
1

PSE: Explaining Program Failures via
Postmortem Static Analysis

Roman Manevich
Tel Aviv University
rumster@tau.ac.il

Manu Sridharan
University of California -

Berkeley
manu s@cs.berkeley.edu

Stephen Adams, Manuvir Das, Zhe Yang
Center for Software Excellence

Microsoft Corporation
<sra,manuvir,zhey>@microsoft.com

ABSTRACT

In this paper, we describe PSE (Postmortem Symbolic Eval-
uation), a static analysis algorithm that can be used by pro-
grammers to diagnose software failures. The algorithm re-
quires minimal information about a failure, namely its kind
(e.g. NULL dereference), and its location in the program’s
source code. It produces a set of execution traces along
which the program can be driven to the given failure.

PSE tracks the flow of a single value of interest from the
point in the program where the failure occurred back to the
points in the program where the value may have originated.
The algorithm combines a novel dataflow analysis and mem-
ory alias analysis in a manner that allows for precise explo-
ration of the program’s behavior in polynomial time.

We have applied PSE to the problem of diagnosing po-
tential NULL-dereference errors in a suite of C programs,
including several SPEC benchmarks and a large commer-
cial operating system. In most cases, the analysis is able
to either validate a pointer dereference, or find precise error
traces demonstrating a NULL value for the pointer, in less
than a second.

Categories and Subject Descriptors

D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

General Terms

Algorithms, Reliability, Security, Verification

Keywords

Postmortem analysis, Value flow, Alias analysis, Typestate

1. INTRODUCTION
The advent of the internet has opened up a new opportu-

nity for software providers to find and fix failures exposed

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGSOFT’04/FSE-12, Oct. 31–Nov. 6, 2004, Newport Beach, CA, USA.
Copyright 2004 ACM 1-58113-855-5/04/0010 ...$5.00.

by the use of their software in the field. It is now possible for
users to send back crash reports, containing minimal infor-
mation about the failure including failure location and stack
dump, to the software provider. The Dr. Watson system [9]
used by Microsoft is a good example.

Unfortunately, the manual effort involved in diagnosing
these failures is high enough that support teams are unable
to deal with a large fraction of the reported issues. A tool
that helps programmers quickly diagnose program failures,
given minimal information, could significantly increase the
number of failure reports that may be addressed.

Manual inspection of program failures is time consuming
for the following reasons:

• Full execution traces are not available, because of the
overhead of recording and transmitting this informa-
tion. Also, the same failure may arise along multiple
execution paths, all of which must be fixed in order to
eliminate the failure.

• Execution traces may be very long, may require a lot of
book-keeping, and may contain many irrelevant com-
putations.

In this paper, we present PSE, a static analysis algorithm
that addresses the first problem above. Given minimal in-
formation about a particular program failure, PSE automat-
ically reconstructs a set of failing execution traces.

PSE is able to handle a particular class of failures re-
ferred to as “typestate” errors [22]. Every object created
during the execution of a program has a type, which does
not change during execution, as well as a typestate, which
is changed by operations in the program. Many common
programming errors can be expressed as sequences of oper-
ations that transition an object to a special error typestate.
For example, the dereference operation on a NULL pointer
value transitions it to the error typestate; a write operation
using a closed file handle transitions the file handle to the
error typestate.

Our algorithm requires the following input: a typestate
specification of the failure, the program location l of the
failure, and the “witness” memory location that holds the
object of interest at l.

Example 1. Consider the problem of diagnosing a NULL
dereference error at program location 9 in the program shown
in Figure 1(a). The typestate specification of failure is given
in Figure 2(a); the failing program location is label 9; the
witness memory location is y. 2

2

(a) (b) error super-trace 1 non-error super-trace 2

[1] foo(rec * x, rec * z) { 〈x->f, {unsafe}〉 —
[2] p = z->f; 〈x->f, {unsafe}〉 〈z, {}〉
[3] if (c) { 〈x->f, {unsafe}〉 〈z, {unsafe}〉
[4] d = 0; 〈x->f, {unsafe}〉 〈z, {unsafe}〉

} else { — —
[5] d = 1; 〈x->f, {unsafe}〉 〈z, {unsafe}〉

} — —
[6] if (b) { 〈x->f, {unsafe}〉 〈z, {unsafe}〉
[7] y = z; — 〈z, {unsafe}〉

} else { — —
[8] y = x->f; 〈x->f, {unsafe}〉 —

} — —
[9] *y = ...; 〈y, {unsafe}〉 〈y, {unsafe}〉

} initial value : 〈y, {error}〉 initial value : 〈y, {error}〉

Figure 1: Example program and traces. Figure (a) above shows an example C program with a NULL
dereference failure at label 9. All undeclared variables are global. Figure (b) above shows two super-traces
discovered by our analysis. These traces are explained in Section 4.

PSE (Postmortem Symbolic Evaluation) is a backwards
value flow analysis that is based on the following insight: We
are given the initial witness, i.e. the memory location which
holds the value of interest at the point of failure. Starting
from this point, we can step back through the statements
in the program, using the effect of assignments to recom-
pute the witness at every point. In this way, we transfer the
blame for the error along the execution trace until we reach
a point where the value was created, in which case we have
found a failing execution trace, or we reach a contradiction,
in which case we can rule out the particular trace. If no
traces are found, we have shown that the error cannot oc-
cur. Failing traces are decorated with witness information
from the dataflow analysis, providing the programmer with
a history of how the value of interest was transferred along
the failure path.

PSE is path-sensitive, in the sense that information from
different traces along which the witness is different is never
merged. However, at any given program point, there are at
most as many witnesses as the variables1 in the program.
Therefore, we are able to obtain a path-sensitive algorithm
that runs in polynomial time.

In this paper we make the following contributions:

• We describe a polynomial-time dataflow analysis for
producing execution traces that show how a value flowed
through a program to reach a particular failure point.
Our analysis handles pointer-manipulating programs
and is demand-driven, only performing work relevant
to the identified failure point.

• We describe an additional set of techniques that im-
prove the scalability, accuracy, and usefulness of our
core dataflow analysis. These techniques include the
use of typestate information to eagerly prune infea-
sible traces, incorporation of stack-trace information
when available, and methods for trading off soundness
to improve the analysis results.

• We use our analysis to diagnose potential NULL deref-
erence errors in several SPEC benchmarks and the

1More precisely, there are as many witnesses as the number
of abstract memory locations used by the analysis.

Windows operating system. In most cases, the analy-
sis is able to either validate a pointer dereference, or
find precise error traces demonstrating a NULL value
for the pointer, in less than a second.

An alternative approach to PSE is to apply forwards anal-
ysis and find all failures matching a typestate specification.
There are many examples of such systems [7, 8, 5, 11, 17].
The drawback of the forwards approach is that it is not
demand driven; in particular, it may explore many paths
through the program that do not lead to any failure.

Our algorithm does not explicitly focus attention on the
root causes of the failure within a trace. Rather, it can be
combined with a technique for fault localization [1, 2, 13, 19,
16, 20, 6, 4] to provide a complete solution for postmortem
analysis.

The rest of the paper is organized as follows: In Section 2,
we compare our technique with related work. In Section 3,
we present a running example of our analysis on a small C
program. In Section 4, we describe our analysis in detail.
In Section 5, we evaluate the precision and scalability of our
analysis. We conclude in Section 6.

2. RELATED WORK
PSE can be viewed as a backwards typestate checker.

Typestate [22] extends the ordinary types in the program,
which remain invariant through the lifetime of an object,
with a set of states between which values of a given type can
transition. Many common failures, including memory leaks,
double frees, NULL dereference and uninitialized data usage
are simple instances of typestate errors.

2.1 Fault localization
There is a large body of previous work on fault localiza-

tion, the goal of which is to provide an explanation of a
fault in a given execution trace [1, 2, 13, 19, 16, 20, 6, 4].
Our work is complementary to fault localization. We solve
the problem of producing execution traces in an environ-
ment where they are not available, e.g. a bug report from
the field. Therefore, our technique can be combined with

3

(a) (b)

unsafeuninit error
create deref

{unsafe}{uninit} {error}
create deref

{}

deref

*

Figure 2: Example typestate specification. Figure (a) above shows the states associated with NULL values
created during program execution. Any dereference of a NULL value moves the NULL value to the error

typestate. The arrow emanating from ‘•’ marks the initial typestate; the double-circled states are the
automaton’s accepting states. Figure (b) above shows the reversed automaton. The ‘{}’ state represents an
empty set of states, indicating a non-failing trace. ‘*’ stands for any statement.

fault localization techniques to provide a complete solution
to diagnosis of program failures.

2.2 Backwards analysis
Our algorithm tracks abstract information about program

behavior backwards through the control flow of a program.
Therefore, it is derived from the rich body of work on back-
wards dataflow analysis [3].

Liblit et. al. [18] first identified the problem that our work
addresses. Their algorithm reconstructs, and compactly rep-
resents, all CFL-realizable failure traces2 that lead to the
failure location. However, their trace exploration algorithm
ignores value flow, leading to a large number of superfluous
failure traces.

Strom and Yellin [23] define a partially path-sensitive back-
wards dataflow analysis for checking typestate properties,
specifically uninitialized variables. We are able to track a
value backwards through pointer-based data structures and
handle memory aliasing. Both of these advances over their
work are necessary for dealing with real programs. We do
not detect infeasible paths through simulation of program
state.

Another method for backwards dataflow analysis is pro-
gram slicing [25, 24]. Program slicing reduces the amount
of information a programmer has to consider by remov-
ing statements which cannot affect the failing statement.
However, traditional static slicing techniques are not precise
enough for postmortem analysis because they do not con-
sider the error condition itself. Our analysis can be viewed as
an instance of slicing that operates with respect to a given
predicate at the failure label (e.g., that the pointer being
dereferenced holds the NULL value).

Our analysis can also be viewed as an instance of weakest
preconditions [14]. We are able to handle pointer-based data
structures and aliasing.

2.3 Forwards analysis
An alternative approach to postmortem analysis is to sym-

bolically evaluate the program forwards, using strongest post-
conditions [14]. In recent years, a multitude of typestate
checkers that use some degree of strongest postconditions
have been developed [7, 8, 5, 11, 17]. These algorithms are
not demand-driven; in particular, their exploration cannot
be tuned to a particular failure at a particular program lo-
cation.

2Traces with matched calls and returns.

The forwards analysis most similar to PSE is the prop-
erty simulation algorithm employed by ESP [11]. The value
flow computation in PSE can be viewed as the backwards
counterpart of the forwards value-alias computation in ESP
[15] (hence the name PSE).

3. EXAMPLE

Example 2. Figure 1 shows a C program and two super-

traces discovered by PSE. Each super-trace represents a set
of traces. The input to PSE consists of the typestate au-
tomaton from Figure 2(a), failure location 9, and “witness”
memory location y.

In the automaton of Figure 2(a), the create transition
occurs when NULL is assigned to an l-value (i.e., a mem-
ory location). This transition moves NULL into the unsafe

state. The deref transition occurs when an l-value contain-
ing NULL is dereferenced. Because PSE is a backwards
analysis, we reverse the automaton, as shown in Figure 2(b)
(see Section 4.1).

The first super-trace discovered by PSE describes two
potentially crashing execution traces: [1, 2, 3, 4, 6, 8,

9] and [1, 2, 3, 5, 6, 8, 9]. Both executions result in
a NULL dereference of the program variable y. The error
arises because the program fails to check that x->f is non-
NULL.

The super-trace supplies, for each program point, infor-
mation pertaining to the state of the program just before the
corresponding statement is executed. The information is in
the form of state tuples with the following components:

1. A witness l-value that holds the object that transi-
tioned to the error typestate at the failure location..

2. The typestate of the tracked object, taken from the
reversed automaton.

The information in the first super-trace, along with the
source code of the statements along the trace, implies that
in order for the program to crash at program point 9 with
a NULL dereference, the following conditions must hold:
Upon entry to function foo, x->f should evaluate to NULL,
b should evaluate to 0 (point 8 is executed), and x should
evaluate to a non-NULL value (x is successfully dereferenced
at program point 8). This information can be used to un-
derstand the source of the crash and also to create a test
case that recreates the failure scenario.

4

The two traces mentioned above are grouped into a single
super-trace because they differ only in the way the condition
at label 3 is handled. This condition is considered irrelevant,
since it affects neither the l-value that holds the object of
interest nor its typestate. The analysis discovers this fact
and merges both traces into a single error super-trace.

Along with helping to emphasize important statements in
potentially long traces, trace merging also helps the analysis
avoid an exponential blow-up in the number of traces it ex-
plores. The same technique is used by the forwards analysis
in ESP [11, 15].

The second super-trace represents the traces [1, 2, 3,

4, 6, 7, 9] and [1, 2, 3, 5, 6, 7, 9], which are non-
failing, as indicated by the state tuple 〈z, {}〉 at program
point 2. The state tuple 〈z, {}〉 results from a contradic-
tion discovered between the information in the state tuple
〈z, {unsafe}〉 at label 3, which indicates that the variable
z evaluates to NULL, and the assignment at program point
2, which must successfully dereference z in order for later
program points to execute. This impossible typestate tran-
sition is represented by a transition to the {} state in the
reversed automaton of Figure 2(b). PSE is successful in de-
termining that all traces passing through program point 7

are non-failing. 2

Comparison with program slicing: Applying program
slicing to the example program with the variable y and pro-
gram point 9 would result in a slice containing the set of pro-
gram points {1, 2, 6, 7, 8, 9}. Program point 7 is included in
the slice because it influences the value of variable y at pro-
gram point 9 in some execution. However it is not relevant
because it does not affect the value of y in any executions
that lead to a NULL dereference error.

Comparison with reachability analysis: Applying the
analysis of Liblit et. al. [18] to the example would yield all
4 possible execution paths from label 1 to label 9, and no
additional information on how NULL was transferred to y.

Comparison with forwards analysis: A path-sensitive
forwards analysis that tracks the typestate of x->f from the
beginning of the function would identify the correct set of
execution traces. However, the analysis would need to track
the typestate of every pointer that could evaluate to NULL
at the beginning of the function. This approach would be
unlikely to scale in practice.

4. POSTMORTEM ANALYSIS
In this section, we describe our postmortem static analysis

algorithm in detail.

4.1 Reversing the typestate automaton
Since our analysis traverses traces backwards, we reverse

the typestate automaton in order to compute the set of
states before each statement executes. We first describe our
forward automata in greater detail. A forwards automaton
A is a tuple 〈T, C, SF , I, δ〉, defined as follows:

• T is a finite alphabet naming transitions.

• C ⊆ T is a set of distinguished creation transition
names.

• SF is the set of forward typestates, including error.

• I is the set of initial typestate.

• δ ⊆ SF × T × SF is the transition relation.

The creation transition names in C correspond to program
events that create an object whose typestate is to be tracked,
for example the initial assignment of NULL to a variable for
the NULL dereference property. The transition relation δ

is required to be adequately and properly defined, in the
following sense:

• δ is deterministic: ∀ s, s′, s′′ ∈ SF , t ∈ T.((s, t, s′) ∈
δ) ∧ ((s, t, s′′) ∈ δ) ⇒ s′ = s′′.

• Creation transitions must originate at the initial type-
state: δ ∩ (SF − I) × C × SF = ∅.

• There is no unspecified behavior: ∀ s ∈ SF − I −
{error}, t ∈ T − C. ∃ s′ ∈ SF . (s, t, s′) ∈ δ (δ is to-
tal for non-initial or error typestates and non-creation
transitions)

The reversal algorithm is straightforward. Given the for-
ward automaton, we first reverse δ, yielding a possibly non-
deterministic automaton since some typestates may have
multiple incoming edges with the same label in the for-
ward automaton. We then perform a standard NFA to DFA
transformation [3], which uses the powerset construction,
to obtain the reversed automaton. We write SB ⊆ 2SF

for the set of typestates in the reversed automaton, and
δB : SB × T → SB for its transition relation, which is total
and deterministic and thus can be written as a function.

It is possible that the original automaton does not con-
tain incoming edges for certain combinations of states and
transitions. The reversed automaton, therefore, could have
transitions to the empty terminal typestate {}, indicating
that the forward transition is infeasible. These transitions
to {} in effect refute superflous traces, thus improving the
precision of the analysis.

Example 3. In the automaton for the NULL dereference
property (Figure 2(a)) the unsafe typestate does not have
an incoming deref transition. In the reversed automaton
(Figure 2(b)), the deref transition from the {unsafe} type-
state to {} indicates that the forward execution twice deref-
erenced NULL. This is impossible, since the first dereference
would have crashed the program. 2

4.2 A simple pointer language
We define a simple language of pointer assignments, shown

in Figure 3. A pointer expression (PointerExpr) is either a
variable or a field dereference of another pointer expression
(e.g., x->f->g), with a dereference using the C ‘*’ opera-
tor treated as a dereference of the ALL field. The program
points at which objects with relevant typestate are created
are represented by an assignment of the scalar value CREATE.
A transition statement (TransStmt) is a statement that po-
tentially changes the typestate of the value referenced by its
pointer expression.

Transition statements are inserted at program points that
match certain source code patterns, by a separate prepass.
They are the only statements that can affect an object’s
typestate. Figure 4 presents some of the source code pat-
terns for the NULL dereference property. The full specifi-
cation includes patterns for functions like malloc() that

5

Field = ALL + FieldNames

PointerExpr ::= Var | PointerExpr →Field

LhsExpr = PointerExpr

RhsExpr = PointerExpr | CREATE
Assignment = LhsExpr × RhsExpr

TransStmt = Transition × PointerExpr

Statement = Assignment | TransStmt

Witness = PointerExpr | AbstractLoc

Figure 3: A simple language of pointer assignments
and typestate transitions.

C code pattern Transition

*(lval) deref
(lval)->f deref
(lval)[i] deref
lval = NULL create

Figure 4: Some source code patterns for the NULL

dereference property. The patterns correspond to
the following cases, respectively: dereferencing via
the C ‘*’ operator, dereferencing via any structure
field, dereferencing via access to an array index, and
an initial assignment of NULL.

may return NULL. For creation patterns, we insert both a
TransStmt and an Assignment of CREATE.

4.3 Representation of Program States
PSE operates on programs from the language in Figure 3.

It computes an abstract state at every program point along
a path. The abstract state consists of two components:

• Witness. A single memory location that currently
holds the object that eventually transitions to the error
typestate at the failure location. A witness is either a
pointer expression or an abstract location (Figure 3).

A pointer expression is a precise representation be-
cause at any execution point it refers to exactly one
memory location.

An abstract location is an identifier taken from a finite
partition of all memory locations obtained from a flow-
insensitive alias analysis (see Section 4.4). This repre-
sentation is less precise, since a single abstract location
may represents a set of memory locations. We use ab-
stract locations to ensure termination of the analysis
(e.g. on programs with recursive data structures).

• Typestate. A state b ∈ SB from the reversed automa-
ton. Its elements are the typestates from the forward
automaton that the witness could hold at the current
program point.

4.4 Employing an aliasing oracle
Our analysis includes a pre-processing stage, in which a

scalable flow-insensitive memory alias analysis [12] is applied
to the program. The alias analysis serves two purposes:

1. It provides an extremely efficient may-aliasing oracle,
which is used to answer memory alias queries when

updating state tuples. More precise but potentially
less efficient alias analyses could be used instead.

2. It provides a partition of the heap into a finite number
of abstract memory locations.

4.5 A backwards dataflow solution
We phrase our analysis as a backwards dataflow problem.

The problem is defined on the supergraph [21] of a program,
which includes a standard CFG for every procedure, and
edges representing inter-procedural control flow. We assume
that all indirect calls have been replaced with direct calls,
that procedure calls have been simplified to parameterless
calls, and that assignments from function return values have
been replaced by assignments from specialized variables that
store the function’s return value. We use the following sets
and map to encode the CFG in this article.

V CFG nodes
A CFG edges
st : V → Statement Statement-at-the-CFG-node map

The analysis is very similar to the property simulation

algorithm of ESP [11, 15], except that the direction of in-
formation flow is reversed, and we do not have a simulation
state component.

The unit of dataflow facts [21] of our analysis is a state
tuple 〈w, b〉 ∈ S = Witness × SB , consisting of a wit-
ness l-value w and a typestate b in the reversed automaton.
The backwards transfer functions for the two components
are updateWitness : Statement × Witness → 2Witness and
updateTypestate : Statement × Witness × SB → 2SB , re-
spectively explained in Sections 4.6 and 4.7. The function
update : Statement × S → 2S then defines the overall back-
wards effect of a statement on a state tuple:

update(st , 〈w, b〉) =

{ 〈w′, b′〉 | w′ ∈ updateWitness (st,w)
∧ b′ ∈ updateTypestate (st,w, b) }

The initial state tuple for the backwards analysis is given
by init = 〈lerror , {error}〉, where the l-value lerror is speci-
fied in the input of the analysis.

We can now phrase our analysis problem as an ESP-style
interprocedural dataflow problem. Since we do not use a
simulation component, the analysis is indeed an instance of
the IFDS problems [21]. Without going to the detail of the
meet-over-all-valid-path requirement of the IFDS solutions,
here we simply present the intraprocedural problem: We
look for the least solution to the following system of recursive
equations, one equation for every v ∈ V :

Sv =
�

(v,u)∈A

�

s∈Su

update(st(v), s)

such that update(st(ve), init) ⊆ Sve
, where ve denotes the

error point.
The solution is obtained by applying the worklist algo-

rithm of ESP [11, 15], which, due to the absence of a sim-
ulation component, is simply the Tabulation Algorithm for
solving IFDS problems. Our analysis uses the supergraph of
the program to propagate state tuples backwards (by follow-
ing the reversed direction of control edges) from the error
point, and simultaneously keeps error trace links that con-
nect these state tuples. In each step, we apply update on a

6

trace 1 trace 2
[1] u->f = CREATE; — 〈z->f, ?〉
[2] p = &z; 〈u->f, ?〉 〈z->f, ?〉
[3] *p = u; 〈u->f, ?〉 〈z->f, ?〉
[4] y = z; 〈z->f, ?〉 〈z->f, ?〉
[5] x = y->f; 〈y->f, ?〉 〈y->f, ?〉
[6] *x = ...; 〈x, ?〉 〈x, ?〉

Figure 5: An example of a backwards value flow
computation on a small program.

state tuple su along a CFG edge (v, u) to obtain an over-
approximation of the program states before the statement.
The resulting state tuples Sv are stored in the source ver-
tex and an error trace predecessor link is created from each
sv ∈ Sv of the state tuples at the source to the state tuple
su at the target.

Backwards propagation continues for each trace, until one
of the following cases is encountered: (a) the analysis reaches
a top-level function (a function with no incoming calls); (b)
the analysis reaches a creation point for the tracked value,
which implies that we have traced the value from the point
of the error back to its creation (see Section 4.7 for details);
or (c) the trace is found to be infeasible. In the first two
cases, a trace is reconstructed from the error trace links and
shown to the user. In the final case, the tracing is aborted.

The technique employed by our backwards dataflow anal-
ysis is fully context-sensitive. Conceptually, every function
is re-analyzed separately for every different state tuple with
which it is reached. Similarly, every program point is re-
processed separately for every state tuple with which it is
reached.

4.6 Updating witness information
In this subsection we describe a new dataflow analysis that

computes, at every program point, a witness for the l-value
that holds the object of interest at the failure point.

Example 4. We first use the example program shown in
Figure 5 to demonstrate how the witness is computed. The
example uses the address-of operator (&), which is not in-
cluded in the language of Figure 3 for simplicity, but our
implementation handles the operator correctly. The exam-
ple ignores typestates.

The idea of the analysis is as follows: at the error point, we
know which witness l-value l holds the value of interest. As
we proceed backwards, we re-trace the chain of assignments
that caused the value of interest to be transferred to this l-
value. At every point, there is a single witness l-value l’ that
currently holds the value of interest, such that subsequent
statements will copy the value of interest from l’ to l. We
refer to this observation as the single witness property.

To better understand the single witness property, consider
program point 5 in Figure 5. Notice that just before 5, the
value held by x at the point of the error is also held by
the l-values y->f, u->f, and z->f. However, only y->f is a
witness for the value, since it is the value held by y->f before
program point 5 that is copied to x. The single witness
property of the backwards analysis is the central reason why
our algorithm has polynomial complexity. At any program
point, the number of states is bounded by the number of
different witnesses, which is linear in the size of the program.

updateWitness (st = (lhs, rhs), w) =������ �����
{checkAppend (rhs, fs)} w = lhs→∗ fs

∧ rhs 6= CREATE

∅ w = lhs

∧ rhs = CREATE

{w} ∪ mayUpdate(st,w) otherwise

mayUpdate(st = (lhs, rhs), w) =

{ checkAppend (rhs, fs) | w = pe→∗ fs

∧ MayLocAlias(pe, lhs)
∧ rhs 6= CREATE}

checkAppend (pe, fs) =�
pe→∗ fs length(pe→∗ fs) < max

AbstrLoc(pe→∗fs) otherwise

Figure 6: Definition of updateWitness .

Our algorithm can most easily be understood as sim-
ply performing substitutions going backwards (just as when
computing weakest preconditions [14]), with appropriate han-
dling of fields and other C language constructs. We start
with a witness x at program point 6 of Figure 5. At program
point 5, we see that the value in x was copied from y->f, and
we substitute for our witness accordingly. Program point 4

updates a prefix of our witness, y, so we substitute z for y

in the witness, yielding z->f.
At program point 3, we do not have a syntactic match

with the witness, but a query to our aliasing oracle tells us
that *p and z may be aliased. To handle this case soundly,
we split our trace into two traces, one in which *p and z are
aliased (leading to a witness u->f), and one in which they
are not. Finally, at program point 1, we see the value of
interest being created and assigned to u->f, so no witness
exists in trace 1. 2

The operation updateWitness accepts a statement st and
a witness l-value, w, and conservatively computes a superset
of the l-values that are copied by st to w. The trace split-
ting seen in Example 4 (at program point 3 in Figure 5) is
performed by the update function from Section 4.5, as sep-
arate error trace links are created for each of the possible
l-values. Figure 6 defines the updateWitness function for as-
signments; the function is identity for other statements. We
use e→∗ e′ to represent the pointer expression obtained by
appending an access path e′ of 0 or more dereferences to a
pointer expression e.

In updateWitness , if the left-hand side of the assignment
lhs is some prefix of the witness access path w (with fs

naming the remaining suffix of w), we check if the right-
hand side rhs is the CREATE scalar. If not, our result is a
substitution of rhs for lhs in the witness, yielding rhs→∗ fs.
We use checkAppend to ensure that the resulting access path
does not exceed some maximum length; if it does, we switch
to the AbstractLoc representation. If rhs is CREATE while
lhs matches the witness, we return ∅, since the value does
not exist before this statement and hence no witness exists.

If we do not have a syntactic match between w and lhs,
we use mayUpdate to find other possible witness l-values
due to aliasing. For each split of lhs into a prefix pointer

7

updateTypestate (st = (trans , lval), w, b) =���� ���
{δB(b, trans)} w = lval

{b, δB(b, trans)} w 6= lval

∧ MayValAlias(w, lval)

{b} otherwise

Figure 7: Definition of updateTypestate .

expression pe and suffix fs, if pe and w can be aliased and
rhs is not CREATE, we add checkAppend (rhs, fs) to the set
of possible witness l-values. We also keep w in the set, since
it is possible that w and pe are not aliased at the point.

Our implementation handles the full C language. The
address-of operator (&) sometimes requires removing a level
of indirection. For example, if our witness is *y, and we
encounter the statement y = &x, the new witness will just
be x. We elide a full discussion of this operator for space and
simplicity. For C constructs that are difficult to statically
reason about, such as pointer arithmetic, we fall back on an
AbstractLoc representation, using information provided by
the aliasing oracle on which AbstractLocs are modified and
used by each statement.

4.7 Updating typestate information
The transfer function updateTypestate takes a statement

st , a witness l-value w, and a typestate b ∈ SB and returns
the set of possible typestates for w before st . Figure 7 defines
updateTypestate for transition statements st, with transition
trans and l-value lval ; the function is identity for other state-
ments. The three cases are strong transitions, where the w

syntactically matches lval , weak transitions, where w does
not match lval but they are possibly value-aliased (i.e., they
can hold the same value) according to the aliasing oracle,
and no transition, when w and lval cannot be value-aliased.

Example 5. For the NULL dereference property, the sim-
plicity of the automaton—that it has only state that is not
uninit or error—renders it unnecessary to keep track of
the typestate: it could only be {unsafe}. But typestate
tracking still helps by refuting infeasible path, as illustrated
in Example 3, when the witness matches the l-value being
dereferenced. 2

The dataflow engine handles certain typestates resulted from
an application of updateTypestate specially. The typestate
{} can always be eliminated from the result set since it has
no outgoing transitions. If after this elimination the result
set is empty, the trace is infeasible and the analysis need
not explore further. If an reversed typestate that contains
an initial typestate i ∈ I of the forward automaton (e.g.,
{uninit}) is present in the result, then the engine constructs
and reports an error trace, just as a forward analysis engine
would do if an object reaches the error state.

4.8 Improvements
We have three other techniques for improving the scala-

bility and usability of our postmortem analysis.
Exploiting stack trace information: If, in addition

to the actual error point, we are given the stack trace at
the time of the error, we can use it to improve our analysis
as follows. The functions included in the stack trace indi-
cate all of the functions that were called and did not return

(incomplete calls due to the crash). We maintain a pointer
to the current stack trace function in the dataflow engine.
The dataflow analysis uses this pointer when following call
arcs from callees to callers on incomplete calls. In particu-
lar, only call arcs to a caller that matches the next position
on the call stack are followed, and the stack-trace pointer
is updated to point to the next position on the stack-trace.
This technique reduces the number of error traces that the
dataflow solver creates and the amount of code it analyzes,
thus improving both efficiency and precision.

Handling simple NULL checks: We detect simple
cases of NULL checks of expressions at conditional branches,
eg. if (p != NULL) and if (p). If we find such a check for
the witness, and if we have reached the condition through its
true branch, we know the witness is non-NULL and the path
is infeasible. This simple technique manages to eliminate a
significant number of our false-positive traces.

Ignoring imprecise alias information: While quite
accurate for scalars, our flow-insensitive alias analysis be-
comes more inaccurate as we track expressions with multiple
levels of dereferences, since the analysis is field-insensitive
and it unifies most locations at that level [10]. Even when
the alias analysis is accurate, reported traces that involved
may-aliasing are difficult to understand in our experience,
since the “reason” for the aliasing is not apparent from the
control flow displayed in the trace. We could of course im-
prove our alias analysis in several ways, but we have found
that making our analysis unsound with respect to aliasing
still provides good results while sometimes greatly improv-
ing scalability.

One method for working around the field-insensitivity of
the alias analysis is to assume that the program is type-
safe; this allows us to at least distinguish fields of integer
type from fields of pointer types. Such an assumption is
unsound for C/C++ programs, since a program could cast
a pointer to an integer and then back, but such cases are rare
in the code bases we have analyzed. A second technique is
to ignore may-aliasing completely and only report traces in
which we precisely track the witness back from the error
point to a creation point.

Another source of inaccuracy stems from our use of a finite
heap partition from the alias analysis for soundly bounding
the length of the expressions we track. We almost always
reach this bound because of recursive data structures whose
size we cannot statically bound. As a compromise in this
situation, we have a flag which disables using the heap parti-
tion and instead simply does not track expressions involving
recursive data structures beyond the maximum length we set
for them. Given a length limit k, this unsoundness would
only eliminate all traces for a given error point if they all re-
quired more than k dereferences in some witness expression.
This does not seem to occur in typical programs for reason-
able k (we set k = 3 in our experiments). Recursive data
structures are usually initialized in loops, with a statement
like x = x->next used to move through the data structure;
in such cases, k = 1 would suffice for soundness.

4.9 Termination and complexity
Since the backwards analysis algorithm is essentially the

Tabulation Algorithm for solving IFDS problems, the com-
plexity is polynomial in the size of the following domains.

LVALs: the set of memory locations for the tracked object
component. This set consists of all pointer expressions

8

Bench Size (kloc) Derefs
compress 2 22

li 10 778
go 20 104

m88ksim 20 1225
ijpeg 30 5416
perl 30 7894

vortex 70 8806
gcc 140 21522

Figure 8: Information on the SPEC95 benchmarks.
The Derefs column gives the number of static
pointer dereferences in the program, as a rough
measure of how extensively it makes use of point-
ers.

of some bounded size, which is roughly linear in the
number of variables (since the number of fields associ-
ated with each variable is close to a constant), and the
set of memory location identifiers, which is dependent
on the aliasing analysis (we use GOLF [12], which in
the worst-case can result in a linear number of parti-
tion of the heap, but usually gives smaller number of
partitions).

TStates : the set of typestates of the reversed automaton.
This set could be in the worst-case exponential in the
number of states in the original automaton, due to the
determinization step. Several useful automatons, how-
ever, seem to be deterministic upon reversal and have
a set of states linear in the size of the input automaton.

The size of dataflow facts is |LVALs | × |TStates |. In-
stantiating the complexity results of the Tabulation Algo-
rithm [21], we have that the worst-case space complexity
is O(|V | × |LVALs |2 × |TStates |2), and the worst-case time
complexity is O(|V |× |LVALs |3 ×|TStates |3) analysis steps.
Here, each analysis step uses the transfer function and there-
fore possibly queries the alias oracle, which is always polyno-
mial in time. In fact, precomputing the results of all possible
queries using the GOLF alias engine would make the total
cost of alias queries be worst-case O(|LVALs |3) in time and
worst-case O(|LVALs |2) in space.

5. EXPERIMENTAL RESULTS
We have implemented PSE using a pre-existing generic

infrastructure for path-sensitive, context-sensitive dataflow
analysis that was built for ESP. In this section, we summa-
rize the results of two experiments using this implementa-
tion. The first experiment tests the hypothesis that PSE is
scalable and precise on a set of real, complex benchmarks.
The second experiment tests the hypothesis that PSE can
be used to diagnose real program failures.

In both cases, we restricted our experiments to diagnosing
NULL dereference errors. These errors occur commonly,
are well understood, and provide a challenging test for our
technique because pointer dereferences are common in most
C programs.

5.1 Scalability and precision: SPEC
In order to test the precision and scalability of PSE, we

applied it to postmortem analysis of pointer dereferences
in the integer benchmarks from Spec95. In particular, we

Bench Normal No Ts No May No Ab No May/Ab
compress 0.001 0.001 0.001 0.001 0.001

li 0.524 0.773 0.288 0.571 0.111
go 0.002 0.007 0.002 0.002 0.002

m88ksim 0.003 0.012 0.002 0.003 0.002
ijpeg 0.017 0.039 0.002 0.017 0.002
perl 2.990 5.447 1.396 3.135 2.836

vortex 0.531 1.270 0.283 0.521 0.283
gcc 0.400 0.927 0.319 0.388 0.330

Figure 9: Average tracking times for our different
configurations on the SPEC benchmarks.

Bench Normal No Ts No May No Ab No May/Ab
compress 0 0 0 0 0

li 25 39 13 25 5
go 1 1 1 1 1

m88ksim 2 5 2 2 2
ijpeg 3 14 0 3 0
perl 44 76 35 44 29

vortex 17 47 12 17 12
gcc 18 51 12 17 2

Figure 10: Number of dereferences for which a trace
was found on the SPEC benchmarks.

selected 100 dereference points at random from each of the
benchmarks (except for compress, which only has 22). These
programs are expected to be largely free of NULL derefer-
ence errors. Therefore, we can use the number of traces
generated by PSE as an indicator of its precision. Because
there are no stack dumps available in this experiment, we are
forced to run PSE without stack trace information. There-
fore, this experiment serves as a strong test of the scalability
of the approach.

Figure 8 gives information on the size and pointer use of
each benchmark. For each benchmark, we ran our analy-
sis in several configurations. The “Normal” configuration is
our standard analysis. The “No Ts” configuration disables
the use of typestate to prune false paths. The improvement
of the Normal column over the No Ts column measures the
benefit of false path pruning based on typestate. Both of
these configurations are sound. We also tested three un-
sound configurations in which we disabled checking for may
aliasing (“No May”), disabled switching to an abstract loca-
tion on long recursive paths (“No Ab”), and disabled both
(“No May/Ab”).

Scalability. Figure 9 gives the average query time in sec-
onds (tracking time per dereference) for each SPEC bench-
mark and configuration. The average query time is almost
always under a second. This result supports our hypothesis
that PSE is scalable in practice.

Although most queries are very fast, some benchmarks
contain a few outliers that can consume large amounts of
time. In our experience, PSE is not able to produce useful
traces in these cases. Therefore, we limited each query to
at most 50000 analysis steps (approximately 15 seconds of
analysis time). It is important to note that almost all queries
finished within this bound. The experiments were performed
on a Pentium 4 3.2Ghz machine with 2GB RAM.

The apparently surprising increase in average query time
for perl and gcc in the “No May/Ab” configuration over
the “No May” configuration can be explained by our limit

9

on the analysis steps for each query. In the “No May/Ab”
configuration, more steps of the analysis propagate syntactic
expressions, which is a more expensive computation that
propagating abstract locations.

Precision. Figure 10 gives the total number of derefer-
ences for which a trace was found for each SPEC bench-
mark and configuration. The results show that for most
benchmarks, PSE is able to validate most of the pointer
dereferences on which it is applied. The exception is the
perl benchmark, which makes extensive use of recursive data
structures and heap-based pointers, exposing weaknesses in
our flow-insensitive aliasing oracle; a more accurate aliasing
oracle may address this issue. Notice that the structure of
perl causes our analysis to suffer in scalability as well.

In Figure 10, the traces from the “Normal” configuration
that are not reported in the “No May/Ab” configuration
are likely to be false positives, because of the inaccuracy of
our aliasing oracle. Note that backwards typestate checking
still significantly reduces the number of false traces, seen by
comparing the “Normal” and “No Ts” configurations.

We manually inspected several of the errors reported in
the “No May/Ab” configuration. Several traces are false
positives resulting from cases where we still must use an ab-
stract location representation because the witness expression
does not represent a single memory location (e.g. an array
dereference a[i]). For perl, most of the traces led back to a
safemalloc function that handles exhausted memory by ei-
ther returning NULL or exiting, depending on a global flag.
These traces could be avoided by tracking simple correla-
tions in a simulation state component that would be added
to the abstract state. PSE already incorporates this facility
but to this point we have only implemented a trivial back-
wards transfer function for the simulation state.

5.2 Diagnosing real failures: Windows
In order to test the ability of our technique to diagnose

real program failures, we randomly chose 5 NULL derefer-
ence errors found by the whole program static analysis tool
PREfix [7] on a version of Windows that is currently un-
der development. We first manually verified that the traces
were not false positives, meaning that we could expect to
see NULL dereference reports for these program locations
if this version were given to users3. We then applied our
analysis to each of these errors.

The “No May” configuration of PSE produced exactly
the trace reported by PREfix in each case, with an analysis
time of well under 1 second and no false positives. The
sound “Normal” configuration had poor performance in one
case because of inaccurate alias information, but otherwise
performed nearly as well as the “No May” configuration.
This result suggests that PSE may be useful as a crash dump
diagnosis tool in a real setting, which is the ultimate goal of
our work.

We also experimented with using a forwards analysis to
exhaustively verify the NULL dereference property on sev-
eral Windows DLLs. We found that the analysis times
ranged from six minutes to almost two hours, much longer
than the time for a single query using our analysis. This
comparison shows the advantage of our demand-driven ap-
proach.

3These errors have since been fixed.

We made use of the stack trace information available for
each error to prune our search space. Without the stack
trace information, analysis performance was not significantly
impacted, but in two cases, the analysis produced extra
traces irrelevant to the error (although not necessarily false
positives). We believe that for failures that occur within
commonly used utility functions, stack trace information
will be crucial for good performance.

In summary, the experiments described above suggest that
in most cases, PSE is both scalable and precise enough to
diagnose real failures in real programs. In particular, the
situations where PSE lacks precision appear to match those
where PSE consumes unusually large resources. Therefore,
by using timers appropriately, we can produce a practical
diagnosis tool that usually provides useful traces quickly,
but sometimes fails to provide any result.

6. CONCLUSIONS
In this paper, we have described PSE, a polynomial time

algorithm for producing execution traces that show how a
program is driven to a given failure. PSE requires mini-
mal information about the failure, making it suitable for
automated diagnosis of bug reports produced by deployed
software.

We have implemented PSE and evaluated its precision and
scalability on a set of benchmarks including all of the integer
benchmarks from Spec95, and the Windows operating sys-
tem. Our experience shows that PSE is both scalable and
precise enough to be of practical use.

In particular, the situations where PSE is imprecise match
those where it is unusually expensive, meaning that we can
automatically limit its output to those situations where it is
effective for diagnosing failures.

Acknowledgements

Brian Hackett, Ted Kremenek, Mooly Sagiv, and Eran Ya-
hav provided valuable feedback on previous drafts. The
anonymous referees helped us position and validate our re-
sults appropriately. Dinakar Dhurjati, Hari Hampapuram,
Amit Rao, and Jason Yang ran experiments and helped im-
plement parts of the underlying ESP infrastructure. The
PREfast and PREfix teams at Microsoft Research provided
the compiler front-end and test automation harness for PSE.

7. REFERENCES

[1] Hiralal Agrawal and Joseph R. Horgan. Dynamic
Program Slicing. In Proceedings of the ACM

SIGPLAN Conference on Programming Language

Design and Implementation, June 1990.

[2] Hiraral Agrawal, Joseph R. Horgan, Saul London, and
W. Eric Wong. Fault Localization using Execution
Slices and Dataflow Tests. In Proceedings of the IEEE

International Symposium on Software Reliability

Engineering, October 1995.

[3] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman.
Compilers: Principles, Techniques, and Tools.
Addison-Wesley, 1986.

[4] Thomas Ball, Mayur Naik, and Sriram Rajamani.
From Symptom to Cause: Localizing Errors in

10

Counterexample Traces. In Conference Record of the

Thirtieth ACM Symposium on Principles of

Programming Languages, 2003.

[5] Thomas Ball and Sriram K. Rajamani. Automatically
Validating Temporal Safety Properties of Interfaces.
In Proceedings of SPIN ’01, 8th Annual SPIN

Workshop on Model Checking of Software, May 2001.

[6] Peter Bunus and Peter Fritzson. Semi-Automatic
Fault Localization and Behavior Verification for
Physical System Simulation Models. In Proceedings of

the IEEE International Conference on Automated

Software Engineering, October 2003.

[7] William R. Bush, Jonathan D. Pincus, and David J.
Sielaff. A Static Analyzer for Finding Dynamic
Programming Errors. Software - Practice and

Experience, 30(7):775–802, 2000.

[8] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu,
Robby, S. Laubach, and H. Zheng. Bandera:
Extracting Finite-state Models from Java Source
Code. In Proceedings of the 22nd International

Conference on Software Engineering, 2000.

[9] Microsoft Corporation. Microsoft Online Crash
Analysis. http://oca.microsoft.com/en/dcp20.asp.

[10] Manuvir Das. Unification-based pointer analysis with
directional assignments. In ACM SIGPLAN 2000

Conference on Programming Language Design and

Implementation, 2000.

[11] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP:
Path-sensitive Program Verification in Polynomial
Time. In ACM SIGPLAN 2002 Conference on

Programming Language Design and Implementation,
2002.

[12] Manuvir Das, Ben Liblit, Manuel Fähndrich, and
Jakob Rehof. Estimating the Impact of Scalable
Pointer Analysis on Optimization. In 8th International

Symposium on Static Analysis, 2001.

[13] Richard A. DeMillo, Hsin Pan, and Eugene H.
Spafford. Critical Slicing for Software Fault
Localization. In Proceedings of the International

Symposium on Software Testing and Analysis, 1996.

[14] E. W. Dijkstra. A Discipline of programming.
Prentice-Hall, 1976.

[15] Nurit Dor, Stephen Adams, Manuvir Das, and Zhe
Yang. Software Validation via Scalable Path-Sensitive

Value Flow Analysis. In International Symposium on

Software Testing and Analysis, 2004. Also available as
Microsoft Research Technical Report
MSR-TR-2003-58.

[16] Margaret Francel and Spencer Rugaber. Fault
Localization using Execution Traces. In Proceedings of

the ACM Annual Southeast Regional Conference, 1992.

[17] Seth Hallem, Benjamin Chelf, Yichen Xie, and
Dawson Engler. A system and language for building
system-specific, static analyses. In Proceedings of the

ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation, 2002.

[18] Ben Liblit and Alex Aiken. Building a better
backtrace: Techniques for postmortem program
analysis. Technical Report UCB/CSD 02/1203, UC
Berkeley Computer Science Division, October 2002.

[19] Hsin Pan and Eugene H. Spafford. Toward Automatic
Localization of Software Faults. In Proceedings of the

Pacific Northwest Software Quality Conference,
October 1992.

[20] Brock Pytlik, Manos Renieris, Shriram
Krishnamurthi, and Steven P. Reiss. Automated Fault
Localization Using Potential Invariants. In Proceedings

of the International Workshop on Automated and

Algorithmic Debugging, September 2003.

[21] Thomas Reps, Susan Horwitz, and Mooly Sagiv.
Precise interprocedural dataflow analysis via graph
reachability. In Proc. ACM Symp. on Principles of

Programming Languages, pages 49–61. ACM Press,
January 1995.

[22] R. Strom and S. Yemini. Typestate: A Programming
Language Concept for Enhancing Software Reliability.
IEEE Transactions on Software Engineering,
12(1):157–171, 1986.

[23] Robert E. Strom and Daniel M. Yellin. Extending
Typestate Checking Using Conditional Liveness
Analysis. IEEE Transactions on Software Engineering,
May 1993.

[24] Frank Tip. A survey of program slicing techniques.
Journal of programming languages, 3:121–189, 1995.

[25] Mark Weiser. Program slicing. In Proceedings of the

5th international conference on Software engineering,
pages 439–449. IEEE Press, March 1981.

