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PSEUDO-CONFORMAL QUATERNIONIC CR STRUCTURE ON
(4n 4+ 3)-DIMENSIONAL MANIFOLDS

DMITRI ALEKSEEVSKY AND YOSHINOBU KAMISHIMA

ABSTRACT. We study a geometric structure on a (4n + 3)-dimensional smooth manifold
M which is an integrable, nondegenerate codimension 3-subbundle D on M whose fiber
supports the structure of 4n-dimensional quaternionic vector space H". It is thought of
as a generalization of the quaternionic C'R structure. In order to study this geometric
structure on M, we single out an sp(1)-valued 1-form w locally on a neighborhood U
of M such that Nullw = D|U. We shall construct the invariants on the pair (M,w)
whose vanishing implies that M is uniformized with respect to a finite dimensional flat
quaternionic CR geometry. The invariants obtained on (4n + 3)-manifold M have the
same formula as the curvature tensor of quaternionic (indefinite) Kéahler 4n-manifolds.
From this viewpoint, we exhibit a quaternionic analogue of Chern-Moser’s C'R structure.

INTRODUCTION

The Weyl curvature tensor is a conformal invariant of Riemannian manifolds and the
Chern-Moser curvature tensor is a C'R invariant on strictly pseudo-convex C R-manifolds. A
geometric significance of the vanishing of these curvature tensors is the appearance of the fi-
nite dimensional Lie group G with homogeneous space X. The geometry (G, X) is known as
conformally flat geometry (PO(n+1,1), S™), spherical C R-geometry (PU(n+1,1), $27+1)
respectively. The complete simply connected quaternionic (n+1)-dimensional quaternionic
hyperbolic space Hﬁ“ with the group of isometries PSp(n + 1,1) has the natural com-
pactification homeomorphic to a (4n + 4)-ball endowed with an extended smooth action of
PSp(n + 1,1). When the boundary sphere S4"*3 of the ball is viewed as the real hyper-
surface in the quaternionic projective space HP" !, the elements of PSp(n + 1,1) act as
quaternionic projective transformations of S4"*3. Since the action of PSp(n+1, 1) is transi-
tive on S4"3  we obtain a flat (spherical) quaternionic CR geometry (PSp(n+1,1), S4+3).
(Compare [16].) Combined with the above two geometries, this exhibits parabolic geometry
on the boundary of the compactification of rank-one symmetric space of noncompact type
over R, C or H. (See [10],[12],][35],[17].)

This observation naturally leads us to the problems: (1) existence of geometric structure
on a (4n + 3)-dimensional manifold M and (2) existence of geometric invariant whose
vanishing implies that M is locally equivalent to the flat quaternionic C' R manifold S4"+3.
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For this purpose we shall introduce a notion of pseudo-conformal quaternionic CR (p-
¢ qCR) structure (D, {wq}a=123) on a (4n + 3)-dimensional manifold M. First of all,
in §1 we recall a pseudo-conformal quaternionic structure (p-¢ q structure) D which was
discussed in [3]. Compare Remark 1.7 for the difference between C'R structure. Contrary to
the nondegenerate C'R structure, the almost complex structure on D is not assumed to be
integrable. However, by the requirement of structure equations defining the qC R-structure,
we can prove the integrability of quaternionic structure in §2.1:

Theorem A. FEach almost complex structure J, of the quaternionic CR structure is
integrable on the codimension-1 contact subbundle Nullw, (o =1,2,3).

There exists a canonical pseudo-Riemannian metric g associated to the nondegenerate p-c
qCR structure. In §4 we see that that the integrability of three almost complex structures
{Ja}a=123 is equivalent with the condition that (M, g) is a pseudo-Sasakian 3-structure.
Namely the notion is equivalent between nondegenerate quaternionic C'R structure and
pseudo-Sasakian 3-structure (cf.[4]). In particular, p-c qCR manifolds contain the class
of pseudo 3-Sasakian manifolds. (Refer to [5],[8],[33],[34] for (positive definite) Sasakian
3-structure.) However, we emphasize that the converse is not true. There are two typical
classes of compact (spherical) p-c qCR manifolds but not pseudo-Sasakian 3-manifolds
[16]; one is a quaternionic Heisenberg manifold M/T". Some finite cover of M/I" is a
Heisenberg nilmanifold which is a principal 3-torus bundle over the flat quaternionic n-
torus T} of signature (p, ¢) (p+q=n), see §7.3. Another manifold is a pseudo-Riemannian
standard space form E%An /T of constant negative curvature of type (4n, 3). It is a compact
quotient of the homogeneous space Z%An = Sp(1,n)/Sp(n). Some finite cover of 2%1’4” /T
is a principal S3-bundle over the quaternionic hyperbolic space form Hy /T*. Obviously
those manifolds are not positive-definite compact 3-Sasakian manifolds. (cf.[16], [18] more
generally.)

For the second problem, we shall try to construct the curvature tensor of p-c qCR
structure. This is thought of as a quaternionic analogue of Chern-Moser’s C'R curvature
tensor. When M is a 2n + 1-dimensional manifold equipped with a nondegenerate CR
structure (H, J), it follows from the Cartan geometry that there is an su(p+1, ¢+ 1)-valued
1-form « called a Cartan connection whose associated curvature form II vanishes if and only
if M is locally isomorphic to PU(p+1,¢+1)/P*(C) where PT(C) is the maximal parabolic
subgroup (p+q = n). The 4-th order Chern-Moser C'R curvature tensor S = (Sagc,) is the

coefficient of the curvature component @4 of II. By the observation of Webster (cf. [35],
[36]) the other components are obtained from S by further covariant differentiation for
n > 1. In the CR case, the Chern-Moser curvature tensor S vanishes on M if and only if
so does the su(p + 1, ¢+ 1)-valued Cartan curvature form II.

On a (4n+ 3)-dimensional p-c q manifold (M, D), there is also an sp(p+ 1, ¢+ 1)-valued
Cartan form x whose associated curvature form II has zero curvature if and only if (M, D)
is locally isomorphic to PSp(p+1, ¢+1)/PT(H). We don’t know whether a curvature tensor
on M could be derived only from the Cartan form II on the p-c q structure D because D
lacks the structure equations representing the integrability conditions but not the p-c qCR
structure. However, with the aid of pseudo-Riemannian connection of the pseudo-Sasakian
3-structure which is locally equivalent to p-c qC'R structure, we can define a quaternionic
CR curvature tensor (cf.§5). Based on this curvature tensor, in §8 we shall establish a
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curvature tensor 1’ which is invariant under the equivalence of p-c qC'R structures. Remark
that if T vanishes under the existence of p-c qCR structure, II also vanishes. The explicit
formula of T is described as follows (cf. Theorem 9.1 of §9).

Theorem B. There exists a fourth-order curvature tensor T = (T;M) on a nondegenerate
p-¢ qCR manifold M in dimension 4n+3 (n > 0). Ifn > 2, then T = (T;M) € Ro(Sp(p, q)-
Sp(1)) which has the formula:

Thye = Ripe — {(gje@i — 9j10p) + [fjefzi — Lipd{ + 21} i
T i — TdE + 2000k + KjoKj — K Kj + 2K§Kk4 }

Whenn=1,T = (W;M) € Ro(SO(4)) which has the same formula as the Weyl conformal
curvature tensor. When n = 0, there exists the fourth-order curvature tensor TW on M
which has the same formula as the Weyl-Schouten tensor.

In §7, we introduce the (4n + 3)-dimensional manifold S3t4P44 = Sp(p+1, ¢+1)/P*(H)
which is a pc-qC'R manifold with vanishing p-¢ qC'R curvature tensor 7T. In particular,
Gint3 — §3+4n.0 s the positive-definite flat (spherical) quaternionic CR manifold. As in
CR geometry, we prove that the vanishing of T' gives rise to a uniformization with respect
to the flat (spherical) p-c qCR geometry, see Theorem 9.3 in §8.1. (Compare [23] for
uniformization in general.)

Theorem C.

(i) If M is a (4n+3)-dimensional nondegenerate p-c qCR manifold of type (3+4p, 4q)
(p+q =mn > 1) whose curvature tensor T wvanishes, then M is uniformized over
S3+4P44 ith respect to the group PSp(p+1,q+ 1).

(ii) If M is a 3-dimensional p-c gqCR manifold whose curvature tensor TW wvanishes,
then M is conformally flat ( locally modelled on S® with respect to the group
PSp(1,1) ).

In the positive definite case, our p-c qC'R geometry presents spherical quaternionic CR
geometry (PSp(n + 1,1), S4"*3) as in the beginning of Introduction.

When a geometric structure is either contact structure or complex contact structure, it is
known that the first Stiefel-Whitney class or the first Chern class is the obstruction to the
existence of global 1-forms representing their strutures respectively. As a concluding remark
to p-c q structure but not necessarily p-c qC'R structure, we verify that the obstruction
relates to the first Pontrjagin class pi1(M) of a (4n + 3)-dimensional p-c¢ q manifold M
(n > 1). In §10, we prove that the following relation of the first Pontrjagin classes. (See
Theorem 10.4.)

Theorem D. Let (M, D) be a (4n+ 3)-dimensional p-c ¢ manifold. Then the first Pontr-
jagin classes of M and the bundle L = T M /D has the relation that 2p1 (M) = (n+2)p1(L).
Moreover, if M is simply connected, then the following are equivalent.
(1) 2p1(M) = 0. In particular, the first rational Pontrjagin class vanishes.
(2) There exists a global ImH-valued 1-form w on M which represents a p-c q structure
D. In particular, there exists a hypercomplex structure {I,J, K} on D.



1. PSEUDO-CONFORMAL QUATERNIONIC C'R STRUCTURE

When H denotes the field of quaternions, the Lie algebra sp(1) of Sp(1) is identified with
ImH = R¢ + Rj + Rk. Let M be a (4n + 3)-dimensional smooth manifold M.

Definition 1.1. A 4n-dimensional orientable subbundle D equipped with a quaternionic
structure Q is called a pseudo-conformal quaternionic structure (p-c q structure) on M if
it satisfies that
(i) DU[D,D] =TM.
(ii) The 3-dimensional quotient bundle TM/D at any point is isomorphic to the Lie
algebra TmHI.
(iii) There exists a ImH-valued 1-form w = w1t + waj + wsk locally defined on a neigh-

3
borhood of M such that D = Nullw = ﬂl Nullw, and dw,|D is nondegenerate.

o=
Here each wq is a real valued 1-form (o= 1,2, 3).
(iv) The endomorphism J., = (dwg|D) ! o (dws|D) : D—D constitutes the quaternionic
structure Q on D: J,? = —1, JoJs = Jy=—JgJa, (v=1,2,3) etc.

Lemma 1.2. If we put 04 = (dwa|D) on D, then there is the following equality:
o1(J1X,Y) =09(oX,Y) =03(J3X,Y) (VX,Y € D). Moreover, the form
(1.1) gP =04 0J,
is a nondegenerate Q-invariant symmetric bilinear form on D; gP(X,Y) = ¢P(J. X, J.Y),
GP(X, 1Y) = 0a(X, V), (0= 1,2,3), etc.
Proof. By (iv) of Definition 1.1, it follows that
0a(JaX,Y) = 0u(J3(JoX),Y) = 05(J, X, Y)

= UV(JQ(JQX), Y) = Uﬁ(JgX, Y)
Put ¢P(X,Y) = 0,(J,X,Y) for X,Y € D (a = 1,2,3), which is nondegenerate by (iii).
As —Jg = 0,1 0 04 by (iv), calculate that 9PV, X) = —04(X, 1Y) = 0,(JsX, JY) =
—03(Y, JsX) = gP(X,Y). Tt follows that gP(X,Y) = 04(JuX,Y) = 00(Jo(JaY), Ju X) =
gP (Y, Jo X). O

(1.2)

In general, there is no canonical choice of w which annihilates D. The fiber of the
quotient bundle T'M /D is isomorphic to Im H by w on a neighborhood U by (ii). The
coordinate change of the fiber H is described as v—A - v - p for some nonzero elements
A\, pu € H. If & is another 1-form such that Nullw’ = D on a neighborhood U’, then it
follows that w’ = X -w - u for some H-valued functions A, i locally defined on U N U’. This
can be rewritten as w’ = u - a - w - b where a, b are functions with valued in Sp(1) and w is
a positive function. Since @’ = —u', it follows that a-w-b=b-w-a, i.e. (ba)-w - (ba) = w.
As w: T(UNU')—Im H is surjective, ba centralizes Im H so that ba € R. Hence, b = +a.
As we may assume that D is orientable, w’ is uniquely determined by

(1.3) W' =u-a-w-a for some functions a € Sp(1),u>0on UNU’".
We must show that Definition 1.1 does not depend on the choice of w’ satisfying (1.3).



Lemma 1.3. Any form ' locally conjugate to w satisfies (iii), (iv) of Definition 1.1.

Proof. First, if A = (a;;) € SO(3) is the matrix function determined by

(1.4) Adg| 7 | =al| 7 Ja=Al 7 |,
k k k
then a new quaternionic structure on D is introduced as
Ji J1
Js Js

Then the formula of (1.3) is described as

3 3 3
(1.6) (W', w's,w'3) = (w1, wy,wa)u- A =u()_agws, > agws, > _ agsws).
B=1 B=1 B=1

Differentiate (1.6) and restricting to D, use Lemma 1.2 (note that dw’ = u-a - dw - a on
DIUNU",
d'o(X,Y) =0 apadwp(X,Y) = —u(a1a9” (J1X,Y) + a2ag” (2 X,Y) + agag” (J3X,Y))
B
= —ugD((alaJl + agnJo + azaJ3) X, Y) = —ugD(J/aX, Y),

(1.7) do' o (J' o X, Y) = ugP(X,Y) (« =1,2,3).
In particular, dw,|D is nondegenerate, proving (iii). Put ¢/, = dw/,|D. As in (iv) of Defini-
tion 1.1, the endomorphism is defined by the rule: I, = (0’5|D)_10(0(’1|D), e op(ILX,Y) =
ol (X,Y) (VX,Y € D). Then we show that the quaternionic structure {I/,},—1 2 3 coincides
with {J.}a=123 on D. For this, as ¢/, (X,Y) = —ugP(J,X,Y) by (1.7), it follows that
op(15X.Y) = —ugD(Jé(If/X),Y) and the above equality implies that J3(I}X) = Jo X
(VX € D). Hence, I, = —J3J;, = J.. This proves (iv). O
By Lemma 1.2, we may assume that g” locally defined on D|U has signature (4p, 4¢) with

4p-times positive sign and 4¢-times negative sign (p + ¢ = n). As above put ¢’ D(X YY) =
dw'o(J'oX,Y) (X,Y € D). We have

Corollary 1.4. If o' =wa-w-a on UNU’, then g’D = u- gD. As a consequence, the
signature (p,q) is constant on U NU' (and hence everywhere on M) under the change
W' =wua-w-a.

We are now going to consider an integrability condition on the p-c¢ q structure D.
Definition 1.5. Suppose that the following structure equation is locally given:
(1.8) Pa = dwe + 2wg A wy

where (o, B,7) ~ (1,2,3) up to cyclic permutation. If the skew symmetric 2-form p,
satisfies that

(1.9) Null p; = Null po = Null p3,
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the pair (w, Q) is a local quaternionic CR structure (qCR structure) on M.

See [6], [4]. If the (local) qCR structure has a ImH-valued 1-form w defined entirely
on M, then it is noted that the global qCR structure coincides with the pseudo-Sasakian
3-structure of M, see §4.1. Using two Definitions 1.1, 1.5, we come to the following notion
due to the manner of Libermann [27].

Definition 1.6. The pair (D,Q) on M is said to be a pseudo-conformal quaternionic
CR structure (p-c qCR structure) if there exists locally a 1-form n with Nullnp = D on a
neighborhood U of M such that n is conjugate to a qC'R structure on U. Namely there
exists a qCR structure w on U for which n = X - w - X\ where \ : U—H is a function and \
1s the conjugate of the quaternion.

Remark 1.7. For the nondegenerate CR case, let w be a 1-form which represents a CR
structure (Nullw, J). Since 04(X,Y) = ¢P(X,J,Y) by Lemma 1.2, the corresponding
(complex) formula of the structure equation (1.8) of Definition 1.5 becomes (cf.[35]):

dw = g:0" A7,

where J is assumed to be integrable although the CR structure has no such equation as (1.9).
In the p-c¢ qCR case, however Theorem 2.7 shows that each almost complex structure J,
is integrable (cf.(2.9) also). Moreover, each characteristic vector filed &, is a CR vector
field (cf.(3) of Lemma 2.3). In general, this never occurs from the structure equation to
the nondegenerate CR structure.

2. QUATERNIONIC C'R STRUCTURE

Suppose that w is a qCR structure on a neighborhood of M. Let p, = dw, +2wg Awy be
as in (1.8). Put V = Nullp,, (o =1,2,3) (cf. (1.9)). Since dimD = 4n, let {v1,v9,v3} be a
basis of V. Put w;(v;) = a;j. As wi Awa Aws|V # 0, the 3 x 3-matrix (a;;) is nonsingular.
Put b;; = t(aij)_l and &£ = > bjpvg. Then w,(£g) = dap and locally,

(2.1) V={n,a=1,2,3}
Lemma 2.1. Let L be the Lie derivative. Then, L¢, (D) =D (a=1,2,3).

Proof. For X € D, wg(Le¢, (X)) = ws([€a, X]). As

(—ws([€as X]),

1
0= pﬁ(é.mX) = dwﬁ(&aaX) + 20%/ /\Wa(gomX) = E

we have wg([§q, X]) =0 for = 1,2,3. Hence, L¢, (X) € D= 5

I D

) Null wg.

We prove also that LV =V for { € V.

Lemma 2.2. The distribution V is integrable. The vector fields &, determined by (2.1)
generates the Lie algebra isomorphic to so(3), i.e. [£q, 8] = 2&,. (o, B,7) ~ (1,2,3).

Proof. By (2.1), note that
(22) V= {5 eTM | pl(é.vv) = pg(é',’U) = 03(571)) =0, Vv e TM} = {ga ya=1,2, 3}



Since 0 = pa(€s, &) 1( —nll€5,€)) + 2), it follows that [€5,6,] — 260 € Null we.

. 1 o
Applying ps(€s, &) = 5( ws([€,&]) +0) = 0, it yields also that [£g, &] — 2£, € Null wg.

3
Similarly as p, (&g, &) = 0, we obtain [£g,&,] — 28, € ﬁQl Null wg =D for o« = 1,2,3. As
Pa([€8, &) — 260, v) = pal([€s, &), v) for arbitrary v € D, By the definition of p,, calculate

pall€s, &) = —ws(([6s, &1, )

= %(Wﬁ([[ﬁm v, &a]) +ws([[§: v]: &) (by Jacobi identity)
=0 (by Lemma 2.1).

Since p, is nondegenerate on D by (iii), [£g,&] = 2&a (o = 1,2,3). Hence, such a Lie
algebra V is locally isomorphic to the Lie algebra of SO(3). O

We collect the properties of Wy, pa, Ja, g*. (Compare [4].)

Lemma 2.3. Up to cyclic permutation of (v, 3,7) ~ (1,2, 3), the following properties hold.
(1) Leywa =0, Le,wp = wy = —Le,Wa.

Proof. (1). First note that tg,wa(z) = wa(éa) =1 (v € M), t¢,(wg A wy)(X) = wg A
w"/(é.OMX) =0 (a 7& ﬁv 7)7 and l’ﬁapa( ) = (5047 ) = by (37)

Lewa = (dig, + e, d)wa = te, dwa = te, (—2wg A wy + pa) by (1.8)

2.3
(2:3) = —2u¢, (W Awy) + tg, pa =0,

Next,
Le,wg = e, dwg = te, (—2wy ANwa + pg) = —2t¢, (wy A wy), while

—2u¢, (wy ANwa)(v) =0 for v & Null w, and —2u¢, (wy Awa) (&) = 1. Hence L¢,wg = w
(2).
Le,ps = Le, (dwg + 2wy Awy)

= (dug, + te,d)dwg + 2L¢, (wy A wa)

= dug,dwg + 2L¢ Wy N Wo + 2wy A L, Wa

= d(Le¢, — duie,)wg +2L¢ wy Nwy (by (1))

= d(Le,wpg) — 2Le,wa N wo = dwy — 2wg A wq

(2.4)

= dw + 2wa A wg = ps.
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Similarly,
Le,pa = Le, (dwa + 2w A wy)

= duig, dwa +2Le wg N wy + 2wg A L, wy

= d(Le, — die,)wa + 2wy A wy + 2wg A (—wg)

=dLewa =0 (by (1)).
(3). As L¢,pa = 0 by property (2),

0 = (£e,pa)(J5X, )
= Le, (0a(JpX,Y)) = 0a(Leo (JpX),Y) = 0a(JpX, Le,Y ).

(2.5)

Noting that Jg = o lo 0, by Lemma 1.2, we have

0a((LeoJp) X, Y) = 0a(Le (JpX),Y) — 0a(JpLe, (X),Y)
= Le, (0a(JpX,Y)) = 0a(JpX, Le,Y) — 0a(JpLe, X, Y)
= (Le,04)(X,Y) = —05(X,Y) (by property (2))

= 0o(J4X,Y)

(2.6)

As o0, is nondegenerate on D, L¢, Jg = J,. Similarly,
01 ((Leada) X, Y) = 04(Leo (JaX),Y) = 05(JaLe, (X),Y)
= (L&) (JaX,Y) + Le, (04(JaX,Y))
— 0y (JoX, Le,Y) — 0y (JaLe, X, Y)
= 08(JoX,Y) + Le, (05(X,Y)) —05(X, Le,Y) — 05(Le, X, Y)
= 03(JoX,Y) + (Le,08)(X,Y)
= —0,(X,Y)+04(X,Y) =0,
it follows that L¢, J, = 0.

(4). Recall from Lemma 1.2 that ¢P(X,Y) = 04(JoX,Y) = pa(JoX,Y) (X,Y € D) for
each a. Then

(2.7)

(Le.g")X,Y) = Ea(97(X,Y)) = gP(Le, X, Y) — g7 (X, Le,Y)
= Salpp(JpX,Y)) — pp(JsLe, X, Y) — pa(JpX, Le,Y).
On the other hand, L¢,pg = p, by property (2) and so
€alpp(JpX,Y)) = pp(Le, JpX.Y) + pg(JsX, Le,Y) + py(J5X, Y).
Substitute this into the equation (2.8).
(Leag”)(X,Y) = pp(Le, T X, Y) + pa(Jp X, Le,Y)
+ py(JX,Y) = pa(JpLe, X, Y) = pp(JpX, Le,Y)
((Leads) X, Y) + py(J3X,Y) (by property (3))
(J“/X7 Y)+ p«/(JﬁX, Y) =0,

(2.8)

hence, L¢, gP =0.
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2.1. Three CR structures. Let ({wa}, {Ja}, {&a}; @ =1,2,3) be a nondegenerate qC'R
structure on U C M such that D|U = a(?jl Nullw,. We can extend the almost complex
structure J, to an almost complex structure J, on Nullw, =D @ {£3,&,} by setting:
Jo|D = Ja,

jagﬁ = &/v ja&/ = _gﬁ'

(a, B,7) is a cyclic permutation of (1,2,3). First of all, note the following formula (cf.
[21]):

(2.10) Lx(tydw,) = L(ny)dwa + 1y Lxdw, = L[X7y]dwa + iy Lxdw, (VX,Y €TU).

(2.9)

Secondly, we remark the following.

Lemma 2.4. For X € D,
txdw, =ty xdwy (a,b,c)~ (1,2,3).

Proof. Let TU = D@V where V = {&1,&2,&3}. If X € D, then dw,(X,{)=0forVEe V.
As dwp(J. X, &) = 0 similarly, it follows that (xdw, = tj.xdw, = 0 on V. If' Y € D,
calculate

dwo(X,Y) = —dwa(Jo(JoX),Y) = —dwp(Jp(JoX),Y) (from Lemma 1.2)

= dwp(J.X,Y), hence txdw, = 1, xdwy on U.

In particular, we have
(2.11) txdws = 15, xdws for V X € D.
There is the decomposition with respect to the almost complex structure Ji:
(2.12) Nullw; @ C=D®C® {£,&}@C =T g 1%

where T10 = DO @ {¢5 —i&3}. We shall observe that the same formula as in Lemma 6.8 of
Hitchin [14] can be also obtained for D. (We found Lemma 6.8 when we saw a key lemma
to the Kashiwada’s theorem [19].)

Lemma 2.5. If X, Y € DY0, then Lx,ydwz = i x ydws.
Proof. Let X € D0 so that J1.X =X, then
Lxdwy = (dix + txd)dws = d(txdws) = d(tj,xdws) (by (2.11))
= i(dix)dws = i(Lx — txd)dws = iLxdws.
Applying Y € D0 to the equation (2.11) and using (2.10) (extended to a C-valued one),
Lx(tydws) = Lx(1gydws) = 1Lx (tydws) (from (2.11))
= ’iL[Xy]dw?, + tytLxdws
= dlx,y]dws + ty Lxdws (by (2.13)).

(2.13)

Compared this with (2.10) for w, = wa, we obtain it x yjdws = t[x,y)dwa.
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We prove the following equation (which is used to show the existence of a complex
contact structure on the quotient of the quaternionic CR manifold by S* [2].)

Proposition 2.6. For any X,Y € D0, there exsist a € R and u € D0 such that
(X, Y] = a(& —i&3) +u.

Conversely, given an arbitrary a € R, we can choose such X,Y € D' and some u € D*°.
Proof. As g(Ja, Jar) = g(-,-) (cf. Lemma 1.2), we note that dw; |(DY0, DY), dws| (D10, DY),
dws| (D0, D19 are nondegenerate. Given X,Y € DY, put dwo(X,Y) = g(X, JbY) = —%a
for some a € R. (Note that conversely for any a € R, we can choose X,Y € D'? such
that dws(X,Y) = g(X, oY) = —%a.) Then wy([X,Y]) = a so that there is an ele-
ment v € Nullwp ® C such that [X,Y] —a-& = v, As dws(X,Y) = g(X, YY) =
—g(X, Jo(J1Y)) = —ig(X, oY) = —%a, it follows that w3([X,Y]) = —ia. Since w3(v) =

w3([X,Y] — &) = w3([X,Y]), v = —ta - & + u for some u € Nullwg ® C. Then we have
that [X, Y] = a(& —i&3) +u. Obviously, wo(u) = 0. As X, Y € D0 wi(u) = wi([X,Y]) =
—2dw;(X,Y) = 0 for which u € D ® C. We now prove that u € D"C. First we note that

(2.14) Lx,y]|dws = ab(§2_i§3)dw2 + 1 dws.

As & (respectively &3) is characteristic for wo (respectively ws) from Lemma 2.3, t¢,dws = 0
(respectively tg,dws = 0). Using (3.7), the function satisfies dig,ws = 0 (respectively
dig,ws = 0). It follows that te,dws = (Le, — digy)wa = Le,wp = —wi. Then L(£2_i§3)dw2 =
(tgydwo — tig dwr) = 4wy so (2.14) becomes

(2.15) Lx,yjdws = aiwy + Ly dws.
As Le,wz = wy, it follows t¢,dwz = wy. Similarly
(2.16) Lx,y]dws = aL(§2_i§3)dw3 + tydws = awq + tydws.

Substitute (2.15), (2.16) into the equlaity ¢[xyjdws = it[xyjdws of Lemma 2.5, which
concludes that

(2.17) Lydwe = Tty dws.

Since dws(u, X) = dws(Jiu, X) for any X € D ® C, (2.17) implies that dws(Jiu, X) =
tydwa(X) = dws(tu, X). As dws is nondegenerate on D ® C, we obtain that Jiu = iu.
Hence, u € D™V, U

Recall that a nondegenerate C'R structure on an odd dimensional manifold consists of the
pair (Nullw, J) where w is a contact structure and J is a complex structure on the contact
subbundle Nullw (i.e.J is integrable). In addition, the characteristic (Reeb) vector field £
for w is said to be a characteristic C R-vector field if L¢J = 0. Consider (Nullwg, J,) on U
(a =1,2,3). By Lemma 2.3, each ¢, is a characteristic vector field for w, on U. From (3)

of Lemma 2.3, L¢, Jo, = 0. It is easy to check that L¢, J, = 0.

Theorem 2.7. Each J, is integrable on Nullw,. As a consequence, a nondegenerate
qCR structure {wq, Jo }a=123 on a neighborhood U of M3 induces three nondegenerate
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CR structures (Nullwy, Jo) equipped with characteristic C R-vector field &, for each wq
(a=1,2,3). In fact, wo (&) =1 and dwy (&0, X) =0 (VX € TM) (a=1,2,3).

Proof. Consider the case for (Nullwy, J;). Let Nullw; @ C = T4 @ T%! where T4 =
DM @ {&, — i&3}. By Proposition 2.6, if X,Y € D0, then [X,Y] = a(& — i&3) + u for
some a € R and u € D'V, By definition,

N[X, Y] = aJi(& — i€3) + Jiu = ai(&s — i€3) + du = i[ X, Y],

it follows [X, Y] € TH0. It suffices to show that the element [£; —i&3,v] € THO for v € DO,
As Le, J1 = —J3 and —J3v = (Lg, J1)v = Ly (J1v) — J1(Leyv),

(2.18) J1(Leyv) = J3v + 1L, v.

Note that [¢; — i€3,v] = Le,v — iLe,v € D ® C on which J, = J,. Then Ji[& — i3,v] =
Ji(Le,yv) — 1J1(Leyv). Moreover, as Jov = (Lg,J1)v = iLe,(v) — Ji(Leyv) and Jov =
J3Jiv = iJ3v, it follows that Ji(Lev) = —J3v + 1L, v. Using this equality and (2.18), it
follows that

Ji[&2 — i€3,v] = J1(Leyv) — 1J1(Leyv) = iLeyv + Leyv
= i(ﬁﬁzv - i£§3v) = 1[52 — 163, U]'
Therefore, [TLO, TLO] C T so that J; is a complex structure on Nullwy, i.e. (Nullwy, Jp)
is a CR structure on U. The same holds for (Nullwy, Jp) (b= 2,3). O

3. MODEL OF QC'R SPACE FORMS WITH TYPE (4p + 3,4q)

Suppose that p + ¢ = n. Let H**! be the quaternionc number space in quaternionic
dimension n + 1 with nondegenerate quaternionic Hermitian form

(3.1) (,9) = T1y1 + -+ Tpy1Yp+1 — Tpr2Ypi2 — = — Tt 1Yntl-

If we denote Re(x, y) the real part of (x,y), then it is noted that Re( , ) is a nondegenerate
symmetric bilinear form on H"*!'. In the quaternion case, the group of all invertible
matrices GL(n + 1,H) is acting from the left and H* = GL(1,H) acting as the scalar
multiplications from the right on H"*!, which forms the group GL(n + 1,H) - GL(1,H) =
GL(n+1,H) ) GL(1,H). Let Sp(p+1, q)-Sp(1) be the subgroup of GL(n+1,H) - GL(1, H)

whose elements preserve the nondegenerate bilinear form Re( , ). Denote by Z%Hp 49 the
(4n + 3)-dimensional quadric space:

{(z1, s zpr,wn, - wg) €HH | 21 P+ |z |P = Jwn P — - — [y ? = 1}
In particular, the group Sp(p + 1,q) - Sp(1) leaves Z%+4p’4q invariant. Let { , ), be the

nondegenerate quaternionic inner product on the tangent space T,H"! obtained from
the parallel translation of ( , ) to the point x € H"*!. Recall that {I, J, K} is the
standard quaternionic structure on H”*! which operates as Iz = 24, Jz = zj, or Kz = zk.
As usual, {I,, J., K.} acts on T,H""! at each point z. Then it is easy to see that
gN(X,Y) =Re(X,Y), (VX,Y € T,H""!) is the standard pseudo-euclidean metric of type
(p+1, ¢) on H"*! which is invariant under {I, J, K}. Restricted g™ to the quadric E%+4p’4q
in H"*!, we obtain a nondegenerate pseudo-Riemannian metric g of type (3 +4p, 4¢q) where
p + g = n. Compare [38], [24] for the following definition.
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Definition 3.1. The quadric Z%+4p’4q 1s referred to the quaternionic pseudo-Riemannian
space form of type (3 + 4p,4q) with constant curvature 1 endowed with a transitive group
of isometries Sp(p + 1, q) - Sp(1) for which Z%+4p’4q = Sp(p+1,q) - Sp(1)/Sp(p, q) - Sp(1)
where Sp(p, q) - Sp(1) is the stabilizer at (1,0,---,0).

When (E%Hp ’4q, gH) is viewed as a real pseudo-Riemannian space form, the full group of
isometries is O(4p+4, 4¢). It is noted that the intersection of O(4p+4, 4q) with GL(n+1, H)-
GL(1,H) is Sp(p+1, q)-Sp(1). When N, is the normal vector at x € Z%+4p’4q, Tm2%+4p’4q =
Nt with respect to g™. If N is a normal vector field on E%+4p’4q, then IN, JN, KN €
T334 such that there is the decomposition TS5 7% = {IN, JN, KN}&{IN, JN, KN}*.
Let D = {IN, JN, KN}* which is the 4n-dimensional subbundle. As g™ is a {I, J, K}
-invariant metric, (D, g|D) is also invariant under {I, J, K}. Now, Sp(1) acts freely on

apA . .
Z%Jr P21 a5 right translations:

(A, (21,7, 2pg1, wi, - ,wq)):(zl'x,--- ,zp+1'5\,w1-)\,~' ,wq-S\) (A € Sp(1)).

Definition 3.2. The orbit space Z%+4p’4q/8p(1) is said to be the quaternionic pseudo-
Kahler projective space HPP? of type (4p,4q).

For the definition of quaternionic pseudo-Kéhler manifold in general, see Definition 4.5.
Note that HIPP? is a quaternionic pseudo-Kéahler manifold by Theorem 4.6 provided that
4n > 8. When p = n,q = 0, HP™ is the standard quaternionic projective space HP™.
When p = 0,q = n, HP%" is the quaternionic hyperbolic space Hfy. It is easy to see that
HIPP9 is homotopic to the canonical quaternionic line bundle over the quaternionic Kéahler
projective space HIPP. There is the equivariant principal bundle:

(3.2) Sp(1)—(Sp(p +1,4) - Sp(1), T3 P9 - (PSp(p + 1, q), HPP9)
On the other hand, let
(3.3) wo = —(Zldzl + -4+ 2p+1dzp+1 —widwy — -+ — ’LZ)qd’wq).

Then it is easy to check that wy is an sp(1)-valued 1-form on E%Hp R &1,&9,&3 be

3P4 i duced by the one-parameter subgroups e 0cR, eJ? 0cR,
H

the vector fields on
{ek(’}@eR respectively, which is equivalent to that & = IN, & = JN, {3 = KN. A calcula-

tion shows that

(3.4) wo(§1) =1, wo(&2) =7, wo(&3) =k.
By the formula of wy, if a € Sp(1), then the right translation R, on Z%Hp 44 gatisfies that
(3.5) Riwo=a-wp - a.

Therefore, wy is a connection form of the above bundle (3.2). Note that Sp(p + 1, q) leaves
wp invariant. We shall check the conditions (i), (ii), (iii), (iv) of Definition 1.1 and (1.9) so
that (Z%+4p’4q, {I,J, K}, g,wp) will be a quaternionic C' R manifold. First of all, it follows
that

n times

A

wo Awy Awg A (dwo Adwg) A+ -+ A (dwy A dwg) # 0 at any point of E%+4p’4q.
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(Compare [16],[31] for example). In fact, letting wy = w1% + wej + wsk as before,
wo? A dwp®™ = 6wy Awy A ws A (duwr? + dwy? + dws?)™.
This calculation shows (iii). In particular, each w, is a nondegenerate contact form on

24P Using (3.5) and as & generates {eie}eeR C Sp(1), L¢,wi = 0. (Similarly we have
Leyws = Le,ws = 0.) Noting that we(&,) = 1 and 0 = L¢,w, = ¢, dw, from (3.4), each &, is
the characteristic vector field for w,. Moreover, note that {£;1, &2, {3} generates the fields of

3
Lie algebra of Sp(1). It follows that D = n Nullw, for which there is the decomposition
a=

TZ%HP’?(] = {&1, 8,83} S D. If {'ei}i:L..'. An 18 the orthonprmal basis of D, then the dual
frame ¢" is obtained as 0" (e;) = 47 and 6°(§1) = 0'(§2) = 0'(§3) = 0. In order to prove that
the distribution uniquely determined by (1.9) are {1, &2, &3} (cf. (4.3) also), we need the
following lemma.
Lemma 3.3.

dwl(Xv Y) = g(Xv IY)v dw2(X7 Y) = g(Xv JY)v dw?;(Xv Y) = g(Xv KY)
where X, Y € D.

Proof. Given X, Y € D,, let u, v be the vectors at the origin by parallel translation of X, Y
at x € Z%Hp 44 respectively. Then by definition, 9(X,Y) = Re(u, v). Furthermore,

(3.6) 9(X,IY) = Re({u, v - 7)) = Re({u, v) - 7).
From (3.3), if X,Y € D,, then
dwo(X, Y) = —(dzl ANdzy + -+ d2p+1 AN dzp+1 —dwi ANdwy — -+ - — d’tf)q A dwq)(u, ’U).

1
Then a calculation shows that dwy(X,Y) = —§(<u, v) — (u,v)). It is easy to check that

1 _
the i-part of —§(<u, v) — (u,v)) is Re({(u,v) - ¢). Since dwi(X,Y) is the ¢-part of dw(X,Y)
and by (3.6), we obtain the equality g(X,IY) = dwi(X,Y). Similarly, we have that
9(X,JY) = dwn(X,Y), g(X,KY) = dws(X,Y). 0
From this lemma, dwq(e;, ej) = g(e;, Jaej) = —J7;. Since {1, &2, &3} generates Sp(1) of
the bundle (3.2), we obtain dw, + 2wy A w, = —ijﬁi A 6. Applying to J, K similarly, we
obtain the following structure equation of the bundle (3.2):
(3.7) dwo +wo Awo = —(Ljt + Ty + Kz'jk)ei NG

From this equation, the condition (1.9) is easily checked so that Nullw, = {&1, &2, &3}. We
summarize that

Theorem 3.4. (Z%+4p’4q, {wata=123,{I,J, K}, g) is a (4n + 3)-dimensional homogeneous

qCR manifold of type (3 + 4p,4q) where p +q = n > 0. Moreover, there exists the

equivariant principal bundle of the pseudo-Riemannian submersion over the homogeneous

quaternionic pseudo-Kdhler projective space HPP? of type (4p,4q): Sp(1)—(Sp(p + 1,q) -
3+4p,4 ™ N

Sp(1), S """, g) == (PSp(p + 1, ), HPP, ).

We shall prove more generally in Theorem 4.6 that (PSp(p + 1, q), HP*»44) supports an
invariant quaternionic pseudo-Kéhler metric g of type (4p, 4q).
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Remark 3.5. (a) In [2], it is shown that (Z%+4p’4q, {I,J,K},g) is a pseudo-Sasakian space
form of constant positive curvature with type (4p + 3,4q).

(b) When ¢ =0 or p =0, we can find discrete cocompact subgroups from Sp(n+ 1) -Sp(1)
or Sp(1,n)-Sp(1) that act properly and freely on Z%H"’O = §4nt3 op 2%’4" = Vﬂ”i}’ respec-
tively. Thus, we obtain compact nondegenerate qC'R manifolds. In fact, (i) The spherical
space form S*F3/F which is Sp(1) or SO(3)-bundle over the quaternionic Kdihler pro-
jective orbifold HIP™ /F* of positive scalar curvature. (F C Sp(n + 1) - Sp(1l) is a finite
group.) (ii) The pseudo-Riemannian standard space form Vﬂ”?’/F of type (4n,3) with
constant sectional curvature —1 which is an Sp(1)-bundle over the quaternionic Kdhler
hyperbolic orbifold Hy /T of negative scalar curvature. (I'* C PSp(1,n) is a discrete sub-
group.) As we know, there exists no compact pseudo-Sasakian manifold (or qC R manifold)
whose pseudo-Kdhler orbifold has zero Ricci curvature. However in our case, an indefinite
Heisenberg nilmanifold is a compact p-c qC R manifold whose pseudo-Kahler orbifold is the
complex euclidean orbifold (i.e. zero Ricci curvature), see §7.3.

4. LOCAL PRINCIPAL BUNDLE

Let {e;}i=1,... 4n be the basis of D|U such that gP (e, e;j) = gij- We choose a local coframe
0" for which

(4.1) 0Z|V =0 and Hi(ej) = 51]

As usual the quaternionic structure {J, }o=1,2,3 can be represented locally by the matrix
J* such as Jye; = J*e;. Note that pa(ej, e;) = Jafgjk = J%; by (1.1). Here the matrix

1 .
(9ij) lowers and raises the indices. Using #* we can write the structure equation (1.8):

(4.2) dwe + 2w Awy = TG0 NG (a=1,2,3).
If we use w of Definition 1.1, the above formula is equivalent to the following;:
(4.3) dw+wAw = —(Jlij’i—i—-]2ijj+J3ijk)9i/\9j.

Denote by £ the local transformation groups generated by V acting on a small neigh-
borhood U’ of U. As & is locally isomorphic to the compact Lie group SO(3) by Lemma
2.2, it acts properly on U’. (See for example [30].) If we note that each &, is a nonzero
vector field everywhere on U, then the stabilizer of £ is finite at every point. By the slice
theorem of compact Lie groups [9], choosing a sufficiently small neighborhood £’ of the
identity from &, &£ acts properly and freely on U’. We choose such U’ (respectively £’)
from the beginning and replace it by U (respectively £). Then there is a principal local
fibration:

(4.4) E—U TS UJE.

If we note that V & D = TM|U, © maps D isomorphically onto T(U/E) at each point of
U. So {mse; | i=1,---,4n} is a basis of T(U/&) at each point of U/E. Let #° be the dual
frame on U/ such that

(4.5) éi(w*ej) =0d;; onU/E.
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Since 6" is the coframe of {e;} and 7*0*|V = 6|V = 0, it follows that
(4.6) 0 =0 onU (i=1,---,4n).

Lemma 4.1. Put J1 = I, Jo = J, J3 = K respectively. Let {vp}_cco<e be a local
one-parameter subgroup of the local group E. Then there exists an element Gy € SO(3)
satisfying the following:

&1 &1
(1) (o)« | & | =Go| &
&3 &3
(4.7)
I@ey Iy
(2) ooy O Yo = POx © tG(e) Jy
Koy K,

Proof. Since every leaf of V' is locally isomorphic to SO(3), &, is viewed as the fundamental
vector field to the principal fibration 7« : U —>U /5 Thus we may assume that &1, &9, &3

correspond to 2, 7, k respectively so that go(, =et 4,0(3 L 4,03 — ko up to conjugacy by

an element of SO(3), A calculation shows that (¢ ) ((&2)z) = cos 20'(52)%%—1—5111 20'(53)%1)m.

Similarly, (@é)*((&’))lﬂ) = —sin 26 - (52)goéz + cos 20 - (53)@ ) (@é)*((&l)m) = (51)@éz This

holds similarly for ¢}, 2. It turns out that if gy € &, then there exists an element
Gy € SO(3) which shows the above formula (1). Since ¢; preserves D (—e < t < ), using
(1) we see that

(48) @:(lew%w?)) = (W1,WQ,W3)Gt.
1 1

Since there exists an element g; € Sp(1) such that g: | 5 | g = Ge | J (gt is the
k k

quaternion conjugate of g¢), (4.8) is equivalent with

(4.9) Piw =gt W G-

Differentiate this equation which yields that

(4.10) o (dw +wAw) = gi(dw + w Aw)gy mod w.
Using the equation (4.2), it follows that

1 1
o; (i, Jij, Kij) | 3 | 0 N) = (Lig, Jijs Kig)ge | | 9:0° A&V
k k
i . .
= (Iz'ja Jz’ja Kij)Gt 7 0" NG
k
Noting that 0" = ¥ (7*0") = 6, the above equation implies that

(4.11) (Lij (pe(), Jij(pi(2)), Kij(i(2))) = (Lij (), Jij(x), Kij(2))Gr(2) mod w.
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Since 1, ((€i)z) = T((€i)pz) (x € U), it follows ¢, ((€i)z) = (€i)pz- Letting Gy =
(sij) € SO(3) and using (4.11),

Igotr(@t)*((ei)r) = thr((ei)wtr) = IZ'j(SOtx)((ej)eOtr)
= (I (z) - s11 + J (2) - 51 + K (2) - 531)) ((00)s((€)2))
= (pt)«(s11 - Lo((€i)a) + 521 - Ja((€i)a) + s31 - Ka((€i)z))

Iy
= (pt)«((s11, 821, 831) | Jo | (€)a)-
Ky
Ia
The same argument applies to J,,, K,z to conclude that Jouz O Pty = Pty ©
K.
Iy
‘Gy | Jo |. This proves (2). O
Ky

Lemma 4.2. The quaternionic structure {I,J, K} on D|U induces a family of quaternionic
structures {I;, J;, K;}ien on U/E.

Proof. Choose a small neighborhood V; C U/E and a section s; : V;—U for the principal
bundle 7 : U—U/E. Let € V; and a vector Xz € T'V;. Choose a vector X, (3) € Ds,(a)
such that m.(X,, ) = X;. Define endomorphisms I;, J;, K; on V; to be

(

Since my @ Dy, (3y—T2(U/E) is an isomorphism, I;, J;, K; are well-defined almost complex
structures on V;. So we have a family {I}, ji, Ki}ie A of almost complex structures associated
to an open cover {V;};ca of U/E. Suppose that V; NV, # 0. If & € V; NV}, then there is
an element ¢y € £ such that s;(2) = g - 5;(2). As g preserves D, vp, Xy, (z) € Dy, (3) and

T (00, X5, (3)) = X;. Then

(4.13) Xsi(@) = 90+ Xs;(2)-
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Let {f s jj, K ;} be almost complex structures on V; obtained from (4.12). Using Lemma
4.1 and (4.13), calculate at s5;(2) (£ € V;N'V}),

)z \ Is;(#) Lpys,(a)
(Jj)s | Xe=m| Js0) | Xg@) =T | Jopsite) | 90:Xs(a)
(K5)a Ks;(2) Kopsi(a)
t Is; (2
=00, © Go | Ja@) | Xsi(a)
K, (2
Lo2) Loz \
=GO | T | Xaw ="Go | (J)s | Xa,
Ky () (Ki)z
(Ij)a (I)z o
hence (Jj)z =!Gy (Ji)z on & € V;NV;. Thus, {I;, J;, K;}ica defines a quater-
(Kj)z (Ki)s
nionic structure on U/E. U

4.1. Pseudo-Sasakian 3-structure and Pseudo-Kahler structure. We now take
{€i}i=1,... .an of D|U as the orthonormal basis, i.e. g;; = d;;. Then the bilinear form gP =
4p

4n
Z 0 -0 — Z 0' - 0° defined on D induces a pseudo-Riemannian metric on U/E:
i=1 i=dp+1
4p A A 4” A A
(4.14) g=> 00— > 6.9
i=1 i=dp+1

such that ¢P = 7*§. Let V be the covariant derivative on U /€. If d); is the Levi-Civita
connection with respect to §, then Vé; = w!é; for which L:); satisfies that

(4.15) do' = 67 A @;, wij +wj; = 0.

Put

(4.16) O = disi — of

. 1 .. 4 R

Consider the following pseudo-Riemannian metric on U:

3
3e(X,Y) =) wa(X) - wal(Y) + ooy (m X, mY)  (X,Y € T,U).
a=1

(4.17) 5 v w o
(Equivalently g = Z W * Wa + Z 0 - 0" — Z 0" -6".)
a=1 i=1 i=dp+1

Then we have shown in [4] that the local principal fibration £—(U, ) — (U/&, ) is
a pseudo-Sasakian 3-structure. In fact the next equation (4.18) is equivalent with the
normality condition of the pseudo-Sasakian 3-structure. (Compare [33], [5].)
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Proposition 4.3. Let ({wa}, {Ja}, {€a})a=1,23 be a nondegenerate quaternionic CR struc-
ture on U of a (4n + 3)-manifold M. If V is the Levi-Civita connection on (U, g), then,

(4'18) (vXja)Y = g(Xv Y)ga - WQ(Y)X (a =1,2, 3)'
Proof. For X,Y € TU, consider the following tensor
(4.19) N(X,Y)=N(X,Y) 4+ (Xwo(Y) — Ywa(X))Ea

where N(X,Y) = [Jo X, JoY] — [X, Y] — Jo[JoX, Y] — Jo[X, JoY] is the Nijenhuis torsion
of Jo (¢ =1,2,3). A direct calculation for a contact metric structure g (cf. [5]) shows that

20((VxJa)Y, Z) = g(N“*(Y, Z), JoX) + (L ], xwa)(Y)
- (EJ_ana)(X) + 2§(X7 Y)WQ(Z) - 2§(X7 Z)wa(y)'

Since each J, is integrable on Nullw,, from Theorem 2.7, it follows that the Nijenhuis torsion
of Jo, N(X,Y) =0(V X,Y € Nullw,). By the formula (4.19), N¥=(X,Y) = 0forV X,Y €
Nullw,. Noting the decomposition TU = {&} @ Nullwy, to obtain (4.18), it suffices to
show that N“1(£;, X) = 0 (similarly for o = 2,3). As &, is a characteristic C'R-vector field
for (wq, Ja) (0 =1,2,3),1.e. Lg, J1 = 0, it follows that Ji[&1, Y] = [&1, 1Y] (VY € Nullwy).
In particular, Ji[¢1, J1X] = —[£1, X]. Hence, N“=(£1, X) = 0. As a consequence, we see
that N“*(X,Y) =0 (V X,Y € TU). On the other hand, if N“>(X,Y) =0(VX,Y € TU),
then it is easy to see that (L ywa)(Y) — (£7,ywa)(X) = 0. (See [5].) From (4.17), note
that we(X) = §(&a, X). The above equation (4.18) follows. O

As {wa,Oi}a:Lg’g;i:l...ZM are orthonormal coframes for the pseudo-Sasakian metric g
(cf. (4.17)), the structure equation says that there exist unique 1-forms ¢}, 7 (i,j =

17 e ,4’[27 o = 1, 2, 3) Satisfying:

3
(4.20) d' =07 Ngy + D wa ATy (it ji =0).
a=1
Then the normality condition for the pseudo-Sasakian 3-structure is reinterpreted as the
following structure equation.

Theorem 4.4. There exsists a connection form {w;} such that

(4.21) A3 — wiJe — I0wd =230 we — 235wy ((a,b,¢) ~ (1,2,3)).

10

Proof. Tt follows from Proposition 4.3 that (VxJ,)e; = §(X,e;)&, for {e;} = D at a
3

point. From (4.20), let Vxe; = gog (X)ej+ Z (7p);&p which is substituted into the equality
b=1
(VxdJa)e; = Vx(Jauei) — Jo(Vxe;):

(VxJa)ei = (d(IM)F(X) = 97 (X) (TG + (I g (X))eq
3
(4.22) + Y (I M)(X)& = Y (1),(X)E&e (Here Jo& = &)
b=1

c#a
= g(X, e)& ((4.18)).
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As §(X,e;) = Grif*(X) (cf.(4.17)), this implies that d(J*)f — ¢?(J%)% + (J9)7¢f = 0
and (I (1a))(X)éa = Grif®(X)&. Tt follows that —(7,); = (J%);;67. Then (7,),5" =
—(J")i;g™07 = (J);;g"™67, so that (1a)" = (j“)éﬂj. As gij = £6;5, use g to lower the
above equations:

d(I)ij — 97 (I — (Iigw] = 0.

(4.23) Jn
(1a)" = (J)56°.
Putting
(4.24) wh = b =Y (I)iwa,
a=1
the equation (4.20) reduces to
(4.25) A" = 07 AW (wij +wji = 0).

Differentiate our equation (4.2) dw, + 2wp A we = —j%Oi A ((a,b,e) ~ (1,2,3)) and
substitute (4.25). It becomes (after alternation):

Since djfj —wfjgj —J% w? = 0 mod wy, wy, w3 from (4.23), (4.24) and the forms wq A A6
(a = 1,2, 3) are linearly independent, the result follows. O

Definition 4.5. Let V be the Levi-Civita connection on an almost quaternionic pseudo-
Riemannian manifold (X, g) of type (4p, 4q) (p+q = n). Then X is said to be a quaternionic
pseudo-Kahler manifold if for each quaternionic structure {ja; a =1,2,3} defined locally
on a neighborhood of X, there exists a smooth local function A € so(3) such that

Nz J
VI Jo | =4 &
J3 J3

provided that dim X = 4n > 8. Equivalently ifQ 1s the fundamental 4-form globally defined
on X, then VQ = 0.

We have shown the following result in [2] when dim U/E = 4n > 12 by Swann’s method.

Theorem 4.6. The set (U/E, g, {I}, Ji, Kz’}z’eA) s a quaternionic pseudo-Kahler manifold
of type (4p,4q) provided that dim U/E = 4n > 8. Moreover, (U/E,§) is an FEinstein
manifold of positive scalar curvature (4n > 4) such that

(4.26) Rjo = 4(n+2)gjs.
Proof. As we put #" = %0, (4.15) implies that d6® = ¢ A 77*@;, Ty + mwj; = 0.
Compared this with (4.25) and by skew-symmetry, it is easy to check that

(4.27) W = Wi

PutV = V; and jl = fi, jg = ji, jg = KZ onV. Let s = S; - V —U be the section as before.
Since Tisx((€)z) = (&) = Tx((€5)s(2))s 5:((€5)z) — (€)sz) € V = {&1,&2,&3}. Then
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0 (s*((e])z)) = 0'((e ]2 (#)) from (4.1). A calculation shons that (JAa)gEeZ = Me(Ja)s(z)€i =
(I (s(2))ej) = (I@ )g( (2))é; (cf. (4.12)). As we put J%¢; = (J9)(2)é;, note that
(4.28) Jo(s(2)) = I4(2) (a=1,2,3).

In particular,

(4.29) d(JVij 0 8:(Xz) = d(J)i;(Xz) (V Xz € Ta(V)) (a=1,2,3).

Since m.5,(X3) = Xz (X; € Tp(V)), (4.27) implies that &7 (Xz) = wf (s4(X;)). Plug this
equation and (4.28), (4.29) into (4.21):

d(J)ij(5:X) = wf (5:X) - (30 (5(2)) = (3o (5(2)) - 0 (5:.X)
d((J)ij)a(X) = &7 (X) - (390 () = (390 (&) - &7 (X)

2(37)ij(5(2)) - we(s.X) = 2(3)55(s(2)) - wp(s.X)

2(J7)ij(2) - we(5.X) — 2(3%i5(2) - wp(s.X).

Using these,
(Vx(Ja)((1)2) = Vx (Ja)éi = (Ja) (V5 3)
= (d(I)35(X) = (3o (2) - 5 (X) = &7 (X) - (304 (@)) (€2
= 2(37)(#)(5)s - 5"wel X) = 2(3)i5(2) (63 - 5" wn(X)
= (203)s - 5"we(X) = 2(J)s - 5"n(X) ) (&)

Therefore, @X(ja) = 2(Jy)s - 8" we(X) — 2(Je)s - s*wp(X). This concludes that

. ”i 1 0 s*wg  —s*woy c@
(4.30) VI Jo | =2 —s'ws 0 5wy Jy |-
Js S*we  —s*wq 0 Js

Asweput Jy = I;, Jo = J;, J3 = K; on V, (U/€, g, {I}, ji,f(i}ie,\) is a quaternionic
pseudo-Kéhler manifold for dim U/E > 8. Using the Ricci identity (cf. (2.11),(2.12) of
[15], [34]), a calculation shows that

(n>1)
Ry = —4(n +2) <s (dwr + 2wz A w3) )(éj,ék)fgf(g:«).
(4:31) Rjy = —4(n+2) <s (dws + 2w3 A wr )(éj,ék)jgf(g:«).
Ry = —4(n+2) <s (dws + 2w1 A wy )(éj,ék)f%gf(;z«).
(n=1)
(4.32) Rit = —4(s"(dwr + 20 N w3) ) (&, 86) IE(D) — 4(" (g + 23 A 1) ) (&5, 4) JF (2)

- 4(3*(dw?, + 2w A wz)) (¢, e0) KE ().



Using dwg 4 2wp Aw,e = —J%OiAﬁj and (4.28), it follows that <s*(dwa—|—2wb /\wc)>(“j, ér) =
5 (s(2)) = —J5(2). Since (3] - (4] = ~3F, Ry = +4(n +2)(I);(2) - 3} (@) =
4(n+2)gje when n > 1 and Rj = +4(1j5(2)- 1} (2)+Jj(2)-JF (2)+ Kji(2)-KF () = 4-3gj0
when n = 1. O

5. QUATERNIONIC C'R CURVATURE TENSOR

Recall from (4.25) that d6® = 67 A w;'», wij + wj; = 0 where W*@;» = w;'», 0" = 0" from
(4.20), (4.6) respectively (i,7 = 1,---,4n). Define the fourth-order tensor R;M on U by

putting

(5.1) dw;» —w] A W = %R;kﬁk A0° mod wy,ws,ws.
By (4.16), it follows that

(5.2) Riyy =" Riyy.

The equality (4.26) implies that

(5.3) Rjp = 4(n+2)gje.

Differentiate the structure equation (4.20).
(5.4) Ozdﬁj/\goé»—Oj/\dgoé»—l—Zdwa/\Té—Zwa/\dTé.
a a
Substitute (4.2) and (4.20) into (5.4);
2N (dgoé» - go? Al — ZszHk AT + Zwa A(dTl —7F A pl)
a a

+ 2wog /\W3/\7'1i—|—2w;», N wq /\7‘5—1—2% /\wz/\T?f =0.
This implies that

(5.5) 67 A (dgoé» - go? Al — ZszHk ATH =0mod wi,ws,ws.
We use (5.5) to define the curvature for(;n:
(5.6) <I>§ :dgoé»—go?/\goi—l—i@k/\.]?k?é—@i/\@j.
=1
Set '

1@ = dri — T A gl +wa ATE— ws AT,
(5.7) 0@ = drs — TH AL 4 ws AT — wy AT

3@ =dri —TE AL+ wi ATE—wa AT
which satisfy the following relation.
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We may define the fourth-order curvature tensor T’ ;kl from <I>§»:

1
(5.9) Pl = §T;k10k A 6" mod wi,ws, ws.

Remark 5.1. In view of (5.9), there exist the fourth-order curvature tensors W;ka (a =

1,2,3) and Vjibc (1 <b< ¢ <3) for which we can describe:

1 1 . 1 .
(5.10) o = §T}k19k NG+ 3 D> Wikt Awa + 5 > Vipetws Awe.
a b<c
6. TRANSFORMATION OF P-C QC'R STRUCTURE

6.1. G-structure. When {6°},_; ... 4p are the 1-forms locally defined on a neighborhood

U of M, we form the H-valued 1-form {w'};=; ... ,, such as

(6.1) W' =0+ 0" 92T 4 g3,

We shall consider the transformations f : U—U of the following form:
ffu=Xw-X(=v’a -w-a),

(6.2) fHw) = U’%we X AW

such that A = u - a for some smooth functions v > 0, a € Sp(1) and U’ € Sp(p, ¢) with
p+ q =n. Let G be the subgroup of GL(n + 1, H) - H* consisting of matrices

A0

(6.3)

Recall that Sim(H"™) = H" x (Sp(p, q) - H*) is the quaternionic affine similarity group of the
quaternionic vector space H" where H* = Sp(1) x R™. Then note that G is anti-isomorphic
to Sim(H") given by the map

A xd
(6.4) t ol x A— (X2, X - \) € H" x (Sp(p, q) - HY).

(Here z* = 'z.) We represent i as the real matrices. Let © € H" be a vector. The group
Sp(p, q) - H* is the subgroup of GL(4n,R) acting on H" by

(6.5) U -No=U-\

where U’ € Sp(p, q), A € H*. Write A\ = u-a € R x Sp(1) so that Sp(p, ¢) -H* is embedded
into R x SO(4p, 4q) in the following manner:

(6.6) U - \®) =uU'va =ul'ao (ava) = w(U'a) o Ady(d) = u- Ut (o € H" =R™)
in which

(6.7) U=U'aoAd, € SO(4p, 4q),
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(6.8) Ad,| J | =al| 5 |a=A| 7 | forsome A € SO(3).
k k k

We put the vector &/ € H" in such a way that &/ = v/ + o"Hg + 0?4 4 3"k
(j=1,---,n). Form the real (4 x 3)-matrix

_,Uj—i-n _,Uj—i-2n _,Uj—i-?m
, oI _pdt3n it2n
(6.9) V7= pit3n i _yitn
_,Uj—i-2n ,Uj—i-n ’Uj
It is easy to check that
S [t _ 1 0 [t
6.10 Mo wA =M1 BV | w DA=(1147 k)u? . VI wo
0 *A
w3 w3

Then G is isomorphic to the subgroup of GL(4n + 3, R) consisting of matrices

u?-tA 0

(6.11) .2 ( (1) t?4 > 1

1 0
2 n
Here A € SO(3),U = (U;) € SO(4p, 4q).
Using the coframe field {wy, ws, w3, 81, ---, 04"}, f is represented by

f*(wla w2, W3) = ’LL2(W1, w2, W3)A,

3
F10 = ub U+ wavl,

a=1

6.12 45-3  4j-3  4j-3
(6.12) A A
4j-2  dj—2  1j-2
v v v 1 0 ;
1 2 3 — g2 J (5=
where 4j-1  4j-1 11 | =u ( 0 tA > V(=1 ,n).
v v v
4 TRY

Let F(M) be the principal coframe bundle over M. A subbundle P of F(M) is said to be
a bundle of the nondegenerate integrable G-structure if P is the total space of the princi-
pal bundle G—P— M whose points consist of such coframe fields {wy, wa,ws, 8%, - -, 0"}
satisfying the conditions of Definition 1.1, (1.8), (1.9). A diffeomorphism f : M—M is a
G-automorphism if the derivative f* : F(M)—F (M) induces a bundle map f*: P—P in
which f* has the form locally as in (6.2) (equivalently (6.12)).
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Definition 6.1. Let Autycr(M) be the group of all G-automorphisms of M.

6.2. Automorphism group Aut(M). Let W be the (n+2)-dimensional arithmetic vector
space HPT19+1 over H equipped with the standard Hermitian metric B of signature (p +
1,g + 1) where p + ¢ = n. Then note that the isometry group Sp(W) = Aut(W,B) =
Sp(p+1,g+ 1) and W has the gradation W = W1 + W° + W' where W*! are dual
1-dimensional isotropic subspaces and W9 is (B-non-degenerate ) orthogonal complement
to Wt + WL, The gradation W induces the gradation of the Lie algebra g of depth two,
ie.
g=0+g  +g' +g' +g°

Here g° = R + sp(1) + sp(n).

In [3] we introduced a notion of p-c ¢ structure. This geometry is defined by a codimen-
sion three distribution H on a (4n+3)-dimensional manifold M, which satisfies the only one
condition that the associated graded tangent space "1, M = T, M/H, + H, at any point
is isomorphic to the quaternionic Heisenberg Lie algebra M (p,q) = g~ = g 2 +g !, i.e. the
Iwasawa subalgebra of Sp(p+1, g+1). We proved that such a geometry is a parabolic geom-
etry so that it admits a canonical Cartan connection and its automorphism group Aut(M)
is a Lie group. More precisely, if P*(H) is the parabolic connected subgroup of the sym-
plectic group Sp(W) corresponding to the dual parabolic subalgebra p*(H) = g* + g% of
sp(W), then there is a PT(H)-principal bundle 7 : B — M with a normal Cartan connec-
tion k : TB — sp(W) of type Sp(W)/P*(H). There exists a canonical p-c q structure H"
on Sp(p+1,q+1)/PT(H) with all vanishing curvature tensors (cf.§7.2). A p-c q manifold
(M, H) is locally isomorphic to a (Sp(p+1, ¢+1)/PT(H), H®") if and only if the associated
Cartan connection & is flat (i.e.has zero curvature). Put S%349 = Sp(p+1, ¢+1)/PT(H).
Then §*P+344 is the flat homogeneous model diffeomorphic to S%+3 x §49+3 /Sp(1) where
the product of spheres S¥13 x §44+3 = [(F 27) e HPTLITL | B(2T,27) =1,B(27,27) =
—1} is the subspace of W = HPT14+! and the action of Sp(1) is induced by the diagonal
right action on W. The group of all automorphisms Aut(S™349) preserving this flat
structure is PSp(p + 1,¢ + 1). Suppose that M is a p-c qCR manifold. By definition,
.M =T, M/D, + D, = ImH + H" = M(p,q) at V& € M. Then each G-automorphism
of Autqor(M) preserves M(p, q) by the above formula (6.12). Since a p-c qC'R structure
is a refinement of a p-c q structure by Definition 1.6, note that Autycr(M) is a closed
subgroup of Aut(M) which is a Lie group as above.

Corollary 6.2. The group Autycr(M) is a finite dimensional Lie group for a p-c qCR
manifold M.

7. PSEUDO-CONFORMAL QCR STRUCTURE ON S3+4p:4q

We shall prove that the qC'R homogeneous model Z%Hp 4% induces a p-¢ qCR structure
on §3+4P44 which coincides with the flat p-c q structure.

7.1. Quaternionic pseudo-hyperbolic geometry. Let

(7.1) B(z, w) = Z1W1 + Z2w2 + -+ -+ Zpp1Wp 1 — Zpt2Wpt2 — **° — Znt2Wnt2
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be the above Hermitian form on H"+2 = HP+L.4+1 (p 4+ ¢ = n). We consider the following
subspaces in H**2 — {0}:

VAT — 2 € B Bz, 2) = 0},
VA — 2 € H"?| B(z, 2) < 0}.

Let H*—((Sp(p + L,q + 1) - H*, H""2 — {0}) 25 (PSp(p + 1,¢ + 1), HP"™) be the
equivariant projection. The quaternionic pseudo-hyperbolic space Hﬁ“’q is defined to be
P(VAF8) (cf. [11]). Let GL(n+2, H) be the group of all invertible (n+2) x (n+2)-matrices
with quaternion entries. Denote by Sp(p + 1,¢ + 1) the subgroup consisting of

{AeGL(n+2,H) | B(Az, Aw) = B(z,w), z,w € H""}.

The action Sp(p + 1,q + 1) on V"™ induces an action on H %H’q. The kernel of this
action is the center Z/2 = {£1} whose quotient is the pseudo-quaternionic hyperbolic
group PSp(p+1,¢+ 1). It is known that H%H’q is a complete simply connected pseudo-
Riemannian manifold of negative sectional curvature from —1 to —%, and with the group of
isometries PSp(p+1,g+1) (cf. [21]). Remark that when ¢ = 0, p = n, P(V*""®) = HIH is
the quaternionic Kéahler hyperbolic space with the group of isometries PSp(n + 1,1). The
projective compactification of Hﬁ“’q is obtained by taking the closure Hﬁ“’q in HP"*!,
Then it is easy to check that Hﬁ“’q = Hﬁ“’q U P(V3™*7). The boundary P(Vy"™*") of
H%H’q is identified with the quadric S314P4 by the correspondence:

(7.2) [z+,z_]r—>[ e ]

21" {1211

Since the pseudo-hyperbolic action of PSp(p + 1,¢ + 1) on H%H’q extends to a smooth
action on S3T4P4e = P(V04”+7) as projective transformations because the projective com-
pactification H%H’q is an invariant domain of HP"*+1.

7.2. Existence of p-c qCR structure on $3+4744, Recall that Z%+4p’4q =

{(21,+ zppn, w1, - wg) € HYF [ 212 -+ 4 254 [P = Jwn|* = - - - — |wy[?* = 1} equipped
with qCR structure wg (cf.§3). The embedding ¢ of Z%Hp 4 into §4P344 is defined by
(21, Zpt1, Wi, -+, wq) — [(21, ¢, Zpp1, W1, - -+, Wq, 1)]. Then L(Z%HPA(]) is an open

dense submanifold of S4P1344 because it misses SPF34@—D) — 443 o gda=1/g,(1) in
S4P+3:49 We know that E%+4p’4q has the transitive isometry group Sp(p + 1,¢q) - Sp(1)
(cf. Definition 3.1). Then this embedding implies that Sp(p+ 1, ¢q) - Sp(1) is identified with
the subgroup P(Sp(p+1,¢) x Sp(1)) of PSp(p+ 1, ¢+ 1) leaving the last component z,
invariant in V57 ¢ H* 2.

By pullback, each element h of PSp(p+ 1, ¢ + 1) gives a qCR structure h~*wy on the
open subset h(2%+4p’4q) of §3T4P44. Noting that h~1*H" = H" and Definition 1.6, we
shall prove that (9374749 H") admits a p-c qCR structure by showing that Nullh = *wy
coincides with the restriction of H*|h(SgP19).
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Theorem 7.1. The (4n + 3)-dimensional p-¢ q manifold (S*PT34 H“™) supports a p-c
qCR structure, i.e. there exists locally a qCR strucrure w on a neighborhood U such that

H U = Nullw.

Moreover, the automorphism group AuthR(S4p+3’4q) with respect to this p-c gqC'R structure
is PSp(p+1,¢+1).

Proof. First we describe the canonical p-c¢ q structure H" on S3+44¢ explicitly. Choose
isotropic vectors z,y € Vj such that B(x,y) = 1 and denote by V' the orthogonal comple-
ment to {z,y} in HPTL9+L Then it follows that T,V = sp(W)x = yImH + V + 2H where
T, (xH*) = zH. Then

Ty S 34 = P (T, Vo) = (yImH + V + 2H) /2H.

We associate to each [z] € S4T3:49 the orthogonal complement x+ = V 4 zH. Tt does not
depend on the choice of points from [z]. In fact, if 2’ € [z], then 2’ = x- A for some A € H*.
By the definition choosing %’ such that T,/ Vy = ¢/ImH + V' 4+ 2'H where the orthogonal
complement V' to {a/,y'} in HPT14+! is uniquely determined. Let v’ be any vector of V'
which is described as v' =y -a+ v + z - b for some a,b € H. Then

0= B(2',v") = B(z',y)a+ B(x',v) + B(z, 2)b

= \B(z,y)a+ AB(z,v) + AB(z,2)b = X - a.

Since A # 0, @ = 0 and so v/ = v + 2 - b. Hence 2/* = V/ + 2/H = V + 2H. Therefore
the orthogonal complement - = V + zH in HPT19*! determines a codimension three
subbundle
Hean — U ( J_)'
(73) [m]€5‘4p+3,4q
P.(zh) =V + zH/zH c TS*%+344,

On the other hand, recall that if N}, is the normal vector at p € Z%Hp ’4q, then (Nullwy), =
D, = {IN,, JN,, KN,}* by the definition (cf.§ 3). Since 7,357 = N1 with respect
to g™, it follows that T,H"* |3 = (N, IN, JN,, KN,} ® D,. If we note that
{Np,IN,, JN,, KN,} = pH, then we have D), = pH™. Tt is easy to see that the orthogonal
complement to pH with respect to g™ coincides with the orthogonal complement to p with
respect to the inner product B. Hence, D, = pt. As the tangent subspace t(Dp) at
v(p) in T,»)Vo is (Dy, 0) which is parallel to D, in T,Vj, it implies that B(t«(Dp), t(p)) =
B((Dy,0), (p,1)) = (Dp,p) — (0,1) = 0. Hence 1,(D)) C u(p)* (with respect to B). As
Wp)t =V + (p)H, t(Dp) CV +u(p)H. As above 1.(D,) = (Dp,0) at ¢(p), but «(p)H =
(p,1) - H. The intersection t.(Dp) Ne(p)H = {0}. It implies that t.(Dy) = t.(Dy)/t(p)H C
V + «(p)H/u(p)H. By (7.3), t.((Nullwy),) = Pi(u(p)t) = H;()- Therefore S4r+3:49 admits
a p-c qCR structure. Then Autycr(S%T349) is a subgroup of Aut(S%*349) = PSp(p +
1,q+ 1) from §6.2. O
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7.3. Pseudo-conformal quaternionic Heisenberg geometry.
To prove Autgepr(S*1349) = PSp(p+ 1, ¢+ 1), we recall the quaternionic Heisenberg Lie
group. Let PSp(p + 1,¢+ 1) be the group of all automorphisms preserving the flat p-c q
structure of S4+349 = PSp(p +1,¢+ 1)/P*(H) (cf.§ 6.2.) We consider the stabilizer of
the point at infinity {co} = [1,0,---,0,1] € Z%+4p’4q C §%*344 Recall the (indefinite)
Heisenberg nilpotent Lie group M = M(p, q) from [16]. It is the product R* x H" with
group law:

((1, y) ’ (b7 Z) = ((I +b— Im<y7 Z>, Y+ Z).
Here ( ) is the Hermitian inner product of signature (p,q) on H" as in (7.1) and Im( )
is the imaginary part (p + ¢ = n). It is nilpotent because the commutator subgroup
[M, M] = R? which is the center consisting of the form (a,0). In particular, there is the
central extension:

(7.4) 1-R3—>M—H"—1.

Denote by Sim(M) the semidirect product M x (Sp(p, ¢) - Sp(1) x R") where the action
(A-g,t) € Sp(p,q) - Sp(1) x Rt on (a,y) € M is given by:

(7.5) (A-g.t)o(a,y)= (- gag™, t- Ayg™).

Denote the origin by O = [1,0,---,0,—1] € Z%+4p’4q—{oo}. The stabilizer Aut(S3+4P44)
is isomorphic to Sim(M) (cf.[18]). The orbit M - O is a dense open subset of S4P+344,
The embedding ¢ is defined by:

lalPollzlP 4+ §b+ ke
(7.6) ((a,b,0), (24,2-)) e M = gj—r
2 2
N Pl 1 i+ b+ ke

Then the pair (Sim(M), M) is said to be p-c¢ ¢ Heisenberg geometry which is a subgeometry
of flat p-c q geometry (Aut(S3+4P44), §3+4P44) We prove the rest of Theorem 7.1.

Proposition 7.2. AuthR(S4p+3’4q) =PSp(p+1,¢+1).

Proof. First note that PSp(p+1, ¢+ 1) decomposes into Sim(M) - (Sp(p+1, ¢) -Sp(1)). We
know (cf. §3) that each element f = (A, a) € Sp(p+1,q) - Sp(1) satisfies that f*wy = awpa,
obviously f € Aut,cr(S*T349). On the other hand, it is shown that an element h of
Sim(M) satisfy that h*wp = AwpA for some function A € H* by using the explicit formula
of wp. (See [16].) When h € Sim(M), note that h(co) = oco. Let 7 : PSp(p+ 1,9 +
1) oo —Aut(T o0} (S*T4P49)) be the tangential representation at {oo}. Since the elements
of the center R3 of M are tangentially identity maps at T{Oo}(S3+4p’4q), 7(PSp(p+ 1,9+
1)oo) = H" % (Sp(p, ¢)-Sp(1) x R™) which is isomorphic to the structure group G (cf. (6.11)).
As 7(h) = hi, b € Auty,cr(S3TP49) by Definition 6.1. We have PSp(p + 1, + 1) C
AuthR(S3+4p,4q)' U

8. PSEUDO-CONFORMAL QUATERNIONIC C'R INVARIANT

We shall consider the equivalence problem of p-c qCR structure. Let dw +w Aw =
—(Liji+ JijJ + Kijk)0" N6? be the equation (4.3) as before. We examine how this equation
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behaves under the change of transformation f € Aut,cr(M); f*w = A-w-A. Put ' = f*w.
By (6.12),

do' + W AW = fHdw+ w Aw) = — (153 + Ji55 + Kik) f50° A f569
= —(Liji + Ji;3 + K;jk) (u0*U;} + Zwavé) A (u@eUg + Zwbvg)
a b

= —(Iyji + Jigj + Kgk) («2ULU7 0 70"+

Z wa N\ (uvéUgﬁe — wlUL0Y)+ Zwa A wb(vévg - vévé))
a a<b

= —(Lyji + Jig + Kighe) (wPULU70° 16"+ 3 wo A 20l U70"
a
+ Z Wa A wb(2vévg)>.
a<b

Choosing w¥ (a = 1,2, 3) such that Ufw* = vl the above equation becomes

do' + W' N’ = —(Iiji + Jijj + Kijk) (2ULUL 0% A 0'+
J J J k-
Zwa A QuwsUéUgﬁe + Zwa A wb(2UéUgw§w£)>.
a a<b

Let U = U'a o Ad, € SO(4p,4q) be the matrix as in (6.7) so that Uz = U'za (2 € H")
(cf. (6.6)). If {I, J, K} is the set of the standard quaternionic structure, then
IU(2) = I[(U'za) = U'zai = U'z(aia)a
= U/Z(an’i + a013 + aglk)(_z = anU’zia + aglU/Zj(_I + (I31U/Zk(_1
=a11U(2t) + a21U(27) + a51U(zk) = a11UI(2) + a21UJ(2) + as1U K (2).

This follows that IU = a11UI + a21UJ + az1UK. Since 1U(e;) = U;Ifeg, a calculation
shows that U If = ay IJU! + as1 JIU! + a3 KUY, similarly for J, K. As

I I
(8.1) Jol=tal J
K’ K

is a new quaternionic structure (cf. (1.5)), it follows that

IijU,iUZ = a11ke + a21Jpe + a1 Ko = '
(8.2) JijU,iUZ = a12lke + age Jie + asa Ky = J ke
KijU,iUZ = a13lke + a23Jpe + azs Ko = K'ip.

Then we obtain that



dw' + W' AW = _(I/iji + J/z'jj + K/Z'jk) <’LL29Z A Hj

+ Z wa A 2uw’ 67 + Z wa N\ wb(2w2wg)>.
a a<b

(8.3)

We shall derive an invariant under the change w’ = X\ -w - A. Recall from (6.12) that

(84) (wiv wév Wé) = (wlv w2, W3)’LL2 - A.
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Let df® = 67 A goé» + Z wa AT. be the structure equation (4.20). We define 1-forms v/ by
a

setting

y’i 7
(8.5) vy | =u A 7

I//é T3
Since 72 =0 mod 6* (k =1,---4n) by (4.23), note that
(8.6) I//Z = 0 mod #*.
Using (8.4) and (8.5),

v
Zwa/\Té:(wll,w’Q,wlg)/\ y/é :Zwla/\’//fp
a I//é a
the equation (4.20) becomes
(8.7) o' =09 Al + Y W AV
a

Differentiate (8.7), and then substitute (8.3), we obtain that

6 A (dgoé» — @7 A @b+ P k08 A Vo u?J' k08 A vy + K’ j1,0% A V%) = 0 mod w.

Taking into account this equation (which corresponds to (5.5)), we have the fourth-order

tensor up to the terms wq, wo, ws:
1 . . . . .
(8.8) ST ket N0° = digly — F A gl + D u? - J508 A — 0" 16
a

1
R

2

Here we put (I';;, J';j, K'ij) = (I le’jv

(8.1) and (8.5),
Dot TGO AV =08 A (L, Ty, Kgp) | T | =08 A 3G

The equation (8.8) can be reduced to the following;:
(8.9) Tt N0 = dgh — 0 Aol + 08 NS T%mi — 0 N6
a

From (5.9) and (5.6), we have shown

J/?j). Since (I/ija J/Z'j, K/ij) = (Iz’ja Jz’ja KZ])A from
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Proposition 8.1. Ifw' = - w- X\ for which w is a qCR structure, then the curvature
tensor T' satisfies that T’;M =Ty In particular, T = (T;M) is an invariant tensor under
the p-c qCR structure.

Remark 8.2. 1. Similarly, the quaternionic structures {I’, J', K’} extends to almost
complex structures {I’, .J’, K’} respectively.

2. Let f € Autycr(M) be an element satisfying (6.12). Then,
fe€i = uUikek. Using (8.2),

If.e;= uUfI,gej = u(anllm + agljzm + aglem)Uglej
= fi((an ;" + anJi" + a1 Kj")em)
= fe((a11d + a21J + az1K)e;).

The similar argument to J, K yields that

S I
(8.10) fFYf. | =tA J on D.
K f K

8.1. Formula of curvature tensor. We shall find the formula of 7. Substitute (4.24),
(4.23) into (8.9):

Tt A0 = d(wi +) " (Iiwa) — (W] + > (I)7wa) A (wh + D (I)swa)

+ 08 A (I - 10" + Jjp, - Ji0 + K - Kg'e‘f) —0'A0; mod w,
= dw! +Z (I idwg — w? Awl +Z )i)6" A 6L — 6" A B; mod w,

:(dwj—wj Awh)
+) (TN e’fAeuz )D)0F A BE — 6 AG; mod w,

1 i a\i Ta a a\i i
- (5 jké_z('] )j ké"‘Zij(J )e_gj€'5k> AN mod wy.

a

By alternation, we have

(8.11) Thy = Riy — (22 (35T — ZJJk J%+ZJ I+ (gje0h — gjkagg)).

Recall the space of all curvature tensors R(Sp(p, q) - Sp(1)). (See [1] for example.) It
decomposes into the direct sum Ro(Sp(p, q) - Sp(1)) & Rur(Sp(p, ¢) - Sp(1)) (n > 2). Here
Ry is the space of those curvatures with zero Ricci forms and Ryp =~ R is the space of

curvature tensors of the quaternionic pseudo-Kéhler projective space HIPP? (cf. Definition
3.2).
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Case n > 2. Since we know that R;M = Rjy = (4n+8)gj¢ from (5.3), the curvature tensor

T=(T ;M) satisfies the tracefree condition:

Ty = (Thy) = (4n +8)gje — (3 350 + (4n — 1)gjg) —0.

This implies that our curvature tensor T belongs to Ro(Sp(p, q) - Sp(1)) when n > 2.
Case n=1. When dim M = 7, either p = 1,¢g = 0 or p = 0,¢q = 1. Choose the
orthonormal basis {e;};=1234 with e; = e,ea = Ie,e3 = Je,eq4 = Ke. Form another
curvature tensor:
(8 12) R/;ké = (gjgd,i - gjkéé) + [Ijgl,i - Ijklgi + 2I;Ikg
Fjed = Tt 4 2T + Ky — Kk + 2K K.
For any two distinct e;, e;,

R, = (95501 — gjidt) + [Ijiff — Iil} + 2LI + Jji ] — Judt + 200 ;5

VKK — KK+ 2K§Kij} =gj; +3 [Iijlj + Jij T} + Kz’jKﬂ :
Since i # j and e; is either one of £1e;, £Je;, = Ke;, Iizj + ij + Kfj = 1 (for example, if
ej = le;, then [i* =1, Ji = 0, Ki = 0 so that I;;I} = g;;.) Thus, R';; = 4g;;. It follows

from the Schur’s theorem (cf. [21] for example) that

(8.13) Rl;ké = 4(g;e0}, — 9j107)-
When n = 1, we conclude that

As the curvature R;M satisfies the Einstein property from (5.3); Rj; = 4 - 3gj¢, the scalar
curvature ¢ = 4-12. On the other hand, the curvature tensor R;M has the decomposition:

4-12

Rl = Wiy + ﬂ(gﬂﬂsi )
in the space R(SO(4)) where SO(4) = Sp(1) - Sp(1). Hence,

for which W;M corresponds to the Weyl curvature tensor (of (U/E, g)).

Case n = 0. If dim M = 3, then the above tensor is empty, so we simply set T = 0. Define
the Riemannian metric on a neighborhood U of a 3-dimensional p-¢c qC'R manifold M:

(8.16) 9o(X,Y) = w1 (X) - w1 (Y) + w2 (X) - w2 (Y) +ws(X) - ws(Y)

(V X,Y € T,U). Suppose that ' = X\ -w - . Since (w'1,w's,w'3) = u? - (w1, ws,w3)A for
A € SO(3), the metric g changes into ¢’ = W'y - W'y +w's - W's + W' - W3 satisfying that
(8.17) J.(X,Y)=u" g.(X,Y) (VX,Y €T,U).

Then ¢’ is conformal to g on U. Define TW (w) to be the Weyl-Schouten tensor TW (g) of
the Riemannian metric g on U. Then, it turns out that

(8.18) TW (W) = TW (w).
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As a consequence, TW (w) is an invariant tensor of U under the change o’ = A - w - A.

9. UNIFORMIZATION OF P-C QCR STRUCTURE
If {w(®), (1(@) j@) [, 9(a) Uataen is a p-c qCR structure on M where LGJA U,=M,
(6%

then we have the curvature tensor 7(®) = ((O‘)T;M) on each (Uy,w®) (n > 1). Sim-
ilarly, TW(@ = TW(w(®) on (U, w®) for 3-dimensional case (n = 0). Then it fol-
lows from Proposition 8.1 and (8.18) that if w(®) = A5 - w(® - X\,5 on U, N Us, then
7@ = 7B 7w = 7w By setting T|Uy = T® (respectively TW|U, = TW (@),
the curvature T' (respectively TW) is globally defined on a (4n + 3)-dimensional p-c qCR
manifold M (n > 0). This concludes that

Theorem 9.1. Let M be a p-c gCR manifold of dimension 4n+3 (n > 0). Ifn > 1, there
exists the fourth-order curvature tensor T = (T;M) on M satisfying that:

i) Whenn >2, T = (T ,) € Ro(Sp(p, q) - Sp(1)) which has the formula:
jke
Tipe = Ripe — {(gje5zi — gjkdy) + [fjefzi = Ljpdy + 20T
Fjedh = Tt + 2T + KK — KoK + 2K K| }.

(ii) Whenn =1, T = (W;M) € Ro(SO(4)) which has the same formula as the Weyl
conformal curvature tensor.
(iii) If n = 0, there ezists the fourth-order curvature tensor TW on M which has the

same formula as the Weyl-Schouten curvature tensor.

We have associated to a p-c qCR structure ({wo}, {Ja}, {€a})a=123 the pseudo-Sasakian

3
metric g = Zwa-wa +7*§ on U for which £—(U, g) — (U/E, §) is a pseudo-Riemannian
a=1
submersion and the quotient (U/&, g, {I}, Ji, KZ}ZG A) is a quaternionic pseudo-Kéahler man-
ifold by Theorem 4.6. Let (Q)Rém (respectively R;ke) denote the curvature tensor of g
(respectively g). If Ryp is the generator of Rup(Sp(p, q) - Sp(1)) = R (n > 2), then it can
be described as (cf. [1]):

3 3 3
(9.1) Rup = (gjegik — gjrgie) + ZJ?eJ?k - Z JGedie +2 ZJ% ke
a=1 a=1 a=1
where i, j, k, ¢ run over {1,---,4n}. Then the formula (12.8) of curvature tensor of g [33]

(n > 1) shows the following.

Lemma 9.2.

3 3 3
7 Rije = O Ryjp + (Z IG5 =Y IN TG +2> Ty gg>
(92) a=1 a=1 a=1

= @ Rijre — (9500 — gikdic) + Rup.

We now state the uniformization theorem.
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Theorem 9.3. (1) Let M be a (4n + 3)-dimensional p-c qCR manifold (n > 1). If the
curvature tensor T wvanishes, then M is locally modelled on S*P+3:49 with respect to the
group PSp(p+1,q+ 1).

(2) If M is a 3-dimensional p-c qCR manifold whose curvature tensor TW wvanishes,
then M is conformally flat (locally modelled on S® with respect to the group PSp(1,1) ).

Proof. Using (5.2) and (9.1), the formula of Theorem 9.1 becomes

(93) T;ké = W*Rékg — R]HH[D.
Compared this with (9.2), we obtain that
(9.4) T = (g)R;"ké — (g5e0}., — 9;x07)-

The equality (9.4) is also true for n = 1. In fact, when n = 1, Rgp = 4(gje0% — gjx0}) (cf.
(8.12), (8.13)) and from (9.2), (Q)Rém — (9560t — gji0}) = 7T*R§M — Ryp = T;M by (8.14).

Suppose that T (respectively TW) vanishes identically on M. First we show that M
is locally isomorphic to S#P+3:49 (respectively M is locally isomorphic to S3.) As T|U, =
((Q)T;M) = 0 on Uy, for brevity, we omit a so that T = (17,,) vanishes identically on U
for n > 2. As a consequence,

(9.5) (Q)R;'M = gje0} — gjr6; on D|U.

Since (U, g) is a pseudo-Sasakian 3-structure with Killing fields {1, &2, &3}, the normality

of (4.18) can be stated as WR(X, &)Y = g(X,Y)& — (&, Y)X (cf. [33]). It turns out
that

(9-6) DR, X, Y. Z) = g(X, 2)9(60,Y) — 9(X,Y)g (b, Z)
(VX,Y,Z € TU). Then (9.5) and (9.6) imply that (U, g) is the space of positive constant

curvature. As R;M = Rpygp by (9.3), the quotient space (U/E, g) is locally isometric to
the quaternionic pseudo-Kéhler projective space (HPP, gg). (Note that if T ;M = 0 for
n = 1, then W*R§k€ = R;M = 4(8;00% — 5jk5§) from (8.14). When p = 1,q = 0, the base
space (U/E,§) is locally isometric to the standard sphere S* which is identified with the
1-dimensional quaternionic projective space HP!. If p = 0,¢q = 1, then (U/&, §) is locally
isometric to the quaternionic hyperbolic space HIIHI = HP"! in which we remark that the
metric § is negative definite.) Hence, the bundle: £—(U, g) — (U/E, §) is locally isometric
to the Hopf bundle as the Riemannian submersion (n > 1) (cf. Theorem 3.4):

Sp(1)— (T34 go)— (HPP, §o).

This is obviously true for n = 0.

Let ¢ : (U, g)—>(Z§Hp +3dq. go) be an isometric immersion preserving the above principal
bundle. If Vy = {€9,£9,£0} is the distribution of Killing vector fields which generates
Sp(1) of the above Hopf bundle, then we can assume that ¢.&, = &2 (a = 1,2,3) (by a
composite of some element of Sp(1) if necessary). As wy(X) = g(&, X) (X € TU) and
W(X) = go(éa, X) (X € TZ%IPHA(]) respectively, the equality g = ¢*go implies that

a

(9.7) we =" (a=1,2,3), w=¢*w.
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If we represent ¢*0° = 6FT, 4 Z wav' for some matrix T ; and v! € R, then the equality
a

©0.&q = €0 shows that vi =0 for i = 1,---,4n. Thus,
(9.8) ©* 0" = OF T

For each a € A, we have an immersion ¢, : Ua—@éﬂp 349 a5 above so that there is a
collection of charts {Uy, 9ataca on M. Put gag = ¢50 00" : 0a(Ua NUg)—ps(Us NUg)

when U, NUg # (. Tt suffices to prove that g, extends uniquely to an element of PSp(p +
1,q+ 1) = Aut,op(S*+349). Suppose that

(9.9) WP =X W@ X=wu?a-w.a onU,NUz#0
where A = u-a. The immersions ¢,, : Ua—>2ﬁ4ﬂp+3’4q, g : Ug—>Z§Hp+3’4q satisfy w(® = ©*wp,

w® = @hwo as in (9.7). If we put = Ao ot on a(Uy NUg), then the above relation
shows that

(9.10) 9o w0 = L+ wo - fi.
Using the fact that dw(®(J{X,Y) = ¢ (X,Y) (V X,Y € D,a = 1,2,3) from (1.1) and
g = wr.g0, calculate that
W) (Pard (M X, 0a:Y) = dwa(JVX,Y) = go(ae X, ParY) = dwd (J3aeX, PasY).
As dw? is nondegenerate on D, for each a € A we have
(9.11) Gax 0 I = J%0 0, on D (a=1,2,3).

Let @Zﬁi = 9&) . (Q)T,i for some matrix (O‘)T,i as in (9.8). Then (9.11) means that (Q)Tf .
(J2)1 = (Jo)k . (T which implies that (T} € GL(n,H). Noting that ¢(®)(X,Y) =
90(PaxX, parY ), this reduces to

(9-12) T} € Sp(p, q).

Let {w(a),wfa)}i:17...7n, {W(ﬁ),wfﬁ)}¢:17...7n be two coframes on the intersection U, N Ug
where w(,) is a ImH-valued 1-form and each wf ) is a H-valued 1-form, simlarly for 5.
Noting (6.3) and (9.9), the coordinate change of the fiber H" satisfies that

W) Wia)

”éﬁ) ”éa) <
(9.13) : = &i| : Y

w?ﬁ) w?a)

In order to transform them into the real forms, recall that GL(n,H) - GL(1,H) is the
maximal closed subgroup of GL(4n, R) acting on R*" preserving the standard quaternionic
structure {I, J, K}. For each fiber of D, (= Dg) on the intersection, there exists a matrix
U = (U})=U"- X e GL(n, H) - GL(1, H) such that:

(@) _ 77i (8)
(914) ej = Ujei
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with respect to the basis {ega)}z € (Dyo)z, {egﬁ)}m € (Dg)y. From Corollary 1.4,

b = uzg(a)(ez(fa)a eéa)) = g(0)(Uke; el ffg"egﬁ)) = +0;;ULU7,
o (u~'T}) € Sp(p,q) - Sp(1) = GL(n, H) - GL(1, H) N SO(4p, 49) up to conjugacy (n > 1).
Put U = (U}) = (u"'U}) € Sp(p, q) - Sp(1), then

(9.15) U =ulU = (uU}) € Sp(p, q) - Sp(1) x R,

Using coframes {Oéa)}, {0%5)} (induced from {wfa), wfﬁ)}¢:17...7n), the equation (9.14) trans-
lates into 0%5) = O?Q)U,i on D. Using (9.13), it follows that

(ﬁ Uk—l-Zw(a ! on U, NUj.

Here v! are determined by ¢, see (6.12). Then,
9o (0) = (pa™)"p5" (0) = (™)' (0l - VT})

(9.16) = (pa™")" ((0 UJ-FZW(Q vi). BT )

a=1

—g°. ((a) ) UJ (8) TZ—I—ZW UJ (ﬁ)TZ)
a=1

If we put S = (S}) = (W17~ ) Uk Oy ) then (9.15) and (9.12) imply S € Sp(p,q) -
Sp(1)xR*. By (9.10), (9.16), g s satisfies the conditions of (6.12). Therefore the diffeomor-
phism gag : ©a(UaNUs)—p3(UsNUp) is viewed locally as an element of Aut,cg(S%#+319) =
PSp(p+1,q+1) because Zéﬂp+3’4q C 54344 As PSp(p+1,q+1) acts real analytically on
Sipt3.da] g 5 extends uniquely to an element of PSp(p+ 1, ¢+ 1). Therefore, the collection
of charts {U,, ¢a }aca gives rise to a uniformization of a p-¢c qC'R manifold M with respect
to (PSp(p+ 1, q + 1), S4p+349),

Recall that the orthogonal Lorentz group PO(4,1)° is isomorphic to PSp(1,1) as a
Lie group. The same is true for the 3-dimensional conformal geometry (PSp(1,1),5%) =
(PO(4,1)%, 83) (n=0). O

10. QUATERNIONIC BUNDLE

It is known that the first Stiefel-Whitney class is the obstruction to the existence of a
global 1-form of the contact structure (cf. [13], [32]) and the first Chern class is the obstruc-
tion to the existence of a global 1-form of the complex contact structure (cf. [22],[7],[37],[25])
respectively. It is natural to ask whether the first Pontrjagin class p; (M) is the obstruction
to the existence of global 1-form of p-c q structure (respectively p-c qCR structure) on a
(4n+ 3)- manifold M (n > 1). In order to consider this, we need the elementary properties
of the quaternionic bundle theory whose structure group is GL(n, H) - GL(1, H) but not
GL(n,H). To our knowledge, the fundamental properties of the quaternionic bundle with
GL(n,H) - GL(1, H) as the structure group are not provided explicitly. So we prepare the
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necessary facts here. Let D be the 4n-dimensional bundle defined by D = UD, where
[e%
D, = D|U, = Null w(@ in which there is the relation on the intersection U, NUg:

(10.1) w® =X 0@ . X=u? aw® . a where A =u-aecH*.

We have already discussed the transition functions on D in (9.13). In fact, the gluing
condition of D in U, NUpg is given by

(10.2) : =uT : -a,

in which u(T - @) € Sp(p, q) - Sp(1) x R" (p+ ¢ =n).

Definition 10.1. A quaternionic n-dimensional bundle is a vector bundle over a para-
compact Hausdorff space M with fiber isomorphic to the n-dimensional quaternionic vector
space H™. For an open cover {Uy}aen of M, if UyNUg # 0, then there exists a transition
function gop : Uy N Ug—GL(n, H) - GL(1, H).

As a consequence, D is a quaternionic n-dimensional bundle on M. Note that as
GL(1,H)-GL(1,H) =~ SO(4) x RT, the quaternionic line bundle is isomorphic to an oriented
real 4-dimensional bundle. Define the inner product ( ,) of type (p,q) on H" (p+ ¢ = n)
by

(z,w) = Z1wi + - -+ + ZpwWp — Zpp1Wpy1 — -+ — ZnWn.
Then ( ,) satisfies that (z,w - ) = (z,w) -\, (z- A\, w) = Mz, w), (z,w) = (w, z) for
A € H, and so on. By a subspace W in H" we mean a right H-module. Choosing vy € H"
with (vg,v9) > 0, let V= {vy- A | A € H} be a 1-dimensional subspace of H". Denote
Vi ={veH" (v,z) =0,V x €V} Then it is easy to check that V= is a right H-module
for which there is a decomposition: H* = V @ V1 as a right H-module. The following is a
quaternionic analogue of the splitting theorem.

Proposition 10.2. Given a quaternionic n-dimensional bundle & with an (indefinite) inner
product () on each fiber, there exists a quaternionic line bundle & (i = 1,---,n) over a
paracompact Hausdorff space N and a (splitting) map f: N—M for which:

(1) [f€=&a .
(2) f*:H*(M)—H"(N) is injective. Moreover,
(3) The bundle isomorphism b : & @ - - - ® {,—E  compatible with f can be

chosen to preserve the (indefinite) inner product.

Proof. Let H*—{0}—&; —— M be the subbundle of ¢ consisting of nonzero sections. Noting
that H" is a right H-module, it induces a fiber bundle with fiber HP"~': HP" ! —-Q 2, M.
Since the cohomology group H*(HP"!;Z) is a free abelian group, ¢* : H*(M)—H*(Q) is
injective by the Leray-Hirsch’s theorem (cf. [28].) Put

¢§={(l,v) e Qx & [ q(l) =m(v)}.
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Then, (¢*&, pr,Q) is a quaternionic bundle. Choose ¢ = viH with (v1,v1) > 0. Let
& =A{({,v) € ¢*¢ | v € £} which is the quaternionic 1-dimensional subbundle of ¢*¢. The
(right) H-inner product (, ) on £ induces a (right) H-inner product on ¢*¢ such that the
bundle projection Pr : ¢*{—¢ preserves the inner product obviously. Moreover, we obtain
that
FE=Gaah

Since &1 is a quaternionic (n — 1)-dimensional bundle over @, an induction hypothesis
for n — 1 implies that there exist a paracompact Hausdorff space N and a splitting map
f1: N—Q such that fjéf =& @& - @&, and fi+ H*(Q)—H*(N) is injective. Moreover
ifb : & @ £n—>£1l is the bundle map compatible with f1, then b1 preserves the inner
product on the fiber between & @- - - @&, and &+ by induction. Putting f = go f1 : N—M,
we see that f*: H*(M)—H*(N) is injective and f*¢ = f{f&1®&d- - -BE&,. If Pry @ f7f&1—6
is the bundle map, then Pri @by : f{f§ @ (&P D E)—E D 5% is the bundle map. Then
the map Pro (Pry @ b1) : f{&1 @& D -+ @ &——& is compatible with f and preserves the
inner product (, ). This proves the induction step for n. O

Let ¢ be a quaternionic line bundle over M with gluing condition on U, N Ug:
(10.3) Zo = M) zpu(z) = u(x) - b(w)zga(x) (u>0,a,be Sp(1)).
Consider the tensor € @ ¢ so that the gluing condition on U, N Ug is given by

H

(70 ® 20) = 2 (@)a(@) (35b(x) ©b(x)zp)a()

— w¥(@)a(x) (3 & 29)alx).

Then £ ® £ is a quaternionic line bundle over M whenever ¢ is a quaternionic line bundle.
H

Lemma 10.3. If £ Q¢ is viewed as a real 4-dimensional vector bundle, then pl(E_%E) =
- H - -
P1(&) +p1(§). Moreover, pi(§) = p1(§) so that pr(E@E) = 2p1(E).

Proof. Let v be the canonical real 4-dimensional vector bundle over BSO(4) (cf. [28]).
Then, ¢ is determined by a classifying map f : M—BSO(4) such that f*y = . Let
pr; : BSO(4) x BSO(4)—BS0O(4) be the projection (i = 1,2). As « inherits a quaternionic
structure from £ through the bundle map, there is a quaternionic line bundle prj¥y %pr}y
over BSO(4)xBSO(4). Now, let h : BSO(4)xBSO(4)—BS0O(4) be a classifying map of this
bundle so that h*y = prjy ® pray. When ¢; : BSO(4)—BSO(4) x BSO(4) is the inclusion
H
map on each factor, (ipriy is the trivial quaternionic line bundle (we simply put 0111) and so
ah’pi(y) = api(priy @ pryy) = pi(7 € 0r) = p1(7). Similarly, ;3h*p1(7) = pi(7). Hence
we obtain that
Wopi(y) =pi(3) x 1+ 1xpi(y).

Let f' : M—BSO(4) be a classifying map for £ such that f*y = £. Then the map h(f’x f)d
composed of the diagonal map d : M—M x M satisfies that

(h(f' x fld)*y = f"3@ f'y =E®¢&.
H H



38

Therefore, p1(£®5) = d*(f'< ) (m(7) x1+1xp1(7) = p1(f7"3)+p1(F*7) = pr(€) +p1(E).

Next, the conjuagte € is isomorphic to & as real 4-dimensional vector bundle without
orientation. But the correspondence (1,1, 7, k) — (1, —1, —j, —k) gives an isomorphism of
€ onto (—1)3¢. And so, the complexification & of & (Vlevved as a real vector bundle) is
isomorphic to (—1)%¢ = &c. By definition, py(€) = p1(€). O

10.1. Relation between the first Pontrjagin classes.
Suppose that {w(®), (I(a),J(a),K(a)),g(a),Ua}aeA represents a p-c q structure D on a
(4n + 3)-manifold M = U Us. Let L be the quotient bundle TM/D. Choose the local

vector fields {gf“ , 2 ,£3a } on each neighborhood U, such that w (£ba ) = dap- Then,

L|U, is spanned by {51 }1:1,273 for each o € A. Moreover, the gluing condition between
L|U, and L|Ug is exactly given by

gla) ggﬁ)
a 2
(10.4) ¢§ ; =u?A %Z;
gga £3
3
(Compare Definition 1.6.) It is easy to see that Z wl®) . glo) = Z w8 on LIULN Us.

We can define a section 6 : T'M — L which is an L valued 1- form by setting
(10.5) 01U = i - 6% + i - 67 4w - g

which induces the exact sequence of bundles: 1—-D—T M .

Let F be the quaternionic line bundle obtained from the union U U, x H by identifying
a€eA

p=q€U,NUg,

Za = A 25 A = u?

(10.6) (. 2a) ~ (g, 2p) if and only if { a-zg-a for a fnction A € H

If L ® 0 is the Whitney sum composed of the trivial (real) line bundle # on M, then it
is easy to see that L & 0 is isomorphic to the quaternionic line bundle F. In particular,
p1(E) = p1(L ® 6). We prove that

Theorem 10.4. The first Pontrjagin classes of M and the bundle L has the relation:
2p1(M) = (n+2)p1(L & 0).

Proof. As D is a quaternionic bundle in our sense, there is a splitting map f : N—M such
that f*D =& ®--- P&, from Proposition 10.2. Let ¥ : & P - - - P £,—D be a bundle map
which is compatible with f. Since W is a right H-linear map on the fiber at each point
x € N, we can describe

/e RO
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for some function P : N—GL(n,H). By (3) of Theorem 10.2, choosing an appropriate
inner product (, ) of typw (p,q) on D and the direct inner product on & @ --- B &, ¥
preserves the inner product between them. We may assume that

(10.7) P(x) € Sp(p,q) (p+q=n).

We examine the gluing condition of each & on f~1(U,) N f~1(Ug) # 0. For xz € f~1(U,) N
I~ H(Ug), let vi(a) € &|f~Y(Uy,). Suppose that there is an element vi(ﬁ) € &|f~1(Ug) such
that vi(a) ~ vi(ﬁ), ie. vi(a) = S\Z'vi(ﬁ),ui (Ni,pi € H;2=1,---,n). Since \If(vi(a)) ~ \If(vi(ﬁ)) at
Uga) vgﬁ)
f(z), it follows from (10.2) that ¥ : =ul -V : ca at f(x) e U,NUg. As
e o)
Uga) Uga) Ugﬁ) Ugﬁ)
Pl =v| =ul-P| -a=P-uP'TP| -a,
e e o) o)
it follows that
Uga) Ugﬁ)
: =u-P7'TP : -a.
e e

Since vi(a) = S\Z'vi(ﬁ),ui as above, we have that (z € f~1(U,) N f~1(Up)):

)\1(1‘) 0
(1) w(z)P(z) ' T(f(x)P(x) = 0 0
0 0 An(2)
() 0 a(x) 0
(2) 0 0 =1 o 0
0 0 pn(z) 0 0 a(x)
1

Recall that Sp(p,q) = {A|A* - 1,4- A =1,,} where I, , =

—1
From the fact that T, P € Sp(p, q) (cf. (10.2),(10.7)), the equality (1) shows that
M2 ... 0
: : =u*(PT'TP)" L, (PT'TP) = u’L,,.
0 ... —|\)?
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Hence, \; = u - \;/|\i| = w - v; where v; = \;/|\;| € Sp(1). It follows from (2) that u; = a
for each i. We obtain that

(10.8) o' = u(z) z(z)oPa(z) (=1, ,n).

7

Each &; is a quaternionic line bundle over N equ1pped with (10. 8) on f~HU,) N f1(Up).
If we consider &; ®§Z, then the gluing condition on f~(U,) N f~1(Up) is given by

(0 0 u) = @)a() (0" @ o Matz).

Since A = u - a is the same as that of E from (10.6), each & ®¢; is isomorphic to f*(F).
H

0.
As E = L@ 6", we see that f*(L®6') = §®& (i = 1,---,n). By Lemma 10.3,
H

fp1(L @ 0Y) = 2p1(&;) for each i. Since f*p1(D) = p1(£1) + - -+ + p1(&,) mod 2-torsion in
HY(N;Z), f*(2p1(D)) = 2p1(&1) + - - -+ 2p1(&n) = nf p (L@Ql) =nf"p1(L). Noting that
the splitting map f* is injective, 2p1 (D) = npy (L) in H*(M;Z). As TM = D& L, we have
2p1 (M) = (n+2)p1(L). U

Corollary 10.5. Let (M, D) be a (4n + 3)-dimensional simply connected p-c¢ q manifold
associated with the local forms {w(®), (I(®), J(a),K(a)),g(a), Uataecn- Then the following
are equivalent.

(1) 2p1(M) = 0. In particular, the rational Pontrjagin class vanishes.

(2) L is the trivial bundle so that {{s}a=1,23 exists globally on M.

(3) There exists a ImH-valued 1-form w on M which represents a p-c q structure D.
In particular, there exists a hypercomplex structure {I,J, K} on D.

Proof. First note that the Whitney sum L@®6! is the quaternionic line bundle E with struc-
ture group lying in SO(3) x R™ C Sp(1)-Sp(1) x R*. As above we have the quaternionic line

l
bundle of /-times tensor ® E with structure group SO(3) xR*. Viewed as the 4-dimensional
H
real vector bundle, it determines a classifying map g : M— B(SO(3) xR*) = BSO(3). Note
that p : B(Sp(1) x RT)—B(SO(3) x RT) is the two-fold covering map. As M is simply
connected by the hypothesis, the map g lifts to a classifying map g : M—BSp(1) such that
g = pog. Let v be the 4-dimensional universal bundle over BSO(3). (Compare [28].) Then
the pull back p*v is the 4-dimensional canonical bundle over BSp(1) = HP> whose first
1
Pontrjagin class p1(p*y) generates the cohomology ring H*(HP*°;Z). So the bundle ® E
H

L
is classified by the map § where [§] = §*p1(p*y) € H*(M; Z), which coincides with p;(® E).

=

+2
(1) = (2).1f 2p; (M) = 0, then Theorem 10.4 shows (n+2)p1(L) = 0, i.e.pl((n® E))=0.
H

n+2
(See Lemma 10.3.) Hence, the classifying map g : M—BSp(1) for ® F is null homotopic
H

+2

so that g*p*y = "% E is trivial. There exists a family of functions {hs} € Sp(1) x R™ such
H

that the transition function g,s(z) = 6h(a, B)(z) (z € Uy NUg). As the gluing relation



41
‘ n+2 . . 2(n+2) — . B L
or ® Eisgiven by z— uy s "dag - 2 - aag, letting ha = aq - ua € Sp(1) x R*, it follows
H
that
1 1
Then, ui(ﬁ’l"‘?) — ualuﬁ c Rt and Uop = Fapla. AS Uap > 0, Ugp = (ugl)Q(nH) -u;(”+2),
Since the gluing relation of £ = L & 0 is given by z, = uiﬁ “ Qg 28 * QaB, putting

1 1 _
o = (ua) ™, u'g = (ug) ™, a calculation shows z, = u', lu’g S Qa0 - 23 - A30q.
1 2
Moreover if C(a) € SO(3) is the matrix defined by ao - | 7 | - aa = Cla) | j
k k

(similarly for C(f3)), then

(10.9) ulg- A% =/ g Cla) " o O(B).
Substitute this into (10.4), it follows that
gla) gﬁ)
o Cla) géa) =u'g-C(B) géﬁ) on U, N Up.
5304) Eéﬁ)
We can define the vector fields {1, &2, &3} on M to be
&1 g
(10.10) & ‘Ua — o Cla) | &
€3 gl

Then {&1, &2, &3} spans L, therefore, L is trivial.
(2) = (3). Since (wgﬁ),wéﬁ),wéﬁ)) = (wga),wéa),wéa))uiﬁ - A% (10.9) implies that
(wgﬁ),wéﬁ),wéﬁ))u’gl (B = (wga),wga),wéa))u’j -C(a)™ on U, NUs.
Then, a ImH-valued 1-form w on M can be defined by
(10.1) wlUa = @™, 0y, wilgt - Ca) ™ | g
k
Note that w satisfies that w|Us = A - w(@ . )\, for some function A\, : U,—H* (a € A).
Recall that two quaternionic structures on U, N Ug are related:

7@ 108
J@ | =428 B
K@) KB)
As A% — C(a)™t o C(p), it follows that
7@ 78
(10.12) Cla)-| Jo | =c@B)-| J®

(@) K8
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I 7(®)
Letting | J | |Uy=C(a)-| J©® |, there exists a hypercomplex structure {I,.J, K}
K K(a)
on D.
(3) = (1). If the global ImH-valued 1-form w exists, then w defines a three independent
vector fields isomorphic to L, i.e.p;(L) = 0. Hence apply Theorem 10.4. O
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