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ABSTRACT

The neural network enables efficient solutions for Nondeterministic Polynomial-time (NP) hard problems, which are challenging for conven-
tional von Neumann computing. The hardware implementation, i.e., neuromorphic computing, aspires to enhance this efficiency by custom
hardware. Particularly, NP hard graphical constraint optimization problems are solved by a network of stochastic binary neurons to form a
BoltzmannMachine (BM). The implementation of stochastic neurons in hardware is a major challenge. In this work, we demonstrate that the
high to low resistance switching (set) process of a PrxCa1−xMnO3 (PCMO) based RRAM (Resistive Random Access Memory) is probabilistic.
Additionally, the voltage-dependent probability distribution approximates a sigmoid function with 1.35%–3.5% error. Such a sigmoid func-
tion is required for a BM. Thus, the Analog Approximate Sigmoid (AAS) stochastic neuron is proposed to solve the maximum cut—an NP
hard problem. It is compared with Digital Precision-controlled Sigmoid (DPS) implementation using (a) pure CMOS design and (b) hybrid
(RRAM integrated with CMOS). The AAS design solves the problem with 98% accuracy, which is comparable with the DPS design but with
10× area and 4× energy advantage. Thus, ASIC neuro-processors based on novel analog neuromorphic devices based BM are promising for
efficiently solving large scale NP hard optimization problems.

© 2019 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5108694., s

I. INTRODUCTION

The conventional von Neumann computer based on deter-
ministic CMOS logic implementation has been extremely success-
ful in implementing sequential algorithms using clearly demarcated
processing and memory units.1,2 However, there are many impor-
tant problems such as graphical constraint optimization, factor-
ization, and other Nondeterministic Polynomial-time (NP)-hard
problems which do not have a polynomial time algorithm to find
globally optimal solutions. A serial search through a large num-
ber of states leads to a memory and computing resource chal-
lenge. Hence, there has been growing interest to test alternative
computing paradigms.3,4 Brain inspired artificial neural networks
have shown immense promise for efficiently searching approximate

solutions and have found wide applications in pattern recognition
and optimization problems.5,6 Specifically, the Hopfield-Tank net-
works allow a parallel scan of possible network states and have
been algorithmically shown to estimate solutions for the classical
Traveling Salesman Problem (TSP).7

More recently, Spiking Neural Networks (SNNs) were pro-
posed as a biologically more accurate model, which use spikes
in neurons as information carriers along with plastic connec-
tions called synapses.8 Apart from parallel communication through
spikes, other features of the SNNs include stochastic spiking and9,10

refractory periods.11 These three biological features are useful in var-
ious ways, e.g., constraint optimization,11 enhanced learning,9 and
sensing.10 Measured data from isolated retina of larval tiger sala-
mander shows that the refractory period regulates the spike rate
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of the ganglion cells located near the inner surface of the retina.12

The refractory period of a neuron can also help escape local min-
ima while performing stochastic optimization tasks using neural
networks.11

Parallel computation with realtime information exchange
between neurons produces a communication bottleneck in vonNeu-
mann computers with separate logic and memory blocks connected
with a bus. To fully realize the potential of these models, dedicated
hardware and architecture have been proposed. An excellent review
of neuromorphic algorithms and hardware for constraint satisfac-
tion problems has been presented.13 Nanoscale devices have been
used to further enhance the efficiency of these solutions. For exam-
ple, coupled oscillators14–16 and memristor crossbar array based
Boltzmann machines (BMs)17 have been explored.

The Boltzmann machine (BM) is an important class of neural
network, where neurons are typically binary (i.e., spike is “1” and
no spike is “0”). The n neurons in the network can choose the ith
state out of 2n states with a probability (pi) that depends on the
energy (Ei) of the state based on the Boltzmann distribution, i.e., pi∝ exp(−Ei). Constraint optimization problems are solved by map-
ping the constraints to network architecture and the energy function
(Ei).

18 Furthermore, neurons in the BM can be modeled as a Markov
chain to solve the traveling salesman problem11,19 of the NP hard
class of problems. The key to realizing a Markov chain based model
lies in being able to generate random numbers according to a given
function. A sigmoid function for the stochastic neuron model was
proposed earlier.19

Neuromorphic engineering aspires to implement such promis-
ing algorithms in hardware to enable performance, power, and area
efficiency advantages. To enable BM in hardware, the challenge is to
implement a stochastic neuron. On the other hand, analog synapses
have been explored in detail as shown in the literature review.20 Var-
ious neuron designs have been explored in the literature.21 Circuits
used to implement silicon neurons have been reviewed.22 An opti-
mal mix of analog and digital design is required to achieve brainlike
efficiency in computing.23 A low power analog LIF (Leaky Inte-
grate and Fire) neuron using novel physics in traditional silicon-
on-insulator Metal Oxide Semiconductor Field Effect Transistor
(MOSFET) has been demonstrated24 but provides rather miniscule
stochasticity.25

The nanoscale devices like memristors show enhanced stochas-
tic switching26–28 without requiring circuit based amplification of
noise.29 Furthermore, analog matrix multiplication based on the
memristor crossbar has been shown as significantly superior to the
digital version for the Boltzmann machine.17 Various nanoscale
device based stochastic neurons have been demonstrated. A com-
bined neuro-synaptic core was proposed using a memristive mag-
netic tunnel junction device.30 The magnetization switching driven
by spin-transfer torque in combination with back-hopping was used
to demonstrate stochastic current spike generation. However, the
switching resistance ratio was poor and stochasticity (without an
external magnetic field support) was experimentally observed for
only low temperatures (T ∼ 130 K) and very high current densi-
ties [100× > than PCMO RRAM (Resistive Random Access Mem-
ory)]. Another general-purpose weight storage element and stochas-
tic neuron model was proposed using a TiO2 memristor.31 The
resistive switching, similar to PCMO, was achieved through vacancy
modulation; however, this device required electroforming step for

operation and higher operating voltages, both of which negatively
impact device variability and endurance. Detection of temporal cor-
relations in parallel data streams was proposed using a stochas-
tic phase change neuron in Ge2Sb2Te5 Phase Change Memory
(PCM).32 The device resistance was a function of the crystalline
vs amorphous phase thicknesses of the PCM layer and the uncer-
tainty in melt-quench amorphization reset step was the primary
source of stochasticity in neuron operation. However, the input to
this neuron needed to be converted to a series of crystallization
pulses (as opposed to a single fixed pulse for PCMO) which requires
extra peripheral circuitry and renders low feasibility to network
level integration. More recently, low barrier magnets have been pro-
posed for stochastic switching in a 1T/1M arrangement.33–35 How-
ever, these devices have very stringent fabrication constraints of
near-critical thickness magnetization layer or circular magnets for
an absence of preferential magnetic orientation which are a chal-
lenge for nanoscale production and often require noise amplifica-
tion inverters at the output. Yet another implementation using an
electroforming free VO2 Mott memristor based stochastic neuron
was demonstrated recently,36 but it required additional noise to the
input for exhibiting stochastic behavior. Fidelity to neuronal mod-
els like stochastic Hodgkin Huxley37 and spike response models38

has also been demonstrated. With respect to applications, stochas-
tic neurons have been used for enhanced sensing,32 training, and
recognition of the logic function39,40 and on datasets such asMNIST,
CIFAR, etc.,41–44 with promising energy benchmarks;45 however,
the application to NP hard constraint optimization has not been
explored.

Unlike stochasticity in filamentary RRAMs26 which produce
binary states,46 PCMO (PrxCa1−xMnO3) is a nonfilamentary RRAM
to enable analog memory with forming-less operation and area
scalable currents with good endurance and retention.47,48 Excellent
low energy, analog PCMO synapses have been demonstrated.49–52

Integrate-and-fire (IF) neurons have been demonstrated based on
the set (high to low resistance switching) process.53 Thus, PCMO
RRAM provides a materials system, which provides both analog
synaptic and IF neuronal functionality. However, the stochastic
switching of PCMO based RRAM and its utilization in stochastic
neurons have not been presented earlier.

In this work, we present a stochastic neuron based on PCMO
RRAM for a BM to solve an NP hard problem, i.e., Maximum Cut
(or Max-Cut). First, we experimentally show that PCMO RRAM
has approximately sigmoid switching probability with voltage. We
utilize the natural analog approximation of sigmoid stochasticity
to design a compact neuron. A comparison with digital precision-
controlled sigmoid stochasticity is presented with purely CMOS as
well as CMOS with integrated RRAM implementations. We have
considered 65 nm CMOS technology for the current document;
however, the analysis is fairly general. We show that the networks
sample from the Boltzmann distribution approximately. We com-
pare the performance in terms of accuracy of solution of Max-Cut.
Finally, we present the area and power benefits.

II. BOLTZMANN MACHINE ALGORITHM

A BM is a fully connected network of n binary neurons
[Fig. 1(c)] described in the literature.11 A weight is associated with
each connection and a bias associated with each neuron. The state
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FIG. 1. (a) An instance of Max-Cut where the edge weight
is proportional to the edge length. (b) The solution is a par-
titioned graph in two sets (S, S′) so that the sum of edge
weights between the sets (red edges) is maximized. (c)
A crossbar implementation of the network used to solve
the Max-Cut problem, while in (d) the signal processing is
described. In the crossbar, neurons (1–3) may issue digital
spikes at digital clock times. These digital spikes produce
current through analog weights (W ij ) which are summed
along with bias. This analog current is converted into an
analog voltage uN = ∑

3
i=1 WiNxi + bN as an input to neu-

ron N, which fires digital spikes stochastically xN = σ(uN).
For example, although the input uN is identical at time steps
1 and 2, the output of neuron N, i.e., xN does not produce
identical value. (a) Max-Cut graph and (b) Max-Cut partition.

of the network can be expressed as a binary vector which repre-
sents neuron in binary states, i.e., on (“1”) or off (“0”). Such a state x⃗
(among 2n possible states) occurs with a probability given by

P(x⃗) ≙ 1

Z
exp(−Ex⃗/kT), (1)

where

−Ex⃗/kT ≙ N∑
i≙1

bi ∗ xi + N∑
i≙1

N∑
j≙i+1

wij ∗ xi ∗ xj. (2)

Here, Z is the normalization factor, bi is the bias of the ith neu-
ron, xi is the state of the ith neuron (0/1), and wij is the weight of the
connection between ith and jth neurons. Thus, the input (ui) to the
ith neuron is the change in network energy caused by its switching,
which is given by the following:

ui ≙ ΔEi ≙ bi +∑
j

wij ∗ xj. (3)

The crossbar array shown in Fig. 1(c) functions to compute this
sum and feed it to the neuron. The weights are summed along a col-
umn by Kirchhoff’s law of networks as input to the neuron, along
with a self-bias current. The clocked implementation is shown in
Fig. 1(d) where the input from digital neurons is converted to ana-
log current through memristors, summed through the crossbar to
generate an analog ui, which is used by the stochastic neuron to
issue digital spikes.17 Equation (1) indicates that the BM will visit
the lowest energy state the most frequently. Thus, we need to map
the cost of an optimization problem to the energy of the network so
that the most frequently visited state is the minimum cost solution.
The daunting class of NP-hard problems is challenging to solve in
the serially processed vonNeumann computing approach. However,
BM in hardware provides a way to exchange information between all

neurons in parallel. The parallel information processing in BMsmay
provide more efficient solutions.

A. Markov chain model for stochastic neuron

Neuron’s operation may be represented as a Markov chain,11

as shown in Fig. 2(a). In state 0, the output is 0. Here, the neuron
accepts input u to stochastically decide whether to transition to the
state τ or stay in the same state. The transition to state τ occurs
with sigmoid probability dependence on input u, i.e., σ(u). Hence,
the neuron stays in the same state with probability 1 − σ(u). Once
a neuron has reached the state τ, it deterministically transitions to
the next states until it reaches state 1. In all these states from state
τ to state 1, the output remains 1. On reaching state 1, the neuron
again stochastically decides to transition to state τ [with probability
σ(u)] or state 0 [with probability 1 − σ(u)] depending on the input
u. Given such a neuron, the network visits states such that it samples
from a Boltzmann distribution.19

B. Network definition for the Max-Cut problem

Next, we describe the solution of Max-Cut, which is one of
the first problems to be demonstrated as NP hard and has many
practical applications, e.g., resource maximization in networks.54 In
solving the weighted Max-Cut problem on a graph, the aim is to
cut the graph in two parts such that the sum of edge weights cross-
ing between the two parts is maximized. To do this, the problem
will be represented in terms of the BM network. The BM occupies
a state with probability inversely proportional to the exponential of
its energy as indicated by Eq. (1), i.e., lowest energy states are visited
most frequently. So, we need to define the energy associated with a
cut such that it is inversely proportional to the cost. The problem can
be formally stated as follows.18
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FIG. 2. (a) Block diagram of the Markov
chain mathematical model for a neuron
is divided into 3 subparts: stochastic set
(red) models stochastic spiking; down
counter (blue) models the refractory
period; condition select (green) decides
the output of the neuron depending on
the current state of neuron. (b) The cir-
cuit level implementation consists of the
stochastic function (SF) block in addition
to the deterministic logic.

Given a graph G = (V, E) with weighted edge set E and vertex
set V, find a partition of vertices into disjoint sets S and S′ so that the
cost function f (x⃗) defined in Eq. (4) is maximized [Figs. 1(a) and
1(b)],

f (x⃗) ≙ N∑
i≙1

N∑
j≙i+1

wij ∗ ((1 − xi) ∗ xj + (1 − xj) ∗ xi), (4)

where

xi ≙ {1 if i ∈ S
0 if i ∈ S′ ,

wij ≙ weight of the edge between node i and j,

wii ≙ 0.
The above cost function is rearranged in (5) to highlight its

similarity to energy of a Boltzmann network shown in (2),

f (x⃗) ≙ N∑
i≙1

( N∑
j≙1

wij) ∗ xi +∑
i,j

(−2wij) ∗ xi ∗ xj. (5)

Therefore, if biases and weights of a Boltzmann network are
defined as (6) and (7), respectively, then the cost of the Max-Cut can
be mapped to the energy of the BM,

bias(i) ≙ N∑
j≙1

wij, (6)

weight(i, j) ≙ −2 ∗wij. (7)

Once the Max-Cut problem is mapped to the network repre-
senting the BM, the BMwill settle into the solution where xi will take
values of 0 or 1, indicating whether they are in S or S’ [Fig. 1(c)].
The most visited state will be the solution presented by the
network.

III. HARDWARE IMPLEMENTATION OF BOLTZMANN
MACHINE

The hardware SNN (Stochastic Neural Network) based BM
consists of the synapses and neurons. Analog hardware synapses
in crossbars [Fig. 1(c)] have been extensively investigated.20 Hence,
we focus on the neuron in this paper. The Markov chain neu-
ron model is shown in Fig. 2(a), and the corresponding hardware
implementation is shown in Fig. 2(b). The deterministic transitions

in the Markov chain model are replicated using a down counter
block. While the down counter is enabled, the state of the neuron
(represented by “count”) is obtained from the decrementer. Here,
the count decreases by 1 after each clock cycle. This deterministic
countdown of τ steps acts as the refractory period since the neu-
ron output remains high and no new spike can occur during that
time. The condition select block puts various checks on the cur-
rent state and decides two things depending on the outcome of these
checks—(i) output of the neuron and (ii) enable signals of other two
blocks, i.e., down counter and stochastic set block. The output of
the neuron is 0 when count is 0, while it is 1 for all other counts.
The down counter is enabled when count is greater than 1, i.e.,
during the refractory period. Otherwise, the stochastic set block is
enabled. Here, input u for a neuron controls stochastic switching in
the stochastic function SF sub-block to produce a sigmoid switching
probability.

Two possibilities have been considered for the stochastic func-
tion (SF) sub-block—(i) pure CMOS and (ii) hybrid (RRAM inte-
grated with CMOS) designs. First, we use a pure CMOS design based
Linear Feedback Shift Register (LFSR) to generate pseudorandom
numbers on clock—which consists of large digital blocks. Second, we
use the hybrid design, where the stochastic switching in the compact
RRAM is utilized by a CMOS design. Hence, we will study stochastic
RRAM switching experimentally in Sec. III A.

A. PCMO RRAM stochasticity

1. PCMO RRAM device experimental setup

The PrxCa1−xMnO3 (x = 0.7) based RRAM devices were fab-
ricated on a 4′′ Si substrate. The bottom electrode of Ti (50 nm)/Pt
(25 nm) is deposited by sputtering on thermally grown SiO2 (30 nm).
Furthermore, PCMO (65 nm) is deposited by the RF sputtering pro-
cess at room temperature. Then, the PCMO is crystallized by anneal-
ing the sample in N2 ambient at 650 ○C by rapid thermal annealing.
After that, the devices were obtained by defining via holes of 1 μm
in SiO2 by electron beam lithography (EBL). Finally, tungsten (W)
contact pads (25 μm × 25 μm) are created by sputtering and lift-
off of tungsten.55 The device schematic [Fig. 3(a)] shows the PCMO
sandwiched between W and Pt. For the characterization, the volt-
age is applied between the W and Pt. The DCIV is taken using the
Agilent B1500 semiconductor parameter analyzer’s Source Measure
Unit (SMU) and transient IV by theWaveformGenerator/FastMea-
sure Unit (WGFMU). All the measurements are carried out at room
temperature.
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FIG. 3. (a) PCMO thin-film between two metal electrodes (W and Pt) forms the
RRAM device. (b) DC IV shows set and reset transitions. (c)The pictorial repre-
sentation of set and reset operation in the PCMO RRAM device in the presence
of applied bias shows the movement of oxygen ions to and from the W contact to
modulate trap density (NT ), thus producing resistance change. (d) Positive feed-
back between current (I), temperature (T), and ionic motion [i.e., trap density (NT )]
leads to current shoot-up in the set current. The feedback loop shows the corre-
sponding equations. The transport of a few ions given by the Mott-Gurney equation
is the origin stochasticity. Such a motion of a few ions locally changes local trap
density to initiate positive feedback which produces stochastic set.

2. Physics of stochasticity

The typical DC IV characteristics of PCMO RRAM are shown
in Fig. 3(b). At low bias, the device does not change its resistance
state. The trap density (NT) dependent space charge limited cur-
rent (trap-SCLC) flows through the device56 where ItrapSCLC ∝ 1/NT .
On the application of positive polarity voltage exceeding a voltage
threshold, the device switches from a low resistance state (LRS) to
a high resistance state (HRS). This is the reset operation. Similarly,

on the negative polarity exceeding a threshold voltage, the device
switches from HRS to LRS. This is the set operation. This set opera-
tion and reset operation in the device are attributed to themovement
of oxygen ions to and from the PCMO thin film toward the tungsten
electrode [Fig. 3(c)], which modulates the resistance through trap
density change. The process is described briefly below.

In the reset operation, the oxygen ions (O2−) move from bulk
toward the tungsten (W) electrode at positive polarity. This O2−

egress from PCMO creates oxygen vacancies in the PCMO (i.e.,
increases the NT). The movement of ions can be given by the
Mott-Gurney equation [Eq. (8)],

Vdrift ≙ afe− Em
kT e
−

E
E0 ≙> NT , (8)

where a is the hopping distance, f is the escape frequency, Em is
the activation barrier, E is the electric field, and E0 = kT/qa is the
characteristic electric field.

The increase in NT in the device increases the resistance and
hence leads to reduction in the current which is consistent with the
trap-SCLC behavior [Eq. (9)]. The SCLC current depends upon NT ,
T, and voltage (V) [i.e., ISCLC(NT , T, V)],

ItrapSCLC ≙ Itrapfree
NT

NV
exp( ET−EV

kBT
) ∝

1

NT
, (9)

Itrapfree ≙ 9

8
με(V2

L3
), (10)

where NV is the effective density of states of the valence band,
ET is the trap energy level, EV is the valence band energy level,
and kB is the Boltzmann constant. As the voltage is increased fur-
ther, NT keeps increasing leading the device into higher resistance
states.57,58

During set, as the negative bias is at W, the oxygen ions (O2−)
move away from the electrode and into the PCMO bulk. These ions
annihilate the oxygen vacancies in the device, leading to reduction in
NT and hence decrease in resistance. As the resistance is decreased,
more current flows through the device. The increase in current leads
to Joule heating in the device to further enhance the ionic motion
[Eq. (11)]. The device temperature (T) is a function of current and
voltage [i.e., Tdevice(V, I)],

−kd2T
dx2

+ CV
dT

dt
≙ I.V

volume
, (11)

where k is the thermal conductivity of PCMO, CV is the specific heat
capacity, and volume = area × thickness.

The ionic motion reduces trap density which further increases
current. Thus, a positive feedback is developed between current,
temperature, and ions, which leads to current shoot-up until a com-
pliance is reached.57 The set dynamics flowchart [Fig. 3(d)] shows
the positive feedback loop between heat transport (I → T), ionic
transport (T → NT), and the electron transport (NT → I). Here,
both the heat and electron transport [Eqs. (11) and (9), respectively]
are deterministic processes, whereas the ionic transport [Eq. (8)] is
stochastic in nature, as indicated in Fig. 3(d). The stochasticity in the
ionic transport comes from the hopping probability associated with
the oxygen ions. The transport of a few ions modifies the potential
profile locally for current transport and modulates the DC current
and related heating. In the set process, the transport of a few ions
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may initiate positive feedback of current and heating locally. This
local hot spot may spread to the entire PCMO layer—producing a
stochastic set process. This leads to the stochastic nature of current
switching when observed in the transient measurements [Fig. 3(b)].
The probability of switching is voltage-dependent, i.e., it is zero at
low bias and increases and saturates to 1 at high bias.

B. Implementation of stochastic function (SF ) block

The stochastic function (SF) block in the block diagram
[Fig. 2(b)] is the most challenging element of the neuron. We
compare the three different implementations shown in Fig. 4.

The first two designs are a Digital Precision-controlled Sig-
moid (DPS) implementation, as shown in Fig. 4, to enable high bit-
precision based replication of sigmoid using a Lookup Table (LUT).
Both designs require an input preprocessing stage, where the ana-
log input signal from the crossbar array of weights (u) is sampled
by ADC. For a Pure CMOS based implementation [Fig. 4(a)], the
digital signal is then processed through the Lookup Table (LUT),
which outputs a threshold value. An LFSR generates a pseudoran-
dom number. In the readout stage, the comparison of the LFSR out-
put with the LUT output determines whether the neuron has spiked
or not, i.e., if LFSR output exceeds the LUT output, then the neu-
ron has spiked, else not. For a DPS hybrid scheme [Fig. 4(b)], the
LUT translates the input of the neuron to a digital voltage value to
be applied to the RRAM to enable stochastic switching correspond-
ing to the probability σ(u). This digital voltage value is converted by

the DAC to a voltage to be applied to the RRAM. This produces a
high/low output in readout stage depending on the state of RRAM
(low or high resistance state). If the RRAMhas switched to low resis-
tance, a reset bias is applied to reset it during the countdown and get
it prepared for the next switching.

The implementations described above fail to utilize an impor-
tant property of PCMO RRAM, i.e., the approximately sigmoidal
switching probability. Alternatively, we implement the Approximate
Analog Sigmoid (AAS) schemes that the naturally approximate sig-
moidal switching of RRAM is utilized directly [Fig. 4(c)]. Here, we
directly give the input voltage (u) from the crossbar to the RRAM
such that σ(u) based probabilistic switching is obtained. It requires
a scale-and-shift operation, which is managed by the operational
amplifier that is present in all 3 designs. Thus, the ADC and DAC
operations are avoided. The stochastic switching and state readout
stages are identical to the second (i.e., Hybrid DPS) design.

IV. EXPERIMENTAL RESULTS

A. Nanoscale stochastic switching element: RRAM
data measurement

As discussed in Fig. 3, the PCMO RRAM enables a voltage
dependent probabilistic current switching during set. To experi-
mentally study this stochasticity, the transient current is measured
for a given set pulse amplitude to observe the switching time,
i.e., the time at which current shoots up. The transient current is

FIG. 4. Three implementations of the SF block, which
is divided in 3 processing stages: input preprocessing,
stochastic switching, and state readout. (a) Pure CMOS
based DPS scheme uses LFSR as the random number gen-
erator. (b) Hybrid scheme uses RRAM as the stochastic ele-
ment and Lookup Table (LUT) to generate the required set
voltage. (c) Proposed AAS scheme connects input directly
to RRAM taking advantage of the similarity in shape of
switching probability to sigmoid activation. Thus, the ADC
and DAC circuits in the input preprocessing stage are
avoided.
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FIG. 5. (a) RRAM current transient at 2.2 V pulse for 1 ms shows the stochastic
set. (b) The probability of RRAM switching at various voltages shows stochastic
switching control where the colorbar shows applied pulse voltage. (c) Probability
of RRAM switching as a function of pulse width and voltage where the colorbar
shows the probability of switching.

repeatedly measured during consecutive set measurements by alter-
natively applying a reset and a set pulse of duration 1 ms. One such
example is shown in Fig. 5(a). The stochastic switching in time can
be observed for a fixed set voltage pulse (−2.2 V/1 ms) for 100 runs.
The current shoots up at different time instants for different set runs
giving a probability distribution in the switching time. This stochas-
ticity is further modulated by the applied voltage pulse amplitude
and duration.We plot the cumulative probability distribution (CDF)
of switching time in Fig. 5(b) for different applied voltages. When

the voltage pulse amplitude is very high [>2.4 V, orange and red
curves in Fig. 5(b)], the switching is deterministic, i.e., the time to
set is a very narrow distribution in time. As the voltage pulse ampli-
tude is decreased [<2.4 V, green and blue curves in Fig. 5(b)], the
device switching becomes more stochastic, i.e., the time to set is a
broad distribution in time. The probability of switching of RRAM
by a pulse of a specific amplitude and pulse width is extracted out of
the experimental CDF data by interpolation to generate the contour
plot shown in Fig. 5(c).

We plot the switching probability as a function of pulse ampli-
tude for three different pulse widths in Fig. 6(a) using the contour
plot. Figure 6(b) shows that the RRAM switching probability func-
tion at a fixed pulse width closely resembles a sigmoid function after
a linear transformation to the voltage axis. In Fig. 7(a), we have
shown how analog u is converted to stochastic digital spikes through
an RRAM. The DPS implementation needs to convert analog u to
digital form through an ADC. The error reduces as bit precision

FIG. 6. (a) Probability of RRAM switching at three different pulse widths. (b)
The RRAM switching probability at these pulse widths is compared to a sigmoid
function (black) after linear transformation (shift and scale operation).

APL Mater. 7, 091112 (2019); doi: 10.1063/1.5108694 7, 091112-7

© Author(s) 2019

https://scitation.org/journal/apm


APL Materials ARTICLE scitation.org/journal/apm

FIG. 7. (a) The ideal sigmoid σ(u) may be digitized in the Digital Precision Scheme
(DPS) or approximated to analog in the Approximate Analog Scheme (AAS) where

u is analog to preserve the advantages of analog matrix multiplication.17 The inset
shows that AAS (green) is able to approximate the ideal σ(u), providing digital
spikes changing with u over the entire range of analog u. In comparison, the
output digital spikes are unchanged for large ranges of u depending upon the
bit-precision. (b) Error dependence on pulse-width in the AAS scheme is rather
constant, while for the DPS scheme, error reduces with bit precision increase
(inset). The root mean square error values at the 3 pulse widths are 1.35%, 1.56%,
and 1.21%, respectively. A maximum error of 3.5% was observed over the com-
plete range of pulse widths in the AAS scheme. The inset shows that the DPS
error decreases with an increase in bit-precision.

increases for DPS in the inset of Fig. 7(b). In comparison, the AAS
implementation needs no such conversion. It applies the analog u to
the RRAM to obtain digital stochastic switching where the proba-
bility of switching is modulated in an analog fashion. Although the
probability of switching is analog, the RRAM switching is digital
because the switching from high to low resistance is abrupt with
a large (10x) decrease in resistance—akin to digital low (“0”) to
high (“1”) state. A voltage divider is designed with Rread in series
to ensure that the voltage change is compatible with the buffer in
Fig. 4(b). The neuron is also stochastic as the RRAM has proba-
bilistic switching. Thus, the RRAM input is an analog voltage, the

switching is digital, but the dependence of the probability of switch-
ing on input voltage is analog—whichmimics a sigmoid. That is why
this implementation is termed approximate analog sigmoid.

The pulse width gives us control over reducing the error
between the functional form of the probability vs voltage amplitude
curve and an exact sigmoid function. Given various pulse-widths,
we observe a minimum rms error of 1.21% compared to an ideal sig-
moid for a pulse width of 450 ns [Fig. 7(b)]. Thus, we can implement
a near-sigmoid probability function using an RRAM by linearly
transforming the input membrane potential, u. This transformation
can be accommodated as a part of the weight scaling in the cross-
bar array. The resultant voltage can then be applied as a pulse to
the RRAM to implement approximate sigmoid probability activa-
tion, thus eliminating the need for lookup tables and preprocessing
blocks. The combined implementation of sigmoidal stochasticity vs
applied pulse amplitude to PCMO RRAM for a fixed pulse width is
the key enabler for AAS architecture.

As discussed earlier in Sec. III A 2 titled “Physics of Stochastic-
ity,” the origin of stochasticity is based on the motion of a few ions
to kick-start the positive feedback process that produces the HRS to
LRS transition. Hence, device area scaling will reduce the number
of ions required to be transported and enhance number fluctuation.
This requires further investigation.

B. Performance, Area, and Energy Consumption

As mentioned earlier, the network of neurons should sample
from Boltzmann distribution. Figure 8(a) shows a small sample of
joint distribution of 4 neurons (i.e., 24 cases) of a 10 neuron sys-
tem with 210 states. For comparison, we consider the result obtained
from Gibbs sampling as the baseline to show that the network is
closely sampling from the Boltzmann distribution. However, the
ultimate demonstration is the solution of an NP hard problem,
which is presented below.

The solutions of the Max-Cut problem are compared using
the relative cost metric. The relative cost is defined as the ratio of
the solution given by the network in a run to the optimal solution.
Thus, a relative cost closer to 1 would mean a better solution. The
performance on the 125 node Max-Cut solution is evaluated by sim-
ulations for the three schemes: AAS and DPS schemes (hybrid and
pure CMOS). The DPS scheme performance was presented for dif-
ferent bit-precision cases defined as (u-bit, o-bit). Here, u-bit is the
resolution of the input (u) and output bit (o-bits) defines the prob-
ability resolution for the pure CMOS scheme or voltage-resolution
for the hybrid scheme. Thus, 5 cases were simulated: (4, 4), (5, 6), (6,
6), (6, 8), (8, 8).

To evaluate the circuit density, standard designs of digital com-
ponents59 are used for estimation at 65 nm technology, while repre-
sentative mixed signal component performances for ADC and DAC
(in the same technology) are directly taken from the literature60,61

for a 1 MHz circuit operation for all three cases. A circuit area is
estimated for the circuit design.

For digital components, the switching power is computed using
the expression

P ≙ 0.5αfCV2
, (12)

where α is the switching probability of a transistor, f is the operat-
ing frequency, C is the output load capacitance, and V is the supply
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FIG. 8. (a) The probability of occurrence of the 16 possible states (states of neu-
rons z5 to z8 in a 10 node BM) is compared for 3 different modes: (i) theoretical
probability calculated from the Boltzmann formula, (ii) DPS hybrid scheme at (8,
12) precision, and (iii) AAS scheme at a fixed pulse width of 368 ns. (b) The per-
formance (relative cost) vs circuit area is compared with the lower limit for the
Goemans-Williamson algorithm of the Max-Cut problem. The AAS scheme shows
performance reduction with sigmoid error-enhancement in the range of 1.5%–3%.
The DPS scheme reduces in performance and circuit area with the reducing pre-
cision in 5 cases: (8, 8), (6, 8), (6, 6), (5, 6), (4, 4). Overall, the AAS scheme has
10× lower circuit area at equivalent performance compared to the DPS scheme.

voltage. 0.5CV2 is the energy dissipation in a single high-to-low or
low-to-high transition. For the ADC and DAC, the powers and con-
version times have been taken from Refs. 60 and 61, which are state
of the art in the literature with respect to the energy-per-bit and the
typical resolution.

Figure 8(b) shows the performance of network vs area of cir-
cuit comparison. The solid line indicates the performance of the
Goemans-Williamson algorithm for Max-Cut. The performance
reduces with bit precision reduction for DPS designs as the neu-
ronal area reduces—indicating a trade-off. The DPS neuron’s area
is dominated by the mixed signal components (ADC and DAC)—
whose sizes are related to the precision. Thus, the reduction in
size comes at the cost of reduced performance. The hybrid scheme
appeared more resilient than the pure CMOS scheme. For the AAS

scheme, the three different pulse-widths (in the 300–450 ns range)
producing different errors (in the range of 1.5%–3%) compared
to ideal sigmoid were simulated. The accuracy of the sigmoidal
approximation of stochasticity depends upon the choice of pulse
time. Figure 7(b) shows minima in accuracy at 450 ns which is
1.83× smaller than 350 ns. For the AAS scheme, keeping the pulse
width 350 ns instead of 450 ns gives 1.32× energy reduction. This
reduction occurs due to a decrease in energy dissipation through
RRAM. However, it is insignificant for hybrid DPS where prepro-
cessing is dominant. The BM performance increased with sigmoidal
error reduction. The AAS design has the same area for 3 differ-
ent pulse-widths, while the related error determines performance.
Furthermore, we compare the performance with the Goemans-
Williamson algorithm62 that guarantees relative cost better than
0.87× of the optimal. The AAS and high-precision DPS results are
significantly better than this lower bound. Overall, the AAS design
occupies 1/10th the area compared to both the DPS designs at
greater than equivalent performance of 98%–100%. In fact, an AAS
circuit at 450 ns pulse width performs even better than both the
(8,8) bit precision DPS circuits which occupy close to 50× more
area.

In terms of energy per spike for a neuron, the energy dissi-
pated by various components and the total energy dissipated are
shown in Figs. 9(a) and 9(b). The direct RRAM scheme dissipates
1/4th the energy of DPS-pure CMOS scheme and 1/9th the energy
of DPS-hybrid scheme. This energy saving is attributed to the elimi-
nation of the preprocessing stage which includes the ADC and DAC

FIG. 9. The DPS schemes have bit-precision of (8, 8) for CMOS and hybrid
schemes. (a) Estimated total energy dissipation per spike for each design is dis-
tributed into various blocks. (b) Estimated energy dissipation per spike by each
part of circuit normalized with respect to 1 fJ.
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components. While present results are promising, the effect on the
nature of stochasticity due to scaling PCMORRAMneeds to be eval-
uated to estimate the effect on system performance. Furthermore,
device-to-device variability in the stochasticity of the neuron may
have a significant impact on performance to require device-system
co-design.

V. CONCLUSION

In this paper, we study stochastic neuron design for the BM
to solve classic NP hard problems, which are of great theoreti-
cal interest and with a wide range of practical applications. We
show that the PCMORRAM has an approximately analog sigmoidal
(AAS) stochastic switching experimentally. We utilize this property
to design stochastic neurons to solve a Max-Cut problem—a typical
NP hard problem. A comparison to the digital precision-controlled
scheme (DPS) by pure and hybrid CMOS is performed. All schemes
perform better than heuristic Goemans-Williamson algorithm lim-
its. We show that the AAS scheme has a 4× power and 10× area
reduction over DPS schemes as well as the origins of the improve-
ment. Thus, PCMO RRAM based stochastic neurons are highly
promising for hardware BMs—an example of stochastic neuromor-
phic computing, to solve NP hard problems, which are extremely
challenging for von Neumann computing.
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