
Czechoslovak Mathematical Journal, 67 (142) (2017), 123–141

PSEUDO ALMOST PERIODICITY OF FRACTIONAL

INTEGRO-DIFFERENTIAL EQUATIONS WITH

IMPULSIVE EFFECTS IN BANACH SPACES

Zhinan Xia, Hangzhou

Received July 22, 2015. First published February 24, 2017.

Abstract. In this paper, for the impulsive fractional integro-differential equations in-
volving Caputo fractional derivative in Banach space, we investigate the existence and
uniqueness of a pseudo almost periodic PC-mild solution. The working tools are based on
the fixed point theorems, the fractional powers of operators and fractional calculus. Some
known results are improved and generalized. Finally, existence and uniqueness of a pseudo
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1. Introduction

The concept of a pseudo almost periodic function was introduced by Zhang [26],

[27] in the early nineties. It is an important generalization of an almost periodic

function. Since then, this pioneer work has attracted more and more attention and

many authors have made important contributions to this theory. For more details

on pseudo almost periodic functions and related topics, one can see [5], [8], [9], [14],

[12], [17] and the references therein.
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In this paper, we investigate the existence and uniqueness of pseudo almost peri-

odic mild solutions of impulsive fractional integro-differential equations

(1.1) cDαu(t) +Au(t) = f(t, u(t)) + (Ku)(t) +
∞∑

k=−∞

Gk(u(t))δ(t− τk),

where

(Ku)(t) =

∫ t

−∞

k(t− s)g(s, u(s)) ds,

0 < α 6 1, −A : D(A) ⊂ X → X is a linear infinitesimal operator of an analytic

semigroup S(t), f, g are pseudo almost periodic in t ∈ R uniformly in the second

variable, Gk : D(Gk) ⊂ X → X are continuous impulsive operators, δ(·) is Dirac’s
delta-function, {τk} ∈ T , where T will be defined later. Here the fractional derivative

is understood in Caputo’s sense. We notice that fractional order models have received

much attention in recent years due to their extensive and efficient applications to

nonlinear dynamics concerning fluid flows, electrical networks, viscoelasticity, biology

and many other branches of science [1], [10], [20].

If (1.1) is without impulsive effects, then (1.1) becomes a fractional integro-

differential equation. Existence of almost periodic mild solutions is studied in [7]

by semigroup theory. By the Banach contraction mapping principle, pseudo almost

periodic solutions are studied in [4].

If (Ku)(t) = 0 and α = 1, then (1.1) becomes the impulsive differential equations

(1.2) u′(t) +Au(t) = f(t, u(t)) +

∞∑

k=−∞

Gk(u(t))δ(t− τk).

For (1.2), the existence and uniqueness of almost periodic solution is investigated

under the condition that A is the infinitesimal generator of an analytic semigroup

by Stamov and Alzabout in [23]. Later, the results of [23] are generalized by Chérif

in [6], where pseudo almost periodic solutions are studied. If A is the infinitesimal

generator of a C0-semigroup, Liu and Zhang investigate the existence and uniqueness

of almost periodic and pseudo almost periodic solutions in Banach space, see [15],

[16], [18].

Notice that if (Ku)(t) = 0, then (1.1) becomes an impulsive fractional differential

equations and existence and uniqueness of almost periodic solutions are investigated

in [24]. However, for fractional integro-differential equations with impulsive effects,

i.e., (1.1), the study of asymptotic behavior of solutions is rare; particularly for the

pseudo almost periodicity of (1.1), it is an untreated topic and this is the main

motivation of this paper. We will make use of the fixed point theorems and the
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fractional powers of operators to derive some sufficient conditions guaranteeing the

existence and uniqueness of pseudo almost periodic solution to (1.1).

The paper is organized as follows. In Section 2, we recall some fundamental

results about the notion of piecewise pseudo almost periodic functions including

the composition theorem. Sections 3 is devoted to the existence and uniqueness

of pseudo almost periodic mild solution of (1.1) by fractional powers of operators

and fixed point theorems. In Section 4, some interesting examples are presented to

illustrate the main results.

2. Preliminaries and basic results

Let (X, ‖·‖), (Y, ‖·‖) be Banach spaces, Ω a subset of X and let N, Z, R, and C

stand for the set of natural numbers, integers, real numbers, and complex numbers,

respectively. For A being a linear operator on X , D(A), ̺(A), R(λ,A) and σ(A)

stand for the domain, the resolvent set, the resolvent and spectrum of A. Let T be

the set consisting of all real sequences {τk}k∈Z such that κ = inf
k∈Z

(τk+1 − τk) > 0. It

is immediate that this condition implies that lim
k→∞

τk = ∞ and lim
k→−∞

τk = −∞.
In order to facilitate the discussion below, we further introduce the following no-

tations

⊲ C(R, X) (or C(R × Ω, X)): the set of continuous functions from R to X (from

R× Ω to X , respectively).

⊲ BC(R, X) (or BC(R×Ω, X)): the Banach space of bounded continuous functions

from R to X (from R× Ω to X , respectively) with the supremum norm.

⊲ PC(R, X): the space formed by all piecewise continuous functions f : R → X

such that f(·) is continuous at t for any t /∈ {τk}k∈Z, f(τ
+
k ), f(τ−k ) exist, and

f(τ−k ) = f(τk) for all k ∈ Z.

⊲ PC(R × Ω, X): the space formed by all piecewise continuous functions f :

R × Ω → X such that for any x ∈ Ω, f(·, x) ∈ PC(R, X) and for any t ∈ R,

f(t, ·) is continuous at x ∈ Ω.

Following [20], we recall the fractional integral of order α > 0 as

Iαf(t) =
1

Γ(α)

∫ t

a

(t− s)α−1f(s) ds,

and the fractional Caputo’s derivative of the function f of order 0 < α < 1 as

cDαf(t) =
1

Γ(1 − α)

∫ t

a

f ′(s)

(t− s)α
ds,
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where Γ(α) is the classical Gamma function given by

Γ(α) =

∫
∞

0

tα−1e−t dt.

Definition 2.1 ([11]). A function f : R → X is said to be almost periodic if for

each ε > 0 there exists an l(ε) > 0 such that every interval J of length l(ε) contains

a number τ with the property that ‖f(t + τ) − f(t)‖ < ε for all t ∈ R. Denote by

AP (R, X) the set of such functions.

Definition 2.2 ([21]). A sequence {xn} is called almost periodic if for any
ε > 0 there exists a relatively dense set of its ε-periods, i.e., there exists a natural

number l = l(ε) such that for k ∈ Z there is at least one number p in [k, k + l] for

which inequality ‖xn+p − xn‖ < ε holds for all n ∈ N. Denote by AP (Z, X) the set

of such sequences.

For {τk}k∈Z ∈ T , {τ jk} is defined by

{τ jk = τk+j − τk}, k ∈ Z, j ∈ Z.

It is easy to verify that the numbers τ jk satisfy

τ jk+i − τ jk = τ ik+j − τ ik, τ jk − τ ik = τ j−i
k+i for i, j, k ∈ Z.

Definition 2.3 ([21]). A function f ∈ PC(R, X) is said to be piecewise almost

periodic if the following conditions are fulfilled:

(1) {τ jk = τk+j − τk}, k, j ∈ Z are equipotentially almost periodic, that is, for any

ε > 0 there exists a relatively dense set in R of ε-almost periods common for all

of the sequences {τ jk}.
(2) For any ε > 0 there exists a positive number δ = δ(ε) such that if the points

t′ and t′′ belong to the same interval of continuity of f and |t′ − t′′| < δ, then

‖f(t′)− f(t′′)‖ < ε.

(3) For any ε > 0 there exists a relatively dense set Ωε in R such that if τ ∈ Ωε,

then

‖f(t+ τ) − f(t)‖ < ε

for all t ∈ R which satisfy the condition |t− τk| > ε, k ∈ Z.

We denote by APT (R, X) the space of all piecewise almost periodic functions. Ob-

viously, APT (R, X) endowed with the supremum norm is a Banach space. Through-

out the rest of this paper, we always assume that {τ jk} are equipotentially almost
periodic. Let UPC(R, X) be the space of all functions f ∈ PC(R, X) such that f

satisfies the condition (2) in Definition 2.3.
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Definition 2.4. A function f ∈ PC(R × Ω, X) is said to be piecewise almost

periodic in t uniformly in x ∈ Ω if for each compact set K ⊆ Ω, {f(·, x) : x ∈ K} is
uniformly bounded, and given ε > 0, there exists a relatively dense set Ωε such that

‖f(t+ τ, x) − f(t, x)‖ 6 ε for all x ∈ K, τ ∈ Ωε and t ∈ R, |t− τk| > ε. Denote by

APT (R× Ω, X) the set of all such functions.

Lemma 2.1 ([21]). If the sequences {τ jk} are equipotentially almost periodic,
then for each j > 0 there exists a positive integer N such that on each interval of

length j there are no more than N elements of the sequence {τk}, i.e.,

i(t, s) 6 N(t− s) +N,

where i(t, s) is the number of the points {τk} in the interval [s, t].

Lemma 2.2 ([21]). Assume that f ∈ APT (R, X), {xk}k∈Z ∈ AP (Z, X), and {τ jk},
j ∈ Z are equipotentially almost periodic. Then for each ε > 0 there exist relatively

dense sets Ωε of R and Qε of Z such that

(i) ‖f(t+ τ) − f(t)‖ < ε for all t ∈ R, |t− τk| > ε, τ ∈ Ωε and k ∈ Z;

(ii) ‖xk+q − xk‖ < ε for all q ∈ Qε and k ∈ Z;

(iii) |τqk − τ | < ε for all q ∈ Qε, τ ∈ Ωε and k ∈ Z.

Define

PAP 0
T (R, X) =

{
f ∈ PC(R, X) : lim

r→∞

1

2r

∫ r

−r

‖f(t)‖ dt = 0

}
,

PAP 0
T (R× Ω, X) =

{
f ∈ PC(R× Ω, X) : lim

r→∞

1

2r

∫ r

−r

‖f(t, x)‖ dt = 0

uniformly with respect to x ∈ K,

where K is an arbitrary compact subset of Ω

}
.

Definition 2.5 ([16]). A function f ∈ PC(R, X) is said to be piecewise pseudo

almost periodic if it can be decomposed as f = g + ϕ, where g ∈ APT (R, X) and

ϕ ∈ PAP 0
T (R, X). Denote by PAPT (R, X) the set of all such functions. PAPT (R, X)

is a Banach space when endowed with the supremum norm.

Definition 2.6 ([16]). Let PAPT (R×Ω, X) consist of all functions f ∈ PC(R×
Ω, X) such that f = g + ϕ, where g ∈ APT (R× Ω, X) and ϕ ∈ PAP 0

T (R× Ω, X).

Remark 2.1. The set PAP 0
T (R, X) is a translation invariant subset of PC(R, X).
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The following composition theorem holds for piecewise pseudo almost periodic

functions.

Theorem 2.3 ([16]). Let f ∈ PAPT (R×Ω, X), ϕ ∈ PAPT (R, X) and R(ϕ) ⊂ Ω.

Assume that there exists a constant Lf > 0 such that

‖f(t, u)− f(t, v)‖ 6 Lf‖u− v‖, t ∈ R, u, v ∈ Ω.

Then f(·, ϕ) ∈ PAPT (R, X).

Next, we introduce the concept of a generalized pseudo almost periodic function

(sequence) which is more general than a pseudo almost periodic function (sequence),

see [2], [13].

Define

P̃AP0(Z, X) =

{
x : lim

n→∞

1

2n

n∑

k=−n

‖xk‖ = 0

}
.

P̃AP0(R, X) =

{
f : R → X is measure and lim

r→∞

1

2r

∫ r

−r

‖f(t)‖ dt = 0

}
.

Definition 2.7 ([2]). A measurable function f : R → X is called generalized

pseudo-almost periodic if f = g+ϕ, where g ∈ AP (R, X), ϕ ∈ P̃AP0(R, X). Denote

by P̃AP (R, X) the set of all such functions.

Definition 2.8 ([13]). A sequence {xn}n∈Z is called generalized pseudo almost

periodic if xn = x1
n + x2

n, where x1
n ∈ AP (Z, X), x2

n ∈ P̃AP0(Z, X). Denote by

P̃AP (Z, X) the set of such sequences.

Lemma 2.4 ([13]). If {xn}n∈Z is a P̃AP0(Z, X) sequence, then there exists a func-

tion g ∈ P̃AP0(R, X) such that g(n) = xn, n ∈ Z.

Similarly to the proof in [16], one has

Theorem 2.5. Assume that a sequence of vector-valued functions {Gk}k∈Z is

generalized pseudo almost periodic, and there exists a constant L1 > 0 such that

‖Gk(u)−Gk(v)‖ 6 L1‖u− v‖, u, v ∈ Ω, k ∈ Z.

If ϕ ∈ P̃AP (R, X), then Gk(ϕ(τk)) is generalized pseudo almost periodic.
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3. Impulsive fractional integro-differential equations

In this section, we investigate the existence and uniqueness of piecewise pseudo

almost periodic mild solutions of (1.1).

Let t0 ∈ R, denote by u(t) = u(t, t0, u0), u0 ∈ X , the solution of (1.1) with an

initial condition

(3.1) u(t0) = u0.

The solution u(t) = u(t, t0, u0) of problem (1.1) and (3.1) is a piecewise continuous

function with points of discontinuity at the moments τk, k ∈ Z, at which it is

continuous from the left, i.e. the following relations hold:

u(τ−k ) = u(τk), u(τ+k ) = u(τk) +Gk(u(τk)), k ∈ Z,

that is u ∈ PC(R, X). With respect to the norm ‖u‖ = sup
t∈R

‖u(t)‖, one can easily
see that PC(R, X) is a Banach space.

First, we make the following assumptions:

(H1) −A is the infinitesimal generator of an analytic semigroup S(t) such that

‖S(t)‖ 6 Me−ωt for t > 0,

where ω > 0.

(H2) k ∈ C(R+,R) and |k(t)| 6 Cke
−ηt for some positive constants Ck, η.

(H3) f ∈ PAPT (R×Xβ, X) and there exist constants Lf > 0, 0 < β < 1 such that

‖f(t, u)− f(t, v)‖ 6 Lf‖u− v‖β, t ∈ R, u, v ∈ Xβ ,

where Xβ , ‖ · ‖β are defined later.
(H4) g ∈ PAPT (R×Xβ, X) and there exists a constant Lg > 0 such that

‖g(t, u)− g(t, v)‖ 6 Lg‖u− v‖β , t ∈ R, u, v ∈ Xβ.

(H5) Gk ∈ P̃AP (Z, X) and there exists a constant L1 > 0 such that

‖Gk(u)−Gk(v)‖ 6 L1‖u− v‖β, t ∈ R, u, v ∈ Xβ , k ∈ Z.
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Definition 3.1 ([25]). By a PC-mild solution of (1.1) and (3.1) we mean a func-

tion u ∈ PC(R, X) which satisfies the following integral equation:

(3.2) u(t) =






T (t− t0)u0 +

∫ t

t0

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds

for t ∈ [t0, τ1],

T (t− t0)u0 +

∫ t

t0

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds

+(Ku)(s)) ds+ T (t− τ1)y1 for t ∈ (τ1, τ2],

...

T (t− t0)u0 +

∫ t

t0

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds

+
∑

t0<τk<t

T (t− τk)yk for t ∈ (τk, τk+1],

where

yk = Gk(u(τk)), (Ku)(t) =

∫ t

−∞

k(t− s)g(s, u(s)) ds,

T (t) =

∫
∞

0

ξα(θ)S(t
αθ) dθ, S (t) = α

∫
∞

0

θξα(θ)S(t
αθ) dθ,

ξα(θ) =
1

α
θ−1−1/α̟α(θ

−1/α) > 0,

̟α(θ) =
1

π

∞∑

n=1

(−1)n−1θ−nα−1Γ(nα+ 1)

n!
sin(nπα), θ ∈ (0,∞),

ξα is a probability density function defined on (0,∞), that is

ξα > 0, θ ∈ (0,∞) and

∫
∞

0

ξα(θ) dθ = 1.

Note that when (H1) holds, we deduce that if u(t) is a bounded PC-mild solution

of (1.1) on R, then we take the limit as t0 → −∞ and using (3.2), we obtain

(3.3) u(t) =

∫ t

−∞

(t− s)α−1
S (t− s)

(
f(s, u(s)) + (Ku)(s)

)
ds+

∑

τk<t

T (t− τk)yk.

Let the operator −A in (1.1) and (3.1) be an infinitesimal operator of an analytic

semigroup S(t) in the Banach space X and 0 ∈ ̺(A). For any β > 0, we define the

fractional power A−β of the operator A by

A−β =
1

Γ(β)

∫
∞

0

tβ−1S(t) dt.
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A−β is bounded, bijective and Aβ = (A−β)−1, β > 0 is a closed linear operator

such that D(Aβ) = R(A−β). The operator A0 is the identity operator in X and for

0 6 β 6 1, the space Xβ = D(Aβ) with the norm ‖x‖β = ‖Aβx‖ is a Banach space.

Lemma 3.1 ([19]). Let −A be an infinitesimal operator of an analytic semi-

group S(t). Then

(i) S(t) : X → D(Aβ) for every t > 0 and β > 0;

(ii) for every x ∈ D(Aβ), it follows that S(t)Aβx = AβS(t)x;

(iii) for every t > 0, the operator AβS(t) is bounded and

(3.4) ‖AβS(t)‖ 6 Mβt
−βe−λt, Mβ > 0, λ > 0;

(iv) for 0 < β 6 1 and x ∈ D(Aβ), we have

‖S(t)x− x‖ 6 Cβt
β‖Aβx‖, Cβ > 0.

Lemma 3.2. Assume that (H1), (H2), (H4) hold. If u ∈ PAPT (R, Xβ), then

(Ku)(t) =

∫ t

−∞

k(t− s)g(s, u(s)) ds ∈ PAPT (R, X).

P r o o f. For u ∈ PAPT (R, Xβ), it is not difficult to see that ϕ(·) = g(·, u(·)) ∈
PAPT (R, X) by Theorem 2.3. Let ϕ = ϕ1 + ϕ2, where ϕ1 ∈ APT (R, X), ϕ2 ∈
PAP 0

T (R, X), then

∫ t

−∞

k(t−s)g(s, u(s)) ds =

∫ t

−∞

k(t−s)ϕ1(s) ds+

∫ t

−∞

k(t−s)ϕ2(s) ds := Ψ1(t)+Ψ2(t),

where

Ψ1(t) =

∫ t

−∞

k(t− s)ϕ1(s) ds, Ψ2(t) =

∫ t

−∞

k(t− s)ϕ2(s) ds.

(i) Ψ1 ∈ APT (R, X). It is not difficult to see that Ψ1 ∈ UPC(R, X). Since

ϕ1 ∈ APT (R, X), for ε > 0, let Ωε be a relatively dense subset of R formed by the

ε-periods of ϕ1. If τ ∈ Ωε, t ∈ R, |t− ti| > ε, i ∈ Z, then

‖ϕ1(t+ τ)− ϕ1(t)‖ < ε.
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Hence, by (H2), for t ∈ R, |t− ti| > ε, i ∈ Z, one has

‖Ψ1(t+ τ) −Ψ1(t)‖ =

∥∥∥∥
∫ t+τ

−∞

k(t+ τ − s)ϕ1(s) ds−
∫ t

−∞

k(t− s)ϕ1(s) ds

∥∥∥∥

=

∥∥∥∥
∫ t

−∞

k(t− s)(ϕ1(s+ τ)− ϕ1(s)) ds

∥∥∥∥

6

∫ t

−∞

Cke
−η(t−s)‖ϕ1(s+ τ)− ϕ1(s)‖ ds <

Ck

η
ε,

which implies that Ψ1 ∈ APT (R, X).

(ii) Ψ2 ∈ PAP 0
T (R, X). In fact, for r > 0, one has

1

2r

∫ r

−r

‖Ψ2(t)‖ dt =
1

2r

∫ r

−r

∥∥∥∥
∫ t

−∞

k(t− s)ϕ2(s) ds

∥∥∥∥ dt

=
1

2r

∫ r

−r

∥∥∥∥
∫

∞

0

k(s)ϕ2(t− s) ds

∥∥∥∥ dt

6
1

2r

∫ r

−r

∫
∞

0

Cke
−ηs‖ϕ2(t− s)‖ ds dt

6

∫
∞

0

Cke
−ηsΦr(s) ds,

where

Φr(s) =
1

2r

∫ r

−r

‖ϕ2(t− s)‖ dt.

Since ϕ2 ∈ PAP 0
T (R, X), it follows that ϕ2(· − s) ∈ PAP 0

T (R, X) for each s ∈ R by

Remark 2.1, hence lim
r→∞

Φr(s) = 0 for all s ∈ R. By using the Lebesgue dominated

convergence theorem, we have Ψ2 ∈ PAP 0
T (R, X). This completes the proof. �

Lemma 3.3. Assume that (H1)–(H4) hold. If u ∈ PAPT (R, Xβ), then

(Λu)(t) :=

∫ t

−∞

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds

lies in PAPT (R, Xβ).

P r o o f. If u ∈ PAPT (R, Xβ), Ku ∈ PAPT (R, X) by Lemma 3.2, and f(·, u(·)) ∈
PAPT (R, X) by Theorem 2.3. Hence h(·) = (Ku)(·) + f(·, u(·)) ∈ PAPT (R, X). Let

h = h1 + h2, where h1 ∈ APT (R, X), h2 ∈ PAP 0
T (R, X), then

(Λu)(t) =

∫ t

−∞

(t− s)α−1
S (t− s)h(s) ds := Λ1(t) + Λ2(t),

132



where

Λ1(t) =

∫ t

−∞

(t− s)α−1
S (t− s)h1(s) ds,

Λ2(t) =

∫ t

−∞

(t− s)α−1
S (t− s)h2(s) ds.

(i) Λ1 ∈ APT (R, Xβ). It is not difficult to see that Λ1 ∈ UPC(R, X). Since

h1 ∈ APT (R, X), for ε > 0 there exists a relatively dense set Ωε such that for

τ ∈ Ωε, t ∈ R, |t− ti| > ε, i ∈ Z,

‖h1(t+ τ)− h1(t)‖ < ε.

Hence, by Lemma 3.1, for t ∈ R, |t− ti| > ε, i ∈ Z, one has

‖Λ1(t+ τ)− Λ1(t)‖β = ‖Aβ(Λ1(t+ τ)− Λ1(t))‖

6

∫ t

−∞

(t− s)α−1‖Aβ
S (t− s)‖‖h1(s+ τ) − h1(s)‖ ds

6 αεMβ

∫ t

−∞

∫
∞

0

θ1−βξα(θ)(t− s)−αβ+α−1e−λθ(t−s)α dθ ds

= αεMβ

∫
∞

0

∫
∞

0

θ1−βξα(θ)σ
−αβ+α−1e−λθσα

dθ dσ,

where σ = t− s. Note that

α

∫
∞

0

∫
∞

0

θ1−βξα(θ)σ
−αβ+α−1e−λθσα

dθ dσ

= α

∫
∞

0

ξα(θ)

∫
∞

0

θ1−βσ−αβ+α−1e−λθσα

dσ dθ

=
1

λ1−β

∫
∞

0

ξα(θ)

∫
∞

0

(λθσα)−βe−λθσα

d(λθσα) dθ =
Γ(1− β)

λ1−β
.

Hence, one has

‖Λ1(t+ τ) − Λ1(t)‖β 6
Γ(1− β)Mβε

λ1−β
,

which implies that Λ1 ∈ APT (R, Xβ).
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(ii) Λ2 ∈ PAP 0
T (R, Xβ). In fact, for r > 0 one has

1

2r

∫ r

−r

‖Λ2(t)‖β dt =
1

2r

∫ r

−r

‖AβΛ2(t)‖ dt

6
1

2r

∫ r

−r

∫ t

−∞

(t− s)α−1‖Aβ
S (t− s)‖‖h2(s)‖ ds dt

6
αMβ

2r

∫ r

−r

∫ t

−∞

∫
∞

0

θ1−βξα(θ)(t − s)−αβ+α−1e−λθ(t−s)α‖h2(s)‖ dθ ds dt

=
αMβ

2r

∫ r

−r

∫
∞

0

∫
∞

0

θ1−βξα(θ)σ
−αβ+α−1e−λθσα‖h2(t− σ)‖ dθ dσ dt

= αMβ

∫
∞

0

∫
∞

0

θ1−βξα(θ)σ
−αβ+α−1e−λθσα

Hr(σ) dθ dσ,

where

Hr(σ) =
1

2r

∫ r

−r

‖h2(t− σ)‖ dt.

Since h2 ∈ PAP 0
T (R, X), it follows that h2(· − σ) ∈ PAP 0

T (R, X) for each σ ∈ R by

Remark 2.1, then lim
r→∞

Hr(σ) = 0 for all σ ∈ R. Hence Λ2 ∈ PAP 0
T (R, Xβ). �

Theorem 3.4. Assume that (H1)–(H5) hold. If Θ < 1, where

Θ = Mβ(LgCkη
−1 + Lf )

Γ(1− β)

λ1−β
+ 2L1NMβ

( 1

mβ
+

1

eλ − 1

)
,

then (1.1) has a unique PC-mild solution u ∈ PAPT (R, Xβ).

P r o o f. Let F : PAPT (R, Xβ) → PC(R, Xβ) be the operator defined by

(Fu)(t) =

∫ t

−∞

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds(3.5)

+
∑

τk<t

T (t− τk)Gk(u(τk)).

We will show that F has a fixed point in PAPT (R, Xβ) and divide the proof into

several steps.

(i) Fu ∈ PAPT (R, Xβ). For u ∈ PAPT (R, Xβ), by Lemma 3.3, one has

(Λu)(t) =

∫ t

−∞

(t− s)α−1
S (t− s)(f(s, u(s)) + (Ku)(s)) ds ∈ PAPT (R, Xβ).

It remains to show that

(3.6)
∑

τk<t

T (t− τk)Gk(u(τk)) ∈ PAPT (R, Xβ).
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By Theorem 2.5, Gk(u(τk)) ∈ P̃AP (Z, X). Let Gk(u(τk)) = βk + γk, where

βk ∈ AP (Z, X) and γk ∈ P̃AP0(Z, X), then

∑

τk<t

T (t− τk)Gk(u(τk)) =
∑

τk<t

T (t− τk)βk +
∑

τk<t

T (t− τk)γk := Φ1(t) + Φ2(t).

Since {τ jk}, k, j ∈ Z are equipotentially almost periodic, hence by Lemma 2.2, for

any ε > 0 there exist relative dense sets of real numbers Ωε and integers Qε such

that for τk < t 6 τk+1, τ ∈ Ωε, q ∈ Qε, |t− τk| > ε, |t− τk+1| > ε, j ∈ Z, one has

t+ τ > τk + ε+ τ > τk+q,

and

τk+q+1 > τk+1 + τ − ε > t+ τ,

that is τk+q < t+ τ < τk+q+1. Then

‖Φ1(t+ τ)− Φ1(t)‖β =

∥∥∥∥
∑

τk<t+τ

T (t+ τ − τk)βk −
∑

τk<t

T (t− τk)βk

∥∥∥∥
β

6
∑

τk<t

‖T (t− τk)(βk+q − βk)‖β

=
∑

τk<t

‖Aβ
T (t− τk)‖‖(βk+q − βk)‖

6 Mβε
∑

τk<t

∫
∞

0

θ−βξα(θ)(t − τk)
−αβe−λθ(t−τk)

α

dθ

6 Mβε

∫
∞

0

ξα(θ)

( ∑

0<θ(t−τk)α61

(θ(t − τk)
α)−βe−λθ(t−τk)

α

+

∞∑

j=1

∑

j<θ(t−τk)α6j+1

(θ(t− τk)
α)−βe−λθ(t−τk)

α

)
dθ

6 Mβε

∫
∞

0

ξα(θ)
(2N
mβ

+
2N

eλ − 1

)
dθ

= 2MβNε
( 1

mβ
+

1

eλ − 1

)
,

where m = min{θ(t− τk)
α : 0 < θ(t− τk)

α 6 1}. Hence Φ1 ∈ APT (R, Xβ).

Next, we show that Φ2 ∈ PAP 0
T (R, Xβ). Since γk ∈ P̃AP0(Z, X), by Lemma 2.4

and [13] there exists g(t) = γk, t ∈ [k, k+1) such that g ∈ P̃AP0(R, X) and g(k) = γk,

k ∈ Z.
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By Lemma 3.1, one has

1

2r

∫ r

−r

‖Φ2(t)‖β dt =
1

2r

∫ r

−r

∥∥∥∥
∑

τk<t

T (t− τk)γk

∥∥∥∥
β

dt

6
1

2r

∫ r

−r

∑

τk<t

‖Aβ
T (t− τk)‖‖γk‖

6
Mβ

2r

∫ r

−r

∑

τk<t

∫
∞

0

θ−βξα(θ)(t − τk)
−αβe−λθ(t−τk)

α‖g(k)‖ dθ dt

6
Mβ

2r

∫ r

−r

∑

τk<t

∫
∞

0

ξα(θ)(θ(t − τk)
α)−βe−λθ(t−τk)

α‖g(t)‖ dθ dt

6
Mβ

2r

∫ r

−r

∫
∞

0

ξα(θ)

( ∑

0<θ(t−τk)α61

(θ(t− τk)
α)−βe−λθ(t−τk)

α

+
∞∑

j=1

∑

j<θ(t−τk)α6j+1

(θ(t− τk)
α)−βe−λθ(t−τk)

α

)
‖g(t)‖ dθ dt

6
Mβ

2r

∫ r

−r

∫
∞

0

ξα(θ)
(2N
mβ

+
2N

eλ − 1

)
‖g(t)‖ dθ dt

6 2NMβ

( 1

mβ
+

1

eλ − 1

) 1

2r

∫ r

−r

‖g(t)‖ dt,

where N is the constant in Lemma 2.1. Hence

lim
r→∞

1

2r

∫ r

−r

‖Φ2(t)‖β dt = 0,

then Φ2 ∈ PAP 0
T (R, Xβ). So Fu ∈ PAPT (R, Xβ).

(ii) F is a contraction. For u, v ∈ PAPT (R, Xβ),

‖(Fu)(t)− (Fv)(t)‖β 6

∫ t

−∞

‖(t− s)α−1
S (t− s)[((Ku)(s) + f(s, u(s)))

− ((Kv)(s) + f(s, v(s)))]‖β ds

+
∑

τk<t

‖T (t− τk)[Gk(u(τk))−Gk(v(τk))]‖β

6

∫ t

−∞

(t− s)α−1‖Aβ
S (t− s)‖‖[((Ku)(s) + f(s, u(s)))

− ((Kv)(s) + f(s, v(s)))]‖ ds

+
∑

τk<t

‖Aβ
T (t− τk)‖‖[Gk(u(τk))−Gk(v(τk))]‖
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6 αMβ(LgCkη
−1 + Lf )‖u− v‖β

×
∫ t

−∞

∫
∞

0

θ1−βξα(θ)(t − s)−αβ+α−1e−λθ(t−s)α dθ ds

+ L1Mβ‖u− v‖β
∑

τk<t

∫
∞

0

θ−βξα(θ)(t − τk)
−αβe−λθ(t−τk)

α

dθ

6 Mβ(LgCkη
−1 + Lf)

Γ(1 − β)

λ1−β
‖u− v‖β

+ 2L1NMβ

( 1

mβ
+

1

eλ − 1

)
‖u− v‖β

= Θ‖u− v‖β .

Since Θ < 1, F is a contraction.
By (i), F(PAPT (R, Xβ)) ⊂ PAPT (R, Xβ). Since (ii) holds, by the Banach con-

traction mapping principle, F has a unique fixed point in PAPT (R, Xβ), which is

the unique piecewise pseudo almost periodic PC-mild solution of (1.1). �

If (Ku)(t) = 0, then (1.1) is an impulsive fractional differential equation

(3.7) cDαu(t) +Au(t) = f(t, u(t)) +

∞∑

k=−∞

Gk(u(t))δ(t − τk).

By Theorem 3.4, one has the following result:

Corollary 3.5. Assume that (H1), (H3), (H5) hold. If MβLfΓ(1 − β)/λ1−β +

2L1NMβ(1/m
β + 1/(eλ − 1)) < 1, then (3.7) has a unique PC-mild solution u ∈

PAPT (R, Xβ).

4. Examples

In this section, we provide some examples to illustrate our main results.

Example 4.1. Consider the fractional partial differential equation with impul-

sive effects

(4.1)





cDαw(t, x(t)) − ∂2w(t, x)

∂x2

=

∫ t

−∞

k(t− s)g(s, x, w(s, x)) ds+ γF (t) cos(w(t, x)),

t ∈ R, t 6= τk, k ∈ Z, x ∈ (0, 1),

w(τ+k , x) = (βk + 1)w(τk, x), k ∈ Z, x ∈ [0, 1],

w(t, 0) = w(t, 1) = 0,
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where 1 < α 6 1, τk = k + |sin k + sin
√
2k|/4, F ∈ PAPT (R, X), βk ∈ PAP (Z,R).

Note that integero {τ jk}, k ∈ Z, j ∈ Z are equipotentially almost periodic and

κ = inf
i∈Z

(τk+1 − τk) > 0; one can see [16], [21] for more details.

Let X = (L2[0, 1], ‖·‖L2), define the linear operator −A by

D(−A) = {u ∈ X : u′′ ∈ X, u(0) = u(1) = 0} and −Au = ∆u = u′′, u ∈ D(−A).

It is well known, see [19] that −A is the infinitesimal generator of a semigroup S(t)

on X with ‖S(t)‖L2 6 e−t for t > 0, hence (H1) holds. Let u(t)x = w(t, x), t ∈ R,

x ∈ [0, 1], then (4.8) can be rewritten in the abstract form (1.1). Since Gk(u) = βku

and βk ∈ PAP (Z,R), (H5) holds with L1 = sup
k∈Z

‖βk‖. By Theorem 3.4, one has

Theorem 4.1. Under assumptions (H2), (H4), if L = max{γ, Lg, L1} is suffi-
ciently small, then (4.8) has a unique PC-mild PAPT solution.

Example 4.2. Consider a two-dimensional impulsive fractional predator-prey

system with diffusion

(4.2)





cDαu(t, x(t)) = µ1∆u+ u
[
a1(t, x)− b(t, x)u − c1(t, x)v

r(t, x)v + u

]
,

t ∈ R, t 6= τk, k ∈ Z,

cDαv(t, x(t)) = µ2∆v + v
[
− a2(t, x) +

c2(t, x)u

r(t, x)u + v

]
,

t ∈ R, t 6= τk, k ∈ Z,

u(τ+k , x) = u(τk, x)Ik(x, u(τk, x), v(τk , x)), k ∈ Z,

v(τ+k , x) = v(τk, x)Jk(x, u(τk, x), v(τk, x)), k ∈ Z,

∂u

∂n

∣∣∣
∂Ω

= 0,
∂v

∂n

∣∣∣
∂Ω

= 0,

where 0 < α 6 1, in a bounded domain Ω ⊂ R
n with smooth boundary ∂Ω, nonuni-

formly distributed in the domain Ω = Ω× ∂Ω; ∆ = ∂2/∂x2
1 + ∂2/∂x2

2 + . . .+ ∂2/∂x2
n

is the Laplace operator and ∂/∂n is the outward normal derivative. µ1 > 0, µ2 > 0

are diffusion coefficients, the positive functions a1, a2, c1 and c2 stand for prey in-

trinsic growth rate, capturing rate of the predator, death rate of the predator and

conversion rate, respectively; one can see [3] for more details.

Let

τk = k + αk, k ∈ Z,

where {αk}, αk ∈ R, k ∈ Z is an almost periodic sequence such that

sup
k∈Z

|αk| = α <
1

2
,

138



then {τ jk}, k, j ∈ Z are equipotentially almost periodic and κ = inf
k∈Z

(τk+1 − τk) > 0;

one can see [23], [24] for more details.

Let w = (u, v) and

A =

[
λ− µ1∆ 0

0 λ− µ2∆

]
,

f(t, w) =



u
[
a1(t, x) − b(t, x)u− c1(t, x)v

r(t, x)v + u

]
+ λu

v
[
− a2(t, x) +

c2(t, x)u

r(t, x)u + v

]
+ λv


 ,

Gk(w(τk)) =

[
u(τk, x)Ik(x, u(τk, x), v(τk, x))− u(τk, x)

v(τk, x)Jk(x, u(τk, x), v(τk, x))− v(τk, x)

]
,

where λ > 0, then (4.9) can be rewritten in the form (3.7):

cDαw(t) +Aw(t) = f(t, w(t)) +

∞∑

k=−∞

Gk(w(t))δ(t − τk).

It is well known [22] that the operator A is sectorial and Reσ(A) 6 −λ, the

analytic semigroup of the operator A is e−At and

A−β =
1

Γ(β)

∫
∞

0

tβ−1e−At dt.

Assume that

(A1) ai(t, x), ci(t, x), i = 1, 2, b(t, x) and r(t, x) are piecewise pseudo almost periodic

functions with respect to t, uniformly for x ∈ Ω, and positive-valued on R×Ω.

(A2) The sequences of functions {Ik(x, u, v)}, {Jk(x, u, v)}, k ∈ Z are generalized

pseudo almost periodic with respect to k, uniformly for x, u, v ∈ Ω.

By Corollary 3.5, one has

Theorem 4.2. Under assumptions (A1), (A2), (H3), (H5), if L = max{Lf , L1}
is sufficiently small, then (4.9) has a unique PC-mild PAPT solution.
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