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Abstract
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1. Introduction

In 1966, Y. Imai and K. Iséki ([10, 11]) introduced BCK- and BCI-algebras. In
1983, Q.P. Hu and X. Li ([9]) introduced BCH-algebras. It is known that BCK-
and BCI-algebras are contained in the class of BCH-algebras. J. Neggers and
H.S. Kim ([16]) defined d-algebras which are a generalization of BCK-algebras.

In 2001, G. Georgescu and A. Iorgulescu ([8]) introduced the pseudo-BCK-
algebras as an extension of BCK-algebras. In 2008, W.A. Dudek and Y.B. Jun
([3]) introduced pseudo-BCI-algebras as a natural generalization of BCI-algebras
and of pseudo-BCK-algebras. These algebras have also connections with other
algebras of logic such as pseudo-MV-algebras and pseudo-BL-algebras defined by
G. Georgescu and A. Iorgulescu in [6] and [7], respectively. Those algebras were
investigated by several authors in [4, 5, 14] and [15]. As a generalization of d-
algebras, Y.B. Jun, H.S. Kim and J. Neggers ([13]) introduced pseudo-d-algebras.
Recently, R.A. Borzooei et al. ([1]) defined pseudo-BE-algebras.

In this paper we introduce pseudo-BCH-algebras as an extension of BCH-
algebras. We give basic properties of pseudo-BCH-algebras and provide some
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conditions for a pseudo-BCH-algebra to be a pseudo-BCI-algebra. Moreover we
study the set CenX of all minimal elements of a pseudo-BCH-algebra X, the so-
called centre of X. We also consider ideals in pseudo-BCH-algebras and establish
a relationship between the ideals of a pseudo-BCH-algebra and the ideals of its
centre. Finally we show that the centre of a pseudo-BCH-algebra X defines a
regular congruence on X.

2. Definition and examples of pseudo-BCH-algebras

We recall that an algebra X = (X; ∗, 0) of type (2, 0) is called a BCH-algebra if
it satisfies the following axioms:

(BCH-1) x ∗ x = 0;

(BCH-2) (x ∗ y) ∗ z = (x ∗ z) ∗ y;

(BCH-3) x ∗ y = y ∗ x = 0 =⇒ x = y.

A BCH-algebra X is said to be a BCI-algebra if it satisfies the identity

(BCI) ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0.

A BCK-algebra is a BCI-algebra X satisfying the law 0 ∗ x = 0.

Definition 2.1 ([3]). A pseudo-BCI-algebra is a structure X = (X;≤, ∗, �, 0),
where ”≤” is a binary relation on the set X, ”∗” and ”�” are binary operations
on X and ”0” is an element of X, satisfying the axioms:

(pBCI-1) (x ∗ y) � (x ∗ z) ≤ z ∗ y, (x � y) ∗ (x � z) ≤ z � y;

(pBCI-2) x ∗ (x � y) ≤ y, x � (x ∗ y) ≤ y;

(pBCI-3) x ≤ x;

(pBCI-4) x ≤ y, y ≤ x =⇒ x = y;

(pBCI-5) x ≤ y ⇐⇒ x ∗ y = 0⇐⇒ x � y = 0.

A pseudo-BCI-algebra X is called a pseudo-BCK-algebra if it satisfies the identi-
ties

(pBCK) 0 ∗ x = 0 � x = 0.

Definition 2.2. A pseudo-BCH-algebra is an algebra X = (X; ∗, �, 0) of type
(2, 2, 0) satisfying the axioms:

(pBCH-1) x ∗ x = x � x = 0;

(pBCH-2) (x ∗ y) � z = (x � z) ∗ y;

(pBCH-3) x ∗ y = y � x = 0 =⇒ x = y;

(pBCH-4) x ∗ y = 0⇐⇒ x � y = 0.
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Remark 2.3. Observe that if (X; ∗, 0) is a BCH-algebra, then letting x � y :=
x ∗ y, produces a pseudo-BCH-algebra (X; ∗, �, 0). Therefore, every BCH-algebra
is a pseudo-BCH-algebra in a natural way. It is easy to see that if (X; ∗, �, 0)
is a pseudo-BCH-algebra, then (X; �, ∗, 0) is also a pseudo-BCH-algebra. From
Proposition 3.2 of [3] we conclude that if (X;≤, ∗, �, 0) is a pseudo-BCI-algebra,
then (X; ∗, �, 0) is a pseudo-BCH-algebra.

We say that a pseudo-BCH-algebra X is proper if ∗ 6= � and it is not a pseudo-
BCI-algebra.

Remark 2.4. The class of all pseudo-BCH-algebras is a quasi-variety. Therefore,
if X1 and X2 are two pseudo-BCH-algebras, then the direct product X = X1×X2

is also a pseudo-BCH-algebra. In the case when at least one of X1 and X2 is
proper, then X is proper.

Example 2.5. Let X1 = {0, a, b, c}. We define the binary operations ∗1 and �1
on X1 as follows:

∗1 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c b c 0

and

�1 0 a b c

0 0 0 0 0
a a 0 a 0
b b b 0 0
c c c a 0

It is easy to check that X1 = (X1; ∗1, �1, 0) is a pseudo-BCH-algebra. On the set
X2 = {0, 1, 2, 3} consider the operation ∗2 given by the following table:

∗2 0 1 2 3

0 0 0 0 0
1 1 0 0 1
2 2 2 0 0
3 3 3 3 0

By simple calculation we can get that X2 = (X2; ∗2, ∗2, 0) is a (pseudo)-BCH-
algebra. The direct product X = X1×X2 is a pseudo-BCH-algebra. Observe that
X is proper. Let x = (a, 1), y = (a, 3) and z = (a, 2). Then (x ∗ y) � (x ∗ z) =
(0, 1) � (0, 0) = (0, 1) and z ∗ y = (0, 0). Since (0, 1) � (0, 0), we conclude that X
is not a pseudo-BCI-algebra, and therefore it is a proper pseudo-BCH-algebra.

Proposition 2.6. Any (proper) pseudo-BCH-algebra satisfying (pBCK) can be
extended to a (proper) pseudo-BCH-algebra containing one element more.

Proof. Let X = (X; ∗, �, 0) be a pseudo-BCH-algebra satisfying (pBCK) and let
δ /∈ X. On the set Y = X ∪ {δ} consider the operations:
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x ∗′ y =


x ∗ y if x, y ∈ X,
δ if x = δ and y ∈ X,
0 if x ∈ Y and y = δ,

and

x �′ y =


x � y if x, y ∈ X,
δ if x = δ and y ∈ X,
0 if x ∈ Y and y = δ.

Obviously, (Y ; ∗′, �′, 0) satisfies the axioms (pBCH-1), (pBCH-3), and (pBCH-4).
Further, the axiom (pBCH-2) is easily satisfied for all x, y, z ∈ X. Moreover,
by routine calculation we can verify it in the case when at least one of x, y, z is
equal to δ. Thus, by definition, (Y ; ∗′, �′, 0) is a pseudo-BCH-algebra. Clearly,
if X is a proper pseudo-BCH-algebra, then (Y ; ∗′, �′, 0) is also a proper pseudo-
BCH-algebra.

From Example 2.5 and Proposition 2.6 we conclude that there are infinite many
proper pseudo-BCH-algebras.

3. Properties of pseudo-BCH-algebras

Let X = (X; ∗, �, 0) be a pseudo-BCH-algebra. Define the relation ≤ on X by
x ≤ y if and only if x ∗ y = 0 (or equivalently, x � y = 0).

For any x ∈ X and n = 0, 1, 2, . . ., we put

0 ∗0 x = 0 and 0 ∗n+1 x = (0 ∗n x) ∗ x;

0 �0 x = 0 and 0 �n+1 x = (0 �n x) � x.

Proposition 3.1. In a pseudo-BCH-algebra X the following properties hold (for
all x, y, z ∈ X) :

(P1) x ≤ y, y ≤ x =⇒ x = y;

(P2) x ≤ 0 =⇒ x = 0;

(P3) x ∗ (x � y) ≤ y, x � (x ∗ y) ≤ y;

(P4) x ∗ 0 = x = x � 0;

(P5) 0 ∗ x = 0 � x;

(P6) x ≤ y =⇒ 0 ∗ x = 0 � y;

(P7) 0 � (0 ∗ (0 � x)) = 0 � x, 0 ∗ (0 � (0 ∗ x)) = 0 ∗ x;

(P8) 0 ∗ (x ∗ y) = (0 � x) � (0 ∗ y);

(P9) 0 � (x � y) = (0 ∗ x) ∗ (0 � y).
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Proof. (P1) follows from (pBCH-3).

(P2) Let x ≤ 0. Then x ∗ 0 = 0. Applying (pBCH-2) and (pBCH-1) we obtain

0 � x = (x ∗ 0) � x = (x � x) ∗ 0 = 0 ∗ 0 = 0,

that is, 0 ≤ x. Therefore x = 0 by (P1).

(P3) Using (pBCH-2) and (pBCH-1) we have (x∗(x�y))�y = (x�y)∗(x�y) = 0.
Hence x ∗ (x � y) ≤ y. Similarly, x � (x ∗ y) ≤ y.

(P4) Putting y = 0 in (P3), we have x ∗ (x � 0) ≤ 0 and x � (x ∗ 0) ≤ 0. From
(P2) we obtain x ∗ (x � 0) = 0 and x � (x ∗ 0) = 0. Thus x ≤ x � 0 and x ≤ x ∗ 0.

On the other hand, (x � 0) ∗ x = (x ∗ x) � 0 = 0 � 0 = 0 and (x ∗ 0) � x =
(x � x) ∗ 0 = 0 ∗ 0 = 0, and so x � 0 ≤ x and x ∗ 0 ≤ x. By (P1), x ∗ 0 = x = x � 0.

(P5) Applying (pBCH-1) and (pBCH-2) we get 0∗x = (x�x)∗x = (x∗x)�x =
0 � x.

(P6) Let x ≤ y. Then x�y = 0 and therefore 0∗x = (x�y)∗x = (x∗x)�y = 0�y.

(P7) From (P3) it follows that 0 ∗ (0 �x) ≤ x and 0 � (0 ∗x) ≤ x. Hence, using
(P5) and (P6) we obtain (P7).

(P8) Applying (pBCH-1) and (pBCH-2) we have

(0 � x) � (0 ∗ y) = (((x ∗ y) ∗ (x ∗ y)) � x) � (0 ∗ y)

= (((x ∗ y) � x) ∗ (x ∗ y)) � (0 ∗ y)

= (((x � x) ∗ y) ∗ (x ∗ y)) � (0 ∗ y)

= ((0 ∗ y) ∗ (x ∗ y)) � (0 ∗ y)

= ((0 ∗ y) � (0 ∗ y)) ∗ (x ∗ y)

= 0 ∗ (x ∗ y).

(P9) The proof is similar to the proof of (P8).

From (P1) and (P3) we get

Corollary 3.2. Every pseudo-BCH-algebra satisfies (pBCI-2)–(pBCI-5).

Remark 3.3. In any pseudo-BCI-algebra the relation ≤ is transitive (see [3],
Proposition 3.2). However, in the pseudo-BCH-algebra X from Example 2.5 we
have (a, 1) ≤ (a, 2) and (a, 2) ≤ (a, 3) but (a, 1) � (a, 3).

Theorem 3.4. Let X be a pseudo-BCH-algebra. Then X is a pseudo-BCI-algebra
if and only if it satisfies the following implication:

(3.1) x ≤ y =⇒ x ∗ z ≤ y ∗ z, x � z ≤ y � z.
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Proof. If X is a pseudo-BCI-algebra, then X satisfies (3.1) by Proposition 3.2 (b7)
of [3]. Conversely, let (3.1) hold in X and let x, y, z ∈ X. By (P3), x � (x ∗ z) ≤ z
and x ∗ (x � z) ≤ z. Hence (x � (x ∗ z)) ∗ y ≤ z ∗ y and (x ∗ (x � z)) � y ≤ z � y,
and so (x ∗ y) � (x ∗ z) ≤ z ∗ y and (x � y) ∗ (x � z) ≤ z � y. Therefore, X satisfies
(pBCI-1). Consequently, X is a pseudo-BCI-algebra.

Theorem 3.5. Let X be a pseudo-BCH-algebra. The following statements are
equivalent:

(i) x ∗ (y ∗ z) = (x ∗ y) ∗ z for all x, y, z ∈ X;

(ii) 0 ∗ x = x = 0 � x for every x ∈ X;

(iii) x ∗ y = x � y = y ∗ x for all x, y ∈ X;

(iv) x � (y � z) = (x � y) � z for all x, y, z ∈ X.

Proof. (i) =⇒ (ii). Let x ∈ X. We have x = x∗0 = x∗(x∗x) = (x∗x)∗x = 0∗x.
By (P5), 0 � x = x.

(iv) =⇒ (ii). The proof is similar to the above proof.

(ii) =⇒ (iii). Let (ii) hold and x, y ∈ X. Applying (P8) and (pBCH-2) we
obtain

x ∗ y = 0 ∗ (x ∗ y) = (0 � x) � (0 ∗ y)

= x � y
= (0 ∗ x) � y = (0 � y) ∗ x = y ∗ x.

(iii) =⇒ (i). Let x, y, z ∈ X. Using (iii) and (pBCH-2) we get

x ∗ (y ∗ z) = (y � z) ∗ x = (y ∗ x) � z = (x ∗ y) ∗ z.

(iii) =⇒ (iv) has a proof similar to the proof of implication (iii) =⇒ (i).

Hence all the conditions are equivalent.

Corollary 3.6. If X is a pseudo-BCH-algebra satisying the idendity 0 ∗ x = x,
then (X; ∗, 0) is an Abelian group each element of which has order 2 (that is, a
Boolean group).

4. The centre of a pseudo-BCH-algebra. Ideals

An element a of a pseudo-BCH-algebra X is said to be minimal if for every x ∈ X
the following implication

x ≤ a =⇒ x = a

holds.
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Proposition 4.1. Let X be a pseudo-BCH-algebra and let a ∈ X. Then the
following conditions are equivalent (for every x ∈ X):

(i) a is minimal;

(ii) x � (x ∗ a) = a;

(iii) 0 � (0 ∗ a) = a;

(iv) a ∗ x = (0 ∗ x) � (0 ∗ a);

(v) a ∗ x = 0 � (x ∗ a).

Proof. (i) =⇒ (ii). By (P2), x � (x ∗ a) ≤ a for all x ∈ X. Since a is minimal,
we get (ii).

(ii) =⇒ (iii). Obvious.
(iii) =⇒ (iv). We have a ∗ x = (0 � (0 ∗ a)) ∗ x = (0 ∗ x) � (0 ∗ a).
(iv) =⇒ (v). Applying (P5) and (P8) we see that

0 � (x ∗ a) = 0 ∗ (x ∗ a) = (0 � x) � (0 ∗ a) = (0 ∗ x) � (0 ∗ a) = a ∗ x.

(v) =⇒ (i). Let x ≤ a. Then x ∗ a = 0 and hence a ∗ x = 0 � (x ∗ a) = 0. Thus
a ≤ x. Consequently, x = a.

Replacing ∗ by � and � by ∗ in Proposition 4.1 we obtain

Proposition 4.2. Let X be a pseudo-BCH-algebra and let a ∈ X. Then for every
x ∈ X the following conditions are equivalent:

(i) a is minimal;

(ii) x ∗ (x � a) = a;

(iii) 0 ∗ (0 � a) = a;

(iv) a � x = (0 � x) ∗ (0 � a);

(v) a � x = 0 ∗ (x � a).

Proposition 4.3. Let X be a pseudo-BCH-algebra and let a ∈ X. Then a is
minimal if and only if there is an element x ∈ X such that a = 0 ∗ x.

Proof. Let a be a minimal element of X. By Proposition 4.2, a = 0 ∗ (0 � a). If
we set x = 0 � a, then a = 0 ∗ x.

Conversely, suppose that a = 0 ∗ x for some x ∈ X. Using (P7) we get

0 ∗ (0 � a) = 0 ∗ (0 � (0 ∗ x)) = 0 ∗ x = a.

From Proposition 4.2 it follows that a is minimal.

For x ∈ X, set
x = 0 � (0 ∗ x).
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By (P5), x = 0 ∗ (0 ∗ x) = 0 � (0 � x) = 0 ∗ (0 � x).

Proposition 4.4. Let X be a pseudo-BCH-algebra. For any x, y ∈ X we have:

(a) x ∗ y = x̄ ∗ ȳ;

(b) x � y = x̄ � ȳ;

(c) ¯̄x = x̄.

Proof. (a) Applying (P8) and (P9) we get

x ∗ y = 0 � (0 ∗ (x ∗ y)) = 0 � [(0 � x) � (0 ∗ y)]

= [0 ∗ (0 � x)] ∗ [0 � (0 ∗ y)] = x ∗ y.

(b) has a proof similar to (a).

(c) By (P7), 0∗(0�(0∗x)) = 0∗x, that is, 0∗x = 0∗x. Hence x = 0�(0∗x) =
0 � (0 ∗ x) = x.

Following the terminology from BCH-algebras (see [2], Definition 5) the set {x ∈
X : x = x} will be called the centre of X. We shall denote it by CenX. By
Proposition 4.1, CenX is the set of all minimal elements of X. We have

(4.1) CenX = {x : x ∈ X}.

Define Φ : X → CenX by Φ(x) = x for all x ∈ X. By Proposition 4.4, Φ is a
homomorphism from X onto CenX. We also obtain

Proposition 4.5. Let X be a pseudo-BCH-algebra. Then CenX is a subalgebra
of X.

Proposition 4.6. Let X be a pseudo-BCH-algebra and let x, y ∈ CenX. Then
for every z ∈ X we have

(4.2) x � (z ∗ y) = y ∗ (z � x).

Proof. Let z ∈ X. Using Propositions 4.2 and 4.1 we obtain

x � (z ∗ y) = [z ∗ (z � x)] � (z ∗ y) = [z � (z ∗ y)] ∗ (z � x) = y ∗ (z � x),

that is, (4.2) holds.

Following [5], a pseudo-BCI-algebra (X;≤, ∗, �, 0) is said to be p-semisimple if it
satisfies for all x ∈ X,

0 ≤ x =⇒ x = 0.
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From Theorem 3.1 of [5] it follows that if X = (X;≤, ∗, �, 0) is a pseudo-BCI-
algebra, then X is p-semisimple if and only if x = x for every x ∈ X (that is,
CenX = X).

Theorem 4.7. Let X be a pseudo-BCH-algebra. Then CenX is a p-semisimple
pseudo-BCI-algebra.

Proof. Since CenX is a subalgebra of X, CenX is a pseudo-BCH-algebra. Let
x, y, z ∈ CenX and let x ≤ y. Since x and y are minimal elements of X, we get
x = y. Hence x ∗ z ≤ y ∗ z and x � z ≤ y � z. Then, by Theorem 3.4, CenX is a
pseudo-BCI-algebra. Obviously, x = x for every x ∈ CenX, and therefore CenX
is p-semisimple.

Remark 4.8. From Theorem 3.6 of [5] we deduce that (CenX; +, 0) is a group,
where x+ y is x ∗ (0 � y) for all x, y ∈ CenX.

Definition 4.9. Let X be a pseudo-BCH-algebra. A subset I of X is called an
ideal of X if it satisfies for all x, y ∈ X
(I1) 0 ∈ I;

(I2) if x ∗ y ∈ I and y ∈ I, then x ∈ I.

We will denote by Id(X) the set of all ideals of X. Obviously, {0}, X ∈ Id(X).

Proposition 4.10. Let X be a pseudo-BCH-algebra and let I ∈ Id(X). For any
x, y ∈ X, if y ∈ I and x ≤ y, then x ∈ I.

Proof. Straightforward.

Proposition 4.11. Let X be a pseudo-BCH-algebra and I be a subset of X sat-
isfying (I1). Then I is an ideal of X if and only if for all x, y ∈ X,

(I2’) if x � y ∈ I and y ∈ I, then x ∈ I.

Proof. Let I be an ideal of X. Suppose that x � y ∈ I and y ∈ I. By (P3),
x∗ (x�y) ≤ y and from Proposition 4.10 it follows that x∗ (x�y) ∈ I. Therefore,
since x�y ∈ I and I satisfies (I2), we obtain x ∈ I, that is, (I2’) holds. The proof
of the implication (I2’) ⇒ (I2) is analogous.

Example 4.12. Let X = {0, a, b, c, d}. Define binary operations ∗ and � on X
by the following tables:

∗ 0 a b c d

0 0 0 0 0 d
a a 0 a 0 d
b b b 0 0 d
c c b c 0 d
d d d d d 0

� 0 a b c d

0 0 0 0 0 d
a a 0 a 0 d
b b b 0 0 d
c c c a 0 d
d d d d d 0
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By routine calculation, X = (X; ∗, �, 0) is a pseudo-BCH-algebra. It is easy to
see that Id(X) = {{0}, {0, a}, {0, b}, {0, a, b, c}, X}.

The following two propositions give the homomorphic properties of ideal.

Proposition 4.13. Let X and Y be pseudo-BCH-algebras. If ϕ : X → Y is a
homomorphism and J ∈ Id(Y), then the inverse image ϕ−1(J) of J is an ideal
of X.

Proof. Straightforward.

Proposition 4.14. Let ϕ : X → Y be a surjective homomorphism. If I is an
ideal of X containing ϕ−1(0), then ϕ(I) is an ideal of Y.

Proof. Since 0 ∈ I, we have 0 = ϕ(0) ∈ ϕ(I). Let x, y ∈ Y and suppose that
x ∗ y, y ∈ ϕ(I). Then there are a ∈ X and b, c ∈ I such that x = ϕ(a), y = ϕ(b)
and x ∗ y = ϕ(c). We have ϕ(a ∗ b) = ϕ(c) and hence (a ∗ b) ∗ c ∈ ϕ−1(0) ⊆ I.
By the definition of an ideal, a ∈ I. Consequently, x = ϕ(a) ∈ ϕ(I). This means
that ϕ(I) is an ideal of Y.

Definition 4.15. An ideal I of a pseudo-BCH-algebra X is said to be closed if
0 ∗ x ∈ I for every x ∈ I.

Theorem 4.16. An ideal I of a pseudo-BCH-algebra X is closed if and only if I
is a subalgebra of X.

Proof. Suppose that I is a closed ideal of X and let x, y ∈ I. By (pBCH-2) and
(pBCH-1),

[(x ∗ y) ∗ (0 ∗ y)] � x = [(x ∗ y) � x] ∗ (0 ∗ y)

= [(x � x) ∗ y] ∗ (0 ∗ y)

= (0 ∗ y) ∗ (0 ∗ y) = 0.

Hence [(x ∗ y) ∗ (0 ∗ y)] � x ∈ I. Since x, 0 ∗ y ∈ I, we have x ∗ y ∈ I. Similarly,
x � y ∈ I. Conversely, if I is a subalgebra of X, then x ∈ I and 0 ∈ I imply
0 ∗ x ∈ I.

Theorem 4.17. Every ideal of a finite pseudo-BCH-algebra is closed.

Proof. Let I be an ideal of a finite pseudo-BCH-algebra X and let a ∈ I. Suppose
that |X| = n for some n ∈ N. At least two of the n+ 1 elements:

0, 0 ∗ a, 0 ∗2 a, . . . , 0 ∗n a

are equal, for instance, 0 ∗r a = 0 ∗s a, where 0 ≤ s < r ≤ n. Hence

0 = (0 ∗r a) � (0 ∗s a) = [(0 ∗s a) � (0 ∗s a)] ∗r−s a = 0 ∗r−s a.
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Therefore 0 ∗r−s a ∈ I. Since a ∈ I, by definition, 0 ∗ a ∈ I. Consequently, I is a
closed ideal of X.

For any pseudo-BCH-algebra X, we set

K(X) = {x ∈ X : 0 ≤ x}.

Observe that CenX ∩ K(X) = {0}. Indeed, 0 ∈ CenX ∩ K(X) and if x ∈
CenX ∩ K(X), then x = 0 � (0 ∗ x) = 0 � 0 = 0.

In Example 4.12, CenX = {0, d} and K(X) = {0, a, b, c}.
It is easy to see that

x ∈ K(X)⇐⇒ x = 0⇐⇒ x ∈ Φ−1(0).

Thus

(4.3) K(X) = Φ−1(0).

Proposition 4.18. Let X be a pseudo-BCH-algebra. Then K(X) is a closed ideal
of X.

Proof. By (4.3) and Proposition 4.13, K(X) is an ideal of X. Let x ∈ K(X).
Then x = 0 and hence Φ(0 ∗ x) = 0 ∗ x = 0. Consequently, 0 ∗ x ∈ K(X). Thus
K(X) is a closed ideal.

Corollary 4.19. For any pseudo-BCH-algebra X the set K(X) is a subalgebra of
X, and so it is a pseudo-BCH-algebra.

Proposition 4.20. Let X and Y be pseudo-BCH-algebras. Then:

(a) Cen(X×Y) = Cen(X)× Cen(Y);

(b) K(X×Y) = K(X)×K(Y).

Proof. This is immediate from definitions.

For any element a of a pseudo-BCH-algebra X, we define a subset V(a) of X as

V(a) = {x ∈ X : a ≤ x}.

Note that V(a) 6= ∅, because a ≤ a gives a ∈ V(a). Furthermore, V(0) = K(X).

Proposition 4.21. Let X be a pseudo-BCH-algebra. Then for each x ∈ X there
exists a unique element a ∈ CenX such that a ≤ x.
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Proof. Let x ∈ X. Take a = x, that is, a = 0 � (0 ∗ x). By (P3), a ≤ x. From
(4.1) it follows that a ∈ CenX. To prove uniqueness, let b ∈ CenX be such that
b ≤ x. Then b � x = 0. Therefore,

0 ∗ b = (b � x) ∗ b = (b ∗ b) � x = 0 � x = 0 ∗ x

and hence b = b = 0 � (0 ∗ b) = 0 � (0 ∗ x) = x = a.

Lemma 4.22. Let X be a pseudo-BCH-algebra and a ∈ CenX. Then

V(a) = Φ−1(a).

Proof. Suppose that x ∈ V(a), that is, a ≤ x. We have x ≤ x. Since a, x ∈
CenX, by Proposition 4.21, a = x, that is, x ∈ Φ−1(a).

Conversely, if a = x, then a ≤ x by (P3). Hence x ∈ V(a).

Proposition 4.23. Let X be a pseudo-BCH-algebra. Then:

(a) X =
⋃

a∈CenX

V(a);

(b) if a, b ∈ CenX and a 6= b, then V(a) ∩V(b) = ∅.

Proof. (a) Clearly,
⋃

a∈CenX V(a) ⊆ X and let x ∈ X. Obviously, x ∈ V(x) and
x ∈ CenX. Therefore, x ∈

⋃
a∈CenX V(a).

(b) Let a, b ∈ Cen(X) and a 6= b. On the contrary suppose that V(a)∩V(b) 6= ∅.
Let x ∈V(a) ∩ V(b). Then a ≤ x and b ≤ x. From Proposition 4.21 it follows
that a = b, a contradition.

We now establish a relationship between the ideals of a pseudo-BCH-algebra and
the ideals of its centre.

Proposition 4.24. Let X be a pseudo-BCH-algebra and let A ⊆ CenX. The
following statements are equivalent:

(i) A is an ideal of CenX;

(ii)
⋃
a∈A

V(a) is an ideal of X.

Proof. Let I =
⋃

a∈A V(a). From Lemma 4.22 we have I =
⋃

a∈A Φ−1(a) =
Φ−1(A).

(i) ⇒ (ii). Let A ∈ Id(CenX). By Proposition 4.13, I is an ideal of X.

(ii) ⇒ (i). Since I = Φ−1(A), we conclude that A = Φ(I). Obviously, 0 ∈ A
and hence Φ−1(0) ⊆ I. Applying Proposition 4.14 we deduce that A is an ideal
of CenX.
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Theorem 4.25. There is a one-to-one correspondence between ideals of a pseudo-
BCH-algebra X containing K(X) and ideals of CenX.

Proof. Set I = {I ∈ Id(X) : I ⊇ K(X)} and C = Id(CenX). We consider two
functions:

f : I ∈ I → {x : x ∈ I} and g : A ∈ C →
⋃
a∈A

V(a).

Since f(I) = Φ(I), from Proposition 4.14 we conclude that f maps I into C. By
Proposition 4.24, g(A) =

⋃
a∈A V(a) ∈ I for all A ∈ C, and therefore g maps C

into I. We have

(4.4) (f ◦ g)(A) = Φ(Φ−1(A)) = A for all A ∈ C.

Obviously, I ⊆ Φ−1(Φ(I)). Let now x ∈ Φ−1(Φ(I)), that is, x = a for some
a ∈ I. Then Φ(x ∗ a) = 0, and hence x ∗ a ∈ Φ−1(0). Therefore, x ∗ a ∈ I (since
Φ−1(0) = K(X) ⊆ I). By definition, x ∈ I. Thus Φ−1(Φ(I)) = I. Consequently,

(4.5) (g ◦ f)(I) = Φ−1(Φ(I)) = I for all I ∈ I.

We conclude from (4.4) and (4.5) that f ◦ g = idC and g ◦ f = idI , hence that f
and g are inverse bijections between I and C.

Example 4.26. Let X1 = ({0, a, b, c}; ∗1, �1, 0) be the pseudo-BCH-algebra from
our Example 2.5. Consider the set X2 = {0, 1, 2, 3, 4} with the operation ∗2
defined by the following table:

∗2 0 1 2 3 4

0 0 0 4 3 2
1 1 0 4 3 2
2 2 2 0 4 3
3 3 3 2 0 4
4 4 4 3 2 0

From Example 3 of [17] it follows that X2 = (X2; ∗2, ∗2, 0) is a (pseudo)-BCH-
algebra. The direct product X = X1×X2 is a pseudo-BCH-algebra. From Propo-
sition 4.20 we have CenX = {0}×{0, 2, 3, 4} and K(X) = X1×{0, 1}. It is easy to
see that Id(CenX) = {{(0, 0)}, {(0, 0), (0, 3)},CenX}. Then, by Theorem 4.25, X
has three ideals containing K(X), namely: K(X), K(X)∪{(0, 3), (a, 3), (b, 3), (c, 3)}
and X.

Now we shall show that the centre CenX defines a regular congruence on a
pseudo-BCH-algebra X. Let ConX denote the set of all congruences on X and let
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θ ∈ ConX. For x ∈ X, we write x/θ for the congruence class containing x,
that is, x/θ = {y ∈ X : y θ x}. Set X/θ = {x/θ : x ∈ X}. It is easy to see
that the factor algebra X/θ = 〈X/θ; ∗, �, 0/θ〉 satisfies (pBCH-1) and (pBCH-2).
The axioms (pBCH-3) and (pBCH-4) are not necessarity satisfied. If X/θ is a
pseudo-BCH-algebra, then we say that θ is regular.

Remark 4.27. A. Wroński has shown that non-regular congruences exist in
BCK-algebras (see [18]) and hence in pseudo-BCH-algebras.

Theorem 4.28. Let X be a pseudo-BCH-algebra and let θc = {(x, y) ∈ X2 :
x = y}. Then θc is a regular congruence on X and X/θc ∼= CenX.

Proof. The mapping Φ is a homomorphism from X onto CenX. Moreover we
have

KerΦ = {(x, y) ∈ X2 : Φ(x) = Φ(y)} = θc.

By the Isomorphism Theorem we get X/θc ∼= CenX, and therefore θc is a regular
congruence on X.
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