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Abstract Paleoclimate observations constitute the only constraint on climate behavior prior to the

instrumental era. However, such observations only provide indirect (proxy) constraints on physical variables.

Proxy system models aim to improve the interpretation of such observations and better quantify their inher-

ent uncertainties. However, existing models are currently scattered in the literature, making their integration

difficult. Here, we present a comprehensive modeling framework for proxy systems, named PRYSM. For this

initial iteration, we focus on water-isotope based climate proxies in ice cores, corals, tree ring cellulose, and

speleothem calcite. We review modeling approaches for each proxy class, and pair them with an isotope-

enabled climate simulation to illustrate the new scientific insights that may be gained from this framework.

Applications include parameter sensitivity analysis, the quantification of archive-specific processes on the

recorded climate signal, and the quantification of how chronological uncertainties affect signal detection,

demonstrating the utility of PRYSM for a broad array of climate studies.

1. Introduction

Paleoclimate observations constitute the only constraint on climate system behavior prior to the onset of

the instrumental record circa 1850. However, these records often prove difficult to interpret, as they may

represent multivariate, nonlinear, biased, noisy and chronologically uncertain transformations of the input

climate. Disentangling environmental influences on proxies is further confounded by nonstationarity and

threshold dependencies within the climate system itself.

Traditional approaches to paleoclimatic reconstruction rely on empirical calibrations between measured varia-

bles and climate inputs; such inverse modeling of climate-proxy relationships represent these uncertainties in

aggregate via calibration residuals. A complementary approach is to predict the measured value based on the

environmental forcing and existing scientific understanding of the processes giving rise to the observation;

models based on such a forward approach are known as proxy system models (PSM) [Evans et al., 2013]. A

PSM mathematically encodes mechanistic understanding of the physical, geochemical, and/or biological proc-

esses by which climatic information is imprinted and subsequently observed in proxy archives. Although

PSMs may be multivariate and nonlinear, they are generally simplified representations of complete proxy sys-

tems; even so, they enable us to evaluate the extent to which assumptions often made by inverse modeling,

such as stationarity and linearity, are valid.

PSMs have facilitated critical applications in paleoclimate science [Evans et al., 2013], including, but not limited to:

1. Improved interpretation of climate signals embedded in proxy archives [Anchukaitis et al., 2006; Shanahan

et al., 2007; Sturm et al., 2010; Lyons et al., 2011; Tierney et al., 2011; Br€onnimann et al., 2012; Baker et al.,

2012; Stoll et al., 2012; Wackerbarth et al., 2012; Steinman et al., 2013]

2. Isolating each transformation of the original climate signal, quantifying the contribution of each subsys-

tem to observed model-data discrepancies [Thompson et al., 2013a; Dee, 2013; Dee et al., 2014a]

3. Enabling direct paleoclimate model-data comparison by bringing climate models into proxy space [e.g.,

Thompson et al., 2011; Russon et al., 2013; Steig et al., 2013]
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4. Paleoclimate state estimation (data assimilation) [Steiger et al., 2014]

5. Providing a data level for Bayesian hierarchical models [Tolwinski-Ward et al., 2013; Tingley et al., 2012]

6. Simulating the full range of possible error contributions by each subsystem (this study)

However, several challenges stand in the way of a broader use of PSMs. First, relatively few have been

developed (for a review, see Evans et al. [2013]). Second, those that exist are currently scattered in the litera-

ture, making their integration by a single user difficult. Third, each model has been coded separately, in dif-

ferent programming languages, and according to disparate conventions. For broad-scale application of

PSMs which span the range of proxy systems used in paleoclimatology, a standardized framework is

required for their continued development and application.

In this paper we describe PRYSM (PRoxY System Modeling), a modeling framework for proxy systems. This

framework is designed in Python, a well-supported open-source programming language already in broad

use for analysis and visualization of climate data. Each PSM is designed around three submodels: sensor,

archive, and observation [Evans et al., 2013]. This formalism allows all uncertainties to be treated consis-

tently across different proxy systems, allowing the user to couple uncertainty along both axes (time and cli-

mate, roughly speaking). This initial iteration of PRYSM gathers PSMs centered around water isotope

measurements (d18O, dD); however the framework is extremely general, and designed for extension to other

measurement types.

The paper is organized as follows. Section 2 introduces the formalism of proxy system modeling, while the

details of each system model are given in section 3. Section 4 highlights three of the many potential applica-

tions of this modeling framework, as well as an example of a multiproxy system model experiment combining

all four available PSMs. The limitations and possible extensions of this work are discussed in section 5.

2. Proxy System Modeling

Paleoclimatic observations may be obtained from wood, coral aragonite, speleothems, ice cores, ocean and

lake sediments, and many other sources (see NCDC, <http://www.ncdc.noaa.gov/paleo/datalist.html>).

These observations are influenced by multiple environmental forcings, including temperature, precipitation,

atmospheric circulation changes, and sea surface temperatures, for example [Sturm et al., 2010]. Table 1

describes some of their uses as records of climate system variability. To improve the interpretation of paleo-

climate data, models that integrate climate and the processes by which proxy systems record climate are

needed to distinguish between the target climate signal and auxiliary signals. In general, a transfer function

(i.e., a PSM) is established to relate observed or modeled climate inputs (e.g., temperature, precipitation, iso-

topic compositions of precipitation, water vapor, or other relevant environmental variables) to the proxy

measurement.

In addition, the use of paleoclimate data is affected by multiple uncertainties: not only is the climate signal

recorded by the dependent variable (e.g., d18O) itself subject to error, but the independent variable (time) is

Table 1. Observation Typesa

Archive Location Zone Climate Variable

Trees land temperate High-precision dating, high replication, drought records,

divergence problem for temp, potential for biological influence.

Corals ocean tropics Precise relative and absolute dating. Geochemically based, subannual

to annual resolution, potential for biological influence, sparse in

time and space and not cross-dated.

Ice Cores land high lat, high z Myriad indicators. Precise relative dating. Interannual potential

underused. controls on tropical glaciers not constrained.

Sediments ocean1 land all Myriad indicators. Resolution ranges from near-annual to multi-decadal

at best, often with large chronological uncertainties. Mostly continuous.

Speleothems land all precise absolute dating. Climate interpretation equivocal.

aSeveral different types of paleoclimate data are available (see NCDC, <http://www.ncdc.noaa.gov/paleo/datalist.html>). Each data

type has its own benefits and shortcomings, and records changes on different time scales based on sampling resolution. Pros in normal

font, cons in italics. Note: z5 altitude.
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indirectly obtained via chronostratigraphy or geochemical dating. The PSM framework can be leveraged to

explicitly and jointly model these uncertainties on both axes (y: climate signal, x: time).

2.1. Modeling the Proxy Signal (y axis)

For each proxy class, Evans et al. [2013] distinguish between three main components of the proxy system

response to climate forcing:

Sensor: physical, structural, and sometimes biological response of the medium to climate forcing.

Archive: mechanisms by which the proxy’s sensor reaction is emplaced or deposited in a layered medium.

Observation: measurement made on the archive, accounting for effects related to sampling resolution in

time and/or across replicates, choice of observation type, and age model.

PRYSM follows this framework and models these processes separately within dedicated modules. Using the

oxygen isotopic composition (d18O) of tree-ring a-cellulose as an example, the sensor model encapsulates

the processes by which environmental forcing (e.g., ambient or leaf temperature, humidity, and precipita-

tion) is imprinted in the archive (e.g., cellulose component of wood). By choosing to observe the d18O of a-

cellulose of latewood at a particular sampling resolution and level of replication across samples, we define

the age model and choose the subset of environmental information encoded in the archive that is poten-

tially accessible. In section 3, we illustrate these modules in more detail for the observation types currently

represented in PRYSM.

A listing of paleoclimatic sensors, archives, observations, primary associated environmental forcings, and

strengths and weaknesses for common sources of paleoclimatic information are in Table 1. In general, pale-

oclimatic sensors, archives and observations are segregated by geography, temporal resolution, chronologi-

cal precision and accuracy, and environmental response, but a common feature is that many proxy systems

represent many-to-one mapping of the environmental variable and temporal sampling to the observations

we make in the archives. Because age uncertainty is of central importance for determining rates of change

and identifying coherent spatial patterns, we next turn to the representation of age uncertainties within

PSMs.

2.2. Modeling Time Uncertainties (x axis)

Paleoclimate observations often harbor significant age uncertainties, limiting our ability to accurately recon-

struct high-resolution climate variability. While a number of studies have acknowledged and modeled the

confounding effects of such age uncertainties [e.g., Burgess and Wright, 2003; Bronk-Ramsey, 2008, 2009;

Blaauw and Christen, 2011; Klauenberg et al., 2011; Parnell et al., 2011b; Scholz and Hoffmann, 2011; Anchu-

kaitis and Tierney, 2013], these errors are rarely propagated into climate reconstructions or model-data com-

parisons. PRYSM facilitates explicit propagation of random and systematic age uncertainties by

incorporating recent age modeling tools into the PSM framework.

For most proxies in the geosciences, time is assigned to a depth horizon or ring/band feature via an age

model. The latter may belong to two categories:

1. tie-point chronologies, such as most speleothem and sedimentary records, which use radiometric dates

as tie points of the age-depth relationship;

2. layer-counted chronologies, such as corals, ice cores, tree-rings, varved sediments, and some speleo-

thems, which are dated by counting layers formed by an annual or seasonal cycle, sometimes supple-

mented with independent age controls.

Uncertainties associated with these age models create significant challenges for time series analysis [e.g.,

Comboul et al., 2014], since these and other climate data analysis tools assume that the time axis is con-

strained at the level of the chronological resolution of the data. To allow for an assessment of the impacts

of age uncertainties, we incorporate the errors associated with age assignments by tie points and/or layer-

counting in the observation submodel.

2.2.1. Radiometrically Dated Proxies: Bchron

The modeling of tie-point chronologies has received much attention in the literature [Bronk-Ramsey, 1995;

Haslett and Parnell, 2008; Blaauw, 2010; Blaauw and Christen, 2011; Scholz and Hoffmann, 2011; Parnell et al.,

2011a; Breitenbach et al., 2012]. For such chronologies, many types of errors create uncertainty in estimates
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of the timing of events, rates of change, stratigraphic correlations, and spectral analyses. These include ana-

lytical error, the error associated with radiocarbon calibration curves estimating calendar dates, and the

interpolation of estimates to depth horizons for which no age information exists. A number of techniques

have been developed for propagating these dating uncertainties into the interpretation of associated paleo-

climate data. Radiocarbon age-depth modeling efforts have produced useful packages in R, including CLAM

[Blaauw, 2010], BACON [Blaauw and Christen, 2011], Bpeat [Blaauw and Christen, 2005], OxCal [Bronk-Ramsey,

2008], and Bchron [Haslett and Parnell, 2008]. For speleothem records, published age modeling techniques

include StalAge [Scholz and Hoffmann, 2011], mixed effect regression models [Heegaard et al., 2005],

smoothing cubic splines [Beck et al., 2001; Sp€otl et al., 2006; Hoffmann et al., 2010], and finite positive growth

rate models [e.g., Drysdale et al., 2005; Genty et al., 2006; Hendy et al., 2012]. Some of these methods are

compared in Scholz et al. [2012].

While all of these methods are useful for producing realistic chronologies in the archives for which they

were developed, we opted to include Bchron [Haslett and Parnell, 2008] in PRYSM v1.0, as it can be applied

to any tie-point chronology, whether it involves a calibration (e.g., radiocarbon) or not (e.g., Uranium series).

In addition, Bchron readily produces an ensemble of plausible chronologies, is easily modularized, open

source, and requires few input parameters. Bchron uses a continuous Markov monotone stochastic process

to simulate sample paths between constrained date horizons, and outputs an ensemble of age-depth rela-

tionships given partial dating information [Haslett and Parnell, 2008]. The model was originally developed to

handle dating uncertainties in lake sediment cores, whose chronologies are based on radiocarbon (14C)

dates. Bchron is able to capture changes in accumulation rates, includes explicit handling of outliers, and

simulates hiatuses in the data. These capabilities are crucial for records such as speleothems, whose age

models often imply large variations in calcite precipitation (growth or extension) rate.

2.2.2. Layer-Counted Proxies: BAM

Comboul et al. [2014] recently developed a probabilistic model (BAM) for layer-counted proxies such as cor-

als and tree-rings. The model accounts for both missed and doubly counted layers as a binomial or Poisson

process, allowing for asymmetries in both rates over time. The study finds that time uncertainties at the

annual scale significantly affect the spectral fidelity of high frequency (interannual) climate signals, and in

some cases, decadal signals. For example, with a 5% error rate assumed for a coral time series, age errors

between simulated chronologies can result in offsets of up to 10 years between 100-year long records. BAM

produces an ensemble of plausible chronologies based on an a priori estimated error rates for under and

overcounting. If additional information is provided, such an ensemble may be used to isolate an optimal

chronology. In PRYSM, BAM is incorporated and applied to the coral, tree-ring cellulose, and ice core PSMs.

For either chronology type, the chronological uncertainty (x axis) is modeled as part of the observation sub-

model. The two axes are therefore naturally coupled within the PSM framework. Figure 1 shows example

output for both of the age models employed in PRYSM. Both Bchron and BAM yield an ensemble of chro-

nologies which can then be reassigned to the original data to explicitly simulate age errors.

2.3. A Generalized Uncertainty Model for PSMs

PRYSM enables the user to combine uncertainties in the proxy measurements and in chronological assign-

ment explicitly. Errors are propagated from submodel to submodel, permitting quantification of uncertainty

in a manner directly comparable to observations. At the same time, the modular structure of PRYSM permits

submodel-level uncertainty analysis (Figure 2), allowing one to isolate error sources. Both these features are

essential to the wise application of PSMs in paleoclimatology.

First, random error and systematic bias are present in the input data, whether historical or simulated using

a general circulation model (GCM) (the ‘‘Environment’’ level in Figure 2). Uncertainties arise from limited

data availability in time and space and from resolution and measurement biases. Second, structural uncer-

tainty in the PSMs may be present as both random and systematic error. Structural uncertainties arise as a

result of errors in the process representation, and can be assessed by implementing a suite of complemen-

tary submodels which differ slightly in their representation of the proxy’s transformation of the climate sig-

nal, or by testing the PSM with a range of different GCM simulations. Parametric uncertainty exists at every

tier of the PSM design. Each model contains a number of tunable parameters based on process-study or

measurements spanning multiple sites/data networks; however, for some parameters, observational con-

straints are limited or not available. Further, parameter values may depend on regional or local conditions.
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Figure 2. A Generalized Uncertainty Model for PSMs. PRYSM lays out a compartmentalized framework for identifying uncertainties. Uncertainty types may arise at each step of the sub-

model process (environment, sensor, archive, observation, simulated signal) (left) in a variety of common paleoclimatic archives, (right) as illustrated with a coral d18O example. Each sub-

model can be used to produce an ensemble of simulations that propagate structural, parameter, and input uncertainties. For example, parametric uncertainties at the sensor level may

include the strength of a proxy response to local temperature, and at the archive level, due to processes such as diffusion or accumulation rates. ‘‘Phasing’’ uncertainty at the observation

level refers to the fact that annually resolved input signals may miss seasonal impacts on proxy data (e.g., ENSO dynamics where an event lasts 6–18 months and may show highest

expression in boreal winter). See text for details.

Figure 1. Age Models employed in PRYSM: Bchron, BAM. (left) Simulated age-depth horizons for a single cave record given five U/Th dates with errors. Bchron returns the 95% confi-

dence intervals (in gray) for the age model based on input values for dates1 uncertainties. This example assumes the top-most date is perfectly known (black dot at age 0), samples

from a posterior distribution of the age ensemble, and allows for varying sedimentation rate. (right) Simulated chronologies perturbed using BAM plotted against the original time series

(black). This example uses a symmetric dating error of 5%. Age uncertainties compound with time from the top-most date: the most recent dates are well constrained, while older dates

(or dates from deeper in the sample) are subject to larger age errors. For the PSMs described in this work, BAM is used to model age uncertainties in layer-counted proxies (ice cores, cor-

als, and tree ring cellulose), and Bchron is used for tie-point dating in speleothem calcite.
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GCM-simulated input data additionally harbors parametric uncertainties (e.g., convective entrainment

parameters in coarse-resolution GCMs). Finally, when simulated and actually observed paleoclimatic data

are compared, errors resulting from resolution and downscaling (e.g., from GCM to proxy scale) may

become apparent. Resolution in both time and space of the environmental inputs (observed or modeled)

may differ substantially from the subgrid scale nature of point observations, as the observations respond to

local or microclimate conditions, often within a growing or accumulation season.

As an illustrative example, we apply this generalized uncertainty model to map uncertainties for the d18O of

coral aragonite (the full model is discussed in section 3.2). The environment submodel will harbor biases in

the sea surface temperature (SST) and sea surface salinity (SSS) input variables. The sensor model contains

structural uncertainties due to the choice to exclude the effects of photosynthesis, light, and nutrient avail-

ability on the corals; parametric uncertainties exist in the slope of the local coral-temperature response and

the local relationship between SSS and the oxygen isotopic composition of the seawater. The archive model

can consider structural uncertainty due to changes in accumulation or extension rate and preservation, and

the observation model includes parametric uncertainties associated with the layer miscount rate (dating

uncertainty), as well as analytical error.

The coding architecture of the modeling framework is designed to aid the user in disentangling error propaga-

tion. The relative effects of uncertainties in the time (x) axis on the captured climate signal axis (y) can be tracked.

Finally, the submodel structure allows for the identification of those errors that dominate the final signal.

3. Modeling Water Isotope Proxies

We now describe models for four proxy systems, with reviews of the studies on which their formulations

are based. We have incorporated the key functionalities of all published models, and defend our selections

in each PSM description below.

3.1. Ice Core d
18O

Here we draw heavily from work simulating the d18Oice at individual locations [Vuille, 2003; Gkinis et al.,

2014], modeling diffusion in the firn [Johnsen, 1977;Whillans and Grootes, 1985; Cuffey and Steig, 1998; John-

sen et al., 2000; K€uttel et al., 2012; Gkinis et al., 2014], and compaction down core [Bader, 1954; Herron and

Langway, 1980; Li and Zwally, 2011; Arthern et al., 2010].

Figure 3 shows the schematic of the ice core PSM, which includes three submodels: psm.ice.sensor, psm.i-

ce.archive, psm.ice.observation as described below. The model simulates how ice core values evolve an

accumulation-weighted isotopic composition of precipitation to a final diffused time series with simulated

age errors. Required inputs and outputs for the model are given in Table 2.

3.1.1. Sensor Model

The ice core sensor model calculates precipitation-weighted d18OP (i.e., isotope ratio is weighted by the

amount of precipitation that accumulates) and corrects for temperature and altitude bias between model

and site (20:5&=�C [Yurtsever, 1975], 20:3&=100m [Vogel et al., 1975]). Precipitation weighting provides

the best representation of strong seasonal changes (this is particularly important for tropical ice cores).

The ice core sensor model can be summarized as:

d18Oice5

X

ðp � d18OPÞ
X

p
1acðDzÞ (1)

where p is precipitation amount, ac is an altitude correction (accounting for the potential for poorly

resolved topography in climate models). Biases in precipitation may arise as a side effect of discrepancies in

altitude or temperature as well, adding a level of uncertainty to the sensor model’s simulation; we may

attempt to address this additional bias in the next version of PRYSM.

3.1.2. Archive Model

Compaction and diffusion are considered as part of the ice core archive model.

3.1.2.1. Compaction and Density Profile

For this study, we employ the widely used steady state densification model of Herron and Langway [1980],

using the mean annual temperature and mean annual snow accumulation rate as input variables.
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Compaction is a function of the initial density (q) profile. The density versus depth profile is allowed to

remain fixed in time. Although temperature and accumulation vary, the response time of the firn is very

long (centuries to millennia, e.g., Goujon et al. [2003]), and can be neglected for typical applications such as

Figure 3. Proxy System Model: Ice Core d18O. The ice core model takes the weighted d18O of local precipitation, applies an altitude correc-

tion, and allows for diffusion in the firn over depth. Dating uncertainties are modeled using BAM [Comboul et al., 2014], specified as a 2%

symmetric error.

Table 2. Inputs and Outputs for Ice Core d18Oice PSM in PRYSM v1.0a

Proxy Class Inputs: Sensor Inputs: Archive, Observation PSM Output

Ice Core Lat/Lon, p, T, d18OP , z b, dz,T, h, ra D, r, d18Oice 1 BAM age

model realizations

aParameters: Lat/Lon: latitude and longitude coordinates, � ; P: precipitation, mm/d; T: temperature, K; d18OP : isotope ratio of precipita-

tion,&, z: elevation, meters (m) above sea level; dz: depth in core, annual layer depth, meters (m); b: accumulation rate, m:w:eq:a21 ; h:

age model uncertainty estimate, %; ra: analytical uncertainty,&, D: diffusivity ðcm2=sÞ, r: diffusion length, (cm).
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reconstructions of the last few centuries. For very long time scales, or for large, rapid climate changes such

as Dansgaard-Oeschger events, a time-dependent dynamic densification model [e.g., Goujon et al. [2003];

Capron et al., 2013] may be necessary but is not included here.

3.1.2.2. Depth Versus Age

The archive model next establishes a depth-age profile. Given a time series of isotope ratios, dðtÞ, each
depth horizon (z) corresponds to time t. Annual precipitation accumulation rates are used to calculate the

depth-age profile. The amount of diffusion that occurs depends on how long a section of the isotope profile

remains at a given density; as the accumulation rate changes, the amount of time spent at a given depth

(and density) varies, and adds additional low frequency variability to the signal. Note that it is convenient to

have both z and t be positive downward (i.e., older snow at greater depth has greater t), such that t is the

age of the snow, relative to the end point of the climate-modeled-time series. The time series of original d

values is converted from even spacing in time to even spacing in depth, using the relationship between

dðzÞ; qðzÞ, and t(z).

3.1.2.3. Diffusion

The amount of diffusion that occurs downcore is a function of the permeability of the firn, which deter-

mines how freely water vapor can move up and down the firn, and of temperature. Permeability is not well

constrained by observations; however, much data on firn density have been collected, and firn density can

be used as a reasonable proxy for permeability [Whillans and Grootes, 1985]. Johnsen et al. [2000] improved

upon this by including a term for the tortuosity. In the model, firn density determines the diffusivity at

each depth horizon. To establish the amount of diffusion that occurs at each layer in the firn, first a ‘‘diffu-

sion length’’ is calculated. The diffusion length is the characteristic distance over which water molecules

have moved up and down the firn, to produce the smoothed isotope profile. Johnsen [1977] and Johnsen

et al. [2000] provide an elegant solution, showing that given the diffusion length r, the isotope profile

below the firn layer (i.e., once all diffusion except the slow diffusion in the ice has stopped) is simply the

convolution:

ddiffused5G ? doriginal (2)

where ? denotes convolution and G is a Gaussian kernel of standard deviation r:

G5
1

r
ffiffiffiffiffiffi

2p
p e

2z2

2r2 (3)

Note that the final post-diffusion isotope profile at a depth below the firn layer requires only one calcula-

tion, yielding the complete diffused profile. Johnsen [1977] showed that r at the bottom of the firn layer is

typically about 7 cm, and that locations with greater snow accumulation (which would tend to reduce the

amount of diffusion that occurs) tend to be warmer locations (greater temperatures increase the diffusivity).

Despite these potential simplifications, in this model, we require a complete isotope profile from the surface

to the bottom of the firn. We make the calculation step-wise, using a new diffusion length at each time step

[K€uttel et al., 2012]. As discussed in Cuffey and Steig [1998], the diffusion length varies as
ffiffiffiffiffiffi

�Dt
p

, where �D is

the depth-integrated diffusivity and changes from zero at the surface to a constant value at the bottom of

the firn. Note that we ignore the slow diffusion in solid ice, below the firn layer [Johnsen et al., 2000; Cuffey

and Steig, 1998]. For each point in the discrete depth series of d18O, the entire depth-series doriginalðzÞ is con-
volved with the Gaussian filter (equation 3) using the single value of ri calculated for the depth qðzÞ. That
data point is stored and the calculation is repeated for each point in the doriginalðzÞ data series to produce a

final time series, dfinaldiffusedðtÞ.
3.1.2.4. Diffusion Length

The diffusion length is modeled similarly to Cuffey and Steig [1998] and Johnsen et al. [2000], following in

particular the conventions of Gkinis et al. [2014]. Diffusivity, D, at depth z is calculated as a function of tem-

perature and density, qðzÞ, and then integrated with respect to density. The integral over the density-

dependent diffusivity, from the surface down to density q is:

r2ðqÞ5 1

q2

ðq

q0

2q2
dq

dt

� �

21

D qð Þdq (4)

Journal of Advances inModeling Earth Systems 10.1002/2015MS000447

DEE ET AL. PRYSM: PROXY SYSTEM MODELING 1227



where dq
dt
is the densification rate. This can also be thought of as the density profile in depth multiplied by

the layer thickness: i.e., dq
dt

dt
dz
k5 dq

dz
k where k5 dz

dt
is the annual layer thickness. This can alternatively be

written:

r2ðqÞ5 1

q2

ðq

q0

D2q2
dq

dz
k

� �

21

dq (5)

To make the calculation above, we require diffusivity as a function of density of the snow [Johnsen et al.,

2000]:

DðqÞ5mesDai

RTais

1

q
2

1

qice

� �

(6)

where m is the molar weight (kg), q is the density in kg/m3 to yield diffusivity in m/s, qice is 920 kg/m3, ai is

the ice-vapor fractionation for the water isotopologue H18
2 O, and Dai is the diffusivity of the water isotopo-

logue H18
2 O (Da=1:0285). Da is the diffusivity of water vapor in air [Hall and Pruppacher, 1976]:

Da52:1 � 1025 T

T0

� �1:94
P0

P

� �

(7)

where P is the ambient pressure (Atm), P05 1 Atm, T is ambient temperature (K) and T05 273.15 K, R is

the gas constant5 8.314478. In equation 6, s is the tortuosity, and es is the saturation vapor pressure over

ice:

es5exp 9:55042
5723:265

T
13:530 � lnðTÞ20:0073T

� �

(8)

Finally, for the tortuosity (s), we use Johnsen et al. [2000]:

1

s
512 _b

q

qice

� �2

(9)

for q � qice
ffiffiffi

_b

p , where _b is the accumulation rate in meters of water equivalent per year (m:w:eq:a21). Following

previous work, diffusion ceases at q50:82, corresponding to the firn-ice transition [Johnsen et al., 2000]. We

note that while diffusion does occur below this depth, the process is very slow in solid ice and can be con-

sidered negligible for most applications (e.g., climate proxy simulations occurring over a few thousand

years) at most ice core locations [Johnsen et al., 2000; Cuffey and Steig, 1998]. Diffusion below the firn layer

could be accounted for in future versions of PRYSM. The output of the ice core archive model is shown in

Figure 4: for a simulated site (using parameters for Vostok, central East Antarctica, as an example), the

model returns the age-depth relationship, diffusivity, diffusion lengths versus depth, and firn diffusion

length over annual layer thickness.

3.1.3. Observation Model

The handling of age uncertainties (the observation model) in the ice core PSM is discussed in section 2.2.2,

and uses BAM. We adopt a default value of 2% dating uncertainties in ice cores based on values reported in

the literature [e.g., Alley et al., 1997; Seimon, 2003]. This value should be informed by measurement data on

a site-by-site basis and warrants more detailed studies [e.g., Steig et al., 2005]. A short routine accounts for

analytical uncertainty on laboratory measurements, adding a zero mean Gaussian process na � Nð0;raÞ to
the modeled time series with a default value of ra50:1&.

3.2. d18O of Coral Aragonite

d18O in living and fossil corals can help to reconstruct atmospheric and oceanic changes due to their sensi-

tivity to the El Ni~no Southern Oscillation (ENSO), changes in sea surface temperatures (T), and salinity (S)

[Gagan et al., 2000; Corrège, 2006; Lough, 2010]. Experimental and empirical studies of the inorganic and

coral-mediated precipitation of aragonite from seawater have shown that variations in the d18O of coral

aragonite are dependent on calcification temperature [O’Neil et al., 1969; Grossman and Ku, 1986; Weber and

Woodhead, 1972] and the d18O of seawater from which the coral precipitated its aragonite; the latter, in

turn, is closely associated with net freshwater flux from the surface ocean arising from net evaporation,
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condensation, runoff and water advection [Craig and Gordon, 1965; Cole and Fairbanks, 1990; Wellington

et al., 1996; Delcroix et al., 2011], and is therefore linked to salinity.

Figure 5 shows the schematic of the coral PSM, which includes three submodels: psm.coral.sensor, psm.cor-

al.archive, psm.coral.observation. Required inputs and outputs are given in Table 3.

3.2.1. Sensor Model

Thompson et al. [2011] developed a simple bivariate PSM for coral aragonite d18O anomaly as a linearized

function of sea surface temperature and salinity anomalies; the latter, in turn, approximate variations in

d18O of seawater associated with net freshwater flux from the surface and ocean mixed layer [e.g., Fair-

banks et al., 1997]. This model has been employed to construct ‘‘pseudocorals’’ from the PSM coupled to

observations of T and S and CGCM simulations [e.g., Thompson et al., 2011] and isotope-enabled GCMs

[e.g., Russon et al., 2013; Thompson et al., 2013a] for comparison with actual coral d18O observations.

The anomaly model for d18O is written as:

Dd18Ocoral5aDT1Dd18Osw1nm (10)

where DT is the sea-surface temperature anomaly, a is an empirically determined coefficient specified by

the relationship between oxygen isotopic equilibrium and formation temperature of carbonates [e.g.,

Epstein et al., 1953], d18Osw is the anomalous oxygen isotopic composition of the ambient seawater, and

nm � Nð0;rm) is an error term accounting for model misspecification. This term describes both random

and systematic uncertainty (e.g., due to processes such as diagenesis) about d18Ocoral that is not captured

by the linear bivariate model, and its variance may be estimated via an analysis of regression residuals.

Thompson et al. [2011] show how this forward model can be forced using both observed SST and d18Osw/S

data and CGCM output. In practice, S observations and simulations are more readily available than d18Osw ,

Figure 4. Proxy System Model: Ice Core d18O (Archive). Within the Ice Core PSM, the ice sheet is the sensor, the ice is the archive, the d18O of ice is the observation. The ice core archive

model accounts for compaction and diffusion in the firn. The compaction model is used to determine an age-depth relationship, and diffusivity is calculated for each point over depth.

The figure shows an example output for Vostok, Antarctica: diffusivity with depth, diffusion length, and diffusion length over annual layer thickness to remove the effects of compaction.

Diffusion length and diffusivity are intermediary variables within the PSM returned by the archive model.
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for which no complete surface data set exists (but see LeGrande and Schmidt [2006], http://data.giss.nasa.

gov/o18data/). The default value of a used in the model is 20:22=�C [Evans et al., 2000; Lough, 2004], but

the parameter can be externally specified. If d18Osw is not available, it can be estimated from sea-surface

Figure 5. Proxy System Model: d18O of coral aragonite. The coral model accounts for sensitivity to SST and SSS (as per Thompson et al.

[2011]), and explicitly models age uncertainties (5%) and analytical error (0.1&).

Table 3. Inputs and Outputs for Coral d18OC PSM in PRYSM v1.0a

Proxy Class Inputs: Sensor

Inputs: Archive,

Observation PSM Output

Coral Lat/Lon, SST, (SSS OR d18OSW) h, ra d18Oaragonite 1 BAM age

model realizations

aParameters: Lat/Lon: latitude and longitude coordinates, � ; SST: sea surface temperature, K; SSS: sea surface salinity, PSU; d18OSW : iso-

tope ratio of sea water,&; h: age model uncertainty estimate (rate of miscount), %; ra: analytical uncertainty,&; d18Oaragonite : isotope

ratio of coral aragonite,&.
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salinity anomalies as b � DS, where b is simply the regional d18Osw-SSS relationship, converted from VSMOW

to VPDB [Fairbanks et al., 1997; LeGrande and Schmidt, 2006]:

Dd18Ocoral5aDT1bDS1nm (11)

3.2.2. Archive Model

Currently, the archive model for corals is included only as a placeholder. For simplicity, the coral PSM Ver-

sion 1.0 assumes that idealized sampling practices were followed [DeLong et al., 2013], and thus does not

include the effects of sampling path, core angle offsets relative to growth rates, biological interference to

annual banding, or diagenesis on the resulting measurements. One could envision adding submodules that

mimic these processes.

3.2.3. Observation Model

Age uncertainties in the coral PSM are modeled using BAM (section 2.2.2), with user-defined, independent

error rates (default for corals is h52:5% symmetric error) for missing and doubly counted bands. As before,

analytical uncertainty is modeled by a zero mean Gaussian process na � Nð0; raÞ, with a default value of

ra50:1&. Generally, ra � rm [Evans et al., 2013].

3.3. Speleothem d
18O

The oxygen isotopic composition of stalagmite calcite is dependent on calcification temperature and the

isotopic composition of drip water. The latter is a many-to-one combination of precipitation, evaporation,

advection and mixing of meteoric, soil, ground and cave waters [McDermott, 2004; Fairchild et al., 2006a].

The most common interpretation for speleothem d18O is as a measure of rainfall, via the ‘‘amount effect’’

[Dansgaard, 1964; Mathieu et al., 2002; Lee et al., 2007]. However, several studies have underscored the

importance of considering soil water and karst processes when interpreting cave dripwater [Fairchild et al.,

2006b; Baldini et al., 2006; Williams, 2008; Dreybrodt and Scholz, 2011]. Our speleothem PSM is designed to

help identify the primary influences on, and time scales resolved for, variations in speleothem d18O records,

to facilitate accurate paleoclimatic interpretation. Many published studies have devised forward models of

speleothem calcite for these purposes, including M€uhlinghaus et al. [2009]; Bradley et al. [2010]; Baker and

Bradley [2010]; Baker et al. [2012]; Truebe et al. [2010]; Partin et al. [2013]. The oxygen isotopic composition

of speleothem calcite (d18Oc) is generally approximated as a function of cave temperature, precipitation

amount, simplified karst hydrology, and d18Oprecip at the site. However, speleothem forward models are lim-

ited by varying initial and boundary conditions in the groundwater and precipitation schemes (such as the

storage volume, outlet size, and transit times), which results in a large sensitivity of cave drip water to each

of these initialized values [Baker and Bradley, 2010]. PRYSM implements the model of Partin et al. [2013], a

lumped-parameter model which represents karst mixing with a single tunable parameter. This modeling

choice constitutes a middle ground between the common assumption of d18Oc / 2P, and a more sophisti-

cated approach such as that of Baker and Bradley [2010].

The full speleothem d18Oc PSM is summarized in Figure 6. Required inputs and outputs for the model are

given in Table 4. This speleothem PSM can be used to explore hydroclimate variability as captured by a sin-

gle record, or in observations across a network of caves expected to sense a common environmental

forcing.

3.3.1. Sensor Model

The isotopic composition of the cave drip water (d18Od) is calculated using the weighted isotopic composi-

tion of precipitation that falls over the cave (d18Ow ):

d18Ow5

X

p � d18Op=
X

p (12)

where p is the precipitation rate (mm/month) and d18Op is the monthly average isotopic composition of the

rainfall (&). The user can alternatively specify the input as the isotopic composition of the upper soilwater

layer (d18Os) if this field is available from an isotope-enabled GCM; using d18Os carries the advantage of

accounting for evaporative enrichment to the soilwater before it enters the karst.

This signal is further filtered by an aquifer recharge model [Gelhar and Wilson, 1974] simulating the effects

of karst storage on cave dripwater. The physics of this aquifer model are entirely characterized by the mean

transit time s5 /
a
(months), where / is the effective porosity of the aquifer (unitless) and a is an outflow
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Figure 6. Proxy System Model: Speleothem d18O of Calcite. Cave dripwater is modeled using weighted d18O of local precipitation, con-

volved with a Gaussian filter to account for groundwater recharge and storage time. In this example, the groundwater transit time (s) is

taken as 1 year. Age model uncertainties are simulated using Bchron [Haslett and Parnell, 2008].

Table 4. Inputs and Outputs for Speleothem Calcite PSM in PRYSM v1.0a

Proxy Class Inputs: Sensor Inputs: Archive, Observation PSM Output

Speleothem Lat/Lon, T, d18OP , s, / h, ra d18Ocalcite 1 Bchron age model ensemble

aParameters: Lat/Lon: latitude and longitude coordinates (
�
); T: annual average temperature (K); d18OP : isotope ratio of precipitation

(&); s: groundwater residence time (months); /: porosity of aquifer (unitless); h: age model uncertainty (for each tie-point date), %; ra:

analytical uncertainty (&); d18Ocalcite : isotope ratio of speleothem calcite (&).
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constant (months21). The aquifer recharge model may be represented by its impulse response (Green’s

function):

gðtÞ5
1

s
e2t=s t > 0

0 otherwise

8

<

:

(13)

Hence, for all positive times, the solution decays exponentially with e-folding time s, which is also the mean

residence time in the aquifer. The karst thus acts as a low-pass filter, introducing lags in the climate-proxy

relationship (see section 4.1). The simulated drip water isotopic composition is thus the precipitation-

weighted isotope ratio convolved with the karst’s green function:

d18Od5gðtÞ ? d18Ow (14)

We note that in principle, s can be estimated from observations of tracer dispersion in the karst, as done

routinely in catchments [McGuire and McDonnell, 2006]. This simplicity is a distinct advantage over more

complex models, whose many parameters are often difficult to constrain with scarce or regionally specific

observations. This can lead to indeterminacy arising from parameter estimation as well as multivariate envi-

ronmental forcing.

The d18Oc of calcite recorded by the speleothem is finally subject to a temperature-dependent fractionation

of the drip water (d18Od) as the calcite precipitates [Wackerbarth et al., 2010, equation 11]:

d18Ocðd18Od; TÞ5
d18Od11000

1:03086
�

exp ð2780=T2
22:89=1000Þ21000

(15)

where T is the annual average temperature of the cave [K].

3.3.2. Archive Model

The speleothem archive model is currently included as a placeholder, and would serve to account for the

effects of calcification rate on the retrieved d18Oc signal. We intend to include existing models for growth

rate and calcite precipitation, following the efforts of Kaufmann and Dreybrodt [2004]; Romanov et al. [2008],

and Baker et al. [2014], for example.

3.3.3. Observation Model

Age uncertainties in the speleothem model are modeled using Bchron [Haslett and Parnell, 2008], as

described in section 2.2.1. Bchron can simulate piecewise continuous growth episodes (hiatuses), which are

particularly common in stalagmites [McDermott, 2004]. As before, analytical uncertainty is modeled by a

zero mean Gaussian process na � Nð0; raÞ, with a default value of ra50:1&.

3.4. Tree Ring Cellulose d
18O

The oxygen isotopic composition of the a-cellulose component of wood depends on the isotopic com-

position of xylem water, evapotranspiration at the leaf or needle during photosynthesis, isotopic back

diffusion at the leaf/needle between leaf/needle and xylem waters, partial reequilibration of photosyn-

thate prior to cellulose synthesis, and the use of photosynthate reserves [Roden and Ehleringer, 1999;

Roden et al., 2000; Anderson et al., 2002; Roden et al., 2002; Barbour et al., 2004]. In turn, the isotopic

composition of xylem water has been shown to be unfractionated with respect to soil water [Roden

et al., 2000, and references therein]; however, the isotopic composition of soil water may reflect rooting

depth and variations in evaporation, precipitation, mixing and advection of precipitation, soil water and

ground water.

Figure 7 shows the schematic of the isotopes in tree ring cellulose PSM, which includes two submodels:

psm.cellulose.sensor, psm.cellulose.observation. Required inputs and outputs for the model are given in

Table 5.

3.4.1. Sensor Model

The d18O of a-cellulose may be modeled as a fractionation relative to the isotopic composition of xylem

water D [Roden et al., 2000; Barbour et al., 2004; Evans, 2007, and references therein]:
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Figure 7. Proxy System Model: d18O of tree cellulose. Oxygen isotopes in tree cellulose are modeled after Roden et al. [2000]; Barbour et al.

[2004]; Evans et al. [2006]; Evans [2007]. The PSM is modular, such that either the Roden et al. [2000] or Evans [2007]parameterization can

be used interchangeably. Age uncertainties are modeled at a 1% symmetric error rate (i.e., 1 ring miscounted per 100 years), and analytical

errors are taken as r50:1&.

Table 5. Inputs and Outputs for Tree Ring Cellulose PSM in PRYSM v1.0a

Proxy Class Inputs: Sensor

Inputs: Archive,

Observation PSM Output

Tree Ring Cellulose Lat/Lon, P, T, RH, d18OP (d
18OS; d

18OV if available) h, ra d18Ocellulose1 BAM

aParameters: Lat/Lon: latitude and longitude coordinates (
�
); P: precipitation (mm/d); T: temperature (K); RH: relative humidity (%);

d18OP : isotope ratio of precipitation (&); d18OS : isotope ratio of soil water (&); d18OV : isotope ratio of ambient vapor (&); h: age model

uncertainty estimate (rate of miscount), %; ra: analytical uncertainty (&); d18Ocellulose : isotope ratio of tree ring cellulose (&).
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D
18Ocellulose5Dleaf ð12pxpexÞ1�c (16)

with pex the fraction of oxygen atoms that have reequilibrated with xylem water prior to cellulose synthesis,

px the proportion of xylem water in the cell forming the cellulose, and �c the equilibrium fractionation asso-

ciated with biosynthesis of cellulose. The fractionation of leaf water relative to xylem water Dleaf [Barbour

et al., 2004] is

Dleaf 5
Deð12e2PÞ

P (17)

with P 5
LE
CD

the Peclet number, which is the ratio of convection, via transpiration at the leaf, of unenriched

xylem water to evaporation sites, to the backward diffusion of H18
2 O into the leaf. Convection is represented

by LE, the product of the effective length L from evaporation surface and the evaporation rate E. Diffusion is

represented by the diffusivity of H18
2 O in water multiplied by the molar density of water C [Barbour et al.,

2004]. Leaf level evaporative enrichment De is

De 5 ��1�k1ðDv2�kÞ
ea

ei
(18)

in which Dv is the oxygen isotopic composition of atmospheric water vapor relative to that of xylem water,

and ea and ei are atmospheric and intercellular air water vapor pressures, respectively. The equilibrium and

kinetic fractionation factors �� and �k are functions of temperature:

��5exp
1137

T2
2
0:4156

T
20:0020667

� �

21 (19)

�k5
32rs121rb

rs1rb
(20)

with rs and rb the stomatal and boundary layer resistances to water flux from the leaf.

With specification of biophysical and environmental variables and parameters, Dleaf and Dc may be calcu-

lated, and with knowledge of d18O of source water, dleaf and dc may be predicted [Barbour et al., 2004]. With

further parameterizations to define environmental parameters in terms of commonly measured direct mete-

orological observations and with additional simplifying parameterizations specific to tropical environments,

Evans [2007] hypothesized that the d18O of a-cellulose from tropical trees should resolve the pattern of pre-

cipitation variation associated with ENSO activity. The PSM for water isotopes in tree-ring cellulose encoded

in PRYSM v1.0 is similarly formulated to be driven with meteorological and isotopic data or simulations.

3.4.2. Archive Model

Similarly to the coral PSM, the PRYSM v1.0 wood PSM does not contain an archive model; an empty subrou-

tine is included as a placeholder, but does not alter the output of the sensor submodel. However, an archive

submodel for this PSM should include prior understanding of the growing season and/or seasonal hiatuses

in growth over time [McCarroll and Loader, 2004], and effects of photosynthate storage from one growing

season to the next [Terwilliger, 2003; Roden et al., 2002].

3.4.3. Observation Model

Age uncertainties in the tree ring cellulose PSM are modeled using BAM (Sec. 2.2.2.). The BAM default value

for tree ring cellulose h52% symmetric error. As before, analytical uncertainty is modeled by a zero mean

Gaussian process na � Nð0;raÞ, with a default value of ra50:3&. For a single observation from a cross-

dated tree ring, ra for a-cellulose is about 0.3&. For annual averages of n independent monthly resolution

estimates, ra50:3=
ffiffiffi

n
p

. h is bimodal: for cross-dated trees this value is approximately 1%, but for tropical

trees, not cross-dated, not clearly annually banded, and with limited replication, the value of h is much

larger (4–5% or more). These values are user-specified.

4. Results: Simulating Step-Wise Signal Transformations

To demonstrate the utility of the PRYSM framework, we evaluate each transformation of the signal in a

multi-PSM simulation using output from an isotope-enabled atmospheric general circulation model (AGCM)

(SPEEDY-IER) [Dee et al., 2014b]. SPEEDY-IER is a new intermediate complexity, isotope-enabled AGCM

designed for efficient ensemble simulations on paleoclimate timescales. The AGCM was used to simulate
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the isotope hydrology and atmospheric response to SSTs derived from the ‘‘past1000’’ last millennium

(850–1850) and ‘‘Last Millennium Extension’’ (1850–2005) PMIP3 integration of the CCSM4 model [Landrum

et al., 2013]. Each PSM was then driven with water isotope and climate fields from SPEEDY-IER to generate a

synthetic proxy record at one of three different locations: Hidden Cave, New Mexico (speleothem), Quel-

ccaya (tropical ice core), and La Selva, Costa Rica (cellulose), respectively, followed by a multiproxy applica-

tion. Figures 4–7 show the decomposition of the climate signal for all of the PSMs included in PRYSM via

spectral analysis. Each submodel filters the input climate signal uniquely, and the effect of each filter can be

quantified in this framework. Here, we use three different PSMs to illustrate the impact of each submodel

on the interpretation of proxy records.

4.1. Sensor Model Contribution

Here we explore the effect of karst transit times in the speleothem PSM sensor submodel driven by simu-

lated isotopic variations in precipitation. Speleothem records from the southwestern United States have fre-

quently been used to reconstruct Holocene hydroclimate variability in the United States [e.g., Polyak and

Asmerom, 2001; Polyak et al., 2001, 2004; Ault et al., 2013a]. For several of these sites, speleothem time series

(used as a proxy for precipitation amount) display scaling behavior that cannot be replicated by GCM simu-

lations for precipitation of the last millennium [Ault et al., 2013a].

When measuring isotope ratios in speleothem calcite, the assumption that isotope ratios in calcite reflect

rainfall amount is complicated by processes such as thermal fractionation, evaporative enrichment in soils,

vadose zone mixing, and other karst processes. Only by explicitly modeling such processes can one confi-

dently attribute the origin of systematic differences between paleoclimatic observations and simulations.

To demonstrate this, we modeled the d18Ocalcite for a widely studied site: Hidden Cave, New Mexico. Figure

8 displays the simulated spectra of d18Ocalcite using four values of the karst transit time s, showing that it

Figure 8. MTM-Spectra for simulated d18O of Speleothem Calcite at Hidden Cave, New Mexico. Changes to signal strength induced by

varying karst transit times (s, years) in the speleothem PSM sensor model. The figure indicates that scaling behavior can arise in the signal

due to karst parameters alone; constraining a value for s may thus prove crucial for interpreting high-resolution speleothem data. Values

for the spectral slope (c) are given for each value of s.
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exerts a first order control on the scaling properties of d18Ocalcite: short transit times (e.g., s5 3 months) pro-

duce a d18Ocalcite that is very similar to the input signal (d18OP, cobalt blue curve, Figure 8a.) while longer

transit times (e.g., s55 years) result in a much steeper spectral slope, c50:85 (defined as Sðf Þ / f2c) [see

Godsey et al., 2010]. The values for the spectral slope (c) observed given a range of plausible transit times (s)

are reported on Figure 8: for s50:25, 0.5, 1 and 5 years, c520:05, 0.1, 0.45, and 0.85 respectively, indicating

that c is highly dependent on transit time.

For reference, Ault et al. [2013a] report a spectral slope of c50:82 using band thickness as a proxy for

precipitation amount for the Hidden Cave data. These results are not directly comparable because of the

different choice of precipitation indicator (band thickness versus d18Ocalcite), but the mismatch between

the spectral slope of the input precipitation signal versus the final proxy signal is still apparent.

The chosen range in s is representative of estimates for various karst systems. It is difficult to come up with an

upper bound for this parameter, though expert elicitation suggests a number on the order of a few years (J.

Kirchner and J. F. Clark, personal communication, 2014). While several studies have noted the importance of

monitoring local meteorology at individual cave sites for growth rates [Sp€otl et al., 2005; Baker et al., 2014], little

work has been done to constrain s and its effects on the resulting d18Ocalcite via site-based process studies.

Recently, [Moerman et al., 2014] used paired measurements of rain and drip water oxygen isotopes at a site in

Borneo and estimate s � 3 months, but this is likely to be highly variable between cave systems and even

between drips in the same cave [e.g., Truebe et al., 2010]. There is evidence for ‘‘old water’’ in groundwater

[McDonnell, 1990; Klaus and McDonnell, 2013], suggesting that, in some environments at least, the limiting fac-

tor may be the transit time to the cave – not within the cave, where fractures may greatly accelerate the flow.

In this case, neglecting karst processes would lead one to erroneously blame GCMs for not producing the

observed scaling behavior, while the fault may lie entirely in the karst. This highlights the necessity to

ensure that (a) the model is structurally correct; (b) its parameters are experimentally constrained. Sensitivity

experiments show that such scaling behavior is qualitatively similar with other models for karst mixing (e.g.,

advection-dispersion, leading to fractal scaling in solute concentrations [Kirchner et al., 2001]), so parametric

uncertainty dominates structural uncertainty. Constraining a value for smay thus prove crucial for interpret-

ing high-resolution speleothem data.

The sensitivity of scaling exponents to the karst parameter motivates a more systematic characterization of

transit times in karst systems in a range of climate regimes. More broadly, it illustrates how PRYSM may be

used for identifying parameters that require further observational constraints. Alternatively, one can conceive

of more complex karst and cave models [e.g., Hartmann et al., 2013], which will be included in future versions.

4.2. Archive Model Contribution

The PSM framework also allows an estimation for the time scales of climate variability that can be faithfully

resolved by a proxy system. As illustrated in Figure 4 (Row 3), the contribution of the archive model can be

isolated to address this question. We use a well-known tropical ice core as an example [Quelccaya, Peru:

Thompson et al., 1985; Thompson et al., 2006, 2013b]. The total variance captured by the original climate

d18OP is damped by diffusion and compaction processes down core. Figures 4 and 9b show that diffusion

and compaction disproportionately affect high-frequencies (see dashed versus solid line in Figure 9b),

but leave low-frequencies intact. We here investigate how these processes affect the retrieval of climate

information in simulated versus real-world observations.

PRYSM facilitates direct comparison of observations to simulations, intermodel comparison, as well as an

investigation into the causes of model-data discrepancies. For Quelccaya in particular, the modeled and

observed data tell two very different stories. While the archive submodel experiments suggest climate sig-

nal damping due to diffusion, the Quelccaya ice core record has been shown to capture near-annual vari-

ability reflecting changes in tropical sea surface temperatures [Thompson et al., 2013b]. Indeed, Figure 9a

shows the correlation between SPEEDY-IER surface temperatures and simulated Quelccaya d18Oice: in agree-

ment with Thompson et al. [2013b], the water isotope signal in the simulated ice core is strongly correlated

to tropical pacific sea surface temperatures (R250:46, QUEL v. NINO34).

It would be tempting to see the PSM validated at this point. However, Figure 9b shows the modeled

time series for Quelccaya d18Oice using water isotope output from both SPEEDY-IER and ECHAM5-wiso

(a higher-order GCM) [Werner et al., 2011] alongside the measured values [Thompson et al., 2013b]. A
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Figure 9. Model-Data Comparison: Ice Core PSM Archive Model, simulated and observed d18OICE . (a) Correlation between simulated

d18OICE at Quelccaya, Peru and modeled global SST. Maximum correlation between tropical pacific SSTs and d18O at Quelccaya in SPEEDY-

IER: R250:46. Thompson et al. [2013b] report R250:53 for the (QUEL, NINO4) extended reconstruction from ERSST. (b) Modeled versus

observed d18O time series and MTM-generated spectra for measured [Thompson et al., 2013b] versus modeled (iso-GCM1 ice core PSM).

We compare the ice core PSM forced with data from both ECHAM5-wiso and SPEEDY-IER. PRYSM illustrates the value of explicit modeling

of the physical processes for the identification of systematic error in the simulations.
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comparison of low-order statistics reveals that the ice core PSM forced with SPEEDY-IER output differs

significantly from observations. The mean isotope values in the SPEEDY-IER simulated data are offset

from observations by �17&. Perhaps more striking is the difference in variance between the two records

(robs52:1&; rmodel50:07&). For ECHAM5-wiso, the comparison of the mean is much better once an altitude

correction has been applied (via the ice core sensor model), but modeled variance is still less than half of the

measured data: (rmodel50:9&) (see Figure 9b). Similar results were obtained by Tindall et al. [2009] (see Figure

4), modeling isotopes in precipitation using HadCM3 for a number of ice core sites including Quelccaya. The

standard deviation of the HadCM3-simulated d18OP is approximately 0.5&, as compared to 1.5& observed.

Care is needed to diagnose the causes of divergence between simulated and observed proxy data, but the

divergence in itself yields valuable information for constraining each GCM. It sparks an investigation to identify

the source of the discrepancy: is the problem a poor climate simulation, a poor isotope physics scheme, or a

structural or parametric uncertainty in the PSM?

We first note that orography is poorly resolved in both SPEEDY-IER and ECHAM5, especially over the Andes.

Will an altitude or temperature correction to the water isotope fields suffice? Figure 9b shows that in the

case of ECHAM5-wiso, the answer is yes, but only for the mean. Indeed, even with an altitude correction for

the water isotope physics, the variability observed in the water isotope fields is lower than observations:

while ECHAM5-wiso simulates variability closer to measured values, the variability in SPEEDY-IER is off by an

order of magnitude. One clue comes from comparing accumulation rates: in ECHAM5, accumulation is

3.09 m/yr on average, versus 1.27 m/yr for SPEEDY-IER. This difference has a large impact on the relative expres-

sion of diffusion in each modeled ice core, as show in Figure 9b. The loss of variance due to diffusion in the

ECHAM5-wiso simulation is minimal compared to SPEEDY-IER. It is possible that further data/model discrepan-

cies arise from PSM defects, but in this instance, the burden seems to fall largely on the GCM’s shoulders.

Within the GCM1PSM framework, these and other questions can be tackled within a closed system of

assumptions. The disagreement between the modeled and observed Quelccaya record illustrates the compli-

cations that may arise in data-model comparison across all proxy classes. Ultimately, one of the main goals of

developing PRYSM is to enhance the ability of proxy data to constrain climate models. The mismatch at Quel-

ccaya provides a robust benchmark for improving the GCM water isotope simulation over the tropics and at

high altitudes. In this example, the data-model comparison highlights shortcomings in both the GCM and the

PSM. The advantage is that each of those shortcomings can be identified and compartmentalized.

4.3. Observation Model Contribution

In this section, we explore the impacts of age uncertainties in climate reconstructions. As shown in the

bottom panel of Figures 4–7, dating uncertainties may significantly alter the final signal’s spectrum. To fur-

ther explore the practical consequences of this transformation, we take the example of tree-ring cellulose

at La Selva, Costa Rica. Isotope ratios in tree cellulose at this site have been shown to seasonally record var-

iability in the El Ni~no-Southern Oscillation (ENSO) through a sensitivity to positive summer rainfall anomalies

during ENSO warm phase events [Evans and Schrag, 2004; Evans, 2007]. The age model for water isotopes in

tree-ring cellulose is generally established assigning each isotopic minima to July annually. For La Selva, age

model errors are estimated as 62 years [Evans and Schrag, 2004]. To see how dating uncertainties may alter

the retrieved climate signal, we thus impose a symmetric miscounting rate of62% and quantify how the rela-

tionship of d18Ocellulose to a common ENSO index (NINO3.4) is altered.

We do so by regressing the La Selva modeled d18Ocellulose and NINO3.4 SST for each realization of the age

model. Figure 10 shows 1000 age realizations (generated by BAM) of the original signal given dating errors

(assuming 4 rings are miscounted for every 100 years), and the regression between NINO3.4 SST and the

d18Ocellulose for both the unperturbed signal and the perturbed realizations of the signal. Without age uncer-

tainties, there is a significant correlation between tree ring d18Ocellulose and the NINO3.4 index

(R520:52; p � 0:001). (We note, however, that there are assumptions in the simulations that might pro-

duce correlations much higher than typically observed). As shown by the grey lines, this correlation is

reduced to almost zero for all of the age-perturbed realizations.

The disruption to the climate signal at one site is exacerbated in the network context. If we extend this

experiment to a network of sites, the first principal component (PC1) of a simulated cellulose network repre-

senting a realistic spread of data from tropical trees can faithfully resolve ENSO with as few as eight sites,

due to dominance of the ‘‘amount effect’’ in the model. However, the presence of age uncertainties can
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significantly damp this signal, as shown in Comboul et al. [2014]. By explicitly modeling the range of plausi-

ble chronologies for a single record, this experiment illustrates how dating uncertainties in annually dated

tree-ring cellulose can virtually annihilate the common climate signal in tropical trees, and reaffirms the

importance of cross-dating in such studies [Brienen et al., 2012; Dee et al., 2014a].

4.4. A Multiproxy Application

A major benefit of PRYSM is the ability to simulate multiproxy networks. This is relevant to the statistical

reconstruction of large-scale phenomena like ENSO [Braganza et al., 2009; Wilson et al., 2010; Emile-Geay

et al., 2013a, 2013b; Ault et al., 2013b; Tierney et al., 2015]. Here we investigate how four separate proxy

types centered around the eastern tropical Pacific record and jointly filter a single climate signal (ENSO vari-

ability), and discuss implications for paleoclimate reconstructions.

Figure 11 shows the spatial correlation between surface temperature as well as d18OP and NINO3.4 SSTs in a

last-millennium simulation of SPEEDY-IER. Four proxy sites are shown on the map, along with the regression

of the simulated d18O in each proxy on NINO3.4 SST anomalies. As demonstrated by Figure 11, interpreta-

tion and retrieval of the underlying climate signal is affected by both the proxy type and location.

The observed differences in the proxies’ responses to a common forcing has implications for pseudoproxy

experiments (PPEs) [Smerdon et al., 2011]. PPEs are often used, by analogy, to evaluate climate field reconstruc-

tion methodology [e.g., Smerdon et al., 2010], network sufficiency [e.g., Wang et al., 2014], and skill [e.g., Smer-

don et al., 2011], subject to assumptions about observational uncertainty, observing network, and proxy system

model (e.g., Evans et al., 2014). The uncertainty in the pseudo observations used in PPEs may be described in

terms of a ‘‘signal to noise ratio’’ (SNR), defined as:

SNR5
jRj
ffiffiffiffiffiffiffiffiffiffiffi

12R2
p (21)

where R is the correlation of the local target reconstruction variable with the paleoclimate observation [Mann

and Rutherford, 2002]. PSMs permit developing SNR estimates that are more representative of the nature of the

different proxy systems, and thereby create PPEs that are more representative of the properties of actual CFRs.

To illustrate this, we computed SNR for sensor models from four proxy systems (Figure 11) that are used to

reconstruct measures of ENSO, here represented by the NINO3.4 SST anomaly index (160E–150W, 5N–5S).

Extending this analysis, Table 6 gives the correlation and SNR for the sensor, archive and observation models

(applied in succession) for each proxy system with the NINO3.4 index.

Table 6 indicates that based on the sensor models alone, each proxy produces a very different SNR (1.13, 0.23,

0.9, and 0.17 for tree ring cellulose, ice cores, corals, and speleothems, respectively). A higher SNR indicates that

Figure 10. BAM-simulated tree cellulose chronologies given layer-counting errors. (left) The effects of age uncertainties for noncross dated cellulose records: plausible chronologies are

plotted in gray around the ‘‘true’’ time series plotted in green. If calibrations are performed over the instrumental period with well-dated trees, it is tempting to assume the retrieved sig-

nal is robust. When age uncertainties are modeled explicitly, however, we can quantify the impacts of these errors. (right) Regression for d18OC at La Selva and NINO3.4 SST for the unper-

turbed signal (blue line) and the regression calculated for 1000 realizations of the original signal given 4% symmetric age errors (gray). It is evident that the information contained in the

original signal is lost with increasing age uncertainties.
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the climate signal is robust in the proxy’s response, while an SNR closer to zero is indicative of lower quality. All

of the pseudoproxies exhibit a significant correlation with NINO3.4 SSTs at the sensor level, on both annual

and decadal timescales. The strength of the captured climate signal varies by proxy type, with tree rings and

corals offering the highest fidelity in sensing ENSO variability. As higher-order uncertainties are applied through

the archive and observation models, however, the resulting signal loses strength. At both annual and decadal

resolution, the ice core loses signal information as a result of diffusion and compaction down core (quantified

via the archive model). Further, based on the (2.5% and 97.5%) highest-density region (HDR) of the ensemble

of 1000 age-perturbed realizations, each proxy suffers a large reduction in captured signal strength given

imposed dating uncertainties (‘‘full-psm’’ values); in many cases, the relationship can vanish or change direction.

Finally, when both the climate (NINO3.4) and the proxy signals are smoothed to decadal resolution (bottom

Figure 11. Using PRYSM to simulate multi-proxy networks: how do four different proxy types capture different aspects of ENSO across the tropical Pacific? The figure shows the spatial

correlation of tropical Pacific temperatures (top map) and d18OP (bottom map) and the NINO3.4 SST index. Four proxy types at four different locations (colored dots on the map) each

uniquely filter the input climate signal. The regression of simulated d18O (using SPEEDY-IER and the PSM sensor models) for each proxy system (a coral from Palmyra island, a speleothem

record in Ecuador, a tree-ring cellulose record from Amazonia, and an ice core record from the Andes) against NINO3.4 SST anomalies is shown in the four corner plots.

Table 6. Correlation Between Proxy Data and ENSO (R) and Signal-to-Noise Ratios (SNR) at Annual and Decadal Scales for the Four Proxy

Typesa

Proxy Class

R SNR

Sensor Sensor1 Archive Full PSM Sensor Sensor1 Archive Full PSM

Annual Tree Cellulose 20.75 20:2620:0710:06 1.13 0:270:070:06
Ice Core 10.22 0.03 10:0110:0310:06 0.23 0.03 0:010:030:06
Coral 20.67 20:3320:0910:04 0.90 0:350:090:04
Speleothem 20.17 20:0920:0310:03 0.17 0:090:030:03

Decadal Tree Cellulose 20.63 20:5720:3820:17 0.80 0:680:410:17
Ice Core 1 0.40 0.09 10:0710:1010:16 0.43 0.09 0:070:090:16
Coral 20.70 20:6620:5020:27 0.98 0:890:590:28
Speleothem 20.36 20:2520:1420:02 0.38 0:260:140:02

aR and SNR are reported after the input climate signal is altered by the sensor, archive, and observation models in succession. Statisti-

cal significance at the 5% level (as judged by a t test accounting for the autocorrelation of each series) is indicated in bold. The observa-

tion model regression values are drawn from an ensemble of 1000 age realizations with imposed dating uncertainties (2% for ice cores,

3% for corals, and 4% for tree-ring cellulose, all with symmetric miscounting rates. Speleothem age uncertainties were generated with

Bchron using 20 dates assuming a 60 cm core). We then generated 100 additional realizations accounting for analytical uncertainty

(y axis) by adding Gaussian white noise given an instrumental or measurement error of 0.1& to each of the 1000 age-perturbed realiza-

tions. Numbers of the form 2:5%50%97:5% represent, respectively, the 2.5%, 50% and 97.5% quantiles of the simulated ensemble.
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half of Table 6), the ice core and speleothem SNRs roughly double; however, age uncertainties may lower the

SNR to the point that they are no longer informative of NINO3.4, as is the case in this particular example. This

type of simulation would serve to motivate better age control (e.g., through replication) to enhance the SNR

and hence the value of a record to a multiproxy reconstruction.

As expected, precisely dated proxies like the tree ring and coral shown here exhibit stronger signals on dec-

adal timescales. This illustrates how smoothing may offset random age errors. In this example, age errors

for the speleothem are too large for this strategy to work on decadal scales, but this framework would allow

one to determine how many dates are needed, and how precise they should be, for the speleothem record

to be informative of NINO3.4 SST at a given time scale.

We note that the SNR values simulated here may be lower than observed in published paleoclimate data

sets. Clearly, the caveats described in sections 4.1–4.3 (structural and parametric errors in the PSMs, as well

as uncertainties in the input signal) apply a fortiori in a multiproxy context. Multi-sensor, archive and obser-

vational replication, smoothing, integration and expert choices made in site selection, data acquisition, and

data analysis may give rise to SNRs larger in nature than simulated here; however, because the submodels

mimic proxy system processes which should not be ignored, this builds intuition about the interpretation of

climate reconstructions (especially for extrapolations in time, space, and frequency).

In spite of these caveats, the data given in Table 6 demonstrate the utility of our modeling framework for generat-

ing a process-based estimate of the SNR, accounting for differences between each proxy system. In this way,

PSMs offer a framework to generate more realistic pseudoproxy networks (Evans et al., 2014] spanning multiple

proxy types for a given region. Such PSM-generated PPEs will improve multiproxy network interpretation by allow-

ing to explore how a climate signal is mediated by a broad, multiproxy network of paleoclimate observations.

5. Discussion and Future Work

This study gathers intermediate complexity models for four oxygen isotope-based proxy systems (coral

aragonite, tree ring cellulose, speleothem calcite, and ice cores). The result, PRYSM, offers a unified and

compartmentalized framework for proxy system modeling. This paper serves two purposes: (1) demonstrate

the types of scientific insights that may be generated by coupling such proxy models together, and to

GCMs; (2) integrate what were heretofore separate models in a common, open-source framework.

The integration of proxy system submodels (sensor, archive, observation) allows one to fingerprint the prin-

cipal environmental controls on paleoclimate observations, and thus can be used to refine the interpreta-

tion of proxy records. Leveraging this compartmentalization, one can track the evolution of the original

climate signal and map the propagation of errors through each transformation. Navigating this framework

highlights gaps in the understanding of proxy systems, and encourages a more rigorous analysis of uncer-

tainties where those gaps appear. For example, we showed that uncertain physical model parameters may

fundamentally alter the shape of proxy-derived spectra, confounding the interpretation of low frequency

variability in such records (section 4.1). Modeling ice cores using different GCM output allowed us to quan-

tify the effects of diffusion and compaction, and to explore the challenges faced by data-model comparison

(section 4.2). The PSM framework can be used to simulate an ensemble of realizations for a full multiproxy

network, all drawn from an age distribution under assumed dating and analytical uncertainties. We showed

how realistic age errors may lower the ability of a proxy network to capture a common climate signal (sec-

tion 4.3). Finally, PRYSM lends insight into how different proxy types filter a common climate signal, and can

be used to generate realistic, proxy and site-specific estimates of the SNR (section 4.4). In particular, the

PSM framework facilitates multiproxy PPEs, and can identify difficulties that may arise combining multiple

time-uncertain records across different proxy types.

In all these applications, PRYSM provides a simulator for error quantification. Further, PRYSM’s modularity facili-

tates an estimate of structural uncertainty, as different submodels can be implemented interchangeably to

diagnose their influence on the final signal. Parametric uncertainties, on the other hand, may be estimated by

varying PSM parameters for environmental or geochemical variables (e.g., groundwater transit time or mis-

counting rate) and quantifying the total change to the final signal. In the past, those parameters have often

been hardwired, but PRYSM makes it easy to specify alternate values; this is critical in Bayesian applications,

where such values are drawn from a distribution. We find that when applied via the submodel context,
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analytical errors may be inconsequential as compared to other sources of uncertainty. While analytical errors

are often the main uncertainty reported alongside paleoclimate observations, our analysis suggests that it may

be more important to consider dating uncertainties, for example.

The coupling of PSMs with isotope-enabled GCMs enhances the utility of isotopic paleoclimate data for validat-

ing predictive climate models. While caution is needed for making sound comparisons between simulated

paleoclimate data and observations, PRYSM enables a more direct ‘‘apples to apples’’ comparison between

simulated paleoclimate data driven with GCM environmental variables and actual observations (section 4.2).

These comparisons allow one to more finely diagnose the origin of model-data discrepancies, helping to iden-

tify problems that may arise from nonlinearities in proxy-climate relationships, GCM shortcomings, or the pres-

ence of age uncertainties, for example. Within the combined GCM1PSM framework, it may often prove

difficult to isolate and/or abate structural and parametric error contributions from either model simulations and

forward modeled data (section 4.2). Different GCMs may harbor distinct biases, and a loss of spatial precision

due to the coarse resolution of model grids limits the investigative utility of this method. Still, GCMs with water

isotope physics schemes allow us to check the validity of elemental assumptions, (e.g., the parameterization of

d18Oseawater by SSS in corals, as done in Russon et al. [2013]), and lend insight into the dynamical causes of site-

specific variability in precipitation isotope ratios (moisture source or ‘‘amount effect’’) [e.g., Risi et al., 2008].

There are inherent caveats to the forward modeling approach. In many cases, the PSMs represent a large

simplification to complex geochemical systems, and may fail to capture important processes. This is espe-

cially true for biological systems. Our design choices were guided by two main considerations: (a) the state

of knowledge on a particularly proxy, as represented by the literature and/or existing PSMs; and (b) the avail-

ability of high-quality observations to constrain the PSMs. In general, the PSM application is limited by the

quality of the input, structural and parameter estimations that comprise the simulations. Indeed, modeling

such processes necessitates the introduction of parameters that may or may not be well constrained by

observations, and the required validation data are not always available. In a sense, the availability (or lack

thereof) of high-quality observations limits the allowable PSM complexity. We thus have employed only first-

order models to avoid significant assumptions regarding parameters that cannot currently be constrained

via process study or observation. As this knowledge expands, we expect that it will be possible (indeed, nec-

essary) to shift this frontier toward more complexity. Models are only as good as the observations they are

based on, and we hope that PRYSM’s simplicity will spur the collection of more detailed data sets for proxy

ground-truthing and modeling (as done, for instance, byMoerman et al. [2014] and Noone et al. [2014]).

For the first iteration of this package, we have focused on water isotope-based proxies with high-resolution

applications. In the near future, we plan to refine current models (e.g., by including more detailed models

for ice core diffusion and karst systems) and expand to a broader class of proxies. Conspicuously absent are

proxies based on ocean and lake sediments; we plan to include sedimentary archives, taking into account

the effects of sedimentation and bioturbation) and sensors such as leaf wax dD and planktonic foramnifera

d18O.

Through these extensions, we hope to provide more detailed investigations of each proxy system, and lend

insight into the mechanisms whereby proxies record climate. The framework will be used for optimal net-

work design (M. Comboul et al., accepted 2014), to design more realistic pseudo-proxy experiments [Evans

et al., 2014], for paleoclimate state estimation [Bhend et al., 2012; Steiger et al., 2014] or as the data level in

Bayesian hierarchical models [Tolwinski-Ward et al., 2013; Tingley et al., 2012]. PRYSM may also help motivate

further process studies for proxy systems, improving our interpretations of paleoclimate observations on

site-by-site and network bases. Finally, PRYSM offers the potential for improving the utility of multi-proxy

data sets by breaking down the relative contributions to the total systematic error over time given changes

in the observing network, data type, and varying chronological uncertainty.

This modeling framework provides a new computational tool for the paleoclimate community, adaptable

and designed to facilitate modular changes concurrent with advances in process-based studies for proxy

systems. In the long term, we envision extending this framework to encompass the majority of paleoclimate

observations, regardless of resolution. We invite external contributions via a GitHub repository https://

github.com/sylvia-dee/PRYSM, and hope that this initial effort will serve as a cornerstone for progress in

paleoclimatology, stimulating community-sourced PSM development, collaborations between climate mod-

elers and paleoclimate field scientists, and building capacity at the community level.
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