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Abstract 57 

 58 

 Root hair cells are important sensors of soil conditions. Expanding several hundred times their 59 

original size, root hairs grow towards and absorb water-soluble nutrients. This rapid growth is 60 

oscillatory and is mediated by continuous remodelling of the cell wall. Root hair cell walls contain 61 

polysaccharides and hydroxyproline-rich glycoproteins including extensins (EXTs).  62 

 63 

 Class-III peroxidases (PRXs) are secreted into the apoplastic space and are thought to trigger either 64 

cell wall loosening, mediated by oxygen radical species, or polymerization of cell wall components, 65 

including the Tyr-mediated assembly of EXT networks (EXT-PRXs). The precise role of these EXT-66 

PRXs is unknown.  67 

 68 

 Using genetic, biochemical, and modeling approaches, we identified and characterized three root 69 

hair-specific putative EXT-PRXs, PRX01, PRX44, and PRX73. The triple mutant prx01,44,73 and the 70 

PRX44 and PRX73 overexpressors had opposite phenotypes with respect to root hair growth, 71 

peroxidase activity and ROS production with a clear impact on cell wall thickness.  72 

 73 

 Modeling and docking calculations suggested that these three putative EXT-PRXs may interact with 74 

non-O-glycosylated sections of EXT peptides that reduce the Tyr-to-Tyr intra-chain distances in EXT 75 

aggregates and thereby may enhance Tyr crosslinking. These results suggest that these three 76 

putative EXT-PRXs control cell wall properties during the polar expansion of root hair cells.    77 

 78 
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Introduction 80 

Primary cell walls, composed by a diverse network containing mainly polysaccharides and a small 81 

amount of structural glycoproteins, regulate cell elongation, which is crucial for several plant growth 82 

and developmental processes. Extensins (EXTs) belong to hydroxyproline (Hyp)-rich glycoprotein 83 

(HRGP) superfamily and broadly include related glycoproteins such as proline-rich proteins (PRPs) and 84 

leucine-rich repeat extensins (LRXs) with multiple Ser-(Pro)3–5 repeats that may be O-glycosylated and 85 

contain Tyr (Y)-based motifs (Lamport et al. 2011; Marzol et al. 2018). EXTs require several 86 

modifications before they become functional (Lamport et al., 2011; Marzol et al. 2018). After being 87 

hydroxylated and O-glycosylated in the secretory pathway, the secreted O-glycosylated EXTs are 88 

crosslinked and insolubilized in the plant cell wall by the oxidative activity of secreted class-III 89 

peroxidases (PRXs) on the Tyr-based motifs (Baumberger 2001, 2003; Ringli 2010; Held et al. 2004; 90 

Lamport et al., 2011; Chen et al. 2015; Marzol et al. 2018). PRXs are thought to facilitate both intra 91 

and inter-molecular covalent Tyr–Tyr crosslinks in EXT networks, possibly through the assembly of 92 

triple helices (Velasquez et al. 2015a; Marzol et al. 2018) by generating isodityrosine units (IDT) and 93 

pulcherosine, or di-isodityrosine (Di-IDT), respectively (Brady et al., 1996; 1998; Held et al. 2004). In 94 

addition, O-glycosylation levels in EXTs also affect their insolubilization process in the cell wall (Chen 95 

et al. 2015; Velasquez et al. 2015a) since it might influence the EXT interactions with other cell wall 96 

components (Nuñez et al., 2009; Valentin et al., 2010). However, the underlying molecular 97 

mechanisms of EXT crosslinking and assembly have not been fully determined. It is proposed that O-98 

glycosylation levels as well as the presence of Tyr-mediated crosslinking in EXT and related 99 

glycoproteins allow them to form a dendritic glycoprotein network in the cell wall. This EXT network 100 

affects de novo cell wall formation during embryo development (Hall and Cannon 2002; Cannon et al., 101 

2008), they are also implicated in roots, petioles and rosette leaves growth (Saito et al 2014; Møller 102 

et al. 2017) and in polar cell expansion processes in root hairs (Baumberger 2001, 2003; Ringli 2010; 103 

Velasquez et al. 2011; 2012; 2015a,b) as well as in pollen tubes (Fabrice et al. 2018; Sede et al. 2018; 104 

Wang et al. 2018).   105 

 106 

Apoplastic class-III PRXs are heme-iron-dependent proteins, members of a large multigenic family in 107 

land plants, with 73 members in Arabidopsis thaliana (Passardi et al. 2004; Weng and Chapple, 2010). 108 

These PRXs catalyze several different classes of reactions. PRX activities coupled to apoROS molecules 109 

(apoH2O2) directly affect the degree of cell wall crosslinking (Dunand et al. 2007) by oxidizing cell wall 110 

compounds and leading to stiffening of the cell wall through a peroxidative cycle (PC) (Passardi et al. 111 

2004, Cosio & Dunand 2009; Lamport et al. 2011). By constrast, apoROS coupled to PRX activity 112 

enhances non-enzymatic cell wall-loosening by producing oxygen radical species (e.g., ●OH) and 113 

promoting growth in the hydroxylic cycle (HC). In this HC cycle, PRXs catalyze the reaction in which 114 

hydroxyl radicals (●OH) are produced from H2O2 after O2
●- dismutation. In this manner, some PRXs 115 

(e.g. PRX36) may function in weaken plant cell walls by the generated ●OH that cleave cell wall 116 

polysaccharides in seed mucilage extrusion in epidermal cells in the Arabidopsis seed coat (Kunieda 117 
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et al., 2013). It is unclear how these opposite effects on cell wall polymers are coordinated during 118 

plant growth (Passardi et al. 2004, Cosio & Dunand 2009; Lee et al. 2013; Ropollo et al. 2011; Lee et 119 

al 2018; Francoz et al. 2019). Finally, PRXs also contribute to the superoxide radical (O2
●-) pool by 120 

oxidizing singlet oxygen in the oxidative cycle (OC), thereby affecting apoH2O2 levels. Thus, several PRXs 121 

are involved in the oxidative polymerization of monolignols in the apoplast of the lignifying cells in 122 

xylem (e.g. PRX017, Cosio et al 2017; PRX72, Herrero et al. 2013), in the root endodermis (e.g. PRX64; 123 

Lee et al. 2013; Ropollo et al. 2011), and in petal detachment (Lee et al 2018). In addition, PRXs are 124 

able to polymerize other components of the plant cell wall such as suberin (Bernards et al., 1999), 125 

pectins (Francoz et al. 2019), and EXTs (Schnabelrauch et al., 1996; Jackson et al., 2001). Although 126 

several candidates of PRXs have been associated specifically with EXT-crosslinking (EXT-PRXs) by in 127 

vitro studies (Schnabelrauch et al., 1996; Wojtaszek et al., 1997; Jackson et al., 2001; Price et al., 2003; 128 

Pereira et al. 2011; Dong et al., 2015) or based on an immunolabelling extensin study linked to a 129 

genetic profile (Jacobowitz et al. 2019), the in vivo characterization and mode of action of these EXT-130 

PRXs remain largely unknown. In this work, we used a combination of reverse genetics, molecular and 131 

cell biology, computational molecular modeling, and biochemistry to identify three apoplastic PRXs, 132 

PRX01, PRX44 and PRX73, as key enzymes possibly potentially involved in Tyr-crosslinking of cell wall 133 

EXTs in growing root hair cells. In addition, we propose a hypothetical model in which O-glycosylation 134 

levels on the triple helixes of EXTs might regulate the degree of Tyr-crosslinking affecting the 135 

expansion properties of cell walls as suggested before based on the extended helical polyproline-II 136 

conformation state of EXTs (Stafstrom & Staehelin 1986; Owen et al., 2010; Ishiwata et al., 2014) 137 

together with an experimental Atomic Force Microscopic (AFM) analysis of crosslinked EXT3 138 

monomers (Cannon et al. 2008) linked to modelling approaches (Velasquez et al. 2015a; Marzol et al 139 

2018). Our results open the way for the discovery of similar interactions in EXT assemblies during root 140 

hair development and in response to the environmental changes, such fluctuating nutrient availability 141 

in the soil. 142 

 143 

Results and Discussion 144 

In this work, we have chosen to analyze root hair cells because they are an excellent model for tracking 145 

cell elongation and identifying PRXs involved in EXT assembly. In previous work, the phenotypes of 146 

mutants for PRX01, PRX44 and PRX73 suggested that these PRXs are involved in root hair growth and 147 

ROS homeostasis, although their mechanisms of action remained to be characterized (Mangano et al. 148 

2017). All three PRXs are under the transcriptional regulation of the root hair specific transcription 149 

factor RSL4 (Yi et al. 2010; Mangano et al. 2017). As expected, these three PRXs are also highly co-150 

expressed with other root hair-specific genes encoding cell wall EXTs (e.g., EXT6-7, EXT12-14, and 151 

EXT18) and EXT-related glycoproteins (e.g. LRX1 and LRX2), which functions in cell expansion (Ringli 152 

2010; Velasquez et al. 2011; Velasquez et al. 2015b) (Figure S1). Based on this evidence, we 153 

hypothesized that these three PRXs might be EXT-PRXs and catalyze Tyr-crosslinks to assemble EXTs 154 

in root hair cell walls.  155 
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 156 

To validate that PRX01, PRX44, and PRX73 are expressed specifically in root hairs, we made 157 

transcriptional reporters harboring GFP-tagged fusions of the promoter regions of their genes. In 158 

agreement with the in silico database (Mangano et al. 2017 and Figure S1), all three genes were 159 

strongly expressed in root hair cells during cell elongation (Figure 1A). Single mutants for these three 160 

PRXs showed almost normal root hair growth (Mangano et al. 2017), suggesting a high degree of 161 

functional redundancy. Double combinations of prx44 prx73 (Mangano et al. 2017), prx01 prx44 and 162 

prx01 prx73 (this study, not shown) as well as the triple null mutant, prx01 prx44 prx73 showed 163 

similarly shorter root hair cells (Figure 1B) than what was previously reported for each of the 164 

individual prx mutants (Mangano et al. 2017). We also obtained two independent lines for each 165 

overexpressing PRXs fused to GFP and under the control of a strong 35SCaMV promoter (PRXOE). 166 

Unlike the prx01 prx44 prx73 triple mutant, the lines overexpressing PRX44 and PRX73 had 167 

significantly longer root hairs than the Wt Col-0 control (Figure 2A–B). The root hairs of the PRX01OE 168 

lines, however, were similar to those of Wt Col-0 (Figure 2A–B). We reasoned that the lack of 169 

enhanced root hair expansion in the PRX01OE lines could be due to reduced levels of overexpression 170 

compared to the PRX44OE and PRX73OE lines. However, based on the GFP signals in intact roots (Figure 171 

2C), we established that PRX01OE and PRX44OE are strongly expressed, whereas PRX73OE showed more 172 

moderate expression. Furthermore, the three PRX-GFP-fusion proteins were detected at the expected 173 

molecular weights in an immunoblot (Figure 2D), indicating that the tagged proteins are stable. The 174 

lack of root hair growth enhancement in PRX01OE line might be due to regulatory aspects on the 175 

protein activity rather than in the protein level. Together, these results highlight the partially 176 

redundant roles of PRX01, PRX44, and PRX73 as positive regulators of polar growth. This is in 177 

agreement with the negative effect of SHAM (salicylic hydroxylamino acid), a peroxidase activity 178 

inhibitor (Ikeda-Saito, Shelley et al. 1991; Davey and Fenna 1996), on root hair growth (Mangano et 179 

al. 2017). Here is important to highlight that a SHAM treatment produce a more drastic effect on root 180 

hair growth and on the inhibition on overall peroxidase activity in the roots (Mangano et al. 2017) 181 

than the triple mutant prx01 prx44 prx73, suggesting the implication of other unidentified PRXs.  182 

 183 

To confirm that our mutant and overexpressing lines had the expected changes in peroxidase activity, 184 

we measured in vitro total peroxidase activity using a guaiacol oxidation-based assay. The prx01,44,73 185 

roots showed reduced peroxidase activity (close to 50% reduction) (Figure 1C), whereas there was a 186 

40–50% increase in PRX73OE and an approximately 20% increase in PRX44OE (Figure 2E). Consistent 187 

with our root hair growth analysis (Figure 2A), PRX01OE showed normal peroxidase activity (Figure 188 

2E). The homeostasis and levels of ROS (mostly H2O2) that regulates polar growth of root hair cells 189 

(Mangano et al. 2017) is composed by apoplastic ROS (apoROS) as well as cytoplasmatic ROS pools 190 

(cytROS). Both pools of ROS, their homeostasis and levels are modulated by their transport from the 191 

apoplast to the cytoplasmic side by specific aquaporins (PIPs for plasma membrane intrinsic proteins) 192 

in plant cells (Dynowski et al., 2008; Hooijmaijers et al., 2012 Rodrigues et al. 2017). We hypothesized 193 
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that these three PRXs might change the levels of ROS, most probably H2O2, for their catalytic functions 194 

in the cell wall/apoplast. Therefore, we measured cytROS levels by oxidation of H2DCF-DA and apoROS 195 

levels with the Amplex Ultra Red (AUR) probe in root hair tips. The prx01,44,73 root hair tips showed 196 

lower levels of cytROS (Figure 1D) but increased apoROS accumulation (Figure 1E) compared to Wt Col-197 

0. The apoROS levels were similar in PRX01OE, and slightly lower in PRX44OE, and PRX73OE lines when 198 

compared to Wt Col-0 (Figure 2F). These results suggest that PRX01, PRX44, and PRX73 function as 199 

apoplastic regulators of ROS-linked root hair cell elongation.  200 

 201 

Next, to further analyze the ultrastructure of the cell wall in growing root hairs, we analyzed Wt Col, 202 

PRX44OE, and prx01,44,73 triple mutant roots treated or not with SHAM by transmission electron 203 

microscopy (Figure 3A). Much found thinner cell walls at the root hair tips of PRX44OE (0.74  SD 0.24 204 

μm for PRX44OE) and prx01,44,73 (0.61  SD 0.14 μm) when compared to Wt Col-0 plants (1.2  SD 205 

0.3 μm for Wt) (Figure 3B). SHAM treatment caused a statistically significant increase in cell wall 206 

thickness in the PRX44OE and prx01,44,73 root hairs (Figure 3B), but not in Wt Col-0. This result 207 

suggests the importance of peroxidase activity in cell wall structure and highlights that either 208 

depletion of PRX01,44,73 (triple mutant) or the overexpression of PRX44 results in an overall 209 

reduction in cell wall thickness in growing root hairs. This implies that the constitutive mis-regulation 210 

of PRX activity (either reduced/impaired function or overexpression) affects the capacity of root hairs 211 

to form normal cell walls and this clearly affects their cell expansion process.  212 

 213 

Then, we designed an EXT reporter to track EXT secretion and PRX-mediated insolubilization in the 214 

cell walls during root hair cell elongation. The secreted EXT reporter carries a Tomato tag (SS-TOM-215 

Long-EXT) that is fluorescent under the acidic pH (Shen et al. 2014) that is typical of plant cell walls 216 

and apoplastic spaces (Stoddard & Rolland 2018). A secreted Tomato tag (ss-TOM) was used as a 217 

control (Figure S2A). The EXT domain includes only two Tyr, which are at the C-terminus and 218 

separated by 10 amino acids (Stratford et al., 2001). Expression of the EXT reporter was first tested in 219 

onion (Allium cepa) cells, and then the reporter was stably expressed in Arabidopsis root hairs (Figure 220 

S2C-F). In both cases, plasmolysis was used to retract the plasma membrane from the cell surface to 221 

show that the EXT reporter was localized in the cell walls. Using immunoblot analysis, we detected 222 

the full-length EXT-Tomato fusion protein, with possible O-glycan modifications, running as higher 223 

molecular weight bands than expected (Figure S2B). Importantly, the EXT reporter did not interfere 224 

with the polar growth of root hairs (Figure S2D), and, therefore, could be used to track changes in the 225 

in situ arrangement of cell wall EXTs. SS-TOM-Long-EXT is clearly secreted in the cell wall of growing 226 

root hairs (Figure S2C) but remains to be tested if these EXT reporter is mislocalized under an inhibited 227 

PRX environment (SHAM treated) or in prx01,44,73 mutant background. 228 

 229 

We then assessed the level of crosslinking of EXT Tyr residues by measuring peptidyl-tyrosine (Tyr) 230 

and isodityrosine (IDT, dimerized Tyr) in EXT extracted from whole roots. We detected a significant 231 
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increase in peptidyl-Tyr in the prx01,44,73 triple mutant relative to Wt Col-0, and slightly higher levels 232 

of IDT in EXTs extracted from the PRX73OE line (Table 1). By contrast, we identified strong 233 

downregulation of Tyr- and IDT-levels in the EXT under-O-glycosylation mutants p4h5 sergt1-1, and 234 

sergt1-1 rra3 (Table 1). In these two double mutants, root hair growth is drastically inhibited 235 

(Velasquez et al. 2015a). PROLYL 4-HYDROXYLASE (P4H5), PEPTIDYL-SER GALACTOSYLTRANSFERASE 236 

(SGT1/SERGT1), and REDUCE RESIDUAL ARABINOSE 3 (RRA3) are key enzymes that modify EXT 237 

hydroxylation (P4H5) and EXT O-glycosylation (SERGT1 and RRA3) (Marzol et al. 2018). Specifically, it 238 

was shown that P4H5 is a 2-oxoglutarate (2OG) dioxygenase that catalyze the formation of trans-4-239 

hydroxyproline (Hyp/O) from peptidyl-proline preferentially in an EXT context allowing these proteins 240 

to be O-glycosylated (Velasquez et al. 2011; Velasquez et al. 2015b). In the case of RRA3, together 241 

with RRA1–RRA2 homologous proteins (Egelund et al., 2007; Velasquez et al., 2011), they are thought 242 

to transfer the second arabinose to the sort glycan (composed by 4–5 units of L-arabinofuranose) 243 

attached to the Hyp in the EXT peptides. SERGT1 add the single galactose units to the serine in the 244 

repetitive motif of Ser-(Pro)3–5 present in EXT and EXT-related proteins (Saito et al. 2014). These 245 

results are consistent with the notion that O-glycans strongly affect EXT Tyr crosslinking, as was 246 

previously suggested based on the drastically reduced root hair growth of the under-glycosylation 247 

mutants and in vitro crosslinking rates (Velasquez et al 2015a,b; Chen et al. 2015). We hypothesize 248 

that absent or low O-glycosylation of EXTs or an increase in PRX levels may trigger a reduction in the 249 

amount of peptidyl-Tyr and IDT levels in EXTs, with a putative concomitant increase in the amounts 250 

of higher-order Tyr crosslinks (trimers as Pulcherosine and tetramers as Di-IDT), thus inhibiting root 251 

hair growth. For technical reasons we could not measure the Pulcherosine and Di-IDT levels described 252 

before in EXTs (Brady et al., 1996; 1998; Held et al. 2004) to test this hypothesis. Further research is 253 

needed to decipher the in vivo regulation of Tyr crosslinking of EXTs by these three PRXs in plant cells. 254 

 255 

A major limitation in our understanding of how EXTs function in plant cell walls is the lack of a realistic 256 

full-length EXT protein model. We used coarse-grained molecular dynamics to build a larger model of 257 

a triple-helix EXT sequence, that includes 10 conserved repeats (SPPPPYVYSSPPPPYYSPSPKVYYK, 250 258 

aminoacids in each polypeptide chain) (Figure S3A–B). Parameters for the O-glycosylated form of EXT 259 

were developed in this work (Figure S4). The EXT molecules were modeled in two different states: as 260 

a non-glycosylated trimeric helical conformation similar to animal collagen and in the O-glycosylated 261 

state, with 4 arabinose monosaccharides in each hydroxyproline. Those two states were simulated 262 

restraining both ends of the polypeptide chains, to model a fully extended helix (consistent with an 263 

“indefinitely long-EXT”), and without that restriction, to evaluate the conformation that an isolated 264 

10-repeat triple helix would adopt. The results indicate the importance of the triple-helix 265 

conformation in the overall stability of the protein and especially in the conservation of its fibril-like 266 

structure, in agreement with shorter-repeats single helix simulations performed previously 267 

(Velasquez et al. 2015a; Marzol et al. 2018). The total volume of the extended systems triple helix was 268 

measured in both glycosylation states (Table S1), differentiating EXT-protein-only and EXT-269 
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protein+glycan volumes for the fully O-glycosylated EXT state. We observed that the EXT-protein-only 270 

volume was significantly augmented by the presence of the oligosaccharide moieties, indicating that 271 

O-glycans increase the distance between peptide chains in the EXT triple helix. We report the average 272 

diameters for those systems (Table S1), which are consistent with the diameters previously reported 273 

based on Atomic Force Microscopy (AFM) (images (Cannon et al. 2008). Additionally, O-glycosylation 274 

contributes to an increase in the average distance between the side chains of tyrosine residues, 275 

decreasing the proportion of tyrosine side chains that are close enough to lead to crosslinked EXT 276 

chains (Figure S3C). Current experimental and modeling lines of evidence are in agreement with the 277 

proposed role of proline-hydroxylation and carbohydrate moieties in keeping the EXT molecule in an 278 

extended helical polyproline-II conformation state (Stafstrom & Staehelin 1986; Owen et al., 2010; 279 

Ishiwata et al., 2014). This extended conformation might allow EXTs to interact properly with each 280 

other and with other components in the apoplast, including PRXs and pectins, to form a proper cell 281 

wall network (Nuñez et al., 2009; Valentin et al., 2010). 282 

 283 

To test if these three PRXs (PRX01, PRX44, and PRX73) might be able to interact with single-chain 284 

EXTs, we performed homology modeling with GvEP1, an EXT-PRX that is able to crosslink EXTs in vitro 285 

(Jackson et al., 2001; Pereira et al. 2011). In addition, we included PRX64, as a PRX described for lignin 286 

polymerization in the root endodermis (Lee et al. 2013) and PRX36, which is able to bind 287 

homogalacturonan pectin in the seed coat (Francoz et al. 2019) as controls. By docking analysis, we 288 

obtained interaction energies (Kcal/mol) for all of them. We analyzed docking with four different short 289 

EXT peptides: a non-hydroxylated peptide, a hydroxylated peptide, an arabinosylated peptide and an 290 

arabino-galactosylated peptide. As mentioned earlier, it was previously shown that mutants carrying 291 

under-O-glycosylated EXTs have severe defects in root hair growth (Velasquez et al. 2011; Velasquez 292 

et al. 2015a). Our docking results for the different PRXs show consistent interaction energy differences 293 

that depend on the EXT glycosylation state, being higher for non-O-glycosylated species. In addition, 294 

O-glycosylated EXT variants docked in a rather dispersed way while non-O-glycosylated variants 295 

preferentially docked in a grooved area (Figure 4A–C). Furthermore, Figure 4A shows how a non-O-296 

glycosylated peptide binds through a groove, leaving one Tyr docked in a cavity and very close to the 297 

heme iron (5Å), with a second Tyr a few Angstroms away. The arrangement and distances between 298 

the tyrosines suggest that this could be an active site where Tyr crosslinking takes place. Although it 299 

is not possible to compare the interaction energies obtained with the different EXT species among 300 

docking runs, a general trend can be observed in Figure 4C. In general, we observed higher interaction 301 

energies (more negative values) for hydroxylated EXT species, followed by non-hydroxylated EXTs, 302 

and then by O-glycosylated EXT variants. When we compared interaction energies among different 303 

PRXs interacting with EXT substrates with the same degree of O-glycosylation, we observed that 304 

PRX73 displayed the highest interaction activity with the non-hydroxylated EXT species, followed by 305 

PRX01 and then PRX44. For the hydroxylated EXT variant, the order was PRX44>PRX73>PRX01. PRX44 306 

displayed the highest interaction energy with the O-glycosylated species. All together, these results 307 
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are consistent with the constitutive root hair growth effect observed for PRX44OE and PRX73OE and 308 

with non-glycosylated EXT being the substrate of peroxidation. Overall, this possibly indicates that 309 

PRX44 and PRX73 might interact with EXT substrates and possibly catalyze Tyr-crosslinking in open 310 

regions of the EXT backbones with little or no O-glycosylation. This is in agreement with previous 311 

studies that suggested that high levels of O-glycosylation in certain EXT segments physically restrict 312 

EXT lateral alignments, possibly by acting as a branching point (Cannon et al.2008; Velasquez et al., 313 

2015a; Marzol et al. 2018).  314 

  315 

To examine the evolution of PRX01, PRX44, and PRX73, we performed comprehensive phylogenetic 316 

analyses of Class-III peroxidases across diverse land plant lineages. Under low selective pressure to 317 

maintain substrate specificity, EXT-PRX activities might have evolved multiple times in parallel during 318 

land plant evolution through gene duplication followed by neofunctionalization or 319 

subfunctionalization. PRX01, PRX44, and PRX73 belong to three independent orthologous groups 320 

(Figure S5) and orthologs for each A. thaliana PRX have been detected in available Brassicaceae 321 

genomes and in various Angiosperm and Gymnosperm families, but not from Lycophytes and from 322 

non-vascular land plants. Thus, these three PRX sequences were the result of ancestral duplications 323 

before the divergence between Gymnosperms and Angiosperms but after the emergence of the 324 

Tracheophytes (Figure S5). Orthologs of the three PRX genes have only been detected in true root 325 

containing organisms and these three PRXs are expressed in roots and root hairs, as are most of their 326 

orthologous sequences (where expression data are available) (Figure S6). This strongly supports the 327 

hypothesis that the three independent orthogroups have conserved functions in roots. With the 328 

exception of PRX73, which belongs to a cluster containing the putative EXT-PRX from tomato 329 

(Solanum lycopersicum; LePRX38), the other two PRX sequences did not cluster with sequences 330 

already described as putative EXT-PRXs, such as PRX09 and PRX40 (Jacobowitz et al. 2019). Indeed, 331 

the other known EXT-PRXs (identified mostly based on in vitro evidence) are not clustered together, 332 

but are widely distributed in the tree (Figure S5). This analysis suggests that plant EXT-PRXs might 333 

have evolved several times in parallel during Tracheophyte evolution. 334 

 335 

Based on the results shown in this work, we propose a working model in which PRX01, PRX44, and 336 

PRX73 (and possibly other PRXs) control root hair growth by channelling H2O2 consumption and 337 

affecting the cell wall hardening process. In this polar growing cells, it is known that H2O2 is primary 338 

derived from by the respiratory burst oxidase homolog C (RBOHC), and to a lower extent from RBOHH 339 

and RBOHJ activities that produce superoxide ions (Monshauser et al. 2007; Tajeda et al. 2008; 340 

Mangano et al. 2017) that are further converted chemically or enzymatically to H2O2. Then, part of 341 

H2O2 might be transported from the apoplast to the cytoplasm side by specific PIPs as it was shown 342 

to occur in several plant cell types (e.g. in stomata and epidermal cells) in response to diverse stimuli 343 

(Dynowski et al., 2008; Hooijmaijers et al., 2012; Rodrigues et al. 2017). When apoplastic PRX protein 344 

levels are low, which is linked to reduced peroxidase activity as in the triple mutant prx01,44,73, high 345 
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levels of H2O2 accumulate in the apoplast, triggering through the oxidative cycle (OC) a cell wall 346 

loosening effect that affects growth homeostasis and inhibits expansion by decreasing root hair 347 

growth and cell wall thickness (Figure S7). Concomitantly, deficient PRX activity in the apoplast also 348 

triggers lower H2O2 levels in the cytoplasm of growing root hairs. This is in agreement with the fact 349 

that exogenously supplied H2O2 inhibited root hair polar expansion, whereas treatment with ROS 350 

scavengers (e.g., ascorbic acid) caused root hair bursting (Orman-ligeza et al. 2016), reinforcing the 351 

notion that apoROS modulates cell growth by impacting cell-wall properties (Mangano et al. 2017). Our 352 

results suggest that either low or high levels of apoplastic Class-III PRXs in the root hair cell walls might 353 

affect the homeostasis of ROS and cell wall thickness with a clear effect on cell expansion. Still several 354 

aspects of this model proposed here remains to be tested.   355 

 356 

Conclusions 357 

Currently, several of the 73 apoplastic Class-III PRXs in Arabidopsis thaliana have no assigned 358 

biological function. In this work, we have characterized three related EXT-PRXs, PRX01, PRX44, and 359 

PRX73 that function in ROS homeostasis and potentially in EXT assembly during root hair growth. 360 

These PRXs might control Tyr crosslinking in EXTs and related glycoproteins and modify its secretion 361 

and assembly in the nascent tip cell walls. Using modeling and docking approaches, we were able to 362 

measure the interactions of these PRXs with single chain EXT substrates. All these lines of evidence 363 

indicate that PRX01, PRX44, and PRX73 are important enzymes that could be involved in EXT assembly 364 

during root hair growth. From an evolutionary perspective, all the putative EXT-PRXs (previously 365 

identified based on in vitro evidence or immunolabeling) do not cluster together in the phylogenetic 366 

tree of Class-III PRXs, suggesting that plant-related EXT-PRXs might have evolved several times in 367 

parallel during Tracheophyte evolution. Interestingly, as a convergent evolutionary extracellular 368 

assembly, hydroxyproline-rich collagen Class-IV, similar to the green EXT linage and related 369 

glycoproteins, is also crosslinked by the activity of a specific class of animal heme peroxidases (named 370 

peroxidasin or PXDN) to form insoluble extracellular networks (Vanacore et al. 2009; Bhave et al. 371 

2012). While the biophysical properties of collagen IV allow the correct development and function of 372 

multicellular tissues in all animal phyla (Brown et al. 2017), EXT assemblies also have key functions in 373 

several plant cell expansion and morphogenesis processes (Baumberger 2001, 2003; Hall and Cannon 374 

et al. 2002; Cannon et al., 2008; Ringli 2010; Lamport et al., 2011; Velasquez et al. 2015a,b; Fabrice et 375 

al. 2018; Sede et al. 2018; Marzol et al. 2018). This might imply that crosslinked extracellular matrices 376 

based on hydroxyproline-rich polymers (e.g., collagens and EXTs) have evolved more than once during 377 

eukaryotic evolution, providing mechanical support to single and multiple cellular tissues. Further 378 

analyses are required to establish how these described EXT-PRXs catalyze Tyr crosslinks on EXTs at 379 

the molecular level and how this assembly process is regulated during polar cell expansion. 380 
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Experimental Procedures  381 

 382 

Plant and growth conditions. Arabidopsis thaliana Columbia-0 (Col-0) was used as the wild Class (Wt) 383 

genotype in all experiments. All mutants and transgenic lines tested are in this genetic background. 384 

Seedlings were germinated on agar plates in a Percival incubator at 22C in a growth room with 16h 385 

light/8h dark cycles for 10 days at 140 μmol m−2s−1 light intensity. Plants were transferred to soil for 386 

growth under the same conditions. For identification of T-DNA knockout lines, genomic DNA was 387 

extracted from rosette leaves. Confirmation by PCR of a single and multiple T-DNA insertions in the 388 

target PRX genes were performed using an insertion-specific LBb1.3 primers in addition to one gene-389 

specific primer. To ensure gene disruptions, PCR was also run using two gene-specific primers, 390 

expecting bands corresponding to fragments larger than in WT. We isolated homozygous lines for 391 

PRX01 (AT1G05240, prx01-2, Salk_103597), PRX44 (AT4G26010, prx44-2, Salk_057222) and PRX73 392 

(AT5G67400, prx73-3, Salk_009296). SERGT1 (sergt1-1 SALK_054682), rra3 (GABI_233B05) 393 

(Velasquez et al., 2011) and p4h5 T-DNA mutant (Velasquez et al., 2011) were isolated and described 394 

previously. Double and triple mutants were generated by manual crosses of the corresponding single 395 

mutants (Velasquez et al., 2015a). All the mutant lines used in this study are described in Table S2.  396 

 397 

PRX::GFP and 35S::PRX-GFP lines. Vectors based on the Gateway cloning technology (Invitrogen) 398 

were used for all manipulations. Constitutive expression of PRXs-GFP tagged lines were achieved in 399 

plant destination vector pMDC83. cDNA PRXs sequences were PCR-amplified with AttB recombination 400 

sites. PCR products were then recombined first in pDONOR207 and transferred into pGWB83. To 401 

generate transcriptional reporter, the PRXs promoter regions (2Kb) was amplified and recombined 402 

first in pDONOR207 and transferred into pMDC111. All the transgenic lines used in this study are 403 

described in Table S2.  404 

  405 

SS-TOM and SS-TOM-Long-EXT constructs. The binary vector pART27, encoding tdTomato secreted 406 

with the secretory signal sequence from tomato polygalacturonase and expressed by the constitutive 407 

CaMV 35S promoter (pART-SS-TOM), was the kind gift of Dr. Jocelyn Rose, Cornell University. The 408 

entire reporter protein construct was excised from pART-SS-TOM by digesting with NotI. The resulting 409 

fragments were gel-purified with the QIAquick Gel Extraction Kit and ligated using T4 DNA Ligase (New 410 

England Biolabs) into dephosphorylated pBlueScript KS+ that had also been digested with NotI and 411 

gel-purified to make pBS-SS-TOM. The plasmid was confirmed by sequencing with primers 35S-FP (5'-412 

CCTTCGCAAGACCCTTCCTC-3') and OCS-RP (5'-CGTGCACAACAGAATTGAAAGC-3'). The sequence of the 413 

EXT domain from SlPEX1 (NCBI accession AF159296) was synthesized and cloned by GenScript into 414 

pUC57 (pUC57-EXT). The plasmid pBS-SS-TOM-Long-EXT was made by digesting pUC57-EXT and pBS-415 

SS-TOM with NdeI and SgrAI, followed by gel purification of the 2243 bp band from pUC57-EXT and 416 

the 5545 bp band from pBS-SS-TOM, and ligation of the two gel-purified fragments. The pBS-SS-TOM-417 

Long-EXT plasmid was confirmed by sequencing with 35S-FP, OCS-RP, and tdt-seq-FP  (5'- 418 
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CCCGTTCAATTGCCTGGT-3'). Both pBS plasmids were also confirmed by digestion. The binary vector 419 

pART-SS-TOM-Long-EXT was made by gel purifying the NotI insert fragment from the pBS-SS-TOM-420 

Long EXT plasmid and ligating it with pART-SS-TOM backbone that had been digested with NotI, gel 421 

purified, and dephosphorylated. This plasmid was confirmed by sequencing. The construct SS-TOM 422 

and SS-TOM-Long-EXT where transformed into Arabidopsis plants. The secretory sequence (SS) from 423 

tomato polygalacturonase is MVIQRNSILLLIIIFASSISTCRSGT (2.8kDa) and the EXT-Long domain 424 

sequence with six alanine cluster is 425 

BAAAAAAACTLPSLKNFTFSKNIFESMDETCRPSESKQVKIDGNENCLGGRSEQRTEKECFPVVSKPVDCSKGHCG426 

VSREGQSPKDPPKTVTPPKPSTPTTPKPNPSPPPPKTLPPPPKTSPPPPVHSPPPPPVASPPPPVHSPPPPVASPPPP427 

VHSPPPPPVASPPPPVHSPPPPVASPPPPVHSPPPPVHSPPPPVASPPPPVHSPPPPVHSPPPPVHSPPPPVHSPPP428 

PVHSPPPPVASPPPPVHSPPPPVHSPPPPVHSPPPPVASPPPPVHSPPPPPPVASPPPPVHSPPPPVASPPPPVHSP429 

PPPVASPPPPVHSPPPPVHSPPPPVHSPPPPVASPPPALVFSPPPPVHSPPPPAPVMSPPPPTFEDALPPTLGSLYAS430 

PPPPIFQGY*395-(39.9kDa). The predicted molecular size for SS-TOM protein is 54.2 kDa and for SS-431 

TOM-EXT-Long Mw is 97.4 kDa. All the transgenic lines used in this study are described in Table S2.  432 

 433 

Root hair phenotype. For quantitative analysis of root hair phenotypes in prx01,44,73 mutant, 434 

35S:PRX-GFP lines and Wt Col-0, 200 fully elongated root hairs were measured (n roots= 20-30) from 435 

seedlings grown on vertical plates for 10 days. Values are reported as the mean ±SD using the Image 436 

J software. Measurements were made after 7 days. Images were captured with an Olympus SZX7 437 

Zoom microscope equipped with a Q-Colors digital camera. 438 

 439 

Confocal imaging. Root hairs were ratio imaged with the Zeiss LSM 710 laser scanning confocal 440 

microscope (Carl Zeiss) using a 40X oil-immersion, 1.2 numerical aperture. EGFP (473–505nm) 441 

emission was collected using a 458-nm primary dichroic mirror and the meta-detector of the 442 

microscope. Bright-field images were acquired simultaneously using the transmission detector of the 443 

microscope. Fluorescence intensity was measured in 7 µm ROI (Region Of Interest) at the root hair 444 

apex. 445 

 446 

Peroxidase activity. Soluble proteins were extracted from roots grown on agar plates in a Percival 447 

incubator at 22C in a growth room for 10 days at 140 μmol m−2s−1 light intensity by grinding in 20mM 448 

HEPES, pH 7.0, containing 1 mM EGTA, 10mM ascorbic acid, and PVP PolyclarAT (100mg g-1 fresh 449 

material; Sigma, Buchs, Switzerland). The extract was centrifuged twice for 10 min at 10,000 g. Each 450 

extract was assayed for protein levels with the Bio-Rad assay (Bio-Rad). PRX activity was measured at 451 

25°C by following the oxidation of 8 mM guaiacol (Fluka) at 470 nm in the presence of 2 mM H2O2 452 

(Carlo Erba) in a phosphate buffer (200 mM, pH6.0). Values are the mean of three replicates ± SD.  453 

 454 

Cytoplasmic ROS (cytROS) measurements. 2′,7′-dichlorodihydrofluorescein diacetate (H2DCF-DA) is 455 

as a cell-permeable fluorogenic probe to quantify reactive oxygen species (ROS). H2DCFDA diffuses 456 
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into cells and is deacetylated by cellular esterases to form 2′,7′-dichlorodihydrofluorescein (H2DCF). 457 

In the presence of ROS, predominantly H2O2, H2DCF is rapidly oxidized to 2′,7′-dichlorofluorescein 458 

(DCF), which is highly fluorescent, with excitation and emission wavelengths of 498 and 522 nm, 459 

respectively. To measure cytoplasmic ROS in root hairs cells, growth of Arabidopsis seeds on a plate 460 

was done with 1% sterile agar for 8 d in a chamber at 22°C with continuous light. These seedlings were 461 

incubated in darkness on a slide for 10 min with 50 μM H2DCFDA at room temperature. Samples were 462 

observed with Zeiss Imager A2 Epifluorescence. A 10× objective was used, 0.30 N.A., and exposure 463 

time 80-500ms. Images were analyzed using ImageJ 1.50b software. To measure ROS mean, a circular 464 

region of interest (ROI) (r=2.5) was chosen in the tip zone of the root hair. All root hairs of six seedlings 465 

per genotype were analyzed. The reported values are the mean ± standard deviation (mean ± SD). 466 

 467 

Apoplastic ROS (apoROS) measurements. To measure apoplastic ROS in root hair cells, roots of 7-day-468 

old seedlings were incubated with 50 µM Amplex™ UltraRed Reagent (AUR, Molecular Probes) for 20 469 

min in dark conditions and rinsed with liquid MS. Root hairs were imaged with a Zeiss LSM5 Pascal 470 

laser scanning confocal microscope. The fluorescence emission of oxidized AUR in the apoplast of root 471 

hair cells was observed between 585 and 610 nm using 543 nm argon laser excitation, 40X objective, 472 

N/A=1.2. The intensity of fluorescence was quantified on digital images using ImageJ software. 473 

Quantification of the AUR probing fluorescence signal was restricted to apoplastic spaces at the root 474 

hair tip (as shown in Figure 1). The measurements were performed in three independent experiments 475 

(n = 6) with the same microscopic settings. 476 

 477 

Phylogenetic analysis. 73 class-III PRX protein sequences from A. thaliana, two putative lignin class-478 

III PRXs from Zinnia elegans and 4 putative Extensin class-III PRXs from Lupinus album, Lycopersicum 479 

esculentum, Phaseolus vulgaris and Vitis vinifera, have been aligned with ClustalW and the tree 480 

constructed using the Neighbor-Joining method (Saitou and Nei, 1987). The analyses were conducted 481 

in MEGA7 (Kumar, 2016). All protein sequences are available using their ID number 482 

(http://peroxibase.toulouse.inra.fr (Savelli et al., 2019). 483 

 484 

Co-expression analysis network. Co-expression networks for RSL4 root hair genes were identified 485 

from PlaNet (http://aranet.mpimp-golm.mpg.de) and trimmed to facilitate readability (Mutwill et al. 486 

2011). Each co-expression of interest was confirmed independently using the expression angler tool 487 

from Botany Array Resource BAR (http://bar.utoronto.ca/ntools/cgi-488 

bin/ntools_expression_angler.cgi) and ATTED-II (http://atted.jp). Only those genes that are 489 

connected with genes of interest are included.  490 

 491 

Tyr-crosslinking analysis. Alcohol-insoluble residues of root tissues obtained from PRX01,44,73 492 

mutants, Col-0 and 35Sp::PRX44-GFP lines were hydrolyzed in 6 N HCl (aqueous) with 10 mM phenol 493 

(2 mg ml-1; 110 °C; 20 h). Hydrolysates were dried under a steady stream of nitrogen (gas) and then 494 
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re-dissolved at 10 mg ml-1 in water. The hydrolysates were fractionated by gel permeation 495 

chromatography on a polyhydroxyethyl A column (inner diameter, 9.4 x 200 mm, 10 nm pore size, 496 

Poly LC Inc., Columbia, MD) equilibrated in 50 mM formic acid and eluted isocratically at a flow rate 497 

of 0.8 ml min-1. UV absorbance was monitored at 280 nm. The amounts of Tyr and IDT in the 498 

hydrolysates were then determined by comparison with peak areas of authentic Tyr and IDT 499 

standards. Response factors were determined from three level calibrations with the Tyr and IDT 500 

standards. 501 

 502 

Immuno-blot Analysis. Plant material (100 mg of root from 15 days old seedlings grown as indicated 503 

before) was collected in a microfuge tube and ground in liquid nitrogen with 400 mL of protein 504 

extraction buffer (125 mM Tris-Cl, pH. 4.4, 2% [w/v] SDS, 10% [v/v] glycerol, 6M UREA, 1% [v/v] b-505 

mercaptoethanol, 1mM PMSF). Samples were immediately transferred to ice. After 4° centrifugations 506 

at 13000 rpm for 20 min, supernatant was move to a new 1.5 ml tube and equal volumes of Laemmli 507 

buffer (125 mM Tris-Cl, pH. 7.4, 4% [w/v] SDS, 40% [v/v] glycerol, 10% [v/v] β-mercaptoethanol, 508 

0.002% [w/v] bromphenol blue) were added. The samples (0.5–1.0 mg/mL of protein) were boiled for 509 

5 min and 30 mL were loaded on 10% SDS-PAGE. The proteins were separated by electrophoresis and 510 

transferred to nitrocellulose membranes.  Anti-GFP mouse IgG (clones 7.1 and 13.1; Roche Applied 511 

Science) was used at a dilution of 1:2,000 and it was visualized by incubation with goat anti-mouse 512 

IgG secondary antibodies conjugated to horseradish peroxidase (1:2,000) followed by a 513 

chemiluminescence reaction (Clarity Western ECL Substrate; Bio-rad). For the SS-TOM lines analysis, 514 

proteins were extracted in 2x SDS buffer (4% SDS, 125mM Tris pH 6.8, 20% glicerol, 0.01% 515 

bromophenol blue, 50 mM dithiothreitol [DTT]), using 10 μl of buffer per mg of plant tissues of Wt 516 

Col-0, transgenic lines 35S:SS-TOM and 35S:SS-TOM-Long-EXT. Two transgenic lines were analyzed. 517 

10 μl of supernatant of each protein extract were run into a 12% polyacrylamide gel during one hour 518 

at 200 V, and then transferred to a PVDF membrane. PVDF was blocked with 5% milk in TBST (Tris-HCl 519 

10 mM, pH 7,4, NaCl 150 mM, Tween-20 al 0,05%) for 1 hour at 4ºC and then washed four times 520 

during 15 min in TBST. An anti-RFP (A00682, GenScript) was used as primary antibody overnight at 521 

4ºC. Four washes of 15 min each in TBST at room temperature and then it was incubated two hours 522 

with a secondary antibody anti-rabbit (goat) conjugated with alkaline phosphatase (A3687, Sigma), in 523 

a 1:2,500 dilution with TBST. Four washes of 15 min each in TBST at room temperature. Finally, 10 ml 524 

of alkaline phosphatase (100mM Tris-HCl pH 9.5, 100 mM NaCl, 3 mM MgCl2) containing 80 μl NBT 525 

(Sigma) (35mg/ml in70% DMSO and 30 μl de BCIP (Sigma) (50 mg/ml in 100% de DMSO) were used. 526 

 527 

Transmission electron microscopy of root hair cell walls. Seeds were germinated on 0.2x MS, 1% 528 

sucrose, 0.8% agar. Seven days after germination, seedlings were transferred to new 0.2x MS, 1% 529 

sucrose, 0.8% agar plates with or without 100 µM SHAM. After 4 additional days, 1-mm root segments 530 

with root hairs were fix in 2% glutaraldehyde in 0.1M cacodylate buffer pH7.4. Samples were rinsed 531 

in cacodylate buffer and post-fixed in 2% OsO4. After dehydration in ethanol and acetone, samples 532 
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were infiltrated in Epon resin (Ted Pella, Redding, CA). Polymerization was performed at 60°C. 533 

Sections were stained with 2% uranyl acetate in 70% methanol followed by Reynold’s lead citrate 534 

(2.6% lead nitrate and 3.5% sodium citrate [pH 12.0]) and observed in a Tecnai 12 electron 535 

microscope. Quantitative analysis of cell wall thickness was performed using FIJI.  536 

 537 

Modeling and molecular docking between PRXs and EXTs. Modeling and molecular docking: cDNA 538 

sequences of PRXs were retrieved from TAIR (PRX01: AT1G05240, PRX36: AT3G50990, PRX44: 539 

AT4G26010, PRX64: AT5G42180, PRX73: AT5G67400) and NCBI Nucleotide DB (PRX24Gv:Vitis vinifera 540 

peroxidase 24, GvEP1, LOC100254434). Homology modeling was performed for all PRXs using 541 

modeller 9.14 (Sali et al. 1993), using the crystal structures 1PA2, 3HDL, 1QO4 and 1HCH as templates, 542 

available at the protein data bank. 100 structures where generated for each protein and the best 543 

scoring one (according to DOPE score) was picked. The receptor for the docking runs was generated 544 

by the prepare_receptor4 script from autodock suite, adding hydrogens and constructing bonds. 545 

Peptides based on the sequence PYYSPSPKVYYPPPSSYVYPPPPS were used, replacing proline by 546 

hydroxyproline, and/or adding O-Hyp glycosylation with up to four arabinoses per hydroxyproline in 547 

the fully glycosylated peptide and a galactose on the serine, as it is usual in plant O-Hyp 548 

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5045529/. Ligand starting structure was generated 549 

as the most stable structure by molecular dynamics (Velasquez et al. 2015a). All ligand bonds were 550 

set to be able to rotate. Docking was performed in two steps, using Autodock vina (Trott et al. 2010). 551 

First, an exploratory search over the whole protein surface (exhaustiveness 4) was done, followed by 552 

a more exhaustive one (exhaustiveness 8), reducing the search space to a 75x75x75 box centered over 553 

the most frequent binding site found in the former run. 554 

 555 

EXT conformational coarse-grained model. The use of coarse-grained (CG) molecular dynamics (MD) 556 

allowed collection of long timescale trajectories. System reduction is significant when compared to all 557 

atom models, approximately reducing on order of magnitude in particle number. In addition, a longer 558 

integration time step can be used. Protein residues and coarse grained solvent parameters 559 

correspond to the SIRAH model (Darré et al. 2015), while ad hoc specific glycan parameters were 560 

developed. The CG force field parameters developed correspond to arabinofuranose and 561 

galactopyranose (Figure S5). Triple helix systems were simulated both, in the non-glycosylated and 562 

fully O-glycosylated states, where all the hydroxyprolines are bound to a tetrasaccharide of 563 

arabinofuranoses, and specific serine residues contain one galactopyranose molecule. They were 564 

immersed in WT4 GC solvent box that was constructed to be 2 nm apart from the extensin fiber, and 565 

periodic boundary conditions were employed. Coarse grained ions were also included to achieve 566 

electroneutrality and 0.15 M ionic strength. All simulations were performed using the GROMACS MD 567 

package at constant temperature and pressure, using the Berendsen thermostat (respectively) and 568 

Parrinello-Rahman barostat (Parrinello and Rahman 1981), and a 10 fs time step. The obtained 569 

trajectories were analysed using the Mdtraj python package (McGibbon et al, 2015) and visualized 570 
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with Visual Molecular Dynamics (VMD) 1.9.1 (Humphrey et al. 1996). Volume measurements were 571 

performed using a Convex Hull algorithm implemented in NumPy (Oliphant 2006), and average 572 

diameter calculations were derived from this quantity using simple geometric arguments.  573 
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 780 
 781 

Figure 1. Characterization of root hair-specific PRX01, PRX44 and PRX73 expression and mutant 782 

analysis.  783 
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(A) GFP-tagged transcriptional reporters of PRX01, PRX44 and PRX73 show expression in the root 784 

elongation zone and specifically in root hairs (bottom). Scale bar = 20 μm. (*) indicates atrichoblast 785 

cell layers, which lack GFP expression.  786 

(B) Root hair length phenotype of Wt and the prx01,44,73 triple mutant. Left, box-plot of root hair 787 

length. Horizontal lines show the means. P-value determined by one-way ANOVA, (***) P<0.001. 788 

Right, bright-field images exemplifying the root hair phenotype in each genotype. Scale bars, 1 mm. 789 

(C) Peroxidase activity in Wt and prx01,44,73 triple mutant roots. Enzyme activity values (expressed 790 

as nkatal/mg protein) are shown as the mean of three replicates ± SD. P-value determined by one-791 

way ANOVA, (***) P<0.001. 792 

(D) Cytoplasmic ROS levels measured with H2DCF-DA in Wt and prx01,44,73 triple mutant root hairs. 793 

Horizontal lines show the means. P-values determined by one-way ANOVA, (***) P<0.001 and (**) 794 

P<0.01.  795 

(E) Apoplastic ROS levels measured with Amplex™ UltraRed (AUR) in Wt and prx01,44,73 73 triple 796 

mutant root hairs. ROS signal was quantified from the root hair cell tip. Left, box-plot of apoROS 797 

values. Horizontal lines show the means. P-value determined by one-way ANOVA, (***) P<0.001. 798 

Right, fluorescence images exemplifying apoROS detection in root hair apoplast.   799 
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 800 
 801 

Figure 2. Over-expression of PRX44 and PRX73 promotes root hair growth and higher root 802 

peroxidase activity.  803 
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(A) Root hair length phenotype of Wt and PRXOE lines (in Wt background). Box-plot of root hair length. 804 

Horizontal lines show the means. P-values determined by one-way ANOVA, (***) P<0.001, (NS) not 805 

significantly different.  806 

(B) Bright-field images exemplifying the root hair phenotype analyzed in Figure 2A. Scale bar = 0.5 807 

mm. 808 

(C) Expression of GFP-tagged 35S:PRX01, 35S:PRX44 and 35S:PRX73 in root hair cells. 809 

(D) Western blot of PRX01-GFP, PRX44-GFP and PRX73-GFP. Soluble GFP (sGFP) was used as control. 810 

The predicted molecular weights are 62.6 KDa for PRX01-GFP, 60.8 KDa for PRX44-GFP, 62.9 KDa for 811 

PRX73 and 27 KDa for sGFP. 812 

(E) Assays of total peroxidase activity in Wt and PRXsOE lines (in Wt background). Enzyme activity 813 

(expressed in nkatal/mg protein) was determined by a guaiacol oxidation-based assay. Values are the 814 

mean of three replicates ± SD. P-values determined by one-way ANOVA, (***) P<0.001, (**) P<0.01, 815 

(NS) not significantly different.  816 

(F) Apoplastic ROS levels measured with Amplex™ UltraRed (AUR) in Wt and PRXOE lines (in Wt 817 

background). ROS signal was quantified from the root hair cell tip. Left, box plot of apoROS values. 818 

Horizontal lines show the means. P-values determined by one-way ANOVA, (**) P<0.01, (NS) not 819 

significantly different. Right, fluorescence images exemplifying apoROS detection in root hair 820 

apoplast. Scale bar = 10 μm.    821 
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Figure 3. Effect of PRX expression on cell wall thickness in root hair tips. 823 

(A) Transmission electron micrographs of root hair tips from Wt, prx1,44,73 triple mutant, and 824 

PRX44OE with (+) and without (-) peroxidase inhibitor SHAM. For each genotype and treatment, a 825 

representative overview of a root hair (RH) and a detail of the cell wall at the root hair tip (CW) is 826 

shown. Scale bar = 1 m.  827 

(B) Box and whisker plot showing cell wall thickness measured at the root hair tip of the three 828 

genotypes with or without SHAM treatment. (**) P˂0.001 determined by t-test. (NS) not significantly 829 

different.   830 
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 831 

 832 

Figure 4. Interaction by an in silico docking approach of PRX01, PRX44 and PRX73 with EXT peptides.  833 

(A,B) Ten docking results for each EXT O-glycosylation state are shown superimposed on the PRX44 834 

protein surface to evaluate the consistence of docking sites.  835 

(A) Model of PRX44 (protein surface shown in gray) complexed to a non-O-glycosylated EXT substrate 836 

(SPPPYVY)3 (in green, depicted as sticks). Heme is depicted as thin sticks while iron is a red sphere. 837 

Bottom inset, two close tyrosine residues dock near to the possible active site of PRX44.  838 

(B) Model of PRX44 (protein surface shown in gray) complexed to an O-glycosylated-EXT substrate 839 

(protein backbone shown in magenta, and O-glycans shown in light blue, both depicted as sticks). 840 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 29, 2020. ; https://doi.org/10.1101/2020.02.04.932376doi: bioRxiv preprint 



31 

 

Heme is depicted as thin sticks while iron is a red sphere. Arabino-galactosylated EXT peptide = 841 

[(SOOOYVY)3-AG]. 842 

(C) Comparison of the binding energy of different peroxidases to EXT substrates with different degrees 843 

of O-glycosylation. A non-hydroxylated EXT peptide (SPPPYVY)3, a hydroxylated but not O-844 

glycosylated EXT peptide [(SOOOYVY)3; O=hydroxyproline], only arabinosylated EXT-peptide 845 

[(SOOOYVY)3-A], and arabino-galactosylated EXT peptide [(SOOOYVY)3-AG] were analyzed.  846 
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Table 1. Peptidyl-Tyr and iso-dityrosine (IDT) contents in cell walls isolated from Wt, prx01,44,73 triple 847 

mutant, PRXOE lines and mutant lines with under-glycosylated EXTs. P-values were determined by one-848 

way ANOVA, (***) P˂0.001, (**) P˂0.01. STD=Standard Deviation. Values significantly different than 849 

Wt are highlighted in blue if higher and in light blue if lower than Wt Col-0.  850 

 851 

 ng Tyr/μg CW (STD) ng IDT/μg CW (STD) 

Wt Col-0 7.799 ± 0.26 0.853 ± 0.08 

 

prx01 prx44 prx73 9.588 ± 0.31** 0.963 ± 0.02 

PRX44OE 8.649 ± 0.07 0.953 ± 0.04 

PRX73OE 8.700 ± 0.12 1.042 ± 0.02** 

under O-glycosylated EXTs 

sergt1-1 rra3 3.530 ± 0.08*** 0.235 ± 0.01*** 

p4h5 sergt1-1 3.766 ± 0.06*** 0.225 ± 0.02*** 

 852 
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