogy to the BMA, the user may wish to increase the
resolution in a consensus, that is, no rogue taxa will
be removed that marginally increase support values,
but only those taxa will be pruned that give rise to
additional resolution in the consensus tree. Beside using
frequency thresholds for consensus trees (SC, MRC,
or user-defined), RogueNaRok can also carry out a
computationally expensive rogue search that strives to
optimize the overall support in a greedily refined MRC
tree (see Bryant 2003). Moreover, users can also mark
a specific set of taxa as “unprunable” when they need
to be contained in the tree or for exploring how rogue
identification is affected by such a constraint.

The results of all searches with the RogueNaRok
algorithm and alternative stability measures are
summarized in a single table. Based on this information,
users can manually prune taxa from the input data set,
visualize, and subsequently retrieve the pruned result
tree. For visualization, we employ the Archaeopteryx
tree viewer (Zmasek and Eddy 2001). The tree viewer is
configured to also display all previous visualizations and
to highlight taxa that are in the current pruning selection.
Thus, it is easy for users to determine the topological
position of rogue taxa before pruning.
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FIGURE 1. Runtimes for the STA, BMA, and RNR algorithm
with maximum dropset size l :=1 and l :=2. x-axis refers to the initial
number of bipartitions |B| for a bootstrap tree collection. Runtimes for
MRC as consensus threshold (SC similar).

BENCHMARK

We executed the RogueNaRok algorithm (RNR), the
STA, and the BMA on collections of bootstrap trees from
26 real-world multiple sequence alignments. All tree sets
contain 1000 trees. The number of taxa ranges between
24 and 7764. Runtime measurements were performed
on unloaded 48-core AMD Magny-Cours nodes and
averaged over 4 runs. Missing data points represent runs
with excessive execution times that were interrupted.

Runtimes
Figure 1 depicts the sequential execution times for

the 3 algorithms. We executed the RNR algorithm for
maximum dropset sizes of l :=1 and l :=2 (denoted as
RNR-1 and RNR-2). For all, except the smallest data sets,
RNR-1 is significantly faster than STA while yielding
qualitatively identical results. Overall, we observe an
average runtime improvement between 2 and 3 orders
of magnitude. In the case with 2308 taxa and 1000
trees containing 45 022 distinct bipartitions, the RNR-
1 algorithm is over 3640 times faster than STA. As
indicated in the algorithm description, the largest
fraction of the speed improvement in RogueNaRok
can be attributed to successive merger graph updates
(instead of full recomputations) between iterations. For
instance, in the first iteration of the data set with 2000
taxa, RNR-1 spends 137 s in Step 1 to compute the edges
(and thereby the minimal dropsets) of the merger graph.
In subsequent iterations, updating the merger graph
takes between 0.05 and 10 s (mean: 1.2 s).

When choosing a larger value for l, the identification
of edges induced by subdropsets for the quadratically
growing number of possible dropsets starts dominating

runtimes. Nevertheless, RNR-2 is—in most cases—still
significantly faster than STA (Fig. 1), while at the
same time more complex rogue taxon constellations are
identified. Although RNR-2 is considerably slower than
the BMA, RNR-1 achieves runtimes that are comparable
to the BMA. However, the RNR algorithm can typically
identify at least 10 times more potential rogues than the
BMA. In terms of runtime per identified rogue, RNR-1
is faster than the BMA in all but 2 cases.

Finally, we deployed the parallel version of
RogueNaRok to identify rogue taxa on a set of 100
trees with 116 334 taxa containing a total of 1 002 254
bipartitions using the MRC threshold. On 48 cores, the
search took approximately 61 h. By pruning 6864 rogue
taxa, the RBIC of the MRC tree could be improved from
72.6% to 75.9%.

Qualitative Improvement
Here, we evaluate how various input parameters of

the RNR algorithm affect and improve the support in
SC and MRC trees and compare this improvement to
consensus trees that are produced after pruning rogues
as suggested by the BMA. In general, comparisons to the
BMA are difficult, because the BMA optimality criterion
penalizes dropsets as a function of the number of taxa
that are pruned. We thus adapted BMA (referred to as
BMA-mod) to assess how a less conservative criterion
for approximating support gain improves resolution. To
achieve this, we changed the BMA scoring scheme for
dropsets such that it prunes dropsets with the highest
per-taxon resolution improvement. Because the inherent
approximation errors of the BMA-mod increase rapidly
with the number of iterations, we also computed the
exact overall support in the consensus tree after each
BMA iteration (substantially increasing runtimes). In
our analysis, we only consider the intermediate result
of BMA which yields the highest overall support with
respect to the exact evaluation based on the consensus
trees for each iteration. A qualitative comparison of RNR
with STA is not required, because RNR and STA can
be modified such that RNR-1 and STA yield exactly
identical results.

Figures 2 and 3 depict the RBIC improvements
obtained by the BMA, BMA-mod, and the RNR
algorithm (with l :=1, l :=2, and l :=3). Overall,
BMA-mod recovers substantially more support than
the default BMA. For MRC trees, RNR-1 performs
consistently and substantially better than the BMA and
BMA-mod. Although RNR-1 still performs better than
BMA for SC trees (Fig. 3), we have to chose l>1 to
outperform BMA-mod. This is in agreement with our
previous observations (Aberer and Stamatakis 2011), that
is, BMA is more accurate when a SC threshold is used.
On the other hand, when using a MRC threshold, RNR
may yield less optimal results for l :=3 compared with
l :=2. Here, RNR-3 performs worse, because 2 dropsets
of size 2 pruned in subsequent iterations may yield a
higher overall per-taxon RBIC improvement than a single
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FIGURE 2. Support improvement (in %) for optimization with a
MRC threshold. RNR-l depicts RNR runs with l∈[1,3], BMA-mod is a
less conservative modification of the BMA.
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FIGURE 3. Support improvement (in %) for optimization with a SC
threshold. RNR-l depicts RNR runs with l∈[1,3], BMA-mod is a less
conservative modification of the BMA.

larger dropset of size 3. If the larger dropset is optimal
for an iteration, it will be pruned by RNR-3 (unlike RNR-
2 which does not evaluate this dropset). Thereby, the
possibility of achieving the same effect as pruning the
2 dropsets of size 2 can be lost. RNR-4 is capable of
finding the optimal solution in such a scenario; however,
the general problem of local optima remains (e.g., RNR-
4 may prune a dropset of size 4 instead of 2 dropsets
of size 3). Finally, the inferior performance of RNR-3
suggests that for the MRC threshold, dropsets of size 3
(or larger) are rarely necessary or they do not noticeably
increase the RBIC of a consensus tree.

Phylogenetic Accuracy
In the previous section, we have shown that pruning

rogue taxa as determined by RogueNaRok increases
support in the resulting consensus tree to a larger degree
than any alternative method. Here, we assess if the
support recovered by pruning rogue taxa is biologically
meaningful.

For this purpose, we simulated 400 data sets (for
details see Supplementary Material Online, Appendix B)
for which the “true” tree is known. Thereby we
can determine how pruning rogue taxa as identified
by RogueNaRok affects the topological congruence
between consensus trees as well as best-known trees and
the corresponding “true” trees.

When rogue taxa are identified based on support
values that are drawn onto a best-known tree, we
observe that pruning these rogues yields trees that are
topologically closer to the true tree. For each simulated
data set, we also identified rogue taxa that affect
the support values in the corresponding consensus
trees. We detected a linear relationship between the
increase of support in the consensus after pruning
rogues and the increase of agreement with the true
tree. Moreover, under both scenarios (best tree and
consensus tree), pruning a taxon set of equal size (as the
calculated dropset) at random had a negative effect on
the congruence with the true tree.

Thus, the increased support on the best-known tree
and the consensus tree obtained through informed rogue
pruning is not just a random effect of taxon pruning
and thereby reduced tree search space. Instead, our
simulations indicate that pruned trees based on an
informed rogue taxon removal are topologically closer
to the true tree.

SUPPLEMENTARY MATERIAL

Supplementary material, including data files
and online-only appendices, can be found in the
Dryad data repository at http://datadryad.org,
doi:10.5061/dryad.sv515.
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