pSearch: Information Retrieval in Structured Overlays

Chunqiang TangT
Dept. of Computer Science
Univ. of Rochester
Rochester, NY 14627-0226

sarrmor@cs.rochester.edu

ABSTRACT

We describe an efficient peer-to-peer information retrieval
system, pSearch, that supports state-of-the-art content- and
semantic-based full-text searches. pSearch avoids the scal-
ability problem of existing systems that employ centralized
indexing, or index/query flooding. It also avoids the non-
determinism that is exhibited by heuristic-based approaches.
In pSearch, documents in the network are organized around
their vector representations (based on modern document
ranking algorithms) such that the search space for a given
query is organized around related documents, achieving both
efficiency and accuracy.

INTRODUCTION

The sheer quantity of Internet content is beyond the ca-
pability of any centralized search engine. A study [1] con-
ducted by BrightPlanet Corporation in March 2000 esti-
mated that the deep Web might contain 550 billion doc-
uments, far more than the 1.2 billion pages that Google had
identified, not to mention the 600 million pages that Google
was able to search at that time. Moreover, this data vol-
ume continues to grow at an astonishing rate, doubling each
year. This calls for an infrastructure that is able to scale at
a comparable rate.

Peer-to-peer (P2P) systems [8], on the other hand, are
gaining popularity due to their scalability, fault-tolerance,
and self-organizing nature, raising hope for building com-
pletely decentralized information retrieval (IR) systems.

Current P2P searching systems, however, are either un-
scalable or unable to provide deterministic guarantees. Usu-
ally they are based on one of the following techniques: cen-
tralized indexing, query flooding, index flooding, or heuris-
tics. Centralized indexing systems such as Napster suffer
from the single point of failure and performance bottle-
neck at the index server. Flooding-based techniques such as

1.

JrThis work was done when the author worked at HP Labs in
summer 2002. He is supported in part by NSF grants CCR-
9988361, CCR-0219848, ECS-0225413, and ETA-0080124.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

HotNets-1°02 Princeton, New Jersey, USA

ACM SIGCOMM Computer Communications Review

Zhichen Xu
HP Laboratories

1501 Page Mill Rd., MLS 1177
Palo Alto, CA 94304

zhichen @hpl.hp.com

89

Mallik Mahalingam
HP Laboratories
1501 Page Mill Rd., MLS 1177
Palo Alto, CA 94304

mmallik@hpl.hp.com

Gnutella send a query or index to every node in the system,
consuming huge amount of network bandwidth and CPU
cycles. Heuristics-based techniques try to improve perfor-
mance by directing searches to only a fraction of the popu-
lation, but they may fail to retrieve important documents.

Distributed hash table (DHT) systems such as CAN [9]
do provide good scalability, but they only offer a simple
interface for storing and retrieving (key, value) pairs, and
hence are not suitable for full-text searches.

Besides the performance inefficiency, a common problem
with most existing P2P systems is that they usually ignore
the advanced ranking algorithms devised by the IR com-
munity through decades of refinement and evaluation, and
thereby rely on naive keyword-based searches. Examples
of successful IR algorithms include the vector space model
(VSM) and latent semantic indexing (LSI) [2]. These al-
gorithms represent documents and queries as vectors, and
measure the similarity between a query and a document as
the cosine of the angle between their vector representations.

Our goal is to build a scalable P2P IR system, pSearch,
that has efficiency of DHT systems and accuracy of state-
of-the-art IR algorithms. To achieve this goal, in pSearch,
documents in the network are organized around their vector
representations such that the search space for a given query
is organized around related documents, achieving both effi-
ciency and accuracy.

In this paper we describe two algorithms: pVSM that is
based on the vector space model, and pLSI that uses latent
semantic indexing. For pLSI, our simulation shows that it
is able to achieve accuracy comparable to the centralized
algorithm while visiting only 0.4-1% nodes in the system.
For pVSM, the number of visited nodes is bounded by the
number of terms in a query, which is usually small.

In pSearch, queries can be processed concurrently in dif-
ferent regions of the overlay, it hence has high throughput.
It also has short response time, because nodes collectively
search the partitioned document space to resolve a query.
The performance of IR systems is usually bounded by disk
I/0O. In pSearch, indices are massively partitioned such that
the indices held by a node may fit in its main memory.

Several features distinguish pSearch from other systems.

e It works in a completely decentralized manner, with
neither single point of failure nor complex hierarchy.

e It supports content and semantic searches, as opposed
to naive keyword matches.

o It is scalable, efficient, and effective. Index/query flood-
ing are avoided. Its accuracy is comparable to that of
the state-of-the-art centralized IR algorithms.

Volume 33, Number 1: January 2003



The remainder of the paper is organized as follows: Sec-
tion 2 provides background information about DHT and IR.
Section 3 describes pVSM and pLSI. We discuss pSearch ap-
plications in Section 4, present related work in Section 5, and
conclude in Section 6.

2. BACKGROUND

pSearch is built on eCAN [12] (a hierarchical version of
CAN) and uses extensions to VSM and LSI [2]. The Carte-
sian space abstraction of CAN makes it particularly attrac-
tive when used to store vector representations of documents
generated by IR algorithms such as VSM and LSI. We de-
scribe these basic components below.

DHT systems and eCAN. Recent DHT systems, repre-
sented by CAN, Chord, and Pastry, offer an administration-

free and fault-tolerant application-level overlay network. CAN

stands for content-addressable network. It organizes the log-
ical space as a d-dimensional Cartesian space (a d-torus)
and partitions it into zones. One or more nodes serve(s) as
owner(s) of a zone. An object key is a point in the space,
and the object is stored at the node whose zone contains the
point. Locating an object is reduced to the problem of rout-
ing to the node that hosts the object. Routing from a source
node to a destination node is equivalent to routing from one
zone to another in the Cartesian space. A node join corre-
sponds to picking a random point in the Cartesian space,
routing to the zone that contains the point, and splitting
the zone with its current owner(s). eCAN improves CAN’s
logical routing cost to O(log(n)), and takes only routes that
closely approximate the underlying Internet topology.

Vector space model. VSM represents documents and
queries as term wvectors. Each element of the vector repre-
sents the importance of a word (term) in the document or
query. The weight of an element is often computed using
the term frequency * inverse document frequency (TF*IDF)
scheme [2]. The intuition behind it is that two factors decide
the importance of a term in a document: the frequency of
the term in the document and the frequency of the term in
other documents. If a term appears in a document with a
high frequency, there is a good chance that the term could
be used to differentiate the document from others. However,
if the term also appears in a lot of other documents, e.g.,
computer, the importance of the term should be penalized.
VSM usually normalizes vectors to unit Euclidean norm to
compensate for differences in document length. During a re-
trieval operation, the query vector is compared to document
vectors. Those closest to the query vector are considered to
be similar and are returned. A common measure of similar-
ity is the cosine of the angle between vectors.

Latent semantic indexing. Literal matching schemes
such as VSM suffer from synonymy, polysemy, and noise in
documents. LSI has been proposed to address these prob-
lems. It uses singular value decomposition (SVD) to trans-
form and truncate a matrix of term vectors computed from
VSM to discover the semantics of terms and documents. For
instance, although car, vehicle, and automobile are differ-
ent terms, LSI may be able to discover that they are related
in semantics. Intuitively, LSI transforms a high-dimensional
term vector into a medium-dimensional semantic vector by
projecting the former into a medium-dimensional semantic
subspace. The basis of the semantic subspace is computed

ACM SIGCOMM Computer Communications Review

90

P2P o « (doc A
semantic 1 1
A
ok
2 routing

»overlay

Figure 1: pVSM in a 2-dimensional CAN.

using SVD. Semantic vectors are normalized and their sim-
ilarity is measured as in VSM.

3. PSEARCH ALGORITHMS

The fundamental idea in pSearch is to store information
of documents in DHT-based overlay networks around their
vector representations such that the search space for a given
query is organized around related documents. We present
two algorithms here: pVSM and pLSI. Each is described in
terms of the basic ideas, challenges, and solutions.

3.1 Peer-to-Peer VSM (pVSM)

As is pointed out by Cuenca-Acuna and Nguyen [4], a
straightforward implementation of VSM in DHT needs to
store (term, index) pairs for each term appearing in each
document, a formidable task simply due to the large number
of terms in each document. Recent studies, however, show
that the frequency of terms in a document usually follows a
Zipf distribution, meaning that a small number of keywords
can categorize a document’s content.

Basic ideas. In pVSM, nodes are organized using CAN
and each node is responsible for storing indices containing
certain keywords. Given a document, a term vector is com-
puted using VSM. The m most heavily-weighted elements
(terms) t;, i =1,...,m are identified, and the corresponding
(h(t;), index) pairs are stored in DHT. (m can vary on a
per-document basis, Section 3.4.) Here h is a hash function
mapping strings into points in CAN, and index is the ac-
tual document or a pointer to the actual document. During
a retrieval operation, each term in the query is hashed into a
point using h and the query is routed to nodes whose zones
contain the points. Each of the nodes retrieves the best
matching indices locally using VSM, and sends them back
to the node initiating the query. The query initiator ranks
them globally, discards those with low ranks, and presents
the rest to the user.

Figure 1 illustrates this process. Each zone is owned by a
node. The little dots represent indices. Given the document
A its important keywords—P2P, overlay, and routing—
are identified using VSM and the index is published to cor-
responding nodes (step 1). Given a query of "semantic
overlay", it is forwarded to nodes responsible for keyword
semantic and overlay, respectively (step 2). The two nodes
then search and return matching indices using VSM (step 3).

Challenges and solutions. The first problem pVSM
faces is synonymy. An index may be stored under one term
but retrieved using its synonyms. This problem can be fixed
using a thesaurus, by also routing queries to points corre-
sponding to synonyms of the terms in the query.

Second, VSM relies on some global information, such as

Volume 33, Number 1: January 2003



indices

S1: 82.83)

Figure 2: Transforming the sphere space. (a) In a
2-dimensional CAN, the naive pLSI only places indices on
the circle. The similarity (cosf) between the two indices
A and B is proportional to their distance (p) on the circle:
cos @ = cosp. The gray region is the flooding area for search-
ing indices close to A in semantics. (b) Using Equation 1
to transform a 3-dimentional semantic vector.

the dictionary of the terms that TF*IDF counts, and the
inverse document frequency (IDF). We call this global in-
formation statistics. It has been demonstrated that VSM
does not need precise statistics to work well, i.e., a good
approximation is sufficient.

In pVSM, the initial copy of the statistics are precom-
puted using samples that are representative of the potential
document set. Over time, a combining tree that approx-
imates the underlying network topology and includes ran-
domly chosen nodes is used to sample documents and merge
statistics. The size of the statistics grows slowly with the
size of the document population. We expect the statistics to
change slowly, at the rate of weeks or even months, because
statistics are more stable than the documents themselves,
especially for a large document population. The root of
the combining tree periodically disseminates the statistics
to other nodes. The root is a node occupying a well-known
zone in CAN. If it fails, one of its neighbors will take over.

3.2 Peer-to-Peer LSI (pLSI)

In the original proposal of CAN, document IDs (keys) are
randomly generated with no meanings other than their role
in routing. If we use the semantic vectors of documents as
keys to place indices in such a way that indices, that are
semantically close to each other, are stored logically close to
each other in CAN] then searching in the semantic space is
reduced to routing in CAN. In the following sections, we first
outline a naive pLSI algorithm to highlight the challenges
that need to be overcome, and then describe the solutions.

3.2.1 A Naive pLSI algorithm

Let’s use £ and K to denote the LSI semantic space and
CAN Cartesian space, respectively, with [ and k as the di-
mensionality of the two spaces. Because [ and k are freely
tunable, we can map each document to a point in K, by set-
ting | = k and treating its semantic vector as its coordinates
in . Given a document, its semantic vector S is computed
using LSI, and the (S, index) pair is stored in DHT using
eCAN routing. During a retrieval operation, the semantic
vector () of the query is computed and the query is routed
using @ as the DHT key. Upon arriving at the destination,
it floods the query only to nodes within a radius r based on
the similarity threshold or the number of wanted documents

ACM SIGCOMM Computer Communications Review

91

specified by the user. All nodes that receive the query do
a local search using LSI and merge the results back to the
user as in pVSM. Because indices of documents similar to
the query above the threshold can be stored only within this
radius r and we do an exhaustive search within this area,
pLSI achieves the same performance as LSI. Ideally, this
radius r is small and the involved nodes are only a small
fraction of the entire population.

3.2.2  Challenges for pLSI

There are four major problems that need to be solved.

e Sphere distribution of semantic vectors. Recall that
semantic vectors are normalized and reside on the sur-
face of the unit sphere ¢/ in £, leading to an unbalanced
load as depicted in Figure 2(a).

o Uneven distribution of semantic vectors. Even if the
first problem is ignored and nodes are uniformly dis-
tributed on U, it still suffers from hot spots because
semantic vectors are not uniformly distributed on U.

o The curse of dimenstonality. Due to £’s medium di-
mensionality (100-300), a straightforward nearest neigh-
bor search in £ will not be effective until a large frac-
tion of the nodes are visited [11].

e The global state problem. Similar to pVSM, pLSI also
needs some global information to work.

3.2.3 Transforming the Sphere Space

To solve the first problem, we transform a semantic vector
S = (s1,82,...,81), ||S]|]2 =1 in £ into a parameter vector
(61,62, ...,0,—1) in the (I —1)-dimensional polar subspace P.
Accordingly, we set | — 1 = k. Given a document or a
query, we use the parameter vector, instead of the semantic
vector, as the DHT key for eCAN routing. (To reiterate, we
deal with three kinds of vectors: the term wvector generated
by VSM, the semantic vector generated by LSI, and the
parameter vector generated by this transformation.)

This transformation does exist because points on U/ only
have | — 1 degrees of freedom. Equation 1 achieves the ex-
act goal. An example of this transformation is shown in
Figure 2(b). Note that even after the transformation, pa-
rameter vectors are still not uniformly distributed in P.

Sj+1 )

\/ 25:1 87

0; = arctan( j=1..,0-1 (1)

3.2.4 Balancing the Load

We use a modified node bootstrap process to solve the
second problem. At node join, we randomly pick a docu-
ment that the node is going to publish and use the param-
eter vector of the document as the random point towards
which the join request is routed. This bootstrap process has
three effects: (1) Load balancing. Each node stores roughly
the same number of indices because the node distribution
in K approximates the index distribution, given that a large
number of nodes exist. * (2) Index locality. Assuming that
a node’s contents have some locality, the indices of its con-
tents are likely to be published at itself or neighboring zones.
(3) Query locality. Suppose that documents owned by a user

"Without the transformation in Equation 1, it can still
achieve load balancing using a similar bootstrap process,
but routing would be less efficient.

Volume 33, Number 1: January 2003



- The zone owned by node A

. W//A The region in which A’s content is published

0 {1
< ° 1
° @‘ doc °
° 4 o 2 4
o‘o‘o‘ o‘ o‘o ° A
(<] (<]
(<] (=] (<]
° °c ] v ° °
< 2 : T 2 -
N——__L———‘
° ° ° 19>

ﬂoc;ding region for the query

Figure 3: pLSI in a 2-dimensional CAN.

are good indications of the user’s interests. Then queries
submitted by the user would usually be searched in neigh-
boring zones of where the query is submitted. Both the
index and query locality lead to efficient eCAN routing.

Figure 3 depicts how pLSI works in a 2-dimentional CAN
with the first two modifications. Given a document, its in-
dex is stored in DHT using its parameter vector as the key
for eCAN routing (step 1). Given a query, it is first routed
using its parameter vector as the DHT key (step 2) and then
flooded to a small region computed from the given similarity
threshold (step 3). Nodes in the flooding region search and
return matching indices using LSI (step 4). Note that indices
are not, uniformly distributed but the number of indices per
zone is roughly the same. Because of the transformation in
Equation 1, the flooding radius r is not uniform in differ-
ent directions. For node A, it is likely that its content is
published in neighboring zones because of the indez locality
induced by the bootstrap process.

3.2.5 Dispelling the Curse of Dimensionality

Existing techniques [11] to relieve the curse of dimension-
ality usually do not work well at hundreds of dimensions, and
require changing the DHT abstraction. In pLSI, domain-
specific knowledge allows us to attack this problem at a lower
cost. As a result of the SVD decomposition, the elements
appearing earlier in a semantic vector are more important
than those appearing later. This property also holds for pa-
rameter vectors. By aggressive cutoff, a parameter vector
can be reduced to only a few dimensions to ease the nearest
neighbor search, at the cost of precision.

We use a multi-plane scheme to reduce the dimensionality
while keeping good precision. We partition lower elements
of a parameter vector into multiple low-dimensional subvec-
tors, with one subvector on each plane. The dimensionality
of CAN is set to that of an individual plane. Each of the
subvectors is used as the DHT key for routing. A document
index is published to a node on each plane. A query is also
routed and flooded on each plane. Given a query, each plane
independently returns matching documents to the query ini-
tiator, based on subvectors on that plane. These returned
documents form a pre-selection set. The query initiator then
uses the full semantic vector to re-rank documents in this
set. To increase the chance that relevant documents are
included in the pre-selection set, we increase and vary the
number of documents returned on each plane. For instance,
when searching the top 15 documents for a query, the first
three planes return 30, 20, and 10 documents, respectively,

ACM SIGCOMM Computer Communications Review

92

doc query

0 — A

e o ol

g9

¢ P31 | P3|
\O

300 |} 7

- flooding region for the query

Figure 4: Multi-plane in a 2-dimensional CAN.

with a total of 60 documents in the pre-selection set.

A multi-plane example is shown in Figure 4. The first 6
elements of the vectors are partitioned into 2-dimensional
subvectors on 3 planes. Both the document and query are
routed on every plane. In this example, they match on
the second plane. Note that only a single eCAN overlay
is needed to support multiple planes.

3.2.6 Distributing the Global State

Similarly, pLSI also needs some global statistics: the dic-
tionary, the IDF, and the basis of the semantic space. (Dis-
tributing the basis to each node allows the nodes to compute
the projections from term vectors to semantic vectors inde-
pendently.) The solution is also similar: precompute the
statistics and update them using samples. When the basis
shifts, the semantic vector of a document also changes. This
may require redistribution of the index when the difference
between two consecutive versions of a semantic vector is so
significant that the old one and new one no longer reside
in the same zone. Fortunately, since the statistics change
slowly, this should happen fairly infrequently.

Computing SVD for a high-dimensional matrix is an in-
tensive process. To avoid starting from scratch at every
sample update, we incrementally update the matrix using
SVD-updating. An alternative is to replace LSI with low-
computation approximations such as Concept Indexr, and
parallelize them, given abundant nodes in P2P networks.

3.3 pSearch Prototype and Initial Results

The SMART system, developed at Cornell, implements
VSM. We extend it with a LSI module and link it with our
eCAN simulator [12]. With the basic functionality of pVSM
and pLSI in place, we experiment with two corpus widely
used in IR research: the small MEDLINE corpus with 1033
documents and the large Text Retrieval Conference (TREC)
corpus with 528,543 documents.

Our pVSM experiments running over the MEDLINE cor-
pus demonstrate that storing a document index under the
30 most important terms in the document achieves a result
as good as VSM. That is, if VSM returns a document for
a query, with high probability, at least one of the terms in
the query is among the top 30 terms in the document. The
number of visited nodes is bounded by the number of terms
in the query, which is usually small.

Since pLSI is more complex, we experiment it with the
large TREC corpus, running a large number of configura-
tions in search of the right system parameters. We find that
using 4-6 planes with about 10-12 elements on each plane

Volume 33, Number 1: January 2003



i 1.0% 100%
8o8%+ 1 80% 3
2 0.6% + 60% g
B 0.4% T, yisited nodes T40% 3
= 0.2% 1 -e-accuracy +20% <
S 0.0% 1 1 0%

1000 5000 10000
Number of nodes in the system

Figure 5: Performance of pLSI, using TREC corpus.

can be very effective. The result ? is presented in Figure 5,
where the X axis is the number of nodes in the system, the
left Y axis is the percentage of visited nodes, and the right Y
axis is the percentage of overlap between the documents re-
turned by pLSI and LSI. We can see that pLSI is efficient as
well as accurate. It only needs to visit about 0.4-1.0% nodes
to achieve an accuracy of 95%. The accuracy is even better
when more nodes are allowed to be visited. Due to the space
limit, more results and our suggestions on configuring the
system will be presented elsewhere.

Some differences between pVSM and pLSI are worth notic-
ing. pVSM usually publishes more copies of an index than
pLSI does, but it usually sends a query to less nodes during
retrieval operations. The flexibility of pLSI allows it to be
used in advanced searches such as video and audio retrieval
(Section 4). In addition, pLSI can benefit from a modified
bootstrap process for load balancing (Section 3.2.4).

3.4 Advanced Issues

We leave some advanced issues for future work.

Indexing at coarse granularity. For nodes that own a
large collection of homogeneous documents, it is not neces-
sary to maintain an index for each individual document. It
has been shown that indexing at a per-database basis can
work well [5]. In pSearch, we use hierarchical k-means to
cluster documents at a node into collections until the vari-
ance inside a collection falls below a given threshold. Each
collection is treated as a single document and its index is
published in DHT. If a retrieval hits in a collection, the
query is forwarded to the publisher for an in-depth search.

Relevance feedback. In addition to the conventional
use of relevance feedback to build new queries, we also ex-
ploit user retrieval patterns to improve the index distribu-
tion. When answering a query, pSearch only returns a list
of the best matching documents. It is the user who de-
cides which document to download. Every node remembers
the number of times that each document is downloaded and
uses it as an estimation of document popularity. For a pop-
ular document, pVSM increases the number of terms under
which the index is stored, to increase the chance of retriev-
ing it with other queries. In pLSI, upon receiving a down-
loading request that originates from a successful query, the
node records that the document index should move closer
to the query vector. The move actually happens when this
information is accumulated over a threshold.

Intelligent index replication. pLSI tries to balance

2The transformation in Equation 1 is not used in this ex-
periment. It is tested seperately but not incorporated into
the simulator yet.

ACM SIGCOMM Computer Communications Review

93

load by approximating the index distribution with the node
distribution. However, nodes in the system usually have dif-
ferent processing power, storage capacity, and network con-
nectivity. To take advantage of the heterogeneity in system,
when the load at a node is low comparing with its capacity,
it can selectively replicate indices stored on its direct and
indirect neighbors, and process queries on their behalf. The
criteria of this selection process may include the popularity
of the documents, the load of those neighboring nodes, and
user access patterns. The goals of the selective replication
are to relieve hot spots and to maximize query performance.

Hierarchical refinement. Using a single semantic space
to organize all documents in the universe will inevitably re-
sult in coarse-grained classification. There will be dense
clusters in the semantic space, within which documents can
not easily be distinguished from one other. This cannot be
refined by simply increasing the dimensionality of the se-
mantic space because the added dimensions may be helpful
to some clusters, but introduce noise into others.

Our solution is to use the global statistics only as an ini-
tial step, and then compute localized semantic subspaces us-
ing localized information (e.g., only using documents whose
semantic vectors fall in a particular region in this global se-
mantic space) to refine the search. Intuitively, the global
semantic space clusters documents into coarse areas such as
computer science, geology and business, and local seman-
tic subspaces further differentiate documents in each area.
The challenge is perhaps to identify the dense clusters and
coordinate the refinement process in a decentralized fashion.

Advanced searches. Our focus has been on extensions
to the basic VSM and LSI algorithms. Many other searching
techniques can also be adopted to our framework.

For instance, instead of querying the entire universe, one
might only be interested in documents that reside in a par-
ticular domain (e.g., hp.com) or under a certain subdirec-
tory, produced before or after a certain date, etc. Often, it
is convenient if one can perform certain join functionality
to query documents that related to an existing set of docu-
ments in a certain way. To provide these features, we suggest
including other metadata such as domain, path, date, etc.
in the index, to enable functionalities that are analogous to
database selection and join.

Some IR systems exploit context information in docu-
ments for document ranking. For instance, given a query of
"computer network", documents with the two words close-
by are ranked higher than documents with the two words far
apart. We propose to use pVSM or pLSI to find a medium
number of related documents, and then apply other ranking
algorithms locally to re-rank them, if desirable.

Application-aware overlay. In Section 3.2.4, we bal-
ance the load by fitting the node distribution to the docu-
ment distribution. This unfortunately may result in ineffi-
cient routing and high cost in overlay maintenance. Non-
uniform node distribution can also be a result of topology-
aware overlay construction and the discriminate use of nodes
in terms of forwarding and storage capacity. An interesting
problem is to allow the node distribution to fit the applica-
tion’s demand, while not sacrificing the performance of the
overlay. Extending the ideas in eCAN [12], we propose to
maintain only the basic routing states to make the overlay
connected, and employ intelligent route caching based on
application behavior to improve performance.

Volume 33, Number 1: January 2003



4. OTHER APPLICATIONS

The pSearch technologies should be applicable to many
other applications. We give only a few examples here.

Video/Audio. pLSI works by representing media con-
tents as vectors and organizing contents around the vectors.
This method can be applied to any media that can be ab-
stracted as vectors and have its object similarity measured as
some kind of distance in the vector space. A lot of pattern
recognition problems fall into this category. For instance,
people also employ SVD to extract algebraic features from
images, and use various extractors to derive frequency, am-
plitude, and tempo feature vectors from music data.

Semantic-based Publish/Subscribe. Going one step
further, pSearch provides a decentralized infrastructure for
semantic-based Publish/Subscribe. The nodes are natural
places for keeping document subscriptions and for document
availability detection. The subscription can be described not
only in topics and contents, but also in semantics, allow-
ing users to subscribe to unstructured documents that they
do not know how to describe precisely. pSearch users may
simply describe their needs as “notify me when documents
stmilar to my collection show up”.

Deep search in grid. Like the P2P model, the Grid also
deals with resource sharing and cooperation among a large
number of heterogeneous systems. To provide a uniform
resource discovery and IR interface over existing heteroge-
neous services in Grid, we propose to use an overlay as the
pSearch infrastructure to connect existing services. Nodes
in the overlay maintain service indices and route queries,
using the coarse-granularity indexing technique described in
Section 3.4. For services that cannot provide the indices,
pSearch either crawls their Web pages or uses query-based
sampling to extract a good summary of the service contents.

Semantic-based resource discovery. pSearch, in essen-

ce, provides a decentralized resource discovery service, in
which providers publish summaries of their resources and
consumers use DHT routing to discover the resources. Both
publishing and discovery can be expressed in either object
IDs, contents, or semantics. A lot of applications can be
implemented with this paradigm: P2P cooperative caching,
interest-based online bidding, interest-based chat room, re-
source discovery in ad hoc networks, and so forth.

S. RELATED WORK

Both routing indices [3] and attenuated bloom filter [10]
use heuristics to selectively forward queries to a subset of
neighbors that are likely to contribute in resolving the query.
A study by Lv et al. [7] shows that expanding-ring search
and random walk are better than Gnutella’s query flooding.
All these systems try to improve performance by limiting
searches to a fraction of the population. Due to the lack of
control over the contents placement, they may fail to retrieve
important documents.

Distributed IR systems such as GIOSS [5] usually employ
a centralized or hierarchical index to direct queries. Cuenca-
Acuna and Nguyen [4] follow the conventional database se-
lection approach but use a bloom filter to summarize each
node’s contents and flood the network. JXTA search [6] is
a query broker system built around centralized hubs. Cur-
rently, it does not address the problem of routing queries
among hubs at a large scale.

ACM SIGCOMM Computer Communications Review

94

6. CONCLUSION

We propose two algorithms, pVSM and pLSI, that com-
bine the efficiency of DHT routing with the accuracy of
state-of-the-art IR algorithms to offer advanced content- and
semantic-based full-text searches. Our techniques avoid the
scalability problem of systems that employ centralized in-
dexing, or index/query flooding. It also avoids the non-
determinism that is exhibited by heuristic-based approaches.
To our knowledge, pSearch is the first system that allows
decentralized, deterministic, and non-flooding P2P informa-
tion retrieval based on contents and semantics.

To handle non-uniform distribution of documents in the
semantic space, we propose a new node bootstrap process
that achieves load balancing, index locality, and query lo-
cality. Furthermore, a multi-plane scheme is introduced to
avoid inefficiency that can result from high dimensionality
of the semantic space. We propose several uses of semantic-
based indexing including semantic Publish/Subscribe, deep
search in Grid, and so forth. We suggest several directions
for future improvement, such as application-aware overlay.

Acknowledgements

We thank Ira Greenberg, Amy Dalal, Deqing Chen, Mag-
nus Karlsson, Artur Andrzejak, Dejan Milojicic, Sandhya
Dwarkadas, and the anonymous reviewers for their valuable
comments and feedback on earlier drafts of the paper.

References

[1] M. K. Bergman. The deep web: Surfacing hidden
value. http://www.brightplanet.com/deepcontent.

M. Berry, Z. Drmac, and E. Jessup. Matrices, vector
spaces, and information retrieval. STAM Review,
41(2):335-362, 1999.

A. Crespo and H. Garcia-Molina. Routing indices for
peer-to-peer systems. In ICDCS, July 2002.

F. M. Cuenca-Acuna and T. D. Nguyen. Text-based
content search and retrieval in ad hoc p2p
communities. In Proceedings of the International
Workshop on Peer-to-Peer Computing, May 2002.

L. Gravano, H. Garcia-Molina, and A. Tomasic.
G1OSS: text-source discovery over the Internet. ACM
Transactions on Database Systems, 24(2), 1999.
JXTA Search. http://search.jxta.org.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker.
Search and replication in unstructured peer-to-peer
networks. In ICS’02, New York, USA, June 2002.

D. S. Milojicic, V. Kalogeraki, R. Lukose,

K. Nagaraja, J. Pruyne, B. Richard, S. Rollins, and
Z. Xu. Peer-to-peer computing. Technical Report
HPL-2002-57, HP Lab, 2002.

S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A scalable content-addressable network. In
ACM SIGCOMM’01, August 2001.

S. Rhea and J. Kubiatowicz. Probabilistic location
and routing. In INFOCOM’02, 2002.

R. Weber, H.-J. Schek, and S. Blott. A quantitative
analysis and performance study for similarity-search
methods in high-dimensional spaces. In VLDB, 1998.
Z. Xu and Z. Zhang. Building low-maintenance
expressways for p2p systems. Technical Report
HPL-2002-41, HP Laboratories Palo Alto, 2002.

2]

[3]
[4]

[9]

[10]

[11]

[12]

Volume 33, Number 1: January 2003



