Pseudo-Conformal Quaternionic CR Structure on ($4 \mathrm{n}+3$)-Dimensional Manifolds

Dmitri Alekseevsky
Yoshinobu Kamishima

PSEUDO-CONFORMAL QUATERNIONIC $C R$ STRUCTURE ON ($4 n+3$)-DIMENSIONAL MANIFOLDS

DMITRI ALEKSEEVSKY AND YOSHINOBU KAMISHIMA

Abstract

We study a geometric structure on a $(4 n+3)$-dimensional smooth manifold M which is an integrable, nondegenerate codimension 3-subbundle \mathcal{D} on M whose fiber supports the structure of $4 n$-dimensional quaternionic vector space \mathbb{H}^{n}. It is thought of as a generalization of the quaternionic $C R$ structure. In order to study this geometric of M such that Null $\omega=\mathcal{D} \mid U$. We shall construct the invariants on the pair (M, ω) whose vanishing implies that M is uniformized with respect to a finite dimensional flat quaternionic $C R$ geometry. The invariants obtained on $(4 n+3)$-manifold M have the same formula as the curvature tensor of quaternionic (indefinite) Kähler $4 n$-manifolds. From this viewpoint, we exhibit a quaternionic analogue of Chern-Moser's $C R$ structure.

Introduction

The Weyl curvature tensor is a conformal invariant of Riemannian manifolds and the Chern-Moser curvature tensor is a $C R$ invariant on strictly pseudo-convex $C R$-manifolds. A geometric significance of the vanishing of these curvature tensors is the appearance of the finite dimensional Lie group \mathcal{G} with homogeneous space X. The geometry (\mathcal{G}, X) is known as conformally flat geometry $\left(\mathrm{PO}(n+1,1), S^{n}\right)$, spherical $C R$-geometry ($\left.\mathrm{PU}(n+1,1), S^{2 n+1}\right)$ respectively. The complete simply connected quaternionic $(n+1)$-dimensional quaternionic hyperbolic space $\mathbb{H}_{\mathbb{H}}^{n+1}$ with the group of isometries $\operatorname{PSp}(n+1,1)$ has the natural compactification homeomorphic to a ($4 n+4$)-ball endowed with an extended smooth action of $\operatorname{PSp}(n+1,1)$. When the boundary sphere $S^{4 n+3}$ of the ball is viewed as the real hypersurface in the quaternionic projective space $\mathbb{H P}^{n+1}$, the elements of $\operatorname{PSp}(n+1,1)$ act as quaternionic projective transformations of $S^{4 n+3}$. Since the action of $\operatorname{PSp}(n+1,1)$ is transitive on $S^{4 n+3}$, we obtain a flat (spherical) quaternionic $C R$ geometry ($\left.\operatorname{PSp}(n+1,1), S^{4 n+3}\right)$. (Compare [16].) Combined with the above two geometries, this exhibits parabolic geometry on the boundary of the compactification of rank-one symmetric space of noncompact type over \mathbb{R}, \mathbb{C} or \mathbb{H}. (See [10], [12], [35],[17].)

This observation naturally leads us to the problems: (1) existence of geometric structure on a $(4 n+3)$-dimensional manifold M and (2) existence of geometric invariant whose vanishing implies that M is locally equivalent to the flat quaternionic $C R$ manifold $S^{4 n+3}$.

[^0]For this purpose we shall introduce a notion of pseudo-conformal quaternionic $C R$ (pc $q C R$) structure ($\mathcal{D},\left\{\omega_{\alpha}\right\}_{\alpha=1,2,3}$) on a ($4 n+3$)-dimensional manifold M. First of all, in $\S 1$ we recall a pseudo-conformal quaternionic structure ($\mathrm{p}-\mathrm{c} q$ structure) \mathcal{D} which was discussed in [3]. Compare Remark 1.7 for the difference between $C R$ structure. Contrary to the nondegenerate $C R$ structure, the almost complex structure on \mathcal{D} is not assumed to be integrable. However, by the requirement of structure equations defining the $\mathrm{q} C R$-structure, we can prove the integrability of quaternionic structure in $\S 2.1$:
Theorem A. Each almost complex structure \bar{J}_{α} of the quaternionic $C R$ structure is integrable on the codimension- 1 contact subbundle $\operatorname{Null} \omega_{\alpha}(\alpha=1,2,3)$.
There exists a canonical pseudo-Riemannian metric g associated to the nondegenerate p-c $\mathrm{q} C R$ structure. In $\S 4$ we see that that the integrability of three almost complex structures $\left\{\bar{J}_{\alpha}\right\}_{\alpha=1,2,3}$ is equivalent with the condition that (M, g) is a pseudo-Sasakian 3-structure. Namely the notion is equivalent between nondegenerate quaternionic $C R$ structure and pseudo-Sasakian 3-structure (cf. [4]). In particular, p-c qCR manifolds contain the class of pseudo 3-Sasakian manifolds. (Refer to [5],[8],[33],[34] for (positive definite) Sasakian 3 -structure.) However, we emphasize that the converse is not true. There are two typical classes of compact (spherical) p-c qCR manifolds but not pseudo-Sasakian 3-manifolds [16]; one is a quaternionic Heisenberg manifold \mathcal{M} / Γ. Some finite cover of \mathcal{M} / Γ is a Heisenberg nilmanifold which is a principal 3 -torus bundle over the flat quaternionic n torus $T_{\mathbb{H}}^{p, q}$ of signature $(p, q)(\mathrm{p}+\mathrm{q}=\mathrm{n})$, see $\S 7.3$. Another manifold is a pseudo-Riemannian standard space form $\Sigma_{\mathbb{H}}^{3,4 n} / \Gamma$ of constant negative curvature of type ($4 n, 3$). It is a compact quotient of the homogeneous space $\Sigma_{\mathbb{H}}^{3,4 n}=\operatorname{Sp}(1, n) / \operatorname{Sp}(n)$. Some finite cover of $\Sigma_{\mathbb{H}}^{3,4 n} / \Gamma$ is a principal S^{3}-bundle over the quaternionic hyperbolic space form $\mathbb{H}_{\mathbb{H}}^{n} / \Gamma^{*}$. Obviously those manifolds are not positive-definite compact 3-Sasakian manifolds. (cf. [16], [18] more generally.)

For the second problem, we shall try to construct the curvature tensor of $\mathrm{p}-\mathrm{c} \mathrm{q} C R$ structure. This is thought of as a quaternionic analogue of Chern-Moser's $C R$ curvature tensor. When M is a $2 n+1$-dimensional manifold equipped with a nondegenerate $C R$ structure (H, J), it follows from the Cartan geometry that there is an $\mathfrak{s u}(p+1, q+1)$-valued 1 -form κ called a Cartan connection whose associated curvature form Π vanishes if and only if M is locally isomorphic to $\operatorname{PU}(p+1, q+1) / \mathrm{P}^{+}(\mathbb{C})$ where $\mathrm{P}^{+}(\mathbb{C})$ is the maximal parabolic subgroup $(p+q=n)$. The 4 -th order Chern-Moser $C R$ curvature tensor $S=\left(S_{\alpha}{ }_{\rho}^{\beta}\right)$ is the coefficient of the curvature component Φ_{α}^{β} of Π. By the observation of Webster (cf. [35], [36]) the other components are obtained from S by further covariant differentiation for $n>1$. In the $C R$ case, the Chern-Moser curvature tensor S vanishes on M if and only if so does the $\mathfrak{s u}(p+1, q+1)$-valued Cartan curvature form Π.

On a $(4 n+3)$-dimensional p-c q manifold (M, \mathcal{D}), there is also an $\mathfrak{s p}(p+1, q+1)$-valued Cartan form κ whose associated curvature form Π has zero curvature if and only if (M, \mathcal{D}) is locally isomorphic to $\operatorname{PSp}(p+1, q+1) / P^{+}(\mathbb{H})$. We don't know whether a curvature tensor on M could be derived only from the Cartan form Π on the p-c q structure \mathcal{D} because \mathcal{D} lacks the structure equations representing the integrability conditions but not the p-c q $C R$ structure. However, with the aid of pseudo-Riemannian connection of the pseudo-Sasakian 3 -structure which is locally equivalent to $\mathrm{p}-\mathrm{c} \mathrm{q} C R$ structure, we can define a quaternionic $C R$ curvature tensor (cf. $\S 5$). Based on this curvature tensor, in $\S 8$ we shall establish a
curvature tensor T which is invariant under the equivalence of $\mathrm{p}-\mathrm{c} \mathrm{q} C R$ structures. Remark that if T vanishes under the existence of $\mathrm{p}-\mathrm{c} \mathrm{q} C R$ structure, Π also vanishes. The explicit formula of T is described as follows (cf. Theorem 9.1 of $\S 9$).

Theorem B. There exists a fourth-order curvature tensor $T=\left(T_{j k \ell}^{i}\right)$ on a nondegenerate $p-c q C R$ manifold M in dimension $4 n+3(n \geq 0)$. If $n \geq 2$, then $T=\left(T_{j k \ell}^{i}\right) \in \mathcal{R}_{0}(\operatorname{Sp}(p, q)$. $\mathrm{Sp}(1))$ which has the formula:

$$
\begin{aligned}
T_{j k \ell}^{i}=R_{j k \ell}^{i} & -\left\{\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)+\left[I_{j \ell} I_{k}^{i}-I_{j k} I_{i}^{\ell}+2 I_{j}^{i} I_{k \ell}\right.\right. \\
& \left.\left.+J_{j \ell} J_{k}^{i}-J_{j k} J_{i}^{\ell}+2 J_{j}^{i} J_{k \ell}+K_{j \ell} K_{k}^{i}-K_{j k} K_{\ell}^{i}+2 K_{j}^{i} K_{k \ell}\right]\right\}
\end{aligned}
$$

When $n=1, T=\left(W_{j k \ell}^{i}\right) \in \mathcal{R}_{0}(\mathrm{SO}(4))$ which has the same formula as the Weyl conformal curvature tensor. When $n=0$, there exists the fourth-order curvature tensor $T W$ on M which has the same formula as the Weyl-Schouten tensor.

In $\S 7$, we introduce the $(4 n+3)$-dimensional manifold $S^{3+4 p, 4 q}=\operatorname{Sp}(p+1, q+1) / P^{+}(\mathbb{H})$ which is a pc-q $C R$ manifold with vanishing p-c q $C R$ curvature tensor T. In particular, $S^{4 n+3}=S^{3+4 n, 0}$ is the positive-definite flat (spherical) quaternionic $C R$ manifold. As in $C R$ geometry, we prove that the vanishing of T gives rise to a uniformization with respect to the flat (spherical) p-c qCR geometry, see Theorem 9.3 in §8.1. (Compare [23] for uniformization in general.)

Theorem C.

(i) If M is a $(4 n+3)$-dimensional nondegenerate $p-c q C R$ manifold of type $(3+4 p, 4 q)$ ($p+q=n \geq 1$) whose curvature tensor T vanishes, then M is uniformized over $S^{3+4 p, 4 q}$ with respect to the group $\operatorname{PSp}(p+1, q+1)$.
(ii) If M is a 3-dimensional p-c qCR manifold whose curvature tensor $T W$ vanishes, then M is conformally flat (locally modelled on S^{3} with respect to the group $\operatorname{PSp}(1,1))$.

In the positive definite case, our p-c q $C R$ geometry presents spherical quaternionic $C R$ geometry $\left(\operatorname{PSp}(n+1,1), S^{4 n+3}\right)$ as in the beginning of Introduction.

When a geometric structure is either contact structure or complex contact structure, it is known that the first Stiefel-Whitney class or the first Chern class is the obstruction to the existence of global 1-forms representing their strutures respectively. As a concluding remark to $\mathrm{p}-\mathrm{c} q$ structure but not necessarily $\mathrm{p}-\mathrm{c} \mathrm{q} C R$ structure, we verify that the obstruction relates to the first Pontrjagin class $p_{1}(M)$ of a $(4 n+3)$-dimensional p-c q manifold M $(n \geq 1)$. In $\S 10$, we prove that the following relation of the first Pontrjagin classes. (See Theorem 10.4.)

Theorem D. Let (M, \mathcal{D}) be a $(4 n+3)$-dimensional p-c q manifold. Then the first Pontrjagin classes of M and the bundle $L=T M / \mathcal{D}$ has the relation that $2 p_{1}(M)=(n+2) p_{1}(L)$. Moreover, if M is simply connected, then the following are equivalent.
(1) $2 p_{1}(M)=0$. In particular, the first rational Pontrjagin class vanishes.
(2) There exists a global $\operatorname{Im} \mathbb{H}$-valued 1 -form ω on M which represents a p-c q structure \mathcal{D}. In particular, there exists a hypercomplex structure $\{I, J, K\}$ on \mathcal{D}.

1. Pseudo-conformal quaternionic $C R$ structure

When \mathbb{H} denotes the field of quaternions, the Lie algebra $\mathfrak{s p}(1)$ of $\operatorname{Sp}(1)$ is identified with $\operatorname{Im} \mathbb{H}=\mathbb{R} \boldsymbol{i}+\mathbb{R} \boldsymbol{j}+\mathbb{R} \boldsymbol{k}$. Let M be a $(4 n+3)$-dimensional smooth manifold M.

Definition 1.1. A $4 n$-dimensional orientable subbundle \mathcal{D} equipped with a quaternionic structure Q is called a pseudo-conformal quaternionic structure (p-c q structure) on M if it satisfies that
(i) $\mathcal{D} \cup[\mathcal{D}, \mathcal{D}]=T M$.
(ii) The 3-dimensional quotient bundle $T M / \mathcal{D}$ at any point is isomorphic to the Lie algebra ImH H.
(iii) There exists $a \operatorname{Im} \mathbb{H}$-valued 1 -form $\omega=\omega_{1} \boldsymbol{i}+\omega_{2} \boldsymbol{j}+\omega_{3} \boldsymbol{k}$ locally defined on a neighborhood of M such that $\mathcal{D}=\operatorname{Null} \omega=\bigcap_{\alpha=1}^{3} \operatorname{Null} \omega_{\alpha}$ and $d \omega_{\alpha} \mid \mathcal{D}$ is nondegenerate. Here each ω_{α} is a real valued 1 -form $(\alpha=1,2,3)$.
(iv) The endomorphism $J_{\gamma}=\left(d \omega_{\beta} \mid \mathcal{D}\right)^{-1} \circ\left(d \omega_{\alpha} \mid \mathcal{D}\right): \mathcal{D} \rightarrow \mathcal{D}$ constitutes the quaternionic structure Q on $\mathcal{D}: J_{\gamma}{ }^{2}=-1, J_{\alpha} J_{\beta}=J_{\gamma}=-J_{\beta} J_{\alpha},(\gamma=1,2,3)$ etc.

Lemma 1.2. If we put $\sigma_{\alpha}=\left(d \omega_{\alpha} \mid \mathcal{D}\right)$ on \mathcal{D}, then there is the following equality: $\sigma_{1}\left(J_{1} X, Y\right)=\sigma_{2}\left(J_{2} X, Y\right)=\sigma_{3}\left(J_{3} X, Y\right) \quad(\forall X, Y \in \mathcal{D})$. Moreover, the form

$$
\begin{equation*}
g^{\mathcal{D}}=\sigma_{\alpha} \circ J_{\alpha} \tag{1.1}
\end{equation*}
$$

is a nondegenerate Q-invariant symmetric bilinear form on $\mathcal{D} ; g^{\mathcal{D}}(X, Y)=g^{\mathcal{D}}\left(J_{\alpha} X, J_{\alpha} Y\right)$, $g^{\mathcal{D}}\left(X, J_{\alpha} Y\right)=\sigma_{\alpha}(X, Y),(\alpha=1,2,3)$, etc.

Proof. By (iv) of Definition 1.1, it follows that

$$
\begin{align*}
\sigma_{\alpha}\left(J_{\alpha} X, Y\right) & =\sigma_{\alpha}\left(J_{\beta}\left(J_{\gamma} X\right), Y\right)=\sigma_{\gamma}\left(J_{\gamma} X, Y\right) \\
& =\sigma_{\gamma}\left(J_{\alpha}\left(J_{\beta} X\right), Y\right)=\sigma_{\beta}\left(J_{\beta} X, Y\right) . \tag{1.2}
\end{align*}
$$

Put $g^{\mathcal{D}}(X, Y)=\sigma_{\alpha}\left(J_{\alpha} X, Y\right)$ for $X, Y \in \mathcal{D}(\alpha=1,2,3)$, which is nondegenerate by (iii). As $-J_{\beta}=\sigma_{\gamma}^{-1} \circ \sigma_{\alpha}$ by (iv), calculate that $g^{\mathcal{D}}(Y, X)=-\sigma_{\alpha}\left(X, J_{\alpha} Y\right)=\sigma_{\gamma}\left(J_{\beta} X, J_{\alpha} Y\right)=$ $-\sigma_{\beta}\left(Y, J_{\beta} X\right)=g^{\mathcal{D}}(X, Y)$. It follows that $g^{\mathcal{D}}(X, Y)=\sigma_{\alpha}\left(J_{\alpha} X, Y\right)=\sigma_{\alpha}\left(J_{\alpha}\left(J_{\alpha} Y\right), J_{\alpha} X\right)=$ $g^{\mathcal{D}}\left(J_{\alpha} Y, J_{\alpha} X\right)$.

In general, there is no canonical choice of ω which annihilates \mathcal{D}. The fiber of the quotient bundle $T M / \mathcal{D}$ is isomorphic to $\operatorname{Im} \mathbb{H}$ by ω on a neighborhood U by (ii). The coordinate change of the fiber \mathbb{H} is described as $v \rightarrow \lambda \cdot v \cdot \mu$ for some nonzero elements $\lambda, \mu \in \mathbb{H}$. If ω^{\prime} is another 1 -form such that $\operatorname{Null} \omega^{\prime}=\mathcal{D}$ on a neighborhood U^{\prime}, then it follows that $\omega^{\prime}=\lambda \cdot \omega \cdot \mu$ for some \mathbb{H}-valued functions λ, μ locally defined on $U \cap U^{\prime}$. This can be rewritten as $\omega^{\prime}=u \cdot a \cdot \omega \cdot b$ where a, b are functions with valued in $\operatorname{Sp}(1)$ and u is a positive function. Since $\bar{\omega}^{\prime}=-\omega^{\prime}$, it follows that $a \cdot \omega \cdot b=\bar{b} \cdot \omega \cdot \bar{a}$, i.e. $(\bar{b} a) \cdot \omega \cdot(\bar{b} a)=\omega$. As $\omega: T\left(U \cap U^{\prime}\right) \rightarrow \operatorname{Im} \mathbb{H}$ is surjective, $\bar{b} a$ centralizes $\operatorname{Im} \mathbb{H}$ so that $\bar{b} a \in \mathbb{R}$. Hence, $b= \pm \bar{a}$. As we may assume that \mathcal{D} is orientable, ω^{\prime} is uniquely determined by

$$
\begin{equation*}
\omega^{\prime}=u \cdot a \cdot \omega \cdot \bar{a} \text { for some functions } a \in \operatorname{Sp}(1), u>0 \text { on } U \cap U^{\prime} . \tag{1.3}
\end{equation*}
$$

We must show that Definition 1.1 does not depend on the choice of ω^{\prime} satisfying (1.3).

Lemma 1.3. Any form ω^{\prime} locally conjugate to ω satisfies (iii), (iv) of Definition 1.1.
Proof. First, if $A=\left(a_{i j}\right) \in \mathrm{SO}(3)$ is the matrix function determined by

$$
\operatorname{Ad}_{a}\left(\begin{array}{l}
\boldsymbol{i} \tag{1.4}\\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right)=a\left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \bar{a}=A\left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right),
$$

then a new quaternionic structure on \mathcal{D} is introduced as

$$
\left(\begin{array}{c}
J_{1}^{\prime} \tag{1.5}\\
J_{2}^{\prime} \\
J_{3}^{\prime}
\end{array}\right)={ }^{t} A\left(\begin{array}{c}
J_{1} \\
J_{2} \\
J_{3}
\end{array}\right) .
$$

Then the formula of (1.3) is described as

$$
\begin{equation*}
\left(\omega_{1}^{\prime}, \omega^{\prime}{ }_{2}, \omega^{\prime}{ }_{3}\right)=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) u \cdot A=u\left(\sum_{\beta=1}^{3} a_{\beta 1} \omega_{\beta}, \sum_{\beta=1}^{3} a_{\beta 2} \omega_{\beta}, \sum_{\beta=1}^{3} a_{\beta 3} \omega_{\beta}\right) . \tag{1.6}
\end{equation*}
$$

Differentiate (1.6) and restricting to \mathcal{D}, use Lemma 1.2 (note that $d \omega^{\prime}=u \cdot a \cdot d \omega \cdot \bar{a}$ on $\left.\mathcal{D} \mid U \cap U^{\prime}\right)$,

$$
\begin{gathered}
d \omega_{\alpha}^{\prime}(X, Y)=u \sum_{\beta} a_{\beta \alpha} d \omega_{\beta}(X, Y)=-u\left(a_{1 \alpha} g^{\mathcal{D}}\left(J_{1} X, Y\right)+a_{2 \alpha} g^{\mathcal{D}}\left(J_{2} X, Y\right)+a_{3 \alpha} g^{\mathcal{D}}\left(J_{3} X, Y\right)\right) \\
=-u g^{\mathcal{D}}\left(\left(a_{1 \alpha} J_{1}+a_{2 \alpha} J_{2}+a_{3 \alpha} J_{3}\right) X, Y\right)=-u g^{\mathcal{D}}\left(J^{\prime}{ }_{\alpha} X, Y\right), \\
d \omega^{\prime}{ }_{\alpha}\left(J^{\prime}{ }_{\alpha} X, Y\right)=u g^{\mathcal{D}}(X, Y)(\alpha=1,2,3) .
\end{gathered}
$$

In particular, $d \omega_{\alpha}^{\prime} \mid \mathcal{D}$ is nondegenerate, proving (iii). Put $\sigma_{\alpha}^{\prime}=d \omega_{\alpha}^{\prime} \mid \mathcal{D}$. As in (iv) of Definition 1.1, the endomorphism is defined by the rule: $I_{\gamma}^{\prime}=\left(\sigma_{\beta}^{\prime} \mid \mathcal{D}\right)^{-1} \circ\left(\sigma_{\alpha}^{\prime} \mid \mathcal{D}\right)$, i.e. $\sigma_{\beta}^{\prime}\left(I_{\gamma}^{\prime} X, Y\right)=$ $\sigma_{\alpha}^{\prime}(X, Y)(\forall X, Y \in \mathcal{D})$. Then we show that the quaternionic structure $\left\{I_{\alpha}^{\prime}\right\}_{\alpha=1,2,3}$ coincides with $\left\{J_{\alpha}^{\prime}\right\}_{\alpha=1,2,3}$ on \mathcal{D}. For this, as $\sigma_{\alpha}^{\prime}(X, Y)=-u g^{\mathcal{D}}\left(J_{\alpha}^{\prime} X, Y\right)$ by (1.7), it follows that $\sigma_{\beta}^{\prime}\left(I_{\gamma}^{\prime} X, Y\right)=-u g^{\mathcal{D}}\left(J_{\beta}^{\prime}\left(I_{\gamma}^{\prime} X\right), Y\right)$ and the above equality implies that $J_{\beta}^{\prime}\left(I_{\gamma}^{\prime} X\right)=J_{\alpha}^{\prime} X$ $(\forall X \in \mathcal{D})$. Hence, $I_{\gamma}^{\prime}=-J_{\beta}^{\prime} J_{\alpha}^{\prime}=J_{\gamma}^{\prime}$. This proves (iv).

By Lemma 1.2 , we may assume that $g^{\mathcal{D}}$ locally defined on $\mathcal{D} \mid U$ has signature $(4 p, 4 q)$ with $4 p$-times positive sign and $4 q$-times negative sign $(p+q=n)$. As above put $g^{\prime \mathcal{D}}(X, Y)=$ $d \omega^{\prime}{ }_{\alpha}\left(J^{\prime}{ }_{\alpha} X, Y\right) \quad(X, Y \in \mathcal{D})$. We have
Corollary 1.4. If $\omega^{\prime}=u \bar{a} \cdot \omega \cdot a$ on $U \cap U^{\prime}$, then $g^{\prime \mathcal{D}}=u \cdot g^{\mathcal{D}}$. As a consequence, the signature (p, q) is constant on $U \cap U^{\prime}$ (and hence everywhere on M) under the change $\omega^{\prime}=u \bar{a} \cdot \omega \cdot a$.

We are now going to consider an integrability condition on the p-c q structure \mathcal{D}.
Definition 1.5. Suppose that the following structure equation is locally given:

$$
\begin{equation*}
\rho_{\alpha}=d \omega_{\alpha}+2 \omega_{\beta} \wedge \omega_{\gamma} \tag{1.8}
\end{equation*}
$$

where $(\alpha, \beta, \gamma) \sim(1,2,3)$ up to cyclic permutation. If the skew symmetric 2 -form ρ_{α} satisfies that

$$
\begin{equation*}
\text { Null } \rho_{1}=\operatorname{Null} \rho_{2}=\operatorname{Null} \rho_{3}, \tag{1.9}
\end{equation*}
$$

the pair (ω, Q) is a local quaternionic $C R$ structure ($q C R$ structure) on M.
See [6], [4]. If the (local) qCR structure has a $\operatorname{Im} \mathbb{H}$-valued 1-form ω defined entirely on M, then it is noted that the global $\mathrm{q} C R$ structure coincides with the pseudo-Sasakian 3 -structure of M, see $\S 4.1$. Using two Definitions $1.1,1.5$, we come to the following notion due to the manner of Libermann [27].

Definition 1.6. The pair (\mathcal{D}, Q) on M is said to be a pseudo-conformal quaternionic $C R$ structure ($p-c q C R$ structure) if there exists locally a 1-form η with Null $\eta=\mathcal{D}$ on a neighborhood U of M such that η is conjugate to a $q C R$ structure on U. Namely there exists a $q C R$ structure ω on U for which $\eta=\lambda \cdot \omega \cdot \bar{\lambda}$ where $\lambda: U \rightarrow \mathbb{H}$ is a function and $\bar{\lambda}$ is the conjugate of the quaternion.

Remark 1.7. For the nondegenerate $C R$ case, let ω be a 1-form which represents a $C R$ structure $(\mathrm{Null} \omega, J)$. Since $\sigma_{\alpha}(X, Y)=g^{\mathcal{D}}\left(X, J_{\alpha} Y\right)$ by Lemma 1.2, the corresponding (complex) formula of the structure equation (1.8) of Definition 1.5 becomes (cf. [35]):

$$
d \omega=g_{i \bar{j}} \theta^{i} \wedge \theta^{\bar{j}}
$$

where J is assumed to be integrable although the $C R$ structure has no such equation as (1.9). In the $p-c q C R$ case, however Theorem 2.7 shows that each almost complex structure \bar{J}_{α} is integrable (cf. (2.9) also). Moreover, each characteristic vector filed ξ_{α} is a $C R$ vector field (cf. (3) of Lemma 2.3). In general, this never occurs from the structure equation to the nondegenerate $C R$ structure.

2. Quaternionic $C R$ structure

Suppose that ω is a q $C R$ structure on a neighborhood of M. Let $\rho_{\alpha}=d \omega_{\alpha}+2 \omega_{\beta} \wedge \omega_{\gamma}$ be as in (1.8). Put $V=$ Null $\rho_{\alpha}(\alpha=1,2,3)\left(\operatorname{cf.}\right.$ (1.9)). Since $\operatorname{dim\mathcal {D}}=4 n$, let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be a basis of V. Put $\omega_{i}\left(v_{j}\right)=a_{i j}$. As $\omega_{1} \wedge \omega_{2} \wedge \omega_{3} \mid V \neq 0$, the 3×3-matrix $\left(a_{i j}\right)$ is nonsingular. Put $b_{i j}={ }^{t}\left(a_{i j}\right)^{-1}$ and $\xi_{j}=\sum b_{j k} v_{k}$. Then $\omega_{\alpha}\left(\xi_{\beta}\right)=\delta_{\alpha \beta}$ and locally,

$$
\begin{equation*}
V=\left\{\xi_{\alpha}, \alpha=1,2,3\right\} \tag{2.1}
\end{equation*}
$$

Lemma 2.1. Let \mathcal{L} be the Lie derivative. Then, $\mathcal{L}_{\xi_{\alpha}}(\mathcal{D})=\mathcal{D} \quad(\alpha=1,2,3)$.
Proof. For $X \in \mathcal{D}, \omega_{\beta}\left(\mathcal{L}_{\xi_{\alpha}}(X)\right)=\omega_{\beta}\left(\left[\xi_{\alpha}, X\right]\right)$. As

$$
0=\rho_{\beta}\left(\xi_{\alpha}, X\right)=d \omega_{\beta}\left(\xi_{\alpha}, X\right)+2 \omega_{\gamma} \wedge \omega_{\alpha}\left(\xi_{\alpha}, X\right)=\frac{1}{2}\left(-\omega_{\beta}\left(\left[\xi_{\alpha}, X\right]\right)\right.
$$

we have $\omega_{\beta}\left(\left[\xi_{\alpha}, X\right]\right)=0$ for $\beta=1,2,3$. Hence, $\mathcal{L}_{\xi_{\alpha}}(X) \in \mathcal{D}=\bigcap_{\beta=1}^{3}$ Null ω_{β}.

We prove also that $\mathcal{L}_{\xi} V=V$ for $\xi \in V$.
Lemma 2.2. The distribution V is integrable. The vector fields ξ_{α} determined by (2.1) generates the Lie algebra isomorphic to $\mathfrak{s o}(3)$, i.e. $\left[\xi_{\alpha}, \xi_{\beta}\right]=2 \xi_{\gamma} . \quad(\alpha, \beta, \gamma) \sim(1,2,3)$.

Proof. By (2.1), note that

$$
\begin{equation*}
V=\left\{\xi \in T M \mid \rho_{1}(\xi, v)=\rho_{2}(\xi, v)=\rho_{3}(\xi, v)=0, \forall v \in T M\right\}=\left\{\xi_{\alpha} ; \alpha=1,2,3\right\} \tag{2.2}
\end{equation*}
$$

Since $0=\rho_{\alpha}\left(\xi_{\beta}, \xi_{\gamma}\right)=\frac{1}{2}\left(-\omega_{\alpha}\left(\left[\xi_{\beta}, \xi_{\gamma}\right]\right)+2\right)$, it follows that $\left[\xi_{\beta}, \xi_{\gamma}\right]-2 \xi_{\alpha} \in$ Null ω_{α}. Applying $\rho_{\beta}\left(\xi_{\beta}, \xi_{\gamma}\right)=\frac{1}{2}\left(-\omega_{\beta}\left(\left[\xi_{\beta}, \xi_{\gamma}\right]\right)+0\right)=0$, it yields also that $\left[\xi_{\beta}, \xi_{\gamma}\right]-2 \xi_{\alpha} \in \operatorname{Null} \omega_{\beta}$. Similarly as $\rho_{\gamma}\left(\xi_{\beta}, \xi_{\gamma}\right)=0$, we obtain $\left[\xi_{\beta}, \xi_{\gamma}\right]-2 \xi_{\alpha} \in \bigcap_{\beta=1}^{3}$ Null $\omega_{\beta}=\mathcal{D}$ for $\alpha=1,2,3$. As $\rho_{\alpha}\left(\left[\xi_{\beta}, \xi_{\gamma}\right]-2 \xi_{\alpha}, v\right)=\rho_{\alpha}\left(\left[\xi_{\beta}, \xi_{\gamma}\right], v\right)$ for arbitrary $v \in \mathcal{D}$, By the definition of ρ_{α}, calculate

$$
\begin{aligned}
\rho_{\alpha}\left(\left[\xi_{\beta}, \xi_{\gamma}\right], v\right) & =-\frac{1}{2} \omega_{\beta}\left(\left[\left[\xi_{\beta}, \xi_{\gamma}\right], v\right]\right) \\
& =\frac{1}{2}\left(\omega_{\beta}\left(\left[\left[\xi_{\gamma}, v\right], \xi_{\beta}\right]\right)+\omega_{\beta}\left(\left[\left[\xi_{\beta}, v\right], \xi_{\gamma}\right]\right)\right) \text { (by Jacobi identity) } \\
& =0(\text { by Lemma 2.1). }
\end{aligned}
$$

Since ρ_{α} is nondegenerate on \mathcal{D} by (iii), $\left[\xi_{\beta}, \xi_{\gamma}\right]=2 \xi_{\alpha}(\alpha=1,2,3)$. Hence, such a Lie algebra V is locally isomorphic to the Lie algebra of $\mathrm{SO}(3)$.

We collect the properties of $\omega_{\alpha}, \rho_{\alpha}, J_{\alpha}, g^{\mathcal{D}}$. (Compare [4].)
Lemma 2.3. Up to cyclic permutation of $(\alpha, \beta, \gamma) \sim(1,2,3)$, the following properties hold.
(1) $\mathcal{L}_{\xi_{\alpha}} \omega_{\alpha}=0, \mathcal{L}_{\xi_{\alpha}} \omega_{\beta}=\omega_{\gamma}=-\mathcal{L}_{\xi_{\beta}} \omega_{\alpha}$.
(2) $\mathcal{L}_{\xi_{\alpha}} \rho_{\alpha}=0, \mathcal{L}_{\xi_{\alpha}} \rho_{\beta}=\rho_{\gamma}=-\mathcal{L}_{\xi_{\beta}} \rho_{\alpha}$.
(3) $\mathcal{L}_{\xi_{\alpha}} J_{\alpha}=0, \mathcal{L}_{\xi_{\alpha}} J_{\beta}=J_{\gamma}=-\mathcal{L}_{\xi_{\beta}} J_{\alpha}$.
(4) $\mathcal{L}_{\xi_{\alpha}} g^{\mathcal{D}}=0$.

Proof. (1). First note that $\iota_{\xi_{\alpha}} \omega_{\alpha}(x)=\omega_{\alpha}\left(\xi_{\alpha}\right)=1(x \in M), \iota_{\xi_{\alpha}}\left(\omega_{\beta} \wedge \omega_{\gamma}\right)(X)=\omega_{\beta} \wedge$ $\omega_{\gamma}\left(\xi_{\alpha}, X\right)=0(\alpha \neq \beta, \gamma)$, and $\iota_{\xi_{\alpha}} \rho_{\alpha}(X)=\rho_{\alpha}\left(\xi_{\alpha}, X\right)=0$ by (3.7).

$$
\begin{align*}
\mathcal{L}_{\xi_{\alpha}} \omega_{\alpha}=\left(d \iota \xi_{\alpha}+\iota_{\xi_{\alpha}} d\right) \omega_{\alpha} & =\iota_{\xi_{\alpha}} d \omega_{\alpha}=\iota_{\xi_{\alpha}}\left(-2 \omega_{\beta} \wedge \omega_{\gamma}+\rho_{\alpha}\right) \text { by (1.8) } \\
& =-2 \iota \xi_{\alpha}\left(\omega_{\beta} \wedge \omega_{\gamma}\right)+\iota \xi_{\alpha} \rho_{\alpha}=0, \tag{2.3}
\end{align*}
$$

Next,

$$
\mathcal{L}_{\xi_{\alpha}} \omega_{\beta}=\iota_{\xi_{\alpha}} d \omega_{\beta}=\iota \iota_{\alpha}\left(-2 \omega_{\gamma} \wedge \omega_{\alpha}+\rho_{\beta}\right)=-2 \iota_{\xi_{\alpha}}\left(\omega_{\gamma} \wedge \omega_{\alpha}\right), \text { while }
$$

$-2 \iota \xi_{\alpha}\left(\omega_{\gamma} \wedge \omega_{\alpha}\right)(v)=0$ for $v \notin$ Null ω_{γ} and $-2 \iota \xi_{\alpha}\left(\omega_{\gamma} \wedge \omega_{\alpha}\right)\left(\xi_{\gamma}\right)=1$. Hence $\mathcal{L}_{\xi_{\alpha}} \omega_{\beta}=\omega_{\gamma}$.
(2).

$$
\begin{align*}
\mathcal{L}_{\xi_{\alpha}} \rho_{\beta} & =\mathcal{L}_{\xi_{\alpha}}\left(d \omega_{\beta}+2 \omega_{\gamma} \wedge \omega_{\alpha}\right) \\
& =\left(d \iota \iota_{\alpha}+\iota \xi_{\alpha} d\right) d \omega_{\beta}+2 \mathcal{L}_{\xi_{\alpha}}\left(\omega_{\gamma} \wedge \omega_{\alpha}\right) \\
& =d \iota_{\xi_{\alpha}} d \omega_{\beta}+2 \mathcal{L}_{\xi_{\alpha}} \omega_{\gamma} \wedge \omega_{\alpha}+2 \omega_{\gamma} \wedge \mathcal{L}_{\xi_{\alpha}} \omega_{\alpha} \\
& =d\left(\mathcal{L}_{\xi_{\alpha}}-d \iota \iota_{\xi_{\alpha}}\right) \omega_{\beta}+2 \mathcal{L}_{\xi_{\alpha}} \omega_{\gamma} \wedge \omega_{\alpha} \quad(\text { by }(1)) \tag{2.4}\\
& =d\left(\mathcal{L}_{\xi_{\alpha}} \omega_{\beta}\right)-2 \mathcal{L}_{\xi_{\gamma}} \omega_{\alpha} \wedge \omega_{\alpha}=d \omega_{\gamma}-2 \omega_{\beta} \wedge \omega_{\alpha} \\
& =d \omega_{\gamma}+2 \omega_{\alpha} \wedge \omega_{\beta}=\rho_{\gamma} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
\mathcal{L}_{\xi_{\alpha}} \rho_{\alpha} & =\mathcal{L}_{\xi_{\alpha}}\left(d \omega_{\alpha}+2 \omega_{\beta} \wedge \omega_{\gamma}\right) \\
& =d \iota_{\xi_{\alpha}} d \omega_{\alpha}+2 \mathcal{L}_{\xi_{\alpha}} \omega_{\beta} \wedge \omega_{\gamma}+2 \omega_{\beta} \wedge \mathcal{L}_{\xi_{\alpha}} \omega_{\gamma} \tag{2.5}\\
& =d\left(\mathcal{L}_{\xi_{\alpha}}-d \iota_{\xi_{\alpha}}\right) \omega_{\alpha}+2 \omega_{\gamma} \wedge \omega_{\gamma}+2 \omega_{\beta} \wedge\left(-\omega_{\beta}\right) \\
& =d \mathcal{L}_{\xi_{\alpha}} \omega_{\alpha}=0 \quad(\text { by }(1))
\end{align*}
$$

(3). As $\mathcal{L}_{\xi_{\alpha}} \rho_{\alpha}=0$ by property (2),

$$
\begin{aligned}
0 & =\left(\mathcal{L}_{\xi_{\alpha}} \rho_{\alpha}\right)\left(J_{\beta} X, Y\right) \\
& =\mathcal{L}_{\xi_{\alpha}}\left(\sigma_{\alpha}\left(J_{\beta} X, Y\right)\right)-\sigma_{\alpha}\left(\mathcal{L}_{\xi_{\alpha}}\left(J_{\beta} X\right), Y\right)-\sigma_{\alpha}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right)
\end{aligned}
$$

Noting that $J_{\beta}=\sigma_{\alpha}^{-1} \circ \sigma_{\gamma}$ by Lemma 1.2, we have

$$
\begin{align*}
& \sigma_{\alpha}\left(\left(\mathcal{L}_{\xi_{\alpha}} J_{\beta}\right) X, Y\right)=\sigma_{\alpha}\left(\mathcal{L}_{\xi_{\alpha}}\left(J_{\beta} X\right), Y\right)-\sigma_{\alpha}\left(J_{\beta} \mathcal{L}_{\xi_{\alpha}}(X), Y\right) \\
& =\mathcal{L}_{\xi_{\alpha}}\left(\sigma_{\alpha}\left(J_{\beta} X, Y\right)\right)-\sigma_{\alpha}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right)-\sigma_{\alpha}\left(J_{\beta} \mathcal{L}_{\xi_{\alpha}} X, Y\right) \tag{2.6}\\
& \left.=\left(\mathcal{L}_{\xi_{\alpha}} \sigma_{\gamma}\right)(X, Y)=-\sigma_{\beta}(X, Y) \quad \text { by property }(2)\right) \\
& =\sigma_{\alpha}\left(J_{\gamma} X, Y\right)
\end{align*}
$$

As σ_{α} is nondegenerate on $\mathcal{D}, \mathcal{L}_{\xi_{\alpha}} J_{\beta}=J_{\gamma}$. Similarly,

$$
\begin{align*}
& \sigma_{\gamma}\left(\left(\mathcal{L}_{\xi_{\alpha}} J_{\alpha}\right) X, Y\right)=\sigma_{\gamma}\left(\mathcal{L}_{\xi_{\alpha}}\left(J_{\alpha} X\right), Y\right)-\sigma_{\gamma}\left(J_{\alpha} \mathcal{L}_{\xi_{\alpha}}(X), Y\right) \\
& \quad=-\left(\mathcal{L}_{\xi_{\alpha}} \sigma_{\gamma}\right)\left(J_{\alpha} X, Y\right)+\mathcal{L}_{\xi_{\alpha}}\left(\sigma_{\gamma}\left(J_{\alpha} X, Y\right)\right) \\
& \quad-\sigma_{\gamma}\left(J_{\alpha} X, \mathcal{L}_{\xi_{\alpha}} Y\right)-\sigma_{\gamma}\left(J_{\alpha} \mathcal{L}_{\xi_{\alpha}} X, Y\right) \\
& =\sigma_{\beta}\left(J_{\alpha} X, Y\right)+\mathcal{L}_{\xi_{\alpha}}\left(\sigma_{\beta}(X, Y)\right)-\sigma_{\beta}\left(X, \mathcal{L}_{\xi_{\alpha}} Y\right)-\sigma_{\beta}\left(\mathcal{L}_{\xi_{\alpha}} X, Y\right) \tag{2.7}\\
& =\sigma_{\beta}\left(J_{\alpha} X, Y\right)+\left(\mathcal{L}_{\xi_{\alpha}} \sigma_{\beta}\right)(X, Y) \\
& =-\sigma_{\gamma}(X, Y)+\sigma_{\gamma}(X, Y)=0
\end{align*}
$$

it follows that $\mathcal{L}_{\xi_{\alpha}} J_{\alpha}=0$.
(4). Recall from Lemma 1.2 that $g^{\mathcal{D}}(X, Y)=\sigma_{\alpha}\left(J_{\alpha} X, Y\right)=\rho_{\alpha}\left(J_{\alpha} X, Y\right)(X, Y \in \mathcal{D})$ for each α. Then

$$
\begin{array}{r}
\left(\mathcal{L}_{\xi_{\alpha}} g^{\mathcal{D}}\right)(X, Y)=\xi_{\alpha}\left(g^{\mathcal{D}}(X, Y)\right)-g^{\mathcal{D}}\left(\mathcal{L}_{\xi_{\alpha}} X, Y\right)-g^{\mathcal{D}}\left(X, \mathcal{L}_{\xi_{\alpha}} Y\right) \\
=\xi_{\alpha}\left(\rho_{\beta}\left(J_{\beta} X, Y\right)\right)-\rho_{\beta}\left(J_{\beta} \mathcal{L}_{\xi_{\alpha}} X, Y\right)-\rho_{\beta}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right) \tag{2.8}
\end{array}
$$

On the other hand, $\mathcal{L}_{\xi_{\alpha}} \rho_{\beta}=\rho_{\gamma}$ by property (2) and so

$$
\xi_{\alpha}\left(\rho_{\beta}\left(J_{\beta} X, Y\right)\right)=\rho_{\beta}\left(\mathcal{L}_{\xi_{\alpha}} J_{\beta} X, Y\right)+\rho_{\beta}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right)+\rho_{\gamma}\left(J_{\beta} X, Y\right)
$$

Substitute this into the equation (2.8).

$$
\begin{aligned}
\left(\mathcal{L}_{\xi_{\alpha}} g^{\mathcal{D}}\right)(X, Y) & =\rho_{\beta}\left(\mathcal{L}_{\xi_{\alpha}} J_{\beta} X, Y\right)+\rho_{\beta}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right) \\
& +\rho_{\gamma}\left(J_{\beta} X, Y\right)-\rho_{\beta}\left(J_{\beta} \mathcal{L}_{\xi_{\alpha}} X, Y\right)-\rho_{\beta}\left(J_{\beta} X, \mathcal{L}_{\xi_{\alpha}} Y\right) \\
& =\rho_{\beta}\left(\left(\mathcal{L}_{\xi_{\alpha}} J_{\beta}\right) X, Y\right)+\rho_{\gamma}\left(J_{\beta} X, Y\right) \quad(\text { by property }(3)) \\
& =\rho_{\beta}\left(J_{\gamma} X, Y\right)+\rho_{\gamma}\left(J_{\beta} X, Y\right)=0
\end{aligned}
$$

hence, $\mathcal{L}_{\xi_{\alpha}} g^{\mathcal{D}}=0$.
2.1. Three $C R$ structures. Let $\left(\left\{\omega_{\alpha}\right\},\left\{J_{\alpha}\right\},\left\{\xi_{\alpha}\right\} ; \alpha=1,2,3\right)$ be a nondegenerate qCR structure on $U \subset M$ such that $\mathcal{D} \mid U=\bigcap_{\alpha=1}^{3} \mathrm{Null} \omega_{\alpha}$. We can extend the almost complex structure J_{α} to an almost complex structure \bar{J}_{α} on Null $\omega_{\alpha}=\mathcal{D} \oplus\left\{\xi_{\beta}, \xi_{\gamma}\right\}$ by setting:

$$
\begin{align*}
& \bar{J}_{\alpha} \mid \mathcal{D}=J_{\alpha} \\
& \bar{J}_{\alpha} \xi_{\beta}=\xi_{\gamma}, \bar{J}_{\alpha} \xi_{\gamma}=-\xi_{\beta} \tag{2.9}
\end{align*}
$$

(α, β, γ) is a cyclic permutation of $(1,2,3)$. First of all, note the following formula (cf. [21]):

$$
\begin{equation*}
\mathcal{L}_{X}\left(\iota_{Y} d \omega_{a}\right)=\iota_{\left(\mathcal{L}_{X} Y\right)} d \omega_{a}+\iota_{Y} \mathcal{L}_{X} d \omega_{a}=\iota_{[X, Y]} d \omega_{a}+\iota_{Y} \mathcal{L}_{X} d \omega_{a} \quad(\forall X, Y \in T U) \tag{2.10}
\end{equation*}
$$

Secondly, we remark the following.
Lemma 2.4. For $X \in \mathcal{D}$,

$$
\iota_{X} d \omega_{a}=\iota_{J_{c} X} d \omega_{b} \quad(a, b, c) \sim(1,2,3)
$$

Proof. Let $T U=\mathcal{D} \oplus V$ where $V=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. If $X \in \mathcal{D}$, then $d \omega_{a}(X, \xi)=0$ for $\forall \xi \in V$. As $d \omega_{b}\left(J_{c} X, \xi\right)=0$ similarly, it follows that $\iota_{X} d \omega_{a}=\iota_{J_{c} X} d \omega_{b}=0$ on V. If $Y \in \mathcal{D}$, calculate

$$
\begin{aligned}
d \omega_{a}(X, Y) & =-d \omega_{a}\left(J_{a}\left(J_{a} X\right), Y\right)=-d \omega_{b}\left(J_{b}\left(J_{a} X\right), Y\right) \text { (from Lemma 1.2) } \\
& =d \omega_{b}\left(J_{c} X, Y\right), \text { hence } \iota_{X} d \omega_{a}=\iota_{J_{c} X} d \omega_{b} \text { on } U .
\end{aligned}
$$

In particular, we have

$$
\begin{equation*}
\iota_{X} d \omega_{2}=\iota_{J_{1} X} d \omega_{3} \text { for } \forall X \in \mathcal{D} . \tag{2.11}
\end{equation*}
$$

There is the decomposition with respect to the almost complex structure \bar{J}_{1} :

$$
\begin{equation*}
\text { Null } \omega_{1} \otimes \mathbb{C}=\mathcal{D} \otimes \mathbb{C} \oplus\left\{\xi_{2}, \xi_{3}\right\} \otimes \mathbb{C}=T^{1,0} \oplus T^{0,1} \tag{2.12}
\end{equation*}
$$

where $T^{1,0}=\mathcal{D}^{1,0} \oplus\left\{\xi_{2}-\boldsymbol{i} \xi_{3}\right\}$. We shall observe that the same formula as in Lemma 6.8 of Hitchin [14] can be also obtained for \mathcal{D}. (We found Lemma 6.8 when we saw a key lemma to the Kashiwada's theorem [19].)
Lemma 2.5. If $X, Y \in \mathcal{D}^{1,0}$, then $\iota_{[X, Y]} d \omega_{2}=\boldsymbol{i}_{\iota_{[X, Y]}} d \omega_{3}$.
Proof. Let $X \in \mathcal{D}^{1,0}$ so that $J_{1} X=\boldsymbol{i} X$, then

$$
\begin{align*}
\mathcal{L}_{X} d \omega_{2} & =\left(d \iota_{X}+\iota_{X} d\right) d \omega_{2}=d\left(\iota_{X} d \omega_{2}\right)=d\left(\iota_{J_{1} X} d \omega_{3}\right)(\text { by }(2.11)) \\
& =\boldsymbol{i}\left(d \iota_{X}\right) d \omega_{3}=\boldsymbol{i}\left(\mathcal{L}_{X}-\iota_{X} d\right) d \omega_{3}=\boldsymbol{i} \mathcal{L}_{X} d \omega_{3} \tag{2.13}
\end{align*}
$$

Applying $Y \in \mathcal{D}^{1,0}$ to the equation (2.11) and using (2.10) (extended to a \mathbb{C}-valued one),

$$
\begin{aligned}
\mathcal{L}_{X}\left(\iota_{Y} d \omega_{2}\right) & =\mathcal{L}_{X}\left(\iota_{J_{1} Y} d \omega_{3}\right)=\boldsymbol{i} \mathcal{L}_{X}\left(\iota_{Y} d \omega_{3}\right)(\text { from }(2.11)) \\
& =\boldsymbol{i}_{[X, Y]} d \omega_{3}+\iota_{Y} \boldsymbol{i} \mathcal{L}_{X} d \omega_{3} \\
& =\boldsymbol{i}_{[X, Y]} d \omega_{3}+\iota_{Y} \mathcal{L}_{X} d \omega_{2}(\text { by }(2.13)) .
\end{aligned}
$$

Compared this with (2.10) for $\omega_{a}=\omega_{2}$, we obtain $\boldsymbol{i}_{[X, Y]} d \omega_{3}=\iota_{[X, Y]} d \omega_{2}$.

We prove the following equation (which is used to show the existence of a complex contact structure on the quotient of the quaternionic $C R$ manifold by $S^{1}[2]$.)
Proposition 2.6. For any $X, Y \in \mathcal{D}^{1,0}$, there exsist $a \in \mathbb{R}$ and $u \in \mathcal{D}^{1,0}$ such that

$$
[X, Y]=a\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)+u
$$

Conversely, given an arbitrary $a \in \mathbb{R}$, we can choose such $X, Y \in \mathcal{D}^{1,0}$ and some $u \in \mathcal{D}^{1,0}$. Proof. As $g\left(J_{\alpha} \cdot, J_{\alpha^{\cdot}}\right)=g(\cdot, \cdot)\left(\right.$ cf. Lemma 1.2), we note that $d \omega_{1}\left|\left(\mathcal{D}^{1,0}, \mathcal{D}^{0,1}\right), d \omega_{2}\right|\left(\mathcal{D}^{1,0}, \mathcal{D}^{1,0}\right)$, $d \omega_{3} \mid\left(\mathcal{D}^{1,0}, \mathcal{D}^{1,0}\right)$ are nondegenerate. Given $X, Y \in \mathcal{D}^{1,0}$, put $d \omega_{2}(X, Y)=g\left(X, J_{2} Y\right)=-\frac{1}{2} a$ for some $a \in \mathbb{R}$. (Note that conversely for any $a \in \mathbb{R}$, we can choose $X, Y \in \mathcal{D}^{1,0}$ such that $d \omega_{2}(X, Y)=g\left(X, J_{2} Y\right)=-\frac{1}{2} a$.) Then $\omega_{2}([X, Y])=a$ so that there is an element $v \in \operatorname{Null} \omega_{2} \otimes \mathbb{C}$ such that $[X, Y]-a \cdot \xi_{2}=v$. As $d \omega_{3}(X, Y)=g\left(X, J_{1} J_{2} Y\right)=$ $-g\left(X, J_{2}\left(J_{1} Y\right)\right)=-\boldsymbol{i} g\left(X, J_{2} Y\right)=-\frac{\boldsymbol{i}}{2} a$, it follows that $\omega_{3}([X, Y])=-\boldsymbol{i} a$. Since $\omega_{3}(v)=$ $\omega_{3}\left([X, Y]-\xi_{2}\right)=\omega_{3}([X, Y]), v=-\boldsymbol{i a} \cdot \xi_{3}+u$ for some $u \in \operatorname{Null} \omega_{3} \otimes \mathbb{C}$. Then we have that $[X, Y]=a\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)+u$. Obviously, $\omega_{2}(u)=0$. As $X, Y \in \mathcal{D}^{1,0}, \omega_{1}(u)=\omega_{1}([X, Y])=$ $-2 d \omega_{1}(X, Y)=0$ for which $u \in \mathcal{D} \otimes \mathbb{C}$. We now prove that $u \in \mathcal{D}^{1,0}$. First we note that

$$
\begin{equation*}
\iota_{[X, Y]} d \omega_{2}=a \iota_{\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)} d \omega_{2}+\iota_{u} d \omega_{2} . \tag{2.14}
\end{equation*}
$$

As ξ_{2} (respectively ξ_{3}) is characteristic for ω_{2} (respectively ω_{3}) from Lemma 2.3, $\iota_{\xi_{2}} d \omega_{2}=0$ (respectively $\iota_{\xi_{3}} d \omega_{3}=0$). Using (3.7), the function satisfies $d \iota_{\xi_{3}} \omega_{2}=0$ (respectively $\left.d \iota_{\xi_{2}} \omega_{3}=0\right)$. It follows that $\iota_{\xi_{3}} d \omega_{2}=\left(\mathcal{L}_{\xi_{3}}-d \iota_{\xi_{3}}\right) \omega_{2}=\mathcal{L}_{\xi_{3}} \omega_{2}=-\omega_{1}$. Then $\iota_{\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)} d \omega_{2}=$ $\left(\iota \xi_{2} d \omega_{2}-\boldsymbol{i} \iota_{\xi_{3}} d \omega_{2}\right)=\boldsymbol{i} \omega_{1}$ so (2.14) becomes

$$
\begin{equation*}
\iota_{[X, Y]} d \omega_{2}=a \boldsymbol{i} \omega_{1}+\iota_{u} d \omega_{2} . \tag{2.15}
\end{equation*}
$$

As $\mathcal{L}_{\xi_{2}} \omega_{3}=\omega_{1}$, it follows $\iota_{\xi_{2}} d \omega_{3}=\omega_{1}$. Similarly

$$
\begin{equation*}
\iota_{[X, Y]} d \omega_{3}=a \iota_{\left(\xi_{2}-\boldsymbol{i}_{3}\right)} d \omega_{3}+\iota_{u} d \omega_{3}=a \omega_{1}+\iota_{u} d \omega_{3} . \tag{2.16}
\end{equation*}
$$

Substitute (2.15), (2.16) into the equlaity $\iota_{[X, Y]} d \omega_{2}=\boldsymbol{i}_{[X, Y]} d \omega_{3}$ of Lemma 2.5, which concludes that

$$
\begin{equation*}
\iota_{u} d \omega_{2}=\boldsymbol{i} \iota_{u} d \omega_{3} . \tag{2.17}
\end{equation*}
$$

Since $d \omega_{2}(u, X)=d \omega_{3}\left(J_{1} u, X\right)$ for any $X \in \mathcal{D} \otimes \mathbb{C}$, (2.17) implies that $d \omega_{3}\left(J_{1} u, X\right)=$ $\iota_{u} d \omega_{2}(X)=d \omega_{3}(\boldsymbol{i} u, X)$. As $d \omega_{3}$ is nondegenerate on $\mathcal{D} \otimes \mathbb{C}$, we obtain that $J_{1} u=\boldsymbol{i} u$. Hence, $u \in \mathcal{D}^{1,0}$.

Recall that a nondegenerate $C R$ structure on an odd dimensional manifold consists of the pair (Null ω, J) where ω is a contact structure and J is a complex structure on the contact subbundle Null ω (i.e. J is integrable). In addition, the characteristic (Reeb) vector field ξ for ω is said to be a characteristic CR-vector field if $\mathcal{L}_{\xi} J=0$. Consider (Null ω_{a}, \bar{J}_{a}) on U ($a=1,2,3$). By Lemma 2.3, each ξ_{a} is a characteristic vector field for ω_{a} on U. From (3) of Lemma 2.3, $\mathcal{L}_{\xi_{\alpha}} J_{\alpha}=0$. It is easy to check that $\mathcal{L}_{\xi_{a}} \bar{J}_{a}=0$.

Theorem 2.7. Each \bar{J}_{α} is integrable on Null ω_{α}. As a consequence, a nondegenerate $q C R$ structure $\left\{\omega_{\alpha}, J_{\alpha}\right\}_{\alpha=1,2,3}$ on a neighborhood U of $M^{4 n+3}$ induces three nondegenerate
$C R$ structures (Null $\omega_{\alpha}, \bar{J}_{\alpha}$) equipped with characteristic $C R$-vector field ξ_{α} for each ω_{α} $(\alpha=1,2,3)$. In fact, $\omega_{\alpha}\left(\xi_{\alpha}\right)=1$ and $d \omega_{\alpha}\left(\xi_{\alpha}, X\right)=0(\forall X \in T M)(\alpha=1,2,3)$.
Proof. Consider the case for $\left(\operatorname{Null} \omega_{1}, \bar{J}_{1}\right)$. Let Null $\omega_{1} \otimes \mathbb{C}=T^{1,0} \oplus T^{0,1}$ where $T^{1,0}=$ $\mathcal{D}^{1,0} \oplus\left\{\xi_{2}-\boldsymbol{i} \xi_{3}\right\}$. By Proposition 2.6 , if $X, Y \in \mathcal{D}^{1,0}$, then $[X, Y]=a\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)+u$ for some $a \in \mathbb{R}$ and $u \in \mathcal{D}^{1,0}$. By definition,

$$
\bar{J}_{1}[X, Y]=a \bar{J}_{1}\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)+J_{1} u=a \boldsymbol{i}\left(\xi_{2}-\boldsymbol{i} \xi_{3}\right)+\boldsymbol{i} u=\boldsymbol{i}[X, Y]
$$

it follows $[X, Y] \in T^{1,0}$. It suffices to show that the element $\left[\xi_{2}-\boldsymbol{i} \xi_{3}, v\right] \in T^{1,0}$ for $v \in \mathcal{D}^{1,0}$. As $\mathcal{L}_{\xi_{2}} J_{1}=-J_{3}$ and $-J_{3} v=\left(\mathcal{L}_{\xi_{2}} J_{1}\right) v=\mathcal{L}_{\xi_{2}}\left(J_{1} v\right)-J_{1}\left(\mathcal{L}_{\xi_{2}} v\right)$,

$$
\begin{equation*}
J_{1}\left(\mathcal{L}_{\xi_{2}} v\right)=J_{3} v+\boldsymbol{i} \mathcal{L}_{\xi_{2}} v \tag{2.18}
\end{equation*}
$$

Note that $\left[\xi_{2}-\boldsymbol{i} \xi_{3}, v\right]=\mathcal{L}_{\xi_{2}} v-\boldsymbol{i} \mathcal{L}_{\xi_{3}} v \in \mathcal{D} \otimes \mathbb{C}$ on which $\bar{J}_{a}=J_{a}$. Then $\bar{J}_{1}\left[\xi_{2}-\boldsymbol{i} \xi_{3}, v\right]=$ $J_{1}\left(\mathcal{L}_{\xi_{2}} v\right)-\boldsymbol{i} J_{1}\left(\mathcal{L}_{\xi_{3}} v\right)$. Moreover, as $J_{2} v=\left(\mathcal{L}_{\xi_{3}} J_{1}\right) v=\boldsymbol{i} \mathcal{L}_{\xi_{3}}(v)-J_{1}\left(\mathcal{L}_{\xi_{3}} v\right)$ and $J_{2} v=$ $J_{3} J_{1} v=\boldsymbol{i} J_{3} v$, it follows that $J_{1}\left(\mathcal{L}_{\xi_{3}} v\right)=-\boldsymbol{i} J_{3} v+\boldsymbol{i} \mathcal{L}_{\xi_{3}} v$. Using this equality and (2.18), it follows that

$$
\begin{aligned}
\bar{J}_{1}\left[\xi_{2}-\boldsymbol{i} \xi_{3}, v\right] & =J_{1}\left(\mathcal{L}_{\xi_{2}} v\right)-\boldsymbol{i} J_{1}\left(\mathcal{L}_{\xi_{3}} v\right)=\boldsymbol{i} \mathcal{L}_{\xi_{2}} v+\mathcal{L}_{\xi_{3}} v \\
& =\boldsymbol{i}\left(\mathcal{L}_{\xi_{2}} v-\boldsymbol{i} \mathcal{L}_{\xi_{3}} v\right)=\boldsymbol{i}\left[\xi_{2}-\boldsymbol{i} \xi_{3}, v\right]
\end{aligned}
$$

Therefore, $\left[T^{1,0}, T^{1,0}\right] \subset T^{1,0}$ so that \bar{J}_{1} is a complex structure on Null ω_{1}, i.e. $\left(\operatorname{Null} \omega_{1}, \bar{J}_{1}\right)$ is a $C R$ structure on U. The same holds for $\left(\operatorname{Null} \omega_{b}, \bar{J}_{b}\right)(b=2,3)$.

3. Model of $\mathrm{Q} C R$ space forms with type $(4 p+3,4 q)$

Suppose that $p+q=n$. Let \mathbb{H}^{n+1} be the quaternionc number space in quaternionic dimension $n+1$ with nondegenerate quaternionic Hermitian form

$$
\begin{equation*}
\langle x, y\rangle=\bar{x}_{1} y_{1}+\cdots+\bar{x}_{p+1} y_{p+1}-\bar{x}_{p+2} y_{p+2}-\cdots-\bar{x}_{n+1} y_{n+1} \tag{3.1}
\end{equation*}
$$

If we denote $\operatorname{Re}\langle x, y\rangle$ the real part of $\langle x, y\rangle$, then it is noted that $\operatorname{Re}\langle$,$\rangle is a nondegenerate$ symmetric bilinear form on \mathbb{H}^{n+1}. In the quaternion case, the group of all invertible matrices $\mathrm{GL}(n+1, \mathbb{H})$ is acting from the left and $\mathbb{H}^{*}=\mathrm{GL}(1, \mathbb{H})$ acting as the scalar multiplications from the right on \mathbb{H}^{n+1}, which forms the group $\operatorname{GL}(n+1, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})=$ $\mathrm{GL}(n+1, \mathbb{H}) \underset{\mathbb{R}^{*}}{\times} \mathrm{GL}(1, \mathbb{H})$. Let $\mathrm{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ be the subgroup of $\mathrm{GL}(n+1, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$ whose elements preserve the nondegenerate bilinear form $\operatorname{Re}\langle$,$\rangle . Denote by \Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ the $(4 n+3)$-dimensional quadric space:

$$
\left\{\left.\left(z_{1}, \cdots, z_{p+1}, w_{1}, \cdots, w_{q}\right) \in \mathbb{H}^{n+1}| | z_{1}\right|^{2}+\cdots+\left|z_{p+1}\right|^{2}-\left|w_{1}\right|^{2}-\cdots-\left|w_{q}\right|^{2}=1\right\}
$$

In particular, the group $\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ leaves $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ invariant. Let \langle,\rangle_{x} be the nondegenerate quaternionic inner product on the tangent space $T_{x} \mathbb{H}^{n+1}$ obtained from the parallel translation of \langle,$\rangle to the point x \in \mathbb{H}^{n+1}$. Recall that $\{I, J, K\}$ is the standard quaternionic structure on \mathbb{H}^{n+1} which operates as $I z=z \boldsymbol{i}, J z=z \boldsymbol{j}$, or $K z=z \boldsymbol{k}$. As usual, $\left\{I_{x}, J_{x}, K_{x}\right\}$ acts on $T_{x} \mathbb{H}^{n+1}$ at each point x. Then it is easy to see that $g_{x}^{\mathbb{H}}(X, Y)=\operatorname{Re}\langle X, Y\rangle_{x}\left(\forall X, Y \in T_{x} \mathbb{H}^{n+1}\right)$ is the standard pseudo-euclidean metric of type $(p+1, q)$ on \mathbb{H}^{n+1} which is invariant under $\{I, J, K\}$. Restricted $g^{\mathbb{H}}$ to the quadric $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ in \mathbb{H}^{n+1}, we obtain a nondegenerate pseudo-Riemannian metric g of type $(3+4 p, 4 q)$ where $p+q=n$. Compare [38], [24] for the following definition.

Definition 3.1. The quadric $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ is referred to the quaternionic pseudo-Riemannian space form of type $(3+4 p, 4 q)$ with constant curvature 1 endowed with a transitive group of isometries $\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ for which $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}=\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1) / \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)$ where $\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)$ is the stabilizer at $(1,0, \cdots, 0)$.

When $\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q}, g^{\mathbb{H}}\right)$ is viewed as a real pseudo-Riemannian space form, the full group of isometries is $\mathrm{O}(4 p+4,4 q)$. It is noted that the intersection of $\mathrm{O}(4 p+4,4 q)$ with $\mathrm{GL}(n+1, \mathbb{H})$. $\mathrm{GL}(1, \mathbb{H})$ is $\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$. When N_{x} is the normal vector at $x \in \Sigma_{\mathbb{H}}^{3+4 p, 4 q}, T_{x} \Sigma_{\mathbb{H}}^{3+4 p, 4 q}=$ N_{x}^{\perp} with respect to $g^{\mathbb{H}}$. If N is a normal vector field on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$, then $I N, J N, K N \in$ $T \Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ such that there is the decomposition $T \Sigma_{\mathbb{H}}^{3+4 p, 4 q}=\{I N, J N, K N\} \oplus\{I N, J N, K N\}^{\perp}$. Let $\mathcal{D}=\{I N, J N, K N\}^{\perp}$ which is the $4 n$-dimensional subbundle. As $g^{\mathbb{H}}$ is a $\{I, J, K\}$ -invariant metric, $(\mathcal{D}, g \mid \mathcal{D})$ is also invariant under $\{I, J, K\}$. Now, $\operatorname{Sp}(1)$ acts freely on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ as right translations:

$$
\left(\lambda,\left(z_{1}, \cdots, z_{p+1}, w_{1}, \cdots, w_{q}\right)\right)=\left(z_{1} \cdot \bar{\lambda}, \cdots, z_{p+1} \cdot \bar{\lambda}, w_{1} \cdot \bar{\lambda}, \cdots, w_{q} \cdot \bar{\lambda}\right) \quad(\lambda \in \operatorname{Sp}(1))
$$

Definition 3.2. The orbit space $\Sigma_{\mathbb{H}}^{3+4 p, 4 q} / \operatorname{Sp}(1)$ is said to be the quaternionic pseudoKähler projective space $\mathbb{H}^{p} \mathbb{P}^{p, q}$ of type $(4 p, 4 q)$.

For the definition of quaternionic pseudo-Kähler manifold in general, see Definition 4.5. Note that $\mathbb{H}^{P}{ }^{p, q}$ is a quaternionic pseudo-Kähler manifold by Theorem 4.6 provided that $4 n \geq 8$. When $p=n, q=0, \mathbb{H}^{n, 0}$ is the standard quaternionic projective space $\mathbb{H}^{p} \mathbb{P}^{n}$. When $p=0, q=n, \mathbb{H}_{\mathbb{P}^{0, n}}$ is the quaternionic hyperbolic space $\mathbb{H}_{\mathbb{H}}^{n}$. It is easy to see that $\mathbb{H}^{p}{ }^{p, q}$ is homotopic to the canonical quaternionic line bundle over the quaternionic Kähler projective space $\mathbb{H} \mathbb{P}^{p}$. There is the equivariant principal bundle:

$$
\begin{equation*}
\operatorname{Sp}(1) \rightarrow\left(\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1), \Sigma_{\mathbb{H}}^{3+4 p, 4 q}\right) \xrightarrow{\pi}\left(\operatorname{PSp}(p+1, q), \mathbb{H}^{p, q}\right) \tag{3.2}
\end{equation*}
$$

On the other hand, let

$$
\begin{equation*}
\omega_{0}=-\left(\bar{z}_{1} d z_{1}+\cdots+\bar{z}_{p+1} d z_{p+1}-\bar{w}_{1} d w_{1}-\cdots-\bar{w}_{q} d w_{q}\right) \tag{3.3}
\end{equation*}
$$

Then it is easy to check that ω_{0} is an $\mathfrak{s p}(1)$-valued 1-form on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$. Let $\xi_{1}, \xi_{2}, \xi_{3}$ be the vector fields on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ induced by the one-parameter subgroups $\left\{e^{\boldsymbol{i} \theta}\right\}_{\theta \in \mathbb{R}},\left\{e^{\boldsymbol{j} \theta}\right\}_{\theta \in \mathbb{R}}$, $\left\{e^{\boldsymbol{k} \theta}\right\}_{\theta \in \mathbb{R}}$ respectively, which is equivalent to that $\xi_{1}=I N, \xi_{2}=J N, \xi_{3}=K N$. A calculation shows that

$$
\begin{equation*}
\omega_{0}\left(\xi_{1}\right)=\boldsymbol{i}, \omega_{0}\left(\xi_{2}\right)=\boldsymbol{j}, \omega_{0}\left(\xi_{3}\right)=\boldsymbol{k} \tag{3.4}
\end{equation*}
$$

By the formula of ω_{0}, if $a \in \operatorname{Sp}(1)$, then the right translation R_{a} on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ satisfies that

$$
\begin{equation*}
\mathrm{R}_{a}^{*} \omega_{0}=a \cdot \omega_{0} \cdot \bar{a} \tag{3.5}
\end{equation*}
$$

Therefore, ω_{0} is a connection form of the above bundle (3.2). Note that $\operatorname{Sp}(p+1, q)$ leaves ω_{0} invariant. We shall check the conditions (i), (ii), (iii), (iv) of Definition 1.1 and (1.9) so that $\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q},\{I, J, K\}, g, \omega_{0}\right)$ will be a quaternionic $C R$ manifold. First of all, it follows that

$$
\omega_{0} \wedge \omega_{0} \wedge \omega_{0} \wedge \overbrace{\left(d \omega_{0} \wedge d \omega_{0}\right) \wedge \cdots \wedge\left(d \omega_{0} \wedge d \omega_{0}\right)}^{n \text { times }} \neq 0 \quad \text { at any point of } \Sigma_{\mathbb{H}}^{3+4 p, 4 q}
$$

(Compare [16],[31] for example). In fact, letting $\omega_{0}=\omega_{1} \boldsymbol{i}+\omega_{2} \boldsymbol{j}+\omega_{3} \boldsymbol{k}$ as before,

$$
\omega_{0}^{3} \wedge d \omega_{0}^{2 n}=6 \omega_{1} \wedge \omega_{2} \wedge \omega_{3} \wedge\left(d \omega_{1}^{2}+d \omega_{2}^{2}+d \omega_{3}^{2}\right)^{n}
$$

This calculation shows (iii). In particular, each ω_{a} is a nondegenerate contact form on $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$. Using (3.5) and as ξ_{1} generates $\left\{e^{\boldsymbol{i} \theta}\right\}_{\theta \in \mathbb{R}} \subset \operatorname{Sp}(1), \mathcal{L}_{\xi_{1}} \omega_{1}=0$. (Similarly we have $\mathcal{L}_{\xi_{2}} \omega_{2}=\mathcal{L}_{\xi_{3}} \omega_{3}=0$.) Noting that $\omega_{a}\left(\xi_{a}\right)=1$ and $0=\mathcal{L}_{\xi_{a}} \omega_{a}=\iota_{\xi_{a}} d \omega_{a}$ from (3.4), each ξ_{a} is the characteristic vector field for ω_{a}. Moreover, note that $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ generates the fields of Lie algebra of $\operatorname{Sp}(1)$. It follows that $\mathcal{D}=\bigcap_{a=1}^{3} \operatorname{Null} \omega_{a}$ for which there is the decomposition $T \Sigma_{\mathbb{H}}^{3+4 p, 4 q}=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\} \oplus \mathcal{D}$. If $\left\{e_{i}\right\}_{i=1, \cdots, 4 n}$ is the orthonormal basis of \mathcal{D}, then the dual frame θ^{i} is obtained as $\theta^{i}\left(e_{j}\right)=\delta_{j}^{i}$ and $\theta^{i}\left(\xi_{1}\right)=\theta^{i}\left(\xi_{2}\right)=\theta^{i}\left(\xi_{3}\right)=0$. In order to prove that the distribution uniquely determined by (1.9) are $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ (cf. (4.3) also), we need the following lemma.

Lemma 3.3.

$$
d \omega_{1}(X, Y)=g(X, I Y), d \omega_{2}(X, Y)=g(X, J Y), d \omega_{3}(X, Y)=g(X, K Y)
$$

where $X, Y \in \mathcal{D}$.
Proof. Given $X, Y \in \mathcal{D}_{x}$, let u, v be the vectors at the origin by parallel translation of X, Y at $x \in \Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ respectively. Then by definition, $g(X, Y)=\operatorname{Re}\langle u, v\rangle$. Furthermore,

$$
\begin{equation*}
g(X, I Y)=\operatorname{Re}(\langle u, v \cdot \boldsymbol{i}\rangle)=\operatorname{Re}(\langle u, v\rangle \cdot \boldsymbol{i}) \tag{3.6}
\end{equation*}
$$

From (3.3), if $X, Y \in \mathcal{D}_{x}$, then

$$
d \omega_{0}(X, Y)=-\left(d \bar{z}_{1} \wedge d z_{1}+\cdots+d \bar{z}_{p+1} \wedge d z_{p+1}-d \bar{w}_{1} \wedge d w_{1}-\cdots-d \bar{w}_{q} \wedge d w_{q}\right)(u, v)
$$

Then a calculation shows that $d \omega_{0}(X, Y)=-\frac{1}{2}(\langle u, v\rangle-\overline{\langle u, v\rangle})$. It is easy to check that the \boldsymbol{i}-part of $-\frac{1}{2}(\langle u, v\rangle-\overline{\langle u, v\rangle})$ is $\operatorname{Re}(\langle u, v\rangle \cdot \boldsymbol{i})$. Since $d \omega_{1}(X, Y)$ is the \boldsymbol{i}-part of $d \omega(X, Y)$ and by (3.6), we obtain the equality $g(X, I Y)=d \omega_{1}(X, Y)$. Similarly, we have that $g(X, J Y)=d \omega_{2}(X, Y), g(X, K Y)=d \omega_{3}(X, Y)$.

From this lemma, $d \omega_{a}\left(e_{i}, e_{j}\right)=g\left(e_{i}, J_{a} e_{j}\right)=-\mathbf{J}_{i j}^{a}$. Since $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ generates $\operatorname{Sp}(1)$ of the bundle (3.2), we obtain $d \omega_{a}+2 \omega_{b} \wedge \omega_{c}=-\mathbf{J}_{i j}^{a} \theta^{i} \wedge \theta^{j}$. Applying to J, K similarly, we obtain the following structure equation of the bundle (3.2):

$$
\begin{equation*}
d \omega_{0}+\omega_{0} \wedge \omega_{0}=-\left(\mathbf{I}_{i j} \boldsymbol{i}+\mathbf{J}_{i j} \boldsymbol{j}+\mathbf{K}_{i j} \boldsymbol{k}\right) \theta^{i} \wedge \theta^{j} \tag{3.7}
\end{equation*}
$$

From this equation, the condition (1.9) is easily checked so that Null $\omega_{\alpha}=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. We summarize that

Theorem 3.4. $\left(\sum_{\mathbb{H}}^{3+4 p, 4 q},\left\{\omega_{a}\right\}_{a=1,2,3},\{I, J, K\}, g\right)$ is a $(4 n+3)$-dimensional homogeneous $q C R$ manifold of type $(3+4 p, 4 q)$ where $p+q=n \geq 0$. Moreover, there exists the equivariant principal bundle of the pseudo-Riemannian submersion over the homogeneous quaternionic pseudo-Kähler projective space $\mathbb{H}^{P} \mathbb{P}^{p, q}$ of type $(4 p, 4 q): \operatorname{Sp}(1) \rightarrow(\operatorname{Sp}(p+1, q)$. $\left.\operatorname{Sp}(1), \Sigma_{\mathbb{H}}^{3+4 p, 4 q}, g\right) \xrightarrow{\pi}\left(\operatorname{PSp}(p+1, q), \mathbb{H} \mathbb{P}^{p, q}, \hat{g}\right)$.

We shall prove more generally in Theorem 4.6 that $\left(\operatorname{PSp}(p+1, q), \mathbb{H} \mathbb{P}^{4 p, 4 q}\right)$ supports an invariant quaternionic pseudo-Kähler metric \hat{g} of type $(4 p, 4 q)$.

Remark 3.5. (a) In [2], it is shown that $\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q},\{I, J, K\}, g\right)$ is a pseudo-Sasakian space form of constant positive curvature with type $(4 p+3,4 q)$.
(b) When $q=0$ or $p=0$, we can find discrete cocompact subgroups from $\operatorname{Sp}(n+1) \cdot \operatorname{Sp}(1)$ or $\mathrm{Sp}(1, n) \cdot \mathrm{Sp}(1)$ that act properly and freely on $\Sigma_{\mathbb{H}}^{3+4 n, 0}=S^{4 n+3}$ or $\Sigma_{\mathbb{H}}^{3,4 n}=V_{-1}^{4 n+3}$ respectively. Thus, we obtain compact nondegenerate $q C R$ manifolds. In fact, (i) The spherical space form $S^{4 n+3} / F$ which is $\mathrm{Sp}(1)$ or $\mathrm{SO}(3)$-bundle over the quaternionic Kähler projective orbifold $\mathbb{H P}^{n} / F^{*}$ of positive scalar curvature. $(F \subset \operatorname{Sp}(n+1) \cdot \operatorname{Sp}(1)$ is a finite group.) (ii) The pseudo-Riemannian standard space form $V_{-1}^{4 n+3} / \Gamma$ of type $(4 n, 3)$ with constant sectional curvature -1 which is an $\mathrm{Sp}(1)$-bundle over the quaternionic Kähler hyperbolic orbifold $\mathbb{H}_{\mathbb{H}}^{n} / \Gamma^{*}$ of negative scalar curvature. ($\Gamma^{*} \subset \operatorname{PSp}(1, n)$ is a discrete subgroup.) As we know, there exists no compact pseudo-Sasakian manifold (or qCR manifold) whose pseudo-Kähler orbifold has zero Ricci curvature. However in our case, an indefinite Heisenberg nilmanifold is a compact p-c qCR manifold whose pseudo-Kähler orbifold is the complex euclidean orbifold (i.e. zero Ricci curvature), see §7.3.

4. Local Principal bundle

Let $\left\{e_{i}\right\}_{i=1, \cdots, 4 n}$ be the basis of $\mathcal{D} \mid U$ such that $g^{\mathcal{D}}\left(e_{i}, e_{j}\right)=g_{i j}$. We choose a local coframe θ^{i} for which

$$
\begin{equation*}
\theta^{i} \mid V=0 \text { and } \theta^{i}\left(e_{j}\right)=\delta_{i j} . \tag{4.1}
\end{equation*}
$$

As usual the quaternionic structure $\left\{J_{\alpha}\right\}_{\alpha=1,2,3}$ can be represented locally by the matrix $\mathbf{J}_{i}^{\alpha j}$ such as $J_{\alpha} e_{i}=\mathbf{J}^{\alpha j} e_{j}$. Note that $\rho_{\alpha}\left(e_{j}, e_{i}\right)=\mathbf{J}^{\alpha k}{ }_{i} g_{j k}=\mathbf{J}^{\alpha}{ }_{i j}$ by (1.1). Here the matrix $\left(g_{i j}\right)$ lowers and raises the indices. Using θ^{i} we can write the structure equation (1.8):

$$
\begin{equation*}
d \omega_{\alpha}+2 \omega_{\beta} \wedge \omega_{\gamma}=-\mathbf{J}^{\alpha}{ }_{i j} \theta^{i} \wedge \theta^{j} \quad(\alpha=1,2,3) . \tag{4.2}
\end{equation*}
$$

If we use ω of Definition 1.1, the above formula is equivalent to the following:

$$
\begin{equation*}
d \omega+\omega \wedge \omega=-\left(\mathbf{J}^{1}{ }_{i j} \boldsymbol{i}+{\left.\mathbf{\mathbf { J } ^ { 2 }}{ }_{i j} \boldsymbol{j}+\mathbf{J}^{\mathbf{3}}{ }_{i j} \boldsymbol{k}\right) \theta^{i} \wedge \theta^{j} . . . ~}_{\text {. }}\right. \tag{4.3}
\end{equation*}
$$

Denote by \mathcal{E} the local transformation groups generated by V acting on a small neighborhood U^{\prime} of U. As \mathcal{E} is locally isomorphic to the compact Lie group $\mathrm{SO}(3)$ by Lemma 2.2 , it acts properly on U^{\prime}. (See for example [30].) If we note that each ξ_{a} is a nonzero vector field everywhere on U, then the stabilizer of \mathcal{E} is finite at every point. By the slice theorem of compact Lie groups [9], choosing a sufficiently small neighborhood \mathcal{E}^{\prime} of the identity from $\mathcal{E}, \mathcal{E}^{\prime}$ acts properly and freely on U^{\prime}. We choose such U^{\prime} (respectively \mathcal{E}^{\prime}) from the beginning and replace it by U (respectively \mathcal{E}). Then there is a principal local fibration:

$$
\begin{equation*}
\mathcal{E} \rightarrow U \xrightarrow{\pi} U / \mathcal{E} . \tag{4.4}
\end{equation*}
$$

If we note that $V \oplus \mathcal{D}=T M \mid U, \pi$ maps \mathcal{D} isomorphically onto $T(U / \mathcal{E})$ at each point of U. So $\left\{\pi_{*} e_{i} \mid i=1, \cdots, 4 n\right\}$ is a basis of $T(U / \mathcal{E})$ at each point of U / \mathcal{E}. Let $\hat{\theta}^{i}$ be the dual frame on U / \mathcal{E} such that

$$
\begin{equation*}
\hat{\theta}^{i}\left(\pi_{*} e_{j}\right)=\delta_{i j} \text { on } U / \mathcal{E} \tag{4.5}
\end{equation*}
$$

Since θ^{i} is the coframe of $\left\{e_{i}\right\}$ and $\pi^{*} \hat{\theta}^{i}\left|V=\theta^{i}\right| V=0$, it follows that

$$
\begin{equation*}
\pi^{*} \hat{\theta}^{i}=\theta^{i} \text { on } U(i=1, \cdots, 4 n) \tag{4.6}
\end{equation*}
$$

Lemma 4.1. Put $J_{1}=I, J_{2}=J, J_{3}=K$ respectively. Let $\left\{\varphi_{\theta}\right\}_{-\varepsilon<\theta<\varepsilon}$ be a local one-parameter subgroup of the local group \mathcal{E}. Then there exists an element $G_{\theta} \in \mathrm{SO}(3)$ satisfying the following:
(1) $\quad\left(\varphi_{\theta}\right)_{*}\left(\begin{array}{l}\xi_{1} \\ \xi_{2} \\ \xi_{3}\end{array}\right)=G_{\theta}\left(\begin{array}{l}\xi_{1} \\ \xi_{2} \\ \xi_{3}\end{array}\right)$.

$$
\left(\begin{array}{c}
I_{\varphi_{\theta} y} \tag{4.7}\\
J_{\varphi_{\theta} y} \\
K_{\varphi_{\theta} y}
\end{array}\right) \circ \varphi_{\theta_{*}}=\varphi_{\theta *} \circ{ }^{t} G(\theta)\left(\begin{array}{c}
I_{y} \\
J_{y} \\
K_{y}
\end{array}\right) .
$$

Proof. Since every leaf of V is locally isomorphic to $\mathrm{SO}(3), \xi_{a}$ is viewed as the fundamental vector field to the principal fibration $\pi: U \rightarrow U / \mathcal{E}$. Thus we may assume that $\xi_{1}, \xi_{2}, \xi_{3}$ correspond to $\boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}$ respectively so that $\varphi_{\theta}^{1}=e^{\boldsymbol{i} \theta}, \varphi_{\theta}^{2}=e^{\boldsymbol{j} \theta}, \varphi_{\theta}^{3}=e^{\boldsymbol{k} \theta}$ up to conjugacy by an element of $\mathrm{SO}(3)$, A calculation shows that $\left(\varphi_{\theta}^{1}\right)_{*}\left(\left(\xi_{2}\right)_{x}\right)=\cos 2 \theta \cdot\left(\xi_{2}\right)_{\varphi_{\theta}^{1} x}+\sin 2 \theta \cdot\left(\xi_{3}\right)_{\varphi_{\theta}^{1} x}$. Similarly, $\left(\varphi_{\theta}^{1}\right)_{*}\left(\left(\xi_{3}\right)_{x}\right)=-\sin 2 \theta \cdot\left(\xi_{2}\right)_{\varphi_{\theta}^{1} x}+\cos 2 \theta \cdot\left(\xi_{3}\right)_{\varphi_{\theta}^{1} x},\left(\varphi_{\theta}^{1}\right)_{*}\left(\left(\xi_{1}\right)_{x}\right)=\left(\xi_{1}\right)_{\varphi_{\theta}^{1} x}$. This holds similarly for $\varphi_{\theta}^{1}, \varphi_{\theta}^{2}$. It turns out that if $\varphi_{\theta} \in \mathcal{E}$, then there exists an element $G_{\theta} \in \operatorname{SO}(3)$ which shows the above formula (1). Since φ_{t} preserves $\mathcal{D}(-\varepsilon<t<\varepsilon)$, using (1) we see that

$$
\begin{equation*}
\varphi_{t}^{*}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) G_{t} . \tag{4.8}
\end{equation*}
$$

Since there exists an element $g_{t} \in \operatorname{Sp}(1)$ such that $g_{t}\left(\begin{array}{l}\boldsymbol{i} \\ \boldsymbol{j} \\ \boldsymbol{k}\end{array}\right) \bar{g}_{t}=G_{t}\left(\begin{array}{l}\boldsymbol{i} \\ \boldsymbol{j} \\ \boldsymbol{k}\end{array}\right)\left(\bar{g}_{t}\right.$ is the quaternion conjugate of $\left.g_{t}\right),(4.8)$ is equivalent with

$$
\begin{equation*}
\varphi_{t}^{*} \omega=g_{t} \cdot \omega \cdot \bar{g}_{t} . \tag{4.9}
\end{equation*}
$$

Differentiate this equation which yields that

$$
\begin{equation*}
\varphi_{t}^{*}(d \omega+\omega \wedge \omega) \equiv g_{t}(d \omega+\omega \wedge \omega) \bar{g}_{t} \bmod \omega . \tag{4.10}
\end{equation*}
$$

Using the equation (4.2), it follows that

$$
\begin{aligned}
\varphi_{t}^{*}\left(\left(I_{i j}, J_{i j}, K_{i j}\right)\left(\begin{array}{c}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \theta^{i} \wedge \theta^{j}\right) & \equiv\left(I_{i j}, J_{i j}, K_{i j}\right) g_{t}\left(\begin{array}{c}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \bar{g}_{t} \theta^{i} \wedge \theta^{j} \\
& =\left(I_{i j}, J_{i j}, K_{i j}\right) G_{t}\left(\begin{array}{c}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \theta^{i} \wedge \theta^{j}
\end{aligned}
$$

Noting that $\varphi_{t}^{*} \theta^{i}=\varphi_{t}^{*}\left(\pi^{*} \hat{\theta}^{i}\right)=\theta^{i}$, the above equation implies that

$$
\begin{equation*}
\left(I_{i j}\left(\varphi_{t}(x)\right), J_{i j}\left(\varphi_{t}(x)\right), K_{i j}\left(\varphi_{t}(x)\right)\right) \equiv\left(I_{i j}(x), J_{i j}(x), K_{i j}(x)\right) G_{t}(x) \bmod \omega \tag{4.11}
\end{equation*}
$$

Since $\pi_{*} \varphi_{t_{*}}\left(\left(e_{i}\right)_{x}\right)=\pi_{*}\left(\left(e_{i}\right)_{\varphi_{t} x}\right)(x \in U)$, it follows $\varphi_{t_{*}}\left(\left(e_{i}\right)_{x}\right)=\left(e_{i}\right)_{\varphi_{t} x}$. Letting $G_{t}=$ $\left(s_{i j}\right) \in \operatorname{SO}(3)$ and using (4.11),

$$
\begin{aligned}
& I_{\varphi_{t} x}\left(\varphi_{t}\right)_{*}\left(\left(e_{i}\right)_{x}\right)=I_{\varphi_{t} x}\left(\left(e_{i}\right)_{\varphi_{t} x}\right)=I_{i}^{j}\left(\varphi_{t} x\right)\left(\left(e_{j}\right)_{\varphi_{t} x}\right) \\
& \left.=\left(I_{i}^{j}(x) \cdot s_{11}+J_{i}^{j}(x) \cdot s_{21}+K_{i}^{j}(x) \cdot s_{31}\right)\right)\left(\left(\varphi_{t}\right)_{*}\left(\left(e_{j}\right)_{x}\right)\right) \\
& =\left(\varphi_{t}\right)_{*}\left(s_{11} \cdot I_{x}\left(\left(e_{i}\right)_{x}\right)+s_{21} \cdot J_{x}\left(\left(e_{i}\right)_{x}\right)+s_{31} \cdot K_{x}\left(\left(e_{i}\right)_{x}\right)\right) \\
& =\left(\varphi_{t}\right)_{*}\left(\left(s_{11}, s_{21}, s_{31}\right)\left(\begin{array}{c}
I_{x} \\
J_{x} \\
K_{x}
\end{array}\right)\left(e_{i}\right)_{x}\right) .
\end{aligned}
$$

The same argument applies to $J_{\varphi_{t} x}, K_{\varphi_{t} x}$ to conclude that $\left(\begin{array}{c}I_{\varphi_{t} x} \\ J_{\varphi_{t} x} \\ K_{\varphi_{t} x}\end{array}\right) \circ \varphi_{t_{*}}=\varphi_{t_{*}} \circ$ ${ }^{t} G_{t}\left(\begin{array}{c}I_{x} \\ J_{x} \\ K_{x}\end{array}\right)$. This proves (2).

Lemma 4.2. The quaternionic structure $\{I, J, K\}$ on $\mathcal{D} \mid U$ induces a family of quaternionic structures $\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}$ on U / \mathcal{E}.

Proof. Choose a small neighborhood $V_{i} \subset U / \mathcal{E}$ and a section $s_{i}: V_{i} \rightarrow U$ for the principal bundle $\pi: U \rightarrow U / \mathcal{E}$. Let $\hat{x} \in V_{i}$ and a vector $\hat{X}_{\hat{x}} \in T V_{i}$. Choose a vector $X_{s_{i}(\hat{x})} \in \mathcal{D}_{s_{i}(\hat{x})}$ such that $\pi_{*}\left(X_{s_{i}(\hat{x})}\right)=\hat{X}_{\hat{x}}$. Define endomorphisms $\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}$ on V_{i} to be

$$
\begin{align*}
\left(\hat{I}_{i}\right)_{\hat{x}}\left(\hat{X}_{\hat{x}}\right) & =\pi_{*} I_{s_{i}(\hat{x})} X_{s_{i}(\hat{x})}, \\
\left(\hat{J}_{i}\right)_{\hat{x}}\left(\hat{X}_{\hat{x}}\right) & =\pi_{*} J_{s_{i}(\hat{x})} X_{s_{i}(\hat{x})}, \tag{4.12}\\
\left(\hat{K}_{i}\right)_{\hat{x}}\left(\hat{X}_{\hat{x}}\right) & =\pi_{*} K_{s_{i}(\hat{x})} X_{s_{i}(\hat{x})} .
\end{align*}
$$

Since $\pi_{*}: \mathcal{D}_{s_{i}(\hat{x})} \rightarrow T_{\hat{x}}(U / \mathcal{E})$ is an isomorphism, $\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}$ are well-defined almost complex structures on V_{i}. So we have a family $\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}$ of almost complex structures associated to an open cover $\left\{V_{i}\right\}_{i \in \Lambda}$ of U / \mathcal{E}. Suppose that $V_{i} \cap V_{j} \neq \emptyset$. If $\hat{x} \in V_{i} \cap V_{j}$, then there is an element $\varphi_{\theta} \in \mathcal{E}$ such that $s_{j}(\hat{x})=\varphi_{\theta} \cdot s_{i}(\hat{x})$. As φ_{θ} preserves $\mathcal{D}, \varphi_{\theta_{*}} X_{s_{i}(\hat{x})} \in \mathcal{D}_{s_{j}(\hat{x})}$ and $\pi_{*}\left(\varphi_{\theta_{*}} X_{s_{i}(\hat{x})}\right)=\hat{X}_{\hat{x}}$. Then

$$
\begin{equation*}
X_{s_{j}(\hat{x})}=\varphi_{\theta_{*}} X_{s_{i}(\hat{x})} . \tag{4.13}
\end{equation*}
$$

Let $\left\{\hat{I}_{j}, \hat{J}_{j}, \hat{K}_{j}\right\}$ be almost complex structures on V_{j} obtained from (4.12). Using Lemma 4.1 and (4.13), calculate at $s_{j}(\hat{x})\left(\hat{x} \in V_{i} \cap V_{j}\right)$,

$$
\begin{aligned}
\left(\begin{array}{c}
\left(\hat{I}_{j}\right)_{\hat{x}} \\
\left(\hat{J}_{j}\right)_{\hat{x}} \\
\left(\hat{K}_{j}\right)_{\hat{x}}
\end{array}\right) \hat{X}_{\hat{x}} & =\pi_{*}\left(\begin{array}{c}
I_{s_{j}(\hat{x})} \\
J_{s_{j}(\hat{x})} \\
K_{s_{j}(\hat{x})}
\end{array}\right) X_{s_{j}(\hat{x})}=\pi_{*}\left(\begin{array}{c}
I_{\varphi_{\theta} \cdot s_{i}(\hat{x})} \\
J_{\varphi_{\theta} \cdot s_{i}(\hat{x})} \\
K_{\varphi_{\theta} \cdot s_{i}(\hat{x})}
\end{array}\right) \varphi_{\theta_{*}} X_{s_{i}(\hat{x})} \\
& =\pi_{*} \varphi_{\theta_{*}} \circ{ }^{t} G_{\theta}\left(\begin{array}{c}
I_{s_{i}(\hat{x})} \\
J_{s_{i}(\hat{x}} \\
K_{s_{i}(\hat{x})}
\end{array}\right) X_{s_{i}(\hat{x})} \\
& ={ }^{t} G(\theta) \pi_{*}\left(\begin{array}{c}
I_{s_{i}(\hat{x}} \\
J_{s_{i}(\hat{x})} \\
K_{s_{i}(\hat{x})}
\end{array}\right) X_{s_{i}(\hat{x})}={ }^{t} G_{\theta}\left(\begin{array}{c}
\left(\hat{I}_{i)}\right)_{\hat{x}} \\
\left(\hat{J}_{i} \hat{x}_{\hat{x}}\right. \\
\left(\hat{K}_{i}\right) \hat{x}
\end{array}\right) \hat{X}_{\hat{x}}
\end{aligned}
$$

hence $\left(\begin{array}{c}\left(\hat{I}_{j}\right)_{\hat{x}} \\ \left(\hat{J}_{j} \hat{x}_{\hat{x}}\right. \\ \left(\hat{K}_{j}\right)_{\hat{x}}\end{array}\right)={ }^{t} G_{\theta}\left(\begin{array}{c}\left(\hat{I}_{i}\right)_{\hat{x}} \\ \left(\hat{J}_{i}\right)_{\hat{x}} \\ \left(\hat{K}_{i}\right)_{\hat{x}}\end{array}\right)$ on $\hat{x} \in V_{i} \cap V_{j}$. Thus, $\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}$ defines a quaternionic structure on U / \mathcal{E}.
4.1. Pseudo-Sasakian 3-structure and Pseudo-Kähler structure. We now take $\left\{e_{i}\right\}_{i=1, \cdots, 4 n}$ of $\mathcal{D} \mid U$ as the orthonormal basis, i.e. $g_{i j}=\delta_{i j}$. Then the bilinear form $g^{\mathcal{D}}=$ $\sum_{i=1}^{4 p} \theta^{i} \cdot \theta^{i}-\sum_{i=4 p+1}^{4 n} \theta^{i} \cdot \theta^{i}$ defined on \mathcal{D} induces a pseudo-Riemannian metric on U / \mathcal{E} :

$$
\begin{equation*}
\hat{g}=\sum_{i=1}^{4 p} \hat{\theta}^{i} \cdot \hat{\theta}^{i}-\sum_{i=4 p+1}^{4 n} \hat{\theta}^{i} \cdot \hat{\theta}^{i} \tag{4.14}
\end{equation*}
$$

such that $g^{\mathcal{D}}=\pi^{*} \hat{g}$. Let $\hat{\nabla}$ be the covariant derivative on U / \mathcal{E}. If $\hat{\omega}_{j}^{i}$ is the Levi-Civita connection with respect to \hat{g}, then $\hat{\nabla} \hat{e}_{i}=\hat{\omega}_{i}^{j} \hat{e}_{j}$ for which $\hat{\omega}_{j}^{i}$ satisfies that

$$
\begin{equation*}
d \hat{\theta}^{i}=\hat{\theta}^{j} \wedge \hat{\omega}_{j}^{i}, \quad \hat{\omega}_{i j}+\hat{\omega}_{j i}=0 \tag{4.15}
\end{equation*}
$$

Put

$$
\begin{equation*}
\hat{\Omega}_{j}^{i}=d \hat{\omega}_{j}^{i}-\hat{\omega}_{j}^{\sigma} \wedge \hat{\omega}_{\sigma}^{i}=\frac{1}{2} \hat{R}_{j k l}^{i} \hat{\theta}^{k} \wedge \hat{\theta}^{\ell} \tag{4.16}
\end{equation*}
$$

Consider the following pseudo-Riemannian metric on U :

$$
\begin{align*}
& \qquad \tilde{g}_{x}(X, Y)=\sum_{a=1}^{3} \omega_{a}(X) \cdot \omega_{a}(Y)+\hat{g}_{\pi(x)}\left(\pi_{*} X, \pi_{*} Y\right) \quad\left(X, Y \in T_{x} U\right) . \\
& \text { (Equivalently } \tilde{g}=\sum_{a=1}^{3} \omega_{a} \cdot \omega_{a}+\sum_{i=1}^{4 p} \theta^{i} \cdot \theta^{i}-\sum_{i=4 p+1}^{4 n} \theta^{i} \cdot \theta^{i} . \text {) } \tag{4.17}
\end{align*}
$$

Then we have shown in [4] that the local principal fibration $\mathcal{E} \rightarrow(U, \tilde{g}) \xrightarrow{\pi}(U / \mathcal{E}, \hat{g})$ is a pseudo-Sasakian 3 -structure. In fact the next equation (4.18) is equivalent with the normality condition of the pseudo-Sasakian 3-structure. (Compare [33], [5].)

Proposition 4.3. Let $\left(\left\{\omega_{\alpha}\right\},\left\{J_{\alpha}\right\},\left\{\xi_{\alpha}\right\}\right)_{\alpha=1,2,3}$ be a nondegenerate quaternionic $C R$ structure on U of $a(4 n+3)$-manifold M. If ∇ is the Levi-Civita connection on (U, \tilde{g}), then,

$$
\begin{equation*}
\left(\nabla_{X} \bar{J}_{\alpha}\right) Y=\tilde{g}(X, Y) \xi_{\alpha}-\omega_{\alpha}(Y) X \quad(\alpha=1,2,3) \tag{4.18}
\end{equation*}
$$

Proof. For $X, Y \in T U$, consider the following tensor

$$
\begin{equation*}
N^{\omega_{\alpha}}(X, Y)=N(X, Y)+\left(X \omega_{\alpha}(Y)-Y \omega_{\alpha}(X)\right) \xi_{\alpha} \tag{4.19}
\end{equation*}
$$

where $N(X, Y)=\left[\bar{J}_{\alpha} X, \bar{J}_{\alpha} Y\right]-[X, Y]-\bar{J}_{\alpha}\left[\bar{J}_{\alpha} X, Y\right]-\bar{J}_{\alpha}\left[X, \bar{J}_{\alpha} Y\right]$ is the Nijenhuis torsion of $\bar{J}_{\alpha}(\alpha=1,2,3)$. A direct calculation for a contact metric structure \tilde{g} (cf. [5]) shows that

$$
\begin{aligned}
2 \tilde{g}\left(\left(\nabla_{X} \bar{J}_{\alpha}\right) Y, Z\right)= & \tilde{g}\left(N^{\omega_{\alpha}}(Y, Z), \bar{J}_{\alpha} X\right)+\left(\mathcal{L}_{\bar{J}_{\alpha} X} \omega_{\alpha}\right)(Y) \\
& -\left(\mathcal{L}_{\bar{J}_{\alpha} Y} \omega_{\alpha}\right)(X)+2 \tilde{g}(X, Y) \omega_{\alpha}(Z)-2 \tilde{g}(X, Z) \omega_{\alpha}(Y)
\end{aligned}
$$

Since each \bar{J}_{α} is integrable on Null ω_{α} from Theorem 2.7, it follows that the Nijenhuis torsion of $\bar{J}_{\alpha}, N(X, Y)=0\left(\forall X, Y \in\right.$ Null $\left.\omega_{\alpha}\right)$. By the formula (4.19), $N^{\omega_{\alpha}}(X, Y)=0$ for $\forall X, Y \in$ Null ω_{α}. Noting the decomposition $T U=\left\{\xi_{1}\right\} \oplus \operatorname{Null} \omega_{1}$, to obtain (4.18), it suffices to show that $N^{\omega_{1}}\left(\xi_{1}, X\right)=0$ (similarly for $\left.\alpha=2,3\right)$. As ξ_{α} is a characteristic $C R$-vector field for $\left(\omega_{\alpha}, \bar{J}_{\alpha}\right)(\alpha=1,2,3)$, i.e. $\mathcal{L}_{\xi_{1}} \bar{J}_{1}=0$, it follows that $\bar{J}_{1}\left[\xi_{1}, Y\right]=\left[\xi_{1}, \bar{J}_{1} Y\right]\left(\forall Y \in \operatorname{Null} \omega_{1}\right)$. In particular, $\bar{J}_{1}\left[\xi_{1}, \bar{J}_{1} X\right]=-\left[\xi_{1}, X\right]$. Hence, $N^{\omega_{\alpha}}\left(\xi_{1}, X\right)=0$. As a consequence, we see that $N^{\omega_{\alpha}}(X, Y)=0(\forall X, Y \in T U)$. On the other hand, if $N^{\omega_{\alpha}}(X, Y)=0(\forall X, Y \in T U)$, then it is easy to see that $\left(\mathcal{L}_{\bar{J}_{\alpha} X} \omega_{\alpha}\right)(Y)-\left(\mathcal{L}_{\bar{J}_{\alpha} Y} \omega_{\alpha}\right)(X)=0$. (See [5].) From (4.17), note that $\omega_{\alpha}(X)=\tilde{g}\left(\xi_{\alpha}, X\right)$. The above equation (4.18) follows.

As $\left\{\omega_{\alpha}, \theta^{i}\right\}_{\alpha=1,2,3 ; i=1 \cdots 4 n}$ are orthonormal coframes for the pseudo-Sasakian metric \tilde{g} (cf. (4.17)), the structure equation says that there exist unique 1 -forms $\varphi_{j}^{i}, \tau_{\alpha}^{i}(i, j=$ $1, \cdots, 4 n ; \alpha=1,2,3)$ satisfying:

$$
\begin{equation*}
d \theta^{i}=\theta^{j} \wedge \varphi_{j}^{i}+\sum_{\alpha=1}^{3} \omega_{\alpha} \wedge \tau_{\alpha}^{i} \quad\left(\varphi_{i j}+\varphi_{j i}=0\right) \tag{4.20}
\end{equation*}
$$

Then the normality condition for the pseudo-Sasakian 3-structure is reinterpreted as the following structure equation.
Theorem 4.4. There exsists a connection form $\left\{\omega_{j}^{i}\right\}$ such that

$$
\begin{equation*}
d \overline{\mathbf{J}}_{i j}^{a}-\omega_{i}^{\sigma} \overline{\mathbf{J}}_{\sigma j}^{a}-\overline{\mathbf{J}}_{i \sigma}^{a} \omega_{j}^{\sigma}=2 \overline{\mathbf{J}}_{i j}^{b} \cdot \omega_{c}-2 \overline{\mathbf{J}}_{i j}^{c} \cdot \omega_{b} \quad((a, b, c) \sim(1,2,3)) . \tag{4.21}
\end{equation*}
$$

Proof. It follows from Proposition 4.3 that $\left(\nabla_{X} \bar{J}_{a}\right) e_{i}=\tilde{g}\left(X, e_{i}\right) \xi_{a}$ for $\left\{e_{i}\right\}=\mathcal{D}$ at a point. From (4.20), let $\nabla_{X} e_{i}=\varphi_{i}^{j}(X) e_{j}+\sum_{b=1}^{3}\left(\tau_{b}\right)_{i} \xi_{b}$ which is substituted into the equality $\left(\nabla_{X} \bar{J}_{a}\right) e_{i}=\nabla_{X}\left(\bar{J}_{a} e_{i}\right)-\bar{J}_{a}\left(\nabla_{X} e_{i}\right):$

$$
\begin{align*}
\left(\nabla_{X} \bar{J}_{a}\right) e_{i}= & \left(d\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\ell}(X)-\varphi_{i}^{\sigma}(X)\left(\overline{\mathbf{J}}^{a}\right)_{\sigma}^{\ell}+\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\sigma} \varphi_{\sigma}^{\ell}(X)\right) e_{\ell} \\
& +\sum_{b=1}^{3}\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\ell}\left(\tau_{b}\right)_{\ell}(X) \xi_{b}-\sum_{c \neq a}\left(\tau_{b}\right)_{i}(X) \xi_{c}\left(\text { Here } \bar{J}_{a} \xi_{b}=\xi_{c}\right) \tag{4.22}\\
= & \tilde{g}\left(X, e_{i}\right) \xi_{a}((4.18)) .
\end{align*}
$$

As $\tilde{g}\left(X, e_{i}\right)=\tilde{g}_{k i} \theta^{k}(X)$ (cf. (4.17)), this implies that $d\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\ell}-\varphi_{i}^{\sigma}\left(\overline{\mathbf{J}}^{a}\right)_{\sigma}^{\ell}+\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\sigma} \varphi_{\sigma}^{\ell}=0$ and $\left(\overline{\mathbf{J}}^{a}\right)_{i}^{\ell}\left(\tau_{a}\right)_{\ell}(X) \xi_{a}=\tilde{g}_{k i} \theta^{k}(X) \xi_{a}$. It follows that $-\left(\tau_{a}\right)_{i}=\left(\overline{\mathbf{J}}^{a}\right)_{i j} \theta^{j}$. Then $\left(\tau_{a}\right)_{i} \tilde{g}^{i k}=$ $-\left(\overline{\mathbf{J}}^{a}\right)_{i j} \tilde{g}^{i k} \theta^{j}=\left(\overline{\mathbf{J}}^{a}\right)_{j i} \tilde{g}^{i k} \theta^{j}$, so that $\left(\tau_{a}\right)^{i}=\left(\overline{\mathbf{J}}^{a}\right)_{j}^{i} \theta^{j}$. As $\tilde{g}_{i j}= \pm \delta_{i j}$, use $\tilde{g}^{i j}$ to lower the above equations:

$$
\begin{align*}
& d\left(\overline{\mathbf{J}}^{a}\right)_{i j}-\varphi_{i}^{\sigma}\left(\overline{\mathbf{J}}^{a}\right)_{\sigma j}-\left(\overline{\mathbf{J}}^{a}\right)_{i \sigma} \varphi_{j}^{\sigma}=0 . \\
& \left(\tau_{a}\right)^{i}=\left(\overline{\mathbf{J}}^{a}\right)_{j}^{i} \theta^{j} . \tag{4.23}
\end{align*}
$$

Putting

$$
\begin{equation*}
\omega_{j}^{i}=\varphi_{j}^{i}-\sum_{a=1}^{3}\left(\overline{\mathbf{J}}^{a}\right)_{j}^{i} \omega_{a}, \tag{4.24}
\end{equation*}
$$

the equation (4.20) reduces to

$$
\begin{equation*}
d \theta^{i}=\theta^{j} \wedge \omega_{j}^{i} \quad\left(\omega_{i j}+\omega_{j i}=0\right) \tag{4.25}
\end{equation*}
$$

Differentiate our equation (4.2) $d \omega_{a}+2 \omega_{b} \wedge \omega_{c}=-\overline{\mathbf{J}}_{i j}^{a} \theta^{i} \wedge \theta^{j} \quad((a, b, c) \sim(1,2,3))$ and substitute (4.25). It becomes (after alternation):

$$
\left(d \overline{\mathbf{J}}_{i j}^{a}-\omega_{i}^{\sigma} \overline{\mathbf{J}}_{\sigma j}^{a}-\overline{\mathbf{J}}_{i \sigma}^{a} \omega_{j}^{\sigma}+\omega_{b} \cdot 2 \overline{\mathbf{J}}_{i j}^{c}-\omega_{c} \cdot 2 \overline{\mathbf{J}}_{i j}^{b}\right) \wedge \theta^{i} \wedge \theta^{j}=0 .
$$

Since $d \overline{\mathbf{J}}_{i j}^{a}-\omega_{i}^{\sigma} \overline{\mathbf{J}}_{\sigma j}^{a}-\overline{\mathbf{J}}_{i \sigma}^{a} \omega_{j}^{\sigma} \equiv 0 \bmod \omega_{1}, \omega_{2}, \omega_{3}$ from (4.23), (4.24) and the forms $\omega_{a} \wedge \theta^{i} \wedge \theta^{j}$ ($a=1,2,3$) are linearly independent, the result follows.

Definition 4.5. Let $\hat{\nabla}$ be the Levi-Civita connection on an almost quaternionic pseudoRiemannian manifold (X, \hat{g}) of type $(4 p, 4 q)(p+q=n)$. Then X is said to be a quaternionic pseudo-Kähler manifold if for each quaternionic structure $\left\{\hat{J}_{a} ; a=1,2,3\right\}$ defined locally on a neighborhood of X, there exists a smooth local function $A \in \mathfrak{s o (3)}$ such that

$$
\hat{\nabla}\left(\begin{array}{c}
\hat{J}_{1} \\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right)=A \cdot\left(\begin{array}{c}
\hat{J}_{1} \\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right)
$$

provided that $\operatorname{dim} X=4 n \geq 8$. Equivalently if $\hat{\Omega}$ is the fundamental 4 -form globally defined on X, then $\hat{\nabla} \hat{\Omega}=0$.

We have shown the following result in [2] when $\operatorname{dim} U / \mathcal{E}=4 n \geq 12$ by Swann's method.
Theorem 4.6. The set $\left(U / \mathcal{E}, \hat{g},\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}\right)$ is a quaternionic pseudo-Kähler manifold of type $(4 p, 4 q)$ provided that $\operatorname{dim} U / \mathcal{E}=4 n \geq 8$. Moreover, $(U / \mathcal{E}, \hat{g})$ is an Einstein manifold of positive scalar curvature $(4 n \geq 4)$ such that

$$
\begin{equation*}
\hat{R}_{j \ell}=4(n+2) \hat{g}_{j \ell} . \tag{4.26}
\end{equation*}
$$

Proof. As we put $\theta^{i}=\pi^{*} \hat{\theta}^{i}$, (4.15) implies that $d \theta^{i}=\theta^{j} \wedge \pi^{*} \hat{\omega}_{j}^{i}, \pi^{*} \hat{\omega}_{i j}+\pi^{*} \hat{\omega}_{j i}=0$. Compared this with (4.25) and by skew-symmetry, it is easy to check that

$$
\begin{equation*}
\pi^{*} \hat{\omega}_{j}^{i}=\omega_{j}^{i} \tag{4.27}
\end{equation*}
$$

Put $\hat{V}=V_{i}$ and $\hat{J}_{1}=\hat{I}_{i}, \hat{J}_{2}=\hat{J}_{i}, \hat{J}_{3}=\hat{K}_{i}$ on \hat{V}. Let $s=s_{i}: \hat{V} \rightarrow U$ be the section as before. Since $\pi_{*} s_{*}\left(\left(\hat{e}_{j}\right)_{x}\right)=\left(\hat{e}_{j}\right)_{x}=\pi_{*}\left(\left(e_{j}\right)_{s(\hat{x})}\right), s_{*}\left(\left(\hat{e}_{j}\right)_{x}\right)-\left(e_{j}\right)_{s(\hat{x})} \in V=\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$. Then
$\theta^{i}\left(s_{*}\left(\left(\hat{e}_{j}\right)_{x}\right)\right)=\theta^{i}\left(\left(e_{j}\right)_{s(\hat{x})}\right)$ from (4.1). A calculation shows that $\left(\hat{J}_{a}\right)_{\hat{x}} \hat{e}_{i}=\pi_{*}\left(J_{a}\right)_{s(\hat{x})} e_{i}=$ $\pi_{*}\left(\left(\overline{\mathbf{J}}^{a}\right)_{i}^{j}(s(\hat{x})) e_{j}\right)=\left(\overline{\mathbf{J}}^{a}\right)_{i}^{j}(s(\hat{x})) \hat{e}_{j}$ (cf. (4.12)). As we put $\hat{J}_{\hat{x}}^{a} \hat{e}_{i}=\left(\hat{\mathbf{J}}^{a}\right)_{i}^{j}(\hat{x}) \hat{e}_{j}$, note that

$$
\begin{equation*}
\overline{\mathbf{J}}_{i j}^{a}(s(\hat{x}))=\hat{\mathbf{J}}_{i j}^{a}(\hat{x}) \quad(a=1,2,3) \tag{4.28}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
d\left(\overline{\mathbf{J}}^{a}\right)_{i j} \circ s_{*}\left(\hat{X}_{\hat{x}}\right)=d\left(\hat{\mathbf{J}}^{a}\right)_{i j}\left(\hat{X}_{\hat{x}}\right) \quad\left(\forall \hat{X}_{\hat{x}} \in T_{\hat{x}}(\hat{V})\right)(a=1,2,3) . \tag{4.29}
\end{equation*}
$$

Since $\pi_{*} s_{*}\left(\hat{X}_{\hat{x}}\right)=\hat{X}_{\hat{x}}\left(\hat{X}_{\hat{x}} \in T_{\hat{x}}(\hat{V})\right)$, (4.27) implies that $\hat{\omega}_{j}^{\sigma}\left(\hat{X}_{\hat{x}}\right)=\omega_{j}^{\sigma}\left(s_{*}\left(\hat{X}_{\hat{x}}\right)\right)$. Plug this equation and (4.28), (4.29) into (4.21):

$$
\begin{aligned}
& d\left(\overline{\mathbf{J}}^{a}\right)_{i j}\left(s_{*} \hat{X}\right)-\omega_{i}^{\sigma}\left(s_{*} \hat{X}\right) \cdot\left(\overline{\mathbf{J}}^{a}\right)_{\sigma j}(s(\hat{x}))-\left(\overline{\mathbf{J}}^{a}\right)_{i \sigma}(s(\hat{x})) \cdot \omega_{j}^{\sigma}\left(s_{*} \hat{X}\right) \\
& =d\left(\left(\hat{\mathbf{J}}^{a}\right)_{i j}\right)_{\hat{x}}(\hat{X})-\hat{\omega}_{i}^{\sigma}(\hat{X}) \cdot\left(\hat{\mathbf{J}}^{a}\right)_{\sigma j}(\hat{x})-\left(\hat{\mathbf{J}}^{a}\right)_{i \sigma}(\hat{x}) \cdot \hat{\omega}_{j}^{\sigma}(\hat{X}) \\
& =2\left(\overline{\mathbf{J}}^{b}\right)_{i j}(s(\hat{x})) \cdot \omega_{c}\left(s_{*} \hat{X}\right)-2\left(\overline{\mathbf{J}}^{c}\right)_{i j}(s(\hat{x})) \cdot \omega_{b}\left(s_{*} \hat{X}\right) \\
& =2\left(\hat{\mathbf{J}}^{b}\right)_{i j}(\hat{x}) \cdot \omega_{c}\left(s_{*} \hat{X}\right)-2\left(\hat{\mathbf{J}}^{c}\right)_{i j}(\hat{x}) \cdot \omega_{b}\left(s_{*} \hat{X}\right) .
\end{aligned}
$$

Using these,

$$
\begin{aligned}
& \left(\hat{\nabla}_{\hat{X}}\left(\hat{J}_{a}\right)\left(\left(\hat{e}_{i}\right)_{\hat{x}}\right)=\hat{\nabla}_{\hat{X}}\left(\hat{J}_{a}\right) \hat{e}_{i}-\left(\hat{J}_{a}\right)\left(\hat{\nabla}_{\hat{X}} \hat{e}_{i}\right)\right. \\
& =\left(d\left(\hat{\mathbf{J}}^{a}\right)_{i j}(\hat{X})-\left(\hat{\mathbf{J}}^{a}\right)_{i \sigma}(\hat{x}) \cdot \hat{\omega}_{j}^{\sigma}(\hat{X})-\hat{\omega}_{i}^{\sigma}(\hat{X}) \cdot\left(\hat{\mathbf{J}}^{a}\right)_{\sigma j}(\hat{x})\right)\left(\hat{e}_{j}\right)_{\hat{x}} \\
& =2\left(\hat{\mathbf{J}}^{b}\right)_{i j}(\hat{x})\left(\hat{e}_{j}\right)_{\hat{x}} \cdot s^{*} \omega_{c}(\hat{X})-2\left(\hat{\mathbf{J}}^{c}\right)_{i j}(\hat{x})\left(\hat{e}_{j}\right)_{\hat{x}} \cdot s^{*} \omega_{b}(\hat{X}) \\
& =\left(2\left(\hat{J}_{b}\right)_{\hat{x}} \cdot s^{*} \omega_{c}(\hat{X})-2\left(\hat{J}_{c}\right)_{\hat{x}} \cdot s^{*} \omega_{b}(\hat{X})\right)\left(\hat{e}_{i}\right)_{\hat{x}} .
\end{aligned}
$$

Therefore, $\hat{\nabla}_{\hat{X}}\left(\hat{J}_{a}\right)=2\left(\hat{J}_{b}\right)_{\hat{x}} \cdot s^{*} \omega_{c}(\hat{X})-2\left(\hat{J}_{c}\right)_{\hat{x}} \cdot s^{*} \omega_{b}(\hat{X})$. This concludes that

$$
\hat{\nabla}\left(\begin{array}{l}
\hat{J}_{1} \tag{4.30}\\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right)=2\left(\begin{array}{lcr}
0 & s^{*} \omega_{3} & -s^{*} \omega_{2} \\
-s^{*} \omega_{3} & 0 & s^{*} \omega_{1} \\
s^{*} \omega_{2} & -s^{*} \omega_{1} & 0
\end{array}\right)\left(\begin{array}{l}
\hat{J}_{1} \\
\hat{J}_{2} \\
\hat{J}_{3}
\end{array}\right) .
$$

As we put $\hat{J}_{1}=\hat{I}_{i}, \hat{J}_{2}=\hat{J}_{i}, \hat{J}_{3}=\hat{K}_{i}$ on $\hat{V},\left(U / \mathcal{E}, \hat{g},\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}\right)$ is a quaternionic pseudo-Kähler manifold for $\operatorname{dim} U / \mathcal{E} \geq 8$. Using the Ricci identity (cf. (2.11), (2.12) of [15], [34]), a calculation shows that

$$
(n>1)
$$

$$
\begin{gather*}
\hat{R}_{j l}=-4(n+2)\left(s^{*}\left(d \omega_{1}+2 \omega_{2} \wedge \omega_{3}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{I}_{\ell}^{k}(\hat{x}) . \\
\hat{R}_{j l}=-4(n+2)\left(s^{*}\left(d \omega_{2}+2 \omega_{3} \wedge \omega_{1}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{J}_{\ell}^{k}(\hat{x}) . \tag{4.31}\\
\hat{R}_{j l}=-4(n+2)\left(s^{*}\left(d \omega_{3}+2 \omega_{1} \wedge \omega_{2}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{K}_{\ell}^{k}(\hat{x}) . \\
(n=1) \\
\hat{R}_{j l}=-4\left(s^{*}\left(d \omega_{1}+2 \omega_{2} \wedge \omega_{3}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{I}_{\ell}^{k}(\hat{x})-4\left(s^{*}\left(d \omega_{2}+2 \omega_{3} \wedge \omega_{1}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{J}_{\ell}^{k}(\hat{x}) \tag{4.32}\\
-4\left(s^{*}\left(d \omega_{3}+2 \omega_{1} \wedge \omega_{2}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right) \hat{K}_{\ell}^{k}(\hat{x}) .
\end{gather*}
$$

Using $d \omega_{a}+2 \omega_{b} \wedge \omega_{c}=-\mathbf{J}_{i j}^{a} \theta^{i} \wedge \theta^{j}$ and (4.28), it follows that $\left(s^{*}\left(d \omega_{a}+2 \omega_{b} \wedge \omega_{c}\right)\right)\left(\hat{e}_{j}, \hat{e}_{k}\right)=$ $-\mathbf{J}_{j k}^{a}(s(\hat{x}))=-\hat{\mathbf{J}}_{j k}^{a}(\hat{x})$. Since $\left(\hat{\mathbf{J}}^{a}\right)_{i}^{j} \cdot\left(\hat{\mathbf{J}}^{a}\right)_{j}^{k}=-\delta_{i}^{k}, \hat{R}_{j l}=+4(n+2)\left(\hat{\mathbf{J}}^{a}\right)_{j k}(\hat{x}) \cdot\left(\hat{\mathbf{J}}^{a}\right)_{\ell}^{k}(\hat{x})=$ $4(n+2) g_{j \ell}$ when $n>1$ and $\hat{R}_{j l}=+4\left(\hat{I}_{j k}(\hat{x}) \cdot \hat{I}_{\ell}^{k}(\hat{x})+\hat{J}_{j k}(\hat{x}) \cdot \hat{J}_{\ell}^{k}(\hat{x})+\hat{K}_{j k}(\hat{x}) \cdot \hat{K}_{\ell}^{k}(\hat{x})\right)=4 \cdot 3 g_{j \ell}$ when $n=1$.

5. Quaternionic $C R$ curvature tensor

Recall from (4.25) that $d \theta^{i}=\theta^{j} \wedge \omega_{j}^{i}, \quad \omega_{i j}+\omega_{j i}=0$ where $\pi^{*} \hat{\omega}_{j}^{i}=\omega_{j}^{i}, \pi^{*} \hat{\theta}^{i}=\theta^{i}$ from (4.20), (4.6) respectively $(i, j=1, \cdots, 4 n)$. Define the fourth-order tensor $R_{j k \ell}^{i}$ on U by putting

$$
\begin{equation*}
d \omega_{j}^{i}-\omega_{j}^{\sigma} \wedge \omega_{\sigma}^{i} \equiv \frac{1}{2} R_{j k \ell}^{i} \theta^{k} \wedge \theta^{\ell} \bmod \omega_{1}, \omega_{2}, \omega_{3} \tag{5.1}
\end{equation*}
$$

By (4.16), it follows that

$$
\begin{equation*}
R_{j k \ell}^{i}=\pi^{*} \hat{R}_{j k \ell}^{i} . \tag{5.2}
\end{equation*}
$$

The equality (4.26) implies that

$$
\begin{equation*}
R_{j \ell}=4(n+2) g_{j \ell} \tag{5.3}
\end{equation*}
$$

Differentiate the structure equation (4.20).

$$
\begin{equation*}
0=d \theta^{j} \wedge \varphi_{j}^{i}-\theta^{j} \wedge d \varphi_{j}^{i}+\sum_{a} d \omega_{a} \wedge \tau_{a}^{i}-\sum_{a} \omega_{a} \wedge d \tau_{a}^{i} \tag{5.4}
\end{equation*}
$$

Substitute (4.2) and (4.20) into (5.4);

$$
\begin{aligned}
& \theta^{j} \wedge\left(d \varphi_{j}^{i}-\varphi_{j}^{k} \wedge \varphi_{k}^{i}-\sum_{a} \mathbf{J}_{k j}^{a} \theta^{k} \wedge \tau_{a}^{i}\right)+\sum_{a} \omega_{a} \wedge\left(d \tau_{a}^{i}-\tau_{a}^{k} \wedge \varphi_{k}^{i}\right) \\
& \quad+2 \omega_{2} \wedge \omega_{3} \wedge \tau_{1}^{i}+2 \omega_{3} \wedge \omega_{1} \wedge \tau_{2}^{i}+2 \omega_{1} \wedge \omega_{2} \wedge \tau_{3}^{i}=0
\end{aligned}
$$

This implies that

$$
\begin{equation*}
\theta^{j} \wedge\left(d \varphi_{j}^{i}-\varphi_{j}^{k} \wedge \varphi_{k}^{i}-\sum_{a} \mathbf{J}_{k j}^{a} \theta^{k} \wedge \tau_{a}^{i}\right) \equiv 0 \bmod \omega_{1}, \omega_{2}, \omega_{3} \tag{5.5}
\end{equation*}
$$

We use (5.5) to define the curvature form:

$$
\begin{equation*}
\Phi_{j}^{i}=d \varphi_{j}^{i}-\varphi_{j}^{k} \wedge \varphi_{k}^{i}+\sum_{a=1}^{3} \theta^{k} \wedge \mathbf{J}_{j k}^{a} \tau_{a}^{i}-\theta^{i} \wedge \theta_{j} . \tag{5.6}
\end{equation*}
$$

Set

$$
\begin{align*}
& { }_{1} \Phi^{i}=d \tau_{1}^{i}-\tau_{1}^{k} \wedge \varphi_{k}^{i}+\omega_{2} \wedge \tau_{3}^{i}-\omega_{3} \wedge \tau_{2}^{i}, \\
& { }_{2} \Phi^{i}=d \tau_{2}^{i}-\tau_{2}^{k} \wedge \varphi_{k}^{i}+\omega_{3} \wedge \tau_{1}^{i}-\omega_{1} \wedge \tau_{3}^{i}, \tag{5.7}\\
& { }_{3} \Phi^{i}=d \tau_{3}^{i}-\tau_{3}^{k} \wedge \varphi_{k}^{i}+\omega_{1} \wedge \tau_{2}^{i}-\omega_{2} \wedge \tau_{1}^{i}
\end{align*}
$$

which satisfy the following relation.

$$
\begin{equation*}
\theta^{j} \wedge \Phi_{j}^{i}+\omega_{1} \wedge{ }_{1} \Phi^{i}+\omega_{2} \wedge{ }_{2} \Phi^{i}+\omega_{3} \wedge{ }_{3} \Phi^{i}=0 \tag{5.8}
\end{equation*}
$$

We may define the fourth-order curvature tensor $T_{j k l}^{i}$ from Φ_{j}^{i} :

$$
\begin{equation*}
\Phi_{j}^{i} \equiv \frac{1}{2} T_{j k l}^{i} \theta^{k} \wedge \theta^{\ell} \bmod \omega_{1}, \omega_{2}, \omega_{3} \tag{5.9}
\end{equation*}
$$

Remark 5.1. In view of (5.9), there exist the fourth-order curvature tensors $W_{j k a}^{i}(a=$ $1,2,3)$ and $V_{j b c}^{i}(1 \leq b<c \leq 3)$ for which we can describe:

$$
\begin{equation*}
\Phi_{j}^{i}=\frac{1}{2} T_{j k l}^{i} \theta^{k} \wedge \theta^{\ell}+\frac{1}{2} \sum_{a} W_{j k a}^{i} \theta^{k} \wedge \omega_{a}+\frac{1}{2} \sum_{b<c} V_{j b c}^{i} \omega_{b} \wedge \omega_{c} \tag{5.10}
\end{equation*}
$$

6. Transformation of P-C $\mathrm{Q} C R$ structure

6.1. G-structure. When $\left\{\theta^{i}\right\}_{i=1, \cdots, 4 n}$ are the 1 -forms locally defined on a neighborhood U of M, we form the \mathbb{H}-valued 1-form $\left\{\omega^{i}\right\}_{i=1, \cdots, n}$ such as

$$
\begin{equation*}
\omega^{i}=\theta^{i}+\theta^{n+i} \boldsymbol{i}+\theta^{2 n+i} \boldsymbol{j}+\theta^{3 n+i} \boldsymbol{k} \tag{6.1}
\end{equation*}
$$

We shall consider the transformations $f: U \rightarrow U$ of the following form:

$$
\begin{align*}
f^{*} \omega & =\lambda \cdot \omega \cdot \bar{\lambda}\left(=u^{2} a \cdot \omega \cdot \bar{a}\right), \\
f^{*}\left(\omega^{j}\right) & =U_{\ell}^{\prime j} \omega^{\ell} \cdot \bar{\lambda}+\lambda \tilde{v}^{j} \omega \bar{\lambda} \tag{6.2}
\end{align*}
$$

such that $\lambda=u \cdot a$ for some smooth functions $u>0, a \in \operatorname{Sp}(1)$ and $U^{\prime} \in \operatorname{Sp}(p, q)$ with $p+q=n$. Let G be the subgroup of $\mathrm{GL}(n+1, \mathbb{H}) \cdot \mathbb{H}^{*}$ consisting of matrices

$$
\left(\begin{array}{c|c}
\lambda & 0 \tag{6.3}\\
\hline \lambda \cdot \tilde{v}^{i} & U^{\prime}
\end{array}\right) \cdot \lambda
$$

Recall that $\operatorname{Sim}\left(\mathbb{H}^{n}\right)=\mathbb{H}^{n} \rtimes\left(\operatorname{Sp}(p, q) \cdot \mathbb{H}^{*}\right)$ is the quaternionic affine similarity group of the quaternionic vector space \mathbb{H}^{n} where $\mathbb{H}^{*}=\operatorname{Sp}(1) \times \mathbb{R}^{+}$. Then note that G is anti-isomorphic to $\operatorname{Sim}\left(\mathbb{H}^{n}\right)$ given by the map

$$
t\left(\begin{array}{c|c}
\lambda & x^{j} \tag{6.4}\\
\hline 0 & X
\end{array}\right) \cdot \lambda \longrightarrow\left(X x^{j^{*}}, X \cdot \lambda\right) \in \mathbb{H}^{n} \rtimes\left(\operatorname{Sp}(p, q) \cdot \mathbb{H}^{*}\right) .
$$

(Here $x^{*}={ }^{t} \bar{x}$.) We represent G as the real matrices. Let $\tilde{v} \in \mathbb{H}^{n}$ be a vector. The group $\operatorname{Sp}(p, q) \cdot \mathbb{H}^{*}$ is the subgroup of $\mathrm{GL}(4 n, \mathbb{R})$ acting on \mathbb{H}^{n} by

$$
\begin{equation*}
\left(U^{\prime} \cdot \lambda\right) \tilde{v}=U^{\prime} \tilde{v} \cdot \bar{\lambda} \tag{6.5}
\end{equation*}
$$

where $U^{\prime} \in \operatorname{Sp}(p, q), \lambda \in \mathbb{H}^{*}$. Write $\lambda=u \cdot a \in \mathbb{R}^{+} \times \operatorname{Sp}(1)$ so that $\operatorname{Sp}(p, q) \cdot \mathbb{H}^{*}$ is embedded into $\mathbb{R}^{+} \times \mathrm{SO}(4 p, 4 q)$ in the following manner:

$$
\begin{equation*}
U^{\prime} \cdot \lambda(\tilde{v})=u U^{\prime} \tilde{v} \bar{a}=u U^{\prime} \bar{a} \circ(a \tilde{v} \bar{a})=u\left(U^{\prime} \bar{a}\right) \circ \operatorname{Ad}_{a}(\tilde{v})=u \cdot U \tilde{v} \quad\left(\tilde{v} \in \mathbb{H}^{n}=\mathbb{R}^{4 n}\right) \tag{6.6}
\end{equation*}
$$

in which

$$
\begin{equation*}
U=U^{\prime} \bar{a} \circ \operatorname{Ad}_{a} \in \mathrm{SO}(4 p, 4 q) \tag{6.7}
\end{equation*}
$$

$$
\operatorname{Ad}_{a}\left(\begin{array}{l}
\boldsymbol{i} \tag{6.8}\\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right)=a\left(\begin{array}{l}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \bar{a}=A\left(\begin{array}{c}
\boldsymbol{i} \\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right) \text { for some } A \in \mathrm{SO}(3) .
$$

We put the vector $\tilde{v}^{j} \in \mathbb{H}^{n}$ in such a way that $\tilde{v}^{j}=v^{j}+v^{n+j} \boldsymbol{i}+v^{2 n+j} \boldsymbol{j}+v^{3 n+j} \boldsymbol{k}$ $(j=1, \cdots, n)$. Form the real (4×3)-matrix

$$
V^{j}=\left(\begin{array}{ccc}
-v^{j+n} & -v^{j+2 n} & -v^{j+3 n} \tag{6.9}\\
v^{j} & -v^{j+3 n} & v^{j+2 n} \\
v^{j+3 n} & v^{j} & -v^{j+n} \\
-v^{j+2 n} & v^{j+n} & v^{j}
\end{array}\right) .
$$

It is easy to check that

$$
\lambda \tilde{v}^{j} \cdot \omega \bar{\lambda}=\lambda\left((1 \boldsymbol{i} \boldsymbol{j} \boldsymbol{k}) V^{j}\left(\begin{array}{c}
\omega_{1} \tag{6.10}\\
\omega_{2} \\
\omega_{3}
\end{array}\right)\right) \bar{\lambda}=\left(\begin{array}{llll}
1 & \boldsymbol{j} & \left.\boldsymbol{k}) u^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & { }^{t} A
\end{array}\right) V^{j}\left(\begin{array}{c}
\omega_{1} \\
\omega_{2} \\
\omega_{3}
\end{array}\right) \begin{array}{cc}
\\
&
\end{array}\right) .
\end{array}\right.
$$

Then G is isomorphic to the subgroup of $\mathrm{GL}(4 n+3, \mathbb{R})$ consisting of matrices

$$
\left(\begin{array}{c|c}
u^{2} \cdot{ }^{t} A & 0 \tag{6.11}\\
\hline u^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & { }^{t} A
\end{array}\right) V^{1} & \\
\vdots \\
u^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & { }^{t} A
\end{array}\right) V^{n} & u \cdot U
\end{array}\right) .
$$

Here $A \in \mathrm{SO}(3), U=\left(U_{j}^{i}\right) \in \mathrm{SO}(4 p, 4 q)$.
Using the coframe field $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \theta^{1}, \cdots, \theta^{4 n}\right\}, f$ is represented by

$$
\begin{align*}
& f^{*}\left(\omega_{1}, \omega_{2}, \omega_{3}\right)=u^{2}\left(\omega_{1}, \omega_{2}, \omega_{3}\right) A, \\
& f^{*} \theta^{i}=u \theta^{k} U_{k}^{i}+\sum_{\alpha=1}^{3} \omega_{\alpha} v_{\alpha}^{i}, \\
& \text { where }\left(\begin{array}{ccc}
v_{1}^{4 j-3} & v_{2}^{4 j-3} & v_{3}^{4 j-3} \\
v_{1}^{4 j-2} & v_{2}^{4 j-2} & v_{3}^{4 j-2} \\
v_{1}^{4 j-1} & v_{2}^{4 j-1} & v_{3}^{4 j-1} \\
v_{1}^{4 j} & v_{2}^{4 j} & v_{3}^{4 j}
\end{array}\right)=u^{2}\left(\begin{array}{cc}
1 & 0 \\
0 & t^{t} A
\end{array}\right) V^{j} \quad(j=1, \cdots, n) . \tag{6.12}
\end{align*}
$$

Let $\mathcal{F}(M)$ be the principal coframe bundle over M. A subbundle P of $\mathcal{F}(M)$ is said to be a bundle of the nondegenerate integrable G-structure if P is the total space of the principal bundle $G \rightarrow P \rightarrow M$ whose points consist of such coframe fields $\left\{\omega_{1}, \omega_{2}, \omega_{3}, \theta^{1}, \cdots, \theta^{4 n}\right\}$ satisfying the conditions of Definition 1.1, (1.8), (1.9). A diffeomorphism $f: M \rightarrow M$ is a G-automorphism if the derivative $f^{*}: \mathcal{F}(M) \rightarrow \mathcal{F}(M)$ induces a bundle map $f^{*}: P \rightarrow P$ in which f^{*} has the form locally as in (6.2) (equivalently (6.12)).

Definition 6.1. Let $\operatorname{Aut}_{q C R}(M)$ be the group of all G-automorphisms of M.
6.2. Automorphism group $\operatorname{Aut}(M)$. Let W be the $(n+2)$-dimensional arithmetic vector space $\mathbb{H}^{p+1, q+1}$ over \mathbb{H} equipped with the standard Hermitian metric \mathcal{B} of signature ($p+$ $1, q+1)$ where $p+q=n$. Then note that the isometry $\operatorname{group} \operatorname{Sp}(W)=\operatorname{Aut}(W, \mathcal{B})=$ $\operatorname{Sp}(p+1, q+1)$ and W has the gradation $W=W^{-1}+W^{0}+W^{+1}$, where $W^{ \pm 1}$ are dual 1 -dimensional isotropic subspaces and W^{0} is (\mathcal{B}-non-degenerate) orthogonal complement to $W^{-1}+W^{+1}$. The gradation W induces the gradation of the Lie algebra \mathfrak{g} of depth two, i.e.

$$
\mathfrak{g}=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}+\mathfrak{g}^{0}+\mathfrak{g}^{1}+\mathfrak{g}^{2} .
$$

Here $\mathfrak{g}^{0}=\mathbb{R}+\mathfrak{s p}(1)+\mathfrak{s p}(n)$.
In [3] we introduced a notion of $p-c q$ structure. This geometry is defined by a codimension three distribution \mathcal{H} on a $(4 n+3)$-dimensional manifold M, which satisfies the only one condition that the associated graded tangent space ${ }^{g r} T_{x} M=T_{x} M / \mathcal{H}_{x}+\mathcal{H}_{x}$ at any point is isomorphic to the quaternionic Heisenberg Lie algebra $\mathfrak{M}(p, q) \cong \mathfrak{g}^{-}=\mathfrak{g}^{-2}+\mathfrak{g}^{-1}$, i.e. the Iwasawa subalgebra of $\operatorname{Sp}(p+1, q+1)$. We proved that such a geometry is a parabolic geometry so that it admits a canonical Cartan connection and its automorphism group Aut (M) is a Lie group. More precisely, if $P^{+}(\mathbb{H})$ is the parabolic connected subgroup of the symplectic group $\operatorname{Sp}(W)$ corresponding to the dual parabolic subalgebra $\mathfrak{p}^{+}(\mathbb{H})=\mathfrak{g}^{+}+\mathfrak{g}^{0}$ of $\mathfrak{s p}(W)$, then there is a $P^{+}(\mathbb{H})$-principal bundle $\pi: B \rightarrow M$ with a normal Cartan connection $\kappa: T B \rightarrow \mathfrak{s p}(W)$ of type $\operatorname{Sp}(W) / P^{+}(\mathbb{H})$. There exists a canonical p-c q structure $\mathcal{H}^{\text {can }}$ on $\operatorname{Sp}(p+1, q+1) / P^{+}(\mathbb{H})$ with all vanishing curvature tensors (cf. §7.2). A p-c q manifold (M, \mathcal{H}) is locally isomorphic to a $\left(\operatorname{Sp}(p+1, q+1) / P^{+}(\mathbb{H}), \mathcal{H}^{\text {can }}\right.$) if and only if the associated Cartan connection κ is flat (i.e. has zero curvature). Put $S^{4 p+3,4 q}=\operatorname{Sp}(p+1, q+1) / P^{+}(\mathbb{H})$. Then $S^{4 p+3,4 q}$ is the flat homogeneous model diffeomorphic to $S^{4 p+3} \times S^{4 q+3} / \mathrm{Sp}(1)$ where the product of spheres $S^{4 p+3} \times S^{4 q+3}=\left\{\left(z^{+}, z^{-}\right) \in \mathbb{H}^{p+1, q+1} \mid \mathcal{B}\left(z^{+}, z^{+}\right)=1, \mathcal{B}\left(z^{-}, z^{-}\right)=\right.$ $-1\}$ is the subspace of $W=\mathbb{H}^{p+1, q+1}$ and the action of $\operatorname{Sp}(1)$ is induced by the diagonal right action on W. The group of all automorphisms $\operatorname{Aut}\left(S^{4 p+3,4 q}\right)$ preserving this flat structure is $\operatorname{PSp}(p+1, q+1)$. Suppose that M is a p-c q $C R$ manifold. By definition, $T_{x} M \cong T_{x} M / \mathcal{D}_{x}+\mathcal{D}_{x}=\operatorname{Im} \mathbb{H}+\mathbb{H}^{n} \cong \mathfrak{M}(p, q)$ at $\forall x \in M$. Then each G-automorphism of $\operatorname{Aut}_{q C R}(M)$ preserves $\mathfrak{M}(p, q)$ by the above formula (6.12). Since a p-c qCR structure is a refinement of a p-c q structure by Definition 1.6, note that $\operatorname{Aut}_{q C R}(M)$ is a closed subgroup of $\operatorname{Aut}(M)$ which is a Lie group as above.

Corollary 6.2. The group $\operatorname{Aut}_{q C R}(M)$ is a finite dimensional Lie group for a p-c $q C R$ manifold M.

7. Pseudo-Conformal $\mathrm{Q} C R$ structure on $S^{3+4 p, 4 q}$

We shall prove that the q $C R$ homogeneous model $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ induces a p-c q $C R$ structure on $S^{3+4 p, 4 q}$ which coincides with the flat p-c q structure.

7.1. Quaternionic pseudo-hyperbolic geometry. Let

$$
\begin{equation*}
\mathcal{B}(z, w)=\bar{z}_{1} w_{1}+\bar{z}_{2} w_{2}+\cdots+\bar{z}_{p+1} w_{p+1}-\bar{z}_{p+2} w_{p+2}-\cdots-\bar{z}_{n+2} w_{n+2} \tag{7.1}
\end{equation*}
$$

be the above Hermitian form on $\mathbb{H}^{n+2}=\mathbb{H}^{p+1, q+1}(p+q=n)$. We consider the following subspaces in $\mathbb{H}^{n+2}-\{0\}$:

$$
\begin{aligned}
V_{0}^{4 n+7} & =\left\{z \in \mathbb{H}^{n+2} \mid \mathcal{B}(z, z)=0\right\}, \\
V_{-}^{4 n+8} & =\left\{z \in \mathbb{H}^{n+2} \mid \mathcal{B}(z, z)<0\right\} .
\end{aligned}
$$

Let $\mathbb{H}^{*} \rightarrow\left(\left(\operatorname{Sp}(p+1, q+1) \cdot \mathbb{H}^{*}, \mathbb{H}^{n+2}-\{0\}\right) \xrightarrow{P}\left(\operatorname{PSp}(p+1, q+1), \mathbb{H}^{n} \mathbb{P}^{n+1}\right)\right.$ be the equivariant projection. The quaternionic pseudo-hyperbolic space $\mathbb{H}_{\mathbb{H}}^{p+1, q}$ is defined to be $P\left(V_{-}^{4 n+8}\right)$ (cf. [11]). Let GL $(n+2, \mathbb{H})$ be the group of all invertible $(n+2) \times(n+2)$-matrices with quaternion entries. Denote by $\operatorname{Sp}(p+1, q+1)$ the subgroup consisting of

$$
\left\{A \in \mathrm{GL}(n+2, \mathbb{H}) \mid \mathcal{B}(A z, A w)=\mathcal{B}(z, w), z, w \in \mathbb{H}^{n+2}\right\}
$$

The action $\operatorname{Sp}(p+1, q+1)$ on $V_{-}^{4 n+8}$ induces an action on $\mathbb{H} \underset{\mathbb{H}}{p+1, q}$. The kernel of this action is the center $\mathbb{Z} / 2=\{ \pm 1\}$ whose quotient is the pseudo-quaternionic hyperbolic group $\operatorname{PSp}(p+1, q+1)$. It is known that $\mathbb{H}_{\mathbb{H}}^{p+1, q}$ is a complete simply connected pseudoRiemannian manifold of negative sectional curvature from -1 to $-\frac{1}{4}$, and with the group of isometries $\operatorname{PSp}(p+1, q+1)$ (cf. [21]). Remark that when $q=0, p=n, P\left(V_{-}^{4 n+8}\right)=\mathbb{H}_{\mathbb{H}}^{n+1}$ is the quaternionic Kähler hyperbolic space with the group of isometries $\operatorname{PSp}(n+1,1)$. The projective compactification of $\mathbb{H}_{\mathbb{H}}^{p+1, q}$ is obtained by taking the closure $\overline{\mathbb{H}}_{\mathbb{H}}^{p+1, q}$ in $\mathbb{H}^{1} \mathbb{P}^{n+1}$. Then it is easy to check that $\overline{\mathbb{H}}_{\mathbb{H}}^{p+1, q}=\mathbb{H}_{\mathbb{H}}^{p+1, q} \cup P\left(V_{0}^{4 n+7}\right)$. The boundary $P\left(V_{0}^{4 n+7}\right)$ of $\mathbb{H}_{\mathbb{H}}^{p+1, q}$ is identified with the quadric $S^{3+4 p, 4 q}$ by the correspondence:

$$
\begin{equation*}
\left[z_{+}, z_{-}\right] \mapsto\left[\frac{z_{+}}{\left\|z_{-}\right\|}, \frac{z_{-}}{\left\|z_{-}\right\|}\right] \tag{7.2}
\end{equation*}
$$

Since the pseudo-hyperbolic action of $\operatorname{PSp}(p+1, q+1)$ on $\mathbb{H}_{\mathbb{H}}^{p+1, q}$ extends to a smooth action on $S^{3+4 p, 4 q}=P\left(V_{0}^{4 n+7}\right)$ as projective transformations because the projective compactification $\overline{\mathbb{H}}_{\mathbb{H}}^{p+1, q}$ is an invariant domain of $\mathbb{H} \mathbb{P}^{n+1}$.
7.2. Existence of p-c q $C R$ structure on $S^{3+4 p, 4 q}$. Recall that $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}=$ $\left\{\left.\left(z_{1}, \cdots, z_{p+1}, w_{1}, \cdots, w_{q}\right) \in \mathbb{H}^{n+1}| | z_{1}\right|^{2}+\cdots+\left|z_{p+1}\right|^{2}-\left|w_{1}\right|^{2}-\cdots-\left|w_{q}\right|^{2}=1\right\}$ equipped with $\mathrm{q} C R$ structure ω_{0} (cf. $\S 3$). The embedding ι of $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ into $S^{4 p+3,4 q}$ is defined by $\left(z_{1}, \cdots, z_{p+1}, w_{1}, \cdots, w_{q}\right) \mapsto\left[\left(z_{1}, \cdots, z_{p+1}, w_{1}, \cdots, w_{q}, 1\right)\right]$. Then $\iota\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q}\right)$ is an open dense submanifold of $S^{4 p+3,4 q}$ because it misses $S^{4 p+3,4(q-1)}=S^{4 p+3} \times S^{4 q-1} / \mathrm{Sp}(1)$ in $S^{4 p+3,4 q}$. We know that $\Sigma_{\mathbb{H}}^{3+4 p, 4 q}$ has the transitive isometry group $\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ (cf. Definition 3.1). Then this embedding implies that $\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ is identified with the subgroup $P(\operatorname{Sp}(p+1, q) \times \operatorname{Sp}(1))$ of $\operatorname{PSp}(p+1, q+1)$ leaving the last component z_{n+2} invariant in $V_{0}^{4 n+7} \subset \mathbb{H}^{n+2}$.

By pullback, each element h of $\operatorname{PSp}(p+1, q+1)$ gives a q $C R$ structure $h^{-1 *} \omega_{0}$ on the open subset $h\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q}\right)$ of $S^{3+4 p, 4 q}$. Noting that $h^{-1 *} \mathcal{H}^{\text {can }}=\mathcal{H}^{\text {can }}$ and Definition 1.6, we shall prove that ($S^{3+4 p, 4 q}, \mathcal{H}^{c a n}$) admits a p-c q $C R$ structure by showing that $\mathrm{Null} h^{-1 *} \omega_{0}$ coincides with the restriction of $\mathcal{H}^{c a n} \mid h\left(\Sigma_{\mathbb{H}}^{3+4 p, 4 q}\right)$.

Theorem 7.1. The $(4 n+3)$-dimensional $p-c q$ manifold $\left(S^{4 p+3,4 q}, \mathcal{H}^{c a n}\right)$ supports a $p-c$ $q C R$ structure, i.e. there exists locally a qCR strucrure ω on a neighborhood U such that

$$
\mathcal{H}^{c a n} \mid U=\operatorname{Null} \omega .
$$

Moreover, the automorphism group $\mathrm{Aut}_{q C R}\left(S^{4 p+3,4 q}\right)$ with respect to this $p-c q C R$ structure is $\operatorname{PSp}(p+1, q+1)$.

Proof. First we describe the canonical p-c q structure $\mathcal{H}^{\text {can }}$ on $S^{3+4 p, 4 q}$ explicitly. Choose isotropic vectors $x, y \in V_{0}$ such that $\mathcal{B}(x, y)=1$ and denote by V the orthogonal complement to $\{x, y\}$ in $\mathbb{H}^{p+1, q+1}$. Then it follows that $T_{x} V_{0}=\mathfrak{s p}(W) x=y \operatorname{Im} \mathbb{H}+V+x \mathbb{H}$ where $T_{x}\left(x \mathbb{H}^{*}\right)=x \mathbb{H}$. Then

$$
T_{[x]} S^{4 k+3,4 q}=P_{*}\left(T_{x} V_{0}\right)=(y \operatorname{Im} \mathbb{H}+V+x \mathbb{H}) / x \mathbb{H} .
$$

We associate to each $[x] \in S^{4 k+3,4 q}$ the orthogonal complement $x^{\perp}=V+x \mathbb{H}$. It does not depend on the choice of points from $[x]$. In fact, if $x^{\prime} \in[x]$, then $x^{\prime}=x \cdot \lambda$ for some $\lambda \in \mathbb{H}^{*}$. By the definition choosing y^{\prime} such that $T_{x^{\prime}} V_{0}=y^{\prime} \operatorname{Im} \mathbb{H}+V^{\prime}+x^{\prime} \mathbb{H}$ where the orthogonal complement V^{\prime} to $\left\{x^{\prime}, y^{\prime}\right\}$ in $\mathbb{H}^{p+1, q+1}$ is uniquely determined. Let v^{\prime} be any vector of V^{\prime} which is described as $v^{\prime}=y \cdot a+v+x \cdot b$ for some $a, b \in \mathbb{H}$. Then

$$
\begin{aligned}
0=\mathcal{B}\left(x^{\prime}, v^{\prime}\right) & =\mathcal{B}\left(x^{\prime}, y\right) a+\mathcal{B}\left(x^{\prime}, v\right)+\mathcal{B}\left(x^{\prime}, x\right) b \\
& =\bar{\lambda} \mathcal{B}(x, y) a+\bar{\lambda} \mathcal{B}(x, v)+\bar{\lambda} \mathcal{B}(x, x) b=\bar{\lambda} \cdot a .
\end{aligned}
$$

Since $\lambda \neq 0, a=0$ and so $v^{\prime}=v+x \cdot b$. Hence $x^{\prime \perp}=V^{\prime}+x^{\prime} \mathbb{H}=V+x \mathbb{H}$. Therefore the orthogonal complement $x^{\perp}=V+x \mathbb{H}$ in $\mathbb{H}^{p+1, q+1}$ determines a codimension three subbundle

$$
\begin{align*}
\mathcal{H}^{c a n} & =\underset{[x] \in S^{4 p+3,4 q}}{ } P_{*}\left(x^{\perp}\right) . \tag{7.3}\\
P_{*}\left(x^{\perp}\right) & =V+x \mathbb{H} / x \mathbb{H} \subset T S^{4 p+3,4 q} .
\end{align*}
$$

On the other hand, recall that if N_{p} is the normal vector at $p \in \Sigma_{\mathbb{H}}^{3+4 p, 4 q}$, then $\left(\operatorname{Null} \omega_{0}\right)_{p}=$ $\mathcal{D}_{p}=\left\{I N_{p}, J N_{p}, K N_{p}\right\}^{\perp}$ by the definition (cf. § 3). Since $T_{p} \Sigma_{\mathbb{H}}^{3+4 p, 4 q}=N_{p}^{\perp}$ with respect to $g^{\mathbb{H}}$, it follows that $T_{p} \mathbb{H}^{n+1} \mid \Sigma_{\mathbb{H}}^{3+4 p, 4 q}=\left\{N_{p}, I N_{p}, J N_{p}, K N_{p}\right\} \oplus \mathcal{D}_{p}$. If we note that $\left\{N_{p}, I N_{p}, J N_{p}, K N_{p}\right\}=p \mathbb{H}$, then we have $\mathcal{D}_{p}=p \mathbb{H}{ }^{\perp}$. It is easy to see that the orthogonal complement to $p \mathbb{H}$ with respect to $g^{\mathbb{H}}$ coincides with the orthogonal complement to p with respect to the inner product \mathcal{B}. Hence, $\mathcal{D}_{p}=p^{\perp}$. As the tangent subspace $\iota_{*}\left(\mathcal{D}_{p}\right)$ at $\iota(p)$ in $T_{\iota(p)} V_{0}$ is $\left(\mathcal{D}_{p}, 0\right)$ which is parallel to \mathcal{D}_{p} in $T_{p} V_{0}$, it implies that $\mathcal{B}\left(\iota_{*}\left(\mathcal{D}_{p}\right), \iota(p)\right)=$ $\mathcal{B}\left(\left(\mathcal{D}_{p}, 0\right),(p, 1)\right)=\left\langle\mathcal{D}_{p}, p\right\rangle-\langle 0,1\rangle=0$. Hence $\iota_{*}\left(\mathcal{D}_{p}\right) \subset \iota(p)^{\perp}$ (with respect to $\left.\mathcal{B}\right)$. As $\iota(p)^{\perp}=V+\iota(p) \mathbb{H}, \iota_{*}\left(\mathcal{D}_{p}\right) \subset V+\iota(p) \mathbb{H}$. As above $\iota_{*}\left(\mathcal{D}_{p}\right)=\left(\mathcal{D}_{p}, 0\right)$ at $\iota(p)$, but $\iota(p) \mathbb{H}=$ $(p, 1) \cdot H$. The intersection $\iota_{*}\left(\mathcal{D}_{p}\right) \cap \iota(p) \mathbb{H}=\{0\}$. It implies that $\iota_{*}\left(\mathcal{D}_{p}\right)=\iota_{*}\left(\mathcal{D}_{p}\right) / \iota(p) \mathbb{H} \subset$ $V+\iota(p) \mathbb{H} / \iota(p) \mathbb{H}$. By (7.3), $\iota_{*}\left(\left(\operatorname{Null} \omega_{0}\right)_{p}\right)=P_{*}\left(\iota(p)^{\perp}\right)=\mathcal{H}_{\iota(p)}^{\text {can }}$. Therefore $S^{4 p+3,4 q}$ admits a p-c qCR structure. Then $\operatorname{Aut}_{q C R}\left(S^{4 p+3,4 q}\right)$ is a subgroup of $\operatorname{Aut}\left(S^{4 p+3,4 q}\right)=\operatorname{PSp}(p+$ $1, q+1$) from $\S 6.2$.

7.3. Pseudo-conformal quaternionic Heisenberg geometry.

To prove $\operatorname{Aut}_{Q C R}\left(S^{4 p+3,4 q}\right)=\operatorname{PSp}(p+1, q+1)$, we recall the quaternionic Heisenberg Lie group. Let $\operatorname{PSp}(p+1, q+1)$ be the group of all automorphisms preserving the flat $\mathrm{p}-\mathrm{c} \mathrm{q}$ structure of $S^{4 p+3,4 q}=\operatorname{PSp}(p+1, q+1) / P^{+}(\mathbb{H})(c f . \S$ 6.2.) We consider the stabilizer of the point at infinity $\{\infty\}=[1,0, \cdots, 0,1] \in \Sigma_{\mathbb{H}}^{3+4 p, 4 q} \subset S^{4 p+3,4 q}$. Recall the (indefinite) Heisenberg nilpotent Lie group $\mathcal{M}=\mathcal{M}(p, q)$ from [16]. It is the product $\mathbb{R}^{3} \times \mathbb{H}^{n}$ with group law:

$$
(a, y) \cdot(b, z)=(a+b-\operatorname{Im}\langle y, z\rangle, y+z) .
$$

Here $\left\rangle\right.$ is the Hermitian inner product of signature (p, q) on \mathbb{H}^{n} as in (7.1) and $\operatorname{Im}\rangle$ is the imaginary part $(p+q=n)$. It is nilpotent because the commutator subgroup $[\mathcal{M}, \mathcal{M}]=\mathbb{R}^{3}$ which is the center consisting of the form $(a, 0)$. In particular, there is the central extension:

$$
\begin{equation*}
1 \rightarrow \mathbb{R}^{3} \rightarrow \mathcal{M} \longrightarrow \mathbb{H}^{n} \rightarrow 1 . \tag{7.4}
\end{equation*}
$$

Denote by $\operatorname{Sim}(\mathcal{M})$ the semidirect product $\mathcal{M} \rtimes\left(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1) \times \mathbb{R}^{+}\right)$where the action $(A \cdot g, t) \in \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1) \times \mathbb{R}^{+}$on $(a, y) \in \mathcal{M}$ is given by:

$$
\begin{equation*}
(A \cdot g, t) \circ(a, y)=\left(t^{2} \cdot g a g^{-1}, t \cdot A y g^{-1}\right) . \tag{7.5}
\end{equation*}
$$

Denote the origin by $O=[1,0, \cdots, 0,-1] \in \Sigma_{\mathbb{H}}^{3+4 p, 4 q}-\{\infty\}$. The stabilizer Aut $\left(S^{3+4 p, 4 q}\right)_{\infty}$ is isomorphic to $\operatorname{Sim}(\mathcal{M})$ (cf. [18]). The orbit $\mathcal{M} \cdot O$ is a dense open subset of $S^{4 p+3,4 q}$. The embedding ι is defined by:

$$
\left((a, b, c),\left(z_{+}, z_{-}\right)\right) \in \mathcal{M} \stackrel{\iota}{\longrightarrow}\left[\begin{array}{c}
\frac{\left\|z_{+}+\right\|^{2}-\left\|z_{-}\right\|^{2}}{2}-1+\mathbf{i} a+\mathbf{j} b+\mathbf{k} c \tag{7.6}\\
\sqrt{2} z_{+} \\
\sqrt{2} z_{-} \\
\frac{\left\|z_{+}+\right\|^{2}-\left\|z_{-}\right\|^{2}}{2}+1+\mathbf{i} a+\mathbf{j} b+\mathbf{k} c
\end{array}\right]
$$

Then the pair $(\operatorname{Sim}(\mathcal{M}), \mathcal{M})$ is said to be $p-c q$ Heisenberg geometry which is a subgeometry of flat p-c q geometry $\left(\operatorname{Aut}\left(S^{3+4 p, 4 q}\right), S^{3+4 p, 4 q}\right)$. We prove the rest of Theorem 7.1.

Proposition 7.2. $\operatorname{Aut}_{q C R}\left(S^{4 p+3,4 q}\right)=\operatorname{PSp}(p+1, q+1)$.
Proof. First note that $\operatorname{PSp}(p+1, q+1)$ decomposes into $\operatorname{Sim}(\mathcal{M}) \cdot(\operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1))$. We know (cf. §3) that each element $f=(A, a) \in \operatorname{Sp}(p+1, q) \cdot \operatorname{Sp}(1)$ satisfies that $f^{*} \omega_{0}=a \omega_{0} \bar{a}$, obviously $f \in \operatorname{Aut}_{q C R}\left(S^{4 p+3,4 q}\right)$. On the other hand, it is shown that an element h of $\operatorname{Sim}(\mathcal{M})$ satisfy that $h^{*} \omega_{0}=\lambda \omega_{0} \bar{\lambda}$ for some function $\lambda \in \mathbb{H}^{*}$ by using the explicit formula of ω_{0}. (See [16].) When $h \in \operatorname{Sim}(\mathcal{M})$, note that $h(\infty)=\infty$. Let $\tau: \operatorname{PSp}(p+1, q+$ $1)_{\infty} \rightarrow \operatorname{Aut}\left(\mathrm{T}_{\{\infty\}}\left(S^{3+4 p, 4 q}\right)\right)$ be the tangential representation at $\{\infty\}$. Since the elements of the center \mathbb{R}^{3} of \mathcal{M} are tangentially identity maps at $\mathrm{T}_{\{\infty\}}\left(S^{3+4 p, 4 q}\right), \tau(\operatorname{PSp}(p+1, q+$ $\left.1)_{\infty}\right)=\mathbb{H}^{n} \rtimes\left(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1) \times \mathbb{R}^{+}\right)$which is isomorphic to the structure group G (cf. (6.11)). As $\tau(h)=h_{*}, h \in \operatorname{Aut}_{q C R}\left(S^{3+4 p, 4 q}\right)$ by Definition 6.1. We have $\operatorname{PSp}(p+1, q+1) \subset$ $\mathrm{Aut}_{q C R}\left(S^{3+4 p, 4 q}\right)$.

8. Pseudo-conformal quaternionic $C R$ invariant

We shall consider the equivalence problem of p-c qCR structure. Let $d \omega+\omega \wedge \omega=$ $-\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right) \theta^{i} \wedge \theta^{j}$ be the equation (4.3) as before. We examine how this equation
behaves under the change of transformation $f \in \operatorname{Aut}_{q C R}(M) ; f^{*} \omega=\lambda \cdot \omega \cdot \bar{\lambda}$. Put $\omega^{\prime}=f^{*} \omega$. By (6.12),

$$
\begin{aligned}
d \omega^{\prime}+\omega^{\prime} \wedge \omega^{\prime}= & f^{*}(d \omega+\omega \wedge \omega)=-\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right) f^{*} \theta^{i} \wedge f^{*} \theta^{j} \\
= & -\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right)\left(u \theta^{k} U_{k}^{i}+\sum_{a} \omega_{a} v_{a}^{i}\right) \wedge\left(u \theta^{\ell} U_{\ell}^{j}+\sum_{b} \omega_{b} v_{b}^{j}\right) \\
= & -\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right)\left(u^{2} U_{k}^{i} U_{\ell}^{j} \theta^{k} \wedge \theta^{\ell}+\right. \\
& \left.\sum_{a} \omega_{a} \wedge\left(u v_{a}^{i} U_{\ell}^{j} \theta^{\ell}-u v_{a}^{j} U_{\ell}^{i} \theta^{\ell}\right)+\sum_{a<b} \omega_{a} \wedge \omega_{b}\left(v_{a}^{i} v_{b}^{j}-v_{b}^{i} v_{a}^{j}\right)\right) \\
= & -\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right)\left(u^{2} U_{k}^{i} U_{\ell}^{j} \theta^{k} \wedge \theta^{\ell}+\sum_{a} \omega_{a} \wedge 2 u v_{a}^{i} U_{\ell}^{j} \theta^{\ell}\right. \\
& \left.+\sum_{a<b} \omega_{a} \wedge \omega_{b}\left(2 v_{a}^{i} v_{b}^{j}\right)\right) .
\end{aligned}
$$

Choosing $w_{a}^{k}(a=1,2,3)$ such that $U_{k}^{i} w_{a}^{k}=v_{a}^{i}$, the above equation becomes

$$
\begin{aligned}
d \omega^{\prime}+\omega^{\prime} \wedge \omega^{\prime}= & -\left(I_{i j} \boldsymbol{i}+J_{i j} \boldsymbol{j}+K_{i j} \boldsymbol{k}\right)\left(u^{2} U_{k}^{i} U_{\ell}^{j} \theta^{k} \wedge \theta^{\ell}+\right. \\
& \left.\sum_{a} \omega_{a} \wedge 2 u w_{a}^{k} U_{k}^{i} U_{\ell}^{j} \theta^{\ell}+\sum_{a<b} \omega_{a} \wedge \omega_{b}\left(2 U_{k}^{i} U_{\ell}^{j} w_{a}^{k} w_{b}^{\ell}\right)\right) .
\end{aligned}
$$

Let $U=U^{\prime} \bar{a} \circ \operatorname{Ad}_{a} \in \mathrm{SO}(4 p, 4 q)$ be the matrix as in (6.7) so that $U z=U^{\prime} z \bar{a}\left(z \in \mathbb{H}^{n}\right)$ (cf. (6.6)). If $\{I, J, K\}$ is the set of the standard quaternionic structure, then

$$
\begin{aligned}
I U(z) & =I\left(U^{\prime} z \bar{a}\right)=U^{\prime} z \bar{a} \boldsymbol{i}=U^{\prime} z(\bar{a} \boldsymbol{i} \boldsymbol{a}) \bar{a} \\
& =U^{\prime} z\left(a_{11} \boldsymbol{i}+a_{21} \boldsymbol{j}+a_{31} \boldsymbol{k}\right) \bar{a}=a_{11} U^{\prime} z \boldsymbol{i} \bar{a}+a_{21} U^{\prime} z \boldsymbol{j} \bar{a}+a_{31} U^{\prime} z \boldsymbol{k} \overline{\boldsymbol{a}} \\
& =a_{11} U(z \boldsymbol{i})+a_{21} U(z \boldsymbol{j})+a_{31} U(z \boldsymbol{k})=a_{11} U I(z)+a_{21} U J(z)+a_{31} U K(z) .
\end{aligned}
$$

This follows that $I U=a_{11} U I+a_{21} U J+a_{31} U K$. Since $I U\left(e_{i}\right)=U_{j}^{j} I_{j}^{\ell} e_{\ell}$, a calculation shows that $U_{i}^{j} I_{j}^{\ell}=a_{11} I_{i}^{j} U_{j}^{\ell}+a_{21} J_{i}^{j} U_{j}^{\ell}+a_{31} K_{i}^{j} U_{j}^{\ell}$, similarly for J, K. As

$$
\left(\begin{array}{l}
I^{\prime} \tag{8.1}\\
J^{\prime} \\
K^{\prime}
\end{array}\right)={ }^{t} A\left(\begin{array}{l}
I \\
J \\
K
\end{array}\right)
$$

is a new quaternionic structure (cf. (1.5)), it follows that

$$
\begin{align*}
I_{i j} U_{k}^{i} U_{\ell}^{j} & =a_{11} I_{k \ell}+a_{21} J_{k \ell}+a_{31} K_{k \ell}=I^{\prime}{ }_{k \ell} . \\
J_{i j} U_{k}^{i} U_{\ell}^{j} & =a_{12} I_{k \ell}+a_{22} J_{k \ell}+a_{32} K_{k \ell}={J^{\prime}}_{k \ell} . \tag{8.2}\\
K_{i j} U_{k}^{i} U_{\ell}^{j} & =a_{13} I_{k \ell}+a_{23} J_{k \ell}+a_{33} K_{k \ell}={K^{\prime}}_{k \ell} .
\end{align*}
$$

Then we obtain that

$$
\begin{align*}
d \omega^{\prime}+\omega^{\prime} \wedge \omega^{\prime} & =-\left(I^{\prime}{ }_{i j} \boldsymbol{i}+{J^{\prime}}_{i j} \boldsymbol{j}+K^{\prime}{ }_{i j} \boldsymbol{k}\right)\left(u^{2} \theta^{i} \wedge \theta^{j}\right. \\
& \left.+\sum_{a} \omega_{a} \wedge 2 u w_{a}^{i} \theta^{j}+\sum_{a<b} \omega_{a} \wedge \omega_{b}\left(2 w_{a}^{i} w_{b}^{j}\right)\right) \tag{8.3}
\end{align*}
$$

We shall derive an invariant under the change $\omega^{\prime}=\lambda \cdot \omega \cdot \bar{\lambda}$. Recall from (6.12) that

$$
\begin{equation*}
\left(\omega_{1}^{\prime}, \omega_{2}^{\prime}, \omega_{3}^{\prime}\right)=\left(\omega_{1}, \omega_{2}, \omega_{3}\right) u^{2} \cdot A \tag{8.4}
\end{equation*}
$$

Let $d \theta^{i}=\theta^{j} \wedge \varphi_{j}^{i}+\sum_{a} \omega_{a} \wedge \tau_{a}^{i}$ be the structure equation (4.20). We define 1 -forms $\nu^{\prime i}{ }_{a}$ by setting

$$
\left(\begin{array}{c}
\nu^{\prime i} \tag{8.5}\\
\nu_{1}^{\prime} \\
\nu_{2}^{\prime i} \\
\nu_{3}
\end{array}\right)=u^{-2} \cdot{ }^{t} A\left(\begin{array}{c}
\tau_{1}^{i} \\
\tau_{2}^{i} \\
\tau_{3}^{i}
\end{array}\right) .
$$

Since $\tau_{a}^{i} \equiv 0 \bmod \theta^{k}(k=1, \cdots 4 n)$ by (4.23), note that

$$
\begin{equation*}
\nu_{a}^{\prime i} \equiv 0 \bmod \theta^{k} \tag{8.6}
\end{equation*}
$$

Using (8.4) and (8.5),

$$
\sum_{a} \omega_{a} \wedge \tau_{a}^{i}=\left(\omega^{\prime}{ }_{1}, \omega^{\prime}, \omega_{3}^{\prime}\right) \wedge\left(\begin{array}{c}
\nu^{\prime i} \\
\nu_{i}^{\prime} \\
\nu_{2}^{\prime i} \\
\nu_{3}
\end{array}\right)=\sum_{a} \omega_{a}^{\prime} \wedge \nu_{a}^{\prime i}
$$

the equation (4.20) becomes

$$
\begin{equation*}
d \theta^{i}=\theta^{j} \wedge \varphi_{j}^{i}+\sum_{a} \omega_{a}^{\prime} \wedge \nu_{a}^{\prime i} \tag{8.7}
\end{equation*}
$$

Differentiate (8.7), and then substitute (8.3), we obtain that

$$
\theta^{j} \wedge\left(d \varphi_{j}^{i}-\varphi_{j}^{\sigma} \wedge \varphi_{\sigma}^{i}+u^{2} I^{\prime}{ }_{j k} \theta^{k} \wedge \nu_{1}^{\prime i}+u^{2} J^{\prime}{ }_{j k} \theta^{k} \wedge{\nu^{\prime}}_{2}^{i}+u^{2} K_{j k}^{\prime} \theta^{k} \wedge \nu_{3}^{\prime i}\right) \equiv 0 \bmod \omega_{\alpha}
$$

Taking into account this equation (which corresponds to (5.5)), we have the fourth-order tensor up to the terms $\omega_{1}, \omega_{2}, \omega_{3}$:

$$
\begin{equation*}
\frac{1}{2}{T^{\prime}}_{j k \ell}^{i} \theta^{k} \wedge \theta^{\ell} \equiv d \varphi_{j}^{i}-\varphi_{j}^{\sigma} \wedge \varphi_{\sigma}^{i}+\sum_{a} u^{2} \cdot{\mathbf{J}^{\prime}}_{j k}^{a} \theta^{k} \wedge{\nu^{\prime}}_{a}^{i}-\theta^{i} \wedge \theta_{j} \tag{8.8}
\end{equation*}
$$

Here we put $\left(I^{\prime}{ }_{i j}, J^{\prime}{ }_{i j}, K^{\prime}{ }_{i j}\right)=\left(\mathbf{J}^{\prime}{ }_{i j}, \mathbf{J}^{\prime 2}{ }_{i j}, \mathbf{J}^{\prime 3}{ }_{i j}\right)$. Since $\left(I^{\prime}{ }_{i j}, J^{\prime}{ }_{i j}, K^{\prime}{ }_{i j}\right)=\left(I_{i j}, J_{i j}, K_{i j}\right) A$ from (8.1) and (8.5),

$$
\sum_{a} u^{2} \cdot \mathbf{J}^{\prime}{ }_{j k}^{a} \theta^{k} \wedge \nu_{a}^{\prime i}=\theta^{k} \wedge\left(I_{j k}, J_{j k}, K_{j k}\right)\left(\begin{array}{c}
\tau_{1}^{i} \\
\tau_{2}^{i} \\
\tau_{3}^{i}
\end{array}\right)=\theta^{k} \wedge \sum_{a} \mathbf{J}_{j k}^{a} \tau_{a}^{i}
$$

The equation (8.8) can be reduced to the following:

$$
\begin{equation*}
T_{j k \ell}^{\prime i} \theta^{k} \wedge \theta^{\ell} \equiv d \varphi_{j}^{i}-\varphi_{j}^{\sigma} \wedge \varphi_{\sigma}^{i}+\theta^{k} \wedge \sum_{a} \mathbf{J}_{j k}^{a} \tau_{a}^{i}-\theta^{i} \wedge \theta_{j} \tag{8.9}
\end{equation*}
$$

From (5.9) and (5.6), we have shown

Proposition 8.1. If $\omega^{\prime}=\lambda \cdot \omega \cdot \bar{\lambda}$ for which ω is a $q C R$ structure, then the curvature tensor T^{\prime} satisfies that $T^{\prime}{ }_{j k \ell}=T_{j k \ell}^{i}$. In particular, $T=\left(T_{j k \ell}^{i}\right)$ is an invariant tensor under the $p-c q C R$ structure.

Remark 8.2. 1. Similarly, the quaternionic structures $\left\{I^{\prime}, J^{\prime}, K^{\prime}\right\}$ extends to almost complex structures $\left\{\bar{I}^{\prime}, \bar{J}^{\prime}, \bar{K}^{\prime}\right\}$ respectively.
2. Let $f \in \operatorname{Aut}_{q C R}(M)$ be an element satisfying (6.12). Then, $f_{*} e_{i}=u U_{i}^{k} e_{k}$. Using (8.2),

$$
\begin{aligned}
& I f_{*} e_{i}=u U_{i}^{k} I_{k}^{j} e_{j}=u\left(a_{11} I_{i}^{m}+a_{21} J_{i}^{m}+a_{31} K_{i}^{m}\right) U_{m}^{j} e_{j} \\
& \quad=f_{*}\left(\left(a_{11} I_{i}^{m}+a_{21} J_{i}^{m}+a_{31} K_{i}^{m}\right) e_{m}\right) \\
& =f_{*}\left(\left(a_{11} I+a_{21} J+a_{31} K\right) e_{i}\right)
\end{aligned}
$$

The similar argument to J, K yields that

$$
\left(\begin{array}{c}
f_{*}^{-1} I f_{*} \tag{8.10}\\
f_{*}^{-1} J f_{*} \\
f_{*}^{-1} K f_{*}
\end{array}\right)={ }^{t} A\left(\begin{array}{c}
I \\
J \\
K
\end{array}\right) \quad \text { on } \mathcal{D} .
$$

8.1. Formula of curvature tensor. We shall find the formula of T. Substitute (4.24), (4.23) into (8.9):

$$
\begin{aligned}
T_{j k \ell}^{i} \theta^{k} \wedge \theta^{\ell}= & d\left(\omega_{j}^{i}+\sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{i} \omega_{a}\right)-\left(\omega_{j}^{\sigma}+\sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{\sigma} \omega_{a}\right) \wedge\left(\omega_{\sigma}^{i}+\sum_{a}\left(\mathbf{J}^{a}\right)_{\sigma}^{i} \omega_{a}\right) \\
& +\theta^{k} \wedge\left(I_{j k} \cdot I_{\ell}^{i} \theta^{\ell}+J_{j k} \cdot J_{\ell}^{i} \theta^{\ell}+K_{j k} \cdot K_{\ell}^{i} \theta^{\ell}\right)-\theta^{i} \wedge \theta_{j} \bmod \omega_{a} \\
= & d \omega_{j}^{i}+\sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{i} d \omega_{a}-\omega_{j}^{\sigma} \wedge \omega_{\sigma}^{i}+\sum_{a}\left(\mathbf{J}_{j k}^{a}\left(\mathbf{J}^{a}\right)_{\ell}^{i}\right) \theta^{k} \wedge \theta^{\ell}-\theta^{i} \wedge \theta_{j} \bmod \omega_{a} \\
= & \left(d \omega_{j}^{i}-\omega_{j}^{\sigma} \wedge \omega_{\sigma}^{i}\right) \\
& +\sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{i}\left(-\mathbf{J}_{k \ell}^{a}\right) \theta^{k} \wedge \theta^{\ell}+\sum_{a}\left(\mathbf{J}_{j k}^{a}\left(\mathbf{J}^{a}\right)_{\ell}^{i}\right) \theta^{k} \wedge \theta^{\ell}-\theta^{i} \wedge \theta_{j} \bmod \omega_{a} \\
=(& \left.\frac{1}{2} R_{j k \ell}^{i}-\sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{i} \mathbf{J}_{k \ell}^{a}+\sum_{a} \mathbf{J}_{j k}^{a}\left(\mathbf{J}^{a}\right)_{\ell}^{i}-g_{j \ell} \cdot \delta_{k}^{i}\right) \theta^{k} \wedge \theta^{\ell} \bmod \omega_{a} .
\end{aligned}
$$

By alternation, we have

$$
\begin{equation*}
T_{j k \ell}^{i}=R_{j k \ell}^{i}-\left(2 \sum_{a}\left(\mathbf{J}^{a}\right)_{j}^{i} \mathbf{J}_{k \ell}^{a}-\sum_{a} \mathbf{J}_{j k}^{a}\left(\mathbf{J}^{a}\right)_{\ell}^{i}+\sum_{a} \mathbf{J}_{j \ell}^{a}\left(\mathbf{J}^{a}\right)_{k}^{i}+\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)\right) . \tag{8.11}
\end{equation*}
$$

Recall the space of all curvature tensors $\mathcal{R}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1))$. (See [1] for example.) It decomposes into the direct sum $\mathcal{R}_{0}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)) \oplus \mathcal{R}_{\mathbb{H} \mathbb{P}}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1))(n \geq 2)$. Here \mathcal{R}_{0} is the space of those curvatures with zero Ricci forms and $\mathcal{R}_{H \mathbb{H P}} \approx \mathbb{R}$ is the space of curvature tensors of the quaternionic pseudo-Kähler projective space $\mathbb{H} \mathbb{P}^{p, q}$ (cf. Definition $3.2)$.

Case $\mathbf{n} \geq \mathbf{2}$. Since we know that $R_{j i \ell}^{i}=R_{j \ell}=(4 n+8) g_{j \ell}$ from (5.3), the curvature tensor $T=\left(T_{j k \ell}^{i}\right)$ satisfies the tracefree condition:

$$
T_{j \ell}=\left(T_{j i \ell}^{i}\right)=(4 n+8) g_{j \ell}-\left(3 \cdot 3 g_{j \ell}+(4 n-1) g_{j \ell}\right)=0 .
$$

This implies that our curvature tensor T belongs to $\mathcal{R}_{0}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1))$ when $n \geq 2$.
Case $\mathbf{n}=1$. When $\operatorname{dim} M=7$, either $p=1, q=0$ or $p=0, q=1$. Choose the orthonormal basis $\left\{e_{i}\right\}_{i=1,2,3,4}$ with $e_{1}=e, e_{2}=I e, e_{3}=J e, e_{4}=K e$. Form another curvature tensor:

$$
\begin{align*}
& R_{j k \ell}^{i}=\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)+\left[I_{j \ell} I_{k}^{i}-I_{j k} I_{\ell}^{i}+2 I_{j}^{i} I_{k \ell}\right. \tag{8.12}\\
& \left.\quad+J_{j \ell} J_{k}^{i}-J_{j k} J_{\ell}^{i}+2 J_{j}^{i} J_{k \ell}+K_{j \ell} K_{k}^{i}-K_{j k} K_{\ell}^{i}+2 K_{j}^{i} K_{k \ell}\right] .
\end{align*}
$$

For any two distinct e_{i}, e_{j},

$$
\begin{aligned}
R_{j i j}^{i i} & =\left(g_{j j} \delta_{i}^{i}-g_{j i} \delta_{j}^{i}\right)+\left[I_{j i} I_{i}^{i}-I_{j i} I_{j}^{i}+2 I_{i j} I_{j}^{i}+J_{j i} J_{i}^{i}-J_{j i} J_{j}^{i}+2 J_{j}^{i} J_{i j}\right. \\
& \left.+K_{j i} K_{i}^{i}-K_{j i} K_{j}^{i}+2 K_{j}^{i} K_{i j}\right]=g_{j j}+3\left[I_{i j} I_{j}^{i}+J_{i j} J_{j}^{i}+K_{i j} K_{j}^{i}\right] .
\end{aligned}
$$

Since $i \neq j$ and e_{j} is either one of $\pm I e_{i}, \pm J e_{i}, \pm K e_{i}, I_{i j}^{2}+J_{i j}^{2}+K_{i j}^{2}=1$ (for example, if $e_{j}=I e_{i}$, then $I_{j}^{i 2}=1, J_{j}^{i}=0, K_{j}^{i}=0$ so that $I_{i j} I_{j}^{i}=g_{j j}$.) Thus, $R_{j i j}^{i}=4 g_{j j}$. It follows from the Schur's theorem (cf. [21] for example) that

$$
\begin{equation*}
R_{j k \ell}^{\prime i}=4\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right) . \tag{8.13}
\end{equation*}
$$

When $n=1$, we conclude that

$$
\begin{equation*}
T_{j k \ell}^{i}=R_{j k \ell}^{i}-R_{j k \ell}^{i}=R_{j k \ell}^{i}-4\left(g_{j} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right) . \tag{8.14}
\end{equation*}
$$

As the curvature $R_{j k \ell}^{i}$ satisfies the Einstein property from (5.3); $R_{j \ell}=4 \cdot 3 g_{j \ell}$, the scalar curvature $\sigma=4 \cdot 12$. On the other hand, the curvature tensor $R_{j k \ell}^{i}$ has the decomposition:

$$
R_{j k \ell}^{i}=W_{j k \ell}^{i}+\frac{4 \cdot 12}{4 \cdot 3}\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)
$$

in the space $\mathcal{R}(\mathrm{SO}(4))$ where $\mathrm{SO}(4)=\mathrm{Sp}(1) \cdot \mathrm{Sp}(1)$. Hence,

$$
\begin{equation*}
T_{j k \ell}^{i}=W_{j k \ell}^{i} \in \mathcal{R}_{0}(\mathrm{SO}(4)) \tag{8.15}
\end{equation*}
$$

for which $W_{j k \ell}^{i}$ corresponds to the Weyl curvature tensor (of $(U / \mathcal{E}, \hat{g})$).
Case $\mathbf{n}=\mathbf{0}$. If $\operatorname{dim} M=3$, then the above tensor is empty, so we simply set $T=0$. Define the Riemannian metric on a neighborhood U of a 3-dimensional p-c q $C R$ manifold M :

$$
\begin{equation*}
g_{x}(X, Y)=\omega_{1}(X) \cdot \omega_{1}(Y)+\omega_{2}(X) \cdot \omega_{2}(Y)+\omega_{3}(X) \cdot \omega_{3}(Y) \tag{8.16}
\end{equation*}
$$

$\left(\forall X, Y \in T_{x} U\right)$. Suppose that $\omega^{\prime}=\lambda \cdot \omega \cdot \bar{\lambda}$. Since $\left(\omega^{\prime}{ }_{1}, \omega^{\prime}{ }_{2}, \omega^{\prime}{ }_{3}\right)=u^{2} \cdot\left(\omega_{1}, \omega_{2}, \omega_{3}\right) A$ for $A \in \mathrm{SO}(3)$, the metric g changes into $g^{\prime}=\omega^{\prime}{ }_{1} \cdot \omega^{\prime}{ }_{1}+\omega^{\prime}{ }_{2} \cdot \omega^{\prime}{ }_{2}+\omega^{\prime}{ }_{3} \cdot \omega^{\prime}{ }_{3}$ satisfying that

$$
\begin{equation*}
g_{x}^{\prime}(X, Y)=u^{4} \cdot g_{x}(X, Y) \quad\left(\forall X, Y \in T_{x} U\right) . \tag{8.17}
\end{equation*}
$$

Then g^{\prime} is conformal to g on U. Define $T W(\omega)$ to be the Weyl-Schouten tensor $T W(g)$ of the Riemannian metric g on U. Then, it turns out that

$$
\begin{equation*}
T W\left(\omega^{\prime}\right)=T W(\omega) \tag{8.18}
\end{equation*}
$$

As a consequence, $T W(\omega)$ is an invariant tensor of U under the change $\omega^{\prime}=\lambda \cdot \omega \cdot \bar{\lambda}$.

9. Uniformization of p-C QCR structure

If $\left\{\omega^{(\alpha)},\left(I^{(\alpha)}, J^{(\alpha)}, K^{(\alpha)}\right), g_{(\alpha)}, U_{\alpha}\right\}_{\alpha \in \Lambda}$ is a p-c qCR structure on M where $\underset{\alpha \in \Lambda}{\cup} U_{\alpha}=M$, then we have the curvature tensor $T^{(\alpha)}=\left({ }^{(\alpha)} T_{j k \ell}^{i}\right)$ on each $\left(U_{\alpha}, \omega^{(\alpha)}\right)(n \geq 1)$. Similarly, $T W^{(\alpha)}=T W\left(\omega^{(\alpha)}\right)$ on $\left(U_{\alpha}, \omega^{(\alpha)}\right)$ for 3-dimensional case $(n=0)$. Then it follows from Proposition 8.1 and (8.18) that if $\omega^{(\beta)}=\lambda_{\alpha \beta} \cdot \omega^{(\alpha)} \cdot \bar{\lambda}_{\alpha \beta}$ on $U_{\alpha} \cap U_{\beta}$, then $T^{(\alpha)}=T^{(\beta)}, T W^{(\alpha)}=T W^{(\beta)}$. By setting $T \mid U_{\alpha}=T^{(\alpha)}$ (respectively $T W \mid U_{\alpha}=T W^{(\alpha)}$), the curvature T (respectively $T W$) is globally defined on a $(4 n+3)$-dimensional p-c q $C R$ manifold $M(n \geq 0)$. This concludes that

Theorem 9.1. Let M be a p-c $q C R$ manifold of dimension $4 n+3(n \geq 0)$. If $n \geq 1$, there exists the fourth-order curvature tensor $T=\left(T_{j k \ell}^{i}\right)$ on M satisfying that:
(i) When $n \geq 2, T=\left(T_{j k \ell}^{i}\right) \in \mathcal{R}_{0}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1))$ which has the formula:

$$
\begin{aligned}
T_{j k \ell}^{i}= & R_{j k \ell}^{i}-\left\{\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)+\left[I_{j \ell} I_{k}^{i}-I_{j k} I_{\ell}^{i}+2 I_{j}^{i} I_{k \ell}\right.\right. \\
& \left.\left.+J_{j \ell} J_{k}^{i}-J_{j k} J_{\ell}^{i}+2 J_{j}^{i} J_{k \ell}+K_{j \ell} K_{k}^{i}-K_{j k} K_{\ell}^{i}+2 K_{j}^{i} K_{k \ell}\right]\right\} .
\end{aligned}
$$

(ii) When $n=1, T=\left(W_{j k \ell}^{i}\right) \in \mathcal{R}_{0}(\mathrm{SO}(4))$ which has the same formula as the Weyl conformal curvature tensor.
(iii) If $n=0$, there exists the fourth-order curvature tensor $T W$ on M which has the same formula as the Weyl-Schouten curvature tensor.
We have associated to a p-c q $C R$ structure $\left(\left\{\omega_{a}\right\},\left\{J_{a}\right\},\left\{\xi_{a}\right\}\right)_{a=1,2,3}$ the pseudo-Sasakian metric $g=\sum_{a=1}^{3} \omega_{a} \cdot \omega_{a}+\pi^{*} \hat{g}$ on U for which $\mathcal{E} \rightarrow(U, g) \xrightarrow{\pi}(U / \mathcal{E}, \hat{g})$ is a pseudo-Riemannian submersion and the quotient $\left(U / \mathcal{E}, \hat{g},\left\{\hat{I}_{i}, \hat{J}_{i}, \hat{K}_{i}\right\}_{i \in \Lambda}\right)$ is a quaternionic pseudo-Kähler manifold by Theorem 4.6. Let ${ }^{(g)} R_{j k \ell}^{i}$ (respectively $\hat{R}_{j k \ell}^{i}$) denote the curvature tensor of g (respectively \hat{g}). If $R_{\mathbb{H}}$ is the generator of $\mathcal{R}_{\mathbb{H} P}(\operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)) \approx \mathbb{R}(n \geq 2)$, then it can be described as (cf. [1]):

$$
\begin{equation*}
R_{\mathbb{H} \mathbb{P}}=\left(g_{j \ell} g_{i k}-g_{j k} g_{i \ell}\right)+\sum_{a=1}^{3} \mathbf{J}_{j \ell}^{a} \mathbf{J}_{i k}^{a}-\sum_{a=1}^{3} \mathbf{J}_{j k}^{a} \mathbf{J}_{i \ell}^{a}+2 \sum_{a=1}^{3} \mathbf{J}_{i j}^{a} \mathbf{J}_{k \ell}^{a} \tag{9.1}
\end{equation*}
$$

where i, j, k, ℓ run over $\{1, \cdots, 4 n\}$. Then the formula (12.8) of curvature tensor of g [33] ($n \geq 1$) shows the following.

Lemma 9.2.

$$
\begin{align*}
\pi^{*} \hat{R}_{i j k \ell} & ={ }^{(g)} R_{i j k \ell}+\left(\sum_{a=1}^{3} \mathbf{J}_{j \ell}^{a} \mathbf{J}_{i k}^{a}-\sum_{a=1}^{3} \mathbf{J}_{j k}^{a} \mathbf{J}_{i \ell}^{a}+2 \sum_{a=1}^{3} \mathbf{J}_{i j}^{a} \mathbf{J}_{k \ell}^{a}\right) \tag{9.2}\\
& ={ }^{(g)} R_{i j k \ell}-\left(g_{j \ell} \delta_{i k}-g_{j k} \delta_{i \ell}\right)+R_{\mathbb{H} \mathbb{P}} .
\end{align*}
$$

We now state the uniformization theorem.

Theorem 9.3. (1) Let M be a $(4 n+3)$-dimensional $p-c q C R$ manifold $(n \geq 1)$. If the curvature tensor T vanishes, then M is locally modelled on $S^{4 p+3,4 q}$ with respect to the group $\operatorname{PSp}(p+1, q+1)$.
(2) If M is a 3 -dimensional p-c $q C R$ manifold whose curvature tensor $T W$ vanishes, then M is conformally flat (locally modelled on S^{3} with respect to the group $\operatorname{PSp}(1,1)$).

Proof. Using (5.2) and (9.1), the formula of Theorem 9.1 becomes

$$
\begin{equation*}
T_{j k \ell}^{i}=\pi^{*} \hat{R}_{j k \ell}^{i}-R_{\mathbb{H} \mathbb{P}} . \tag{9.3}
\end{equation*}
$$

Compared this with (9.2), we obtain that

$$
\begin{equation*}
T_{j k \ell}^{i}={ }^{(g)} R_{j k \ell}^{i}-\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right) . \tag{9.4}
\end{equation*}
$$

The equality (9.4) is also true for $n=1$. In fact, when $n=1, R_{\mathbb{H}}=4\left(g_{j} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)$ (cf. (8.12), (8.13)) and from (9.2), ${ }^{(g)} R_{j k \ell}^{i}-\left(g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i}\right)=\pi^{*} \hat{R}_{j k \ell}^{i}-R_{\mathbb{H P}}=T_{j k \ell}^{i}$ by (8.14).

Suppose that T (respectively $T W$) vanishes identically on M. First we show that M is locally isomorphic to $S^{4 p+3,4 q}$ (respectively M is locally isomorphic to S^{3}.) As $T \mid U_{\alpha}=$
 for $n \geq 2$. As a consequence,

$$
\begin{equation*}
{ }^{(g)} R_{j k \ell}^{i}=g_{j \ell} \delta_{k}^{i}-g_{j k} \delta_{\ell}^{i} \text { on } \mathcal{D} \mid U \tag{9.5}
\end{equation*}
$$

Since (U, g) is a pseudo-Sasakian 3 -structure with Killing fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$, the normality of (4.18) can be stated as ${ }^{(g)} R\left(X, \xi_{a}\right) Y=g(X, Y) \xi_{a}-g\left(\xi_{a}, Y\right) X$ (cf. [33]). It turns out that

$$
\begin{equation*}
{ }^{(g)} R\left(\xi_{a}, X, Y, Z\right)=g(X, Z) g\left(\xi_{a}, Y\right)-g(X, Y) g\left(\xi_{a}, Z\right) \tag{9.6}
\end{equation*}
$$

$(\forall X, Y, Z \in T U)$. Then (9.5) and (9.6) imply that (U, g) is the space of positive constant curvature. As $\hat{R}_{j k \ell}^{i}=R_{\mathbb{H} P}$ by (9.3), the quotient space $(U / \mathcal{E}, \hat{g})$ is locally isometric to the quaternionic pseudo-Kähler projective space ($\mathbb{H}^{\mathbb{P}}{ }^{p, q}, \hat{g}_{0}$). (Note that if $T_{j k \ell}^{i}=0$ for $n=1$, then $\pi^{*} \hat{R}_{j k \ell}^{i}=R_{j k \ell}^{i}=4\left(\delta_{j \ell} \delta_{k}^{i}-\delta_{j k} \delta_{\ell}^{i}\right)$ from (8.14). When $p=1, q=0$, the base space $(U / \mathcal{E}, \hat{g})$ is locally isometric to the standard sphere S^{4} which is identified with the 1 -dimensional quaternionic projective space \mathbb{H}^{1}. If $p=0, q=1$, then $(U / \mathcal{E}, \hat{g})$ is locally isometric to the quaternionic hyperbolic space $\mathbb{H}_{\mathbb{H}}^{1}=\mathbb{H}_{\mathbb{P}^{0,1}}$ in which we remark that the metric \hat{g} is negative definite.) Hence, the bundle: $\mathcal{E} \rightarrow(U, g) \xrightarrow{\pi}(U / \mathcal{E}, \hat{g})$ is locally isometric to the Hopf bundle as the Riemannian submersion ($n \geq 1$) (cf. Theorem 3.4):

$$
\operatorname{Sp}(1) \rightarrow\left(\Sigma_{\mathbb{H}}^{4 p+3,4 q}, g_{0}\right) \longrightarrow\left(\mathbb{H}^{p} \mathbb{P}^{p, q}, \hat{g}_{0}\right)
$$

This is obviously true for $n=0$.
Let $\varphi:(U, g) \rightarrow\left(\Sigma_{\mathbb{H}}^{4 p+3,4 q}, g_{0}\right)$ be an isometric immersion preserving the above principal bundle. If $V_{0}=\left\{\xi_{1}^{0}, \xi_{2}^{0}, \xi_{3}^{0}\right\}$ is the distribution of Killing vector fields which generates $\mathrm{Sp}(1)$ of the above Hopf bundle, then we can assume that $\varphi_{*} \xi_{a}=\xi_{a}^{0}(a=1,2,3)$ (by a composite of some element of $\operatorname{Sp}(1)$ if necessary). As $\omega_{a}(X)=g\left(\xi_{a}, X\right)(X \in T U)$ and $\omega_{a}^{0}(X)=g_{0}\left(\xi_{a}, X\right)\left(X \in T \Sigma_{\mathbb{H}}^{4 p+3,4 q}\right)$ respectively, the equality $g=\varphi^{*} g_{0}$ implies that

$$
\begin{equation*}
\omega_{a}=\varphi^{*} \omega_{a}^{0} \quad(a=1,2,3), \quad \omega=\varphi^{*} \omega_{0} . \tag{9.7}
\end{equation*}
$$

If we represent $\varphi^{*} \theta^{i}=\theta^{k} T_{k}^{i}+\sum_{a} \omega_{a} v_{a}^{i}$ for some matrix T_{j}^{i} and $v_{a}^{i} \in \mathbb{R}$, then the equality $\varphi_{*} \xi_{a}=\xi_{a}^{0}$ shows that $v_{a}^{i}=0$ for $i=1, \cdots, 4 n$. Thus,

$$
\begin{equation*}
\varphi^{*} \theta^{i}=\theta^{k} T_{k}^{i} \tag{9.8}
\end{equation*}
$$

For each $\alpha \in \Lambda$, we have an immersion $\varphi_{\alpha}: U_{\alpha} \rightarrow \Sigma_{\mathbb{H}}^{4 p+3,4 q}$ as above so that there is a collection of charts $\left\{U_{\alpha}, \varphi_{\alpha}\right\}_{\alpha \in \Lambda}$ on M. Put $g_{\alpha \beta}=\varphi_{\beta} \circ \varphi_{\alpha}{ }^{-1}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ when $U_{\alpha} \cap U_{\beta} \neq \emptyset$. It suffices to prove that $g_{\alpha \beta}$ extends uniquely to an element of $\operatorname{PSp}(p+$ $1, q+1)=\operatorname{Aut}_{q C R}\left(S^{4 p+3,4 q}\right)$. Suppose that

$$
\begin{equation*}
\omega^{(\beta)}=\lambda \cdot \omega^{(\alpha)} \cdot \bar{\lambda}=u^{2} \cdot a \cdot \omega^{(\alpha)} \cdot \bar{a} \quad \text { on } U_{\alpha} \cap U_{\beta} \neq \emptyset \tag{9.9}
\end{equation*}
$$

where $\lambda=u \cdot a$. The immersions $\varphi_{\alpha}: U_{\alpha} \rightarrow \Sigma_{\mathbb{H}}^{4 p+3,4 q}, \varphi_{\beta}: U_{\beta} \rightarrow \Sigma_{\mathbb{H}}^{4 p+3,4 q}$ satisfy $\omega^{(\alpha)}=\varphi_{\alpha}^{*} \omega_{0}$, $\omega^{(\beta)}=\varphi_{\beta}^{*} \omega_{0}$ as in (9.7). If we put $\mu=\lambda \circ \varphi_{\alpha}^{-1}$ on $\varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)$, then the above relation shows that

$$
\begin{equation*}
g_{\alpha \beta}^{*} \omega_{0}=\mu \cdot \omega_{0} \cdot \bar{\mu} . \tag{9.10}
\end{equation*}
$$

Using the fact that $d \omega_{a}^{(\alpha)}\left(J_{a}^{(\alpha)} X, Y\right)=g^{(\alpha)}(X, Y)(\forall X, Y \in \mathcal{D}, a=1,2,3)$ from (1.1) and $g^{(\alpha)}=\varphi_{\alpha *}^{*} g_{0}$, calculate that

$$
\omega_{a}^{0}\left(\varphi_{\alpha *} J_{a}^{(\alpha)} X, \varphi_{\alpha *} Y\right)=d \omega_{a}\left(J_{a}^{(\alpha)} X, Y\right)=g_{0}\left(\varphi_{\alpha *} X, \varphi_{\alpha *} Y\right)=d \omega_{a}^{0}\left(J_{a}^{0} \varphi_{\alpha *} X, \varphi_{\alpha *} Y\right)
$$

As $d \omega_{a}^{0}$ is nondegenerate on \mathcal{D}, for each $\alpha \in \Lambda$ we have

$$
\begin{equation*}
\varphi_{\alpha *} \circ J_{a}^{(\alpha)}=J_{a}^{0} \circ \varphi_{\alpha *} \quad \text { on } \mathcal{D} \quad(a=1,2,3) \tag{9.11}
\end{equation*}
$$

Let $\varphi_{\alpha}^{*} \theta^{i}=\theta_{(\alpha)}^{k} .{ }^{(\alpha)} T_{k}^{i}$ for some matrix ${ }^{(\alpha)} T_{k}^{i}$ as in (9.8). Then (9.11) means that ${ }^{(\alpha)} T_{i}^{k}$. $\left(J^{a}\right)_{k}^{j}=\left(J^{a}\right)_{i}^{k} \cdot{ }^{(\alpha)} T_{k}^{j}$, which implies that ${ }^{(\alpha)} T_{k}^{i} \in \mathrm{GL}(n, \mathbb{H})$. Noting that $g^{(\alpha)}(X, Y)=$ $g_{0}\left(\varphi_{\alpha *} X, \varphi_{\alpha *} Y\right)$, this reduces to

$$
\begin{equation*}
{ }^{(\alpha)} T_{k}^{i} \in \operatorname{Sp}(p, q) \tag{9.12}
\end{equation*}
$$

Let $\left\{\omega_{(\alpha)}, \omega_{(\alpha)}^{i}\right\}_{i=1, \cdots, n},\left\{\omega_{(\beta)}, \omega_{(\beta)}^{i}\right\}_{i=1, \cdots, n}$ be two coframes on the intersection $U_{\alpha} \cap U_{\beta}$ where $\omega_{(\alpha)}$ is a $\operatorname{Im} \mathbb{H}$-valued 1-form and each $\omega_{(\alpha)}^{i}$ is a \mathbb{H}-valued 1-form, simlarly for β. Noting (6.3) and (9.9), the coordinate change of the fiber \mathbb{H}^{n} satisfies that

$$
\left(\begin{array}{c}
\omega_{(\beta)} \tag{9.13}\\
\omega_{(\beta)}^{1} \\
\vdots \\
\omega_{(\beta)}^{n}
\end{array}\right)=\left(\begin{array}{c|c}
\lambda & 0 \\
\hline \tilde{v}^{i} & U^{\prime} \\
&
\end{array}\right)\left(\begin{array}{c}
\omega_{(\alpha)} \\
\omega_{(\alpha)}^{1} \\
\vdots \\
\omega_{(\alpha)}^{n}
\end{array}\right) \cdot \bar{\lambda}
$$

In order to transform them into the real forms, recall that $\mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$ is the maximal closed subgroup of $\mathrm{GL}(4 n, \mathbb{R})$ acting on $\mathbb{R}^{4 n}$ preserving the standard quaternionic structure $\{I, J, K\}$. For each fiber of $\mathcal{D}_{\alpha}\left(=\mathcal{D}_{\beta}\right)$ on the intersection, there exists a matrix $\tilde{U}=\left(\tilde{U}_{j}^{i}\right)=U^{\prime} \cdot \lambda \in \mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$ such that:

$$
\begin{equation*}
e_{j}^{(\alpha)}=\tilde{U}_{j}^{i} e_{i}^{(\beta)} \tag{9.14}
\end{equation*}
$$

with respect to the basis $\left\{e_{i}^{(\alpha)}\right\}_{x} \in\left(\mathcal{D}_{\alpha}\right)_{x},\left\{e_{i}^{(\beta)}\right\}_{x} \in\left(\mathcal{D}_{\beta}\right)_{x}$. From Corollary 1.4,

$$
\pm u^{2} \delta_{k \ell}=u^{2} g_{(\alpha)}\left(e_{k}^{(\alpha)}, e_{\ell}^{(\alpha)}\right)=g_{(\beta)}\left(\tilde{U}_{k}^{i} e_{i}^{(\beta)}, \tilde{U}_{\ell}^{j} e_{j}^{(\beta)}\right)= \pm \delta_{i j} \tilde{U}_{k}^{i} \tilde{U}_{\ell}^{j},
$$

so $\left(u^{-1} \tilde{U}_{k}^{i}\right) \in \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)=\mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H}) \cap \operatorname{SO}(4 p, 4 q)$ up to conjugacy $(n \geq 1)$. Put $U=\left(U_{k}^{i}\right)=\left(u^{-1} \tilde{U}_{k}^{i}\right) \in \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1)$, then

$$
\begin{equation*}
\tilde{U}=u U=\left(u U_{k}^{i}\right) \in \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1) \times \mathbb{R}^{+} . \tag{9.15}
\end{equation*}
$$

Using coframes $\left\{\theta_{(\alpha)}^{i}\right\},\left\{\theta_{(\beta)}^{i}\right\}$ (induced from $\left\{\omega_{(\alpha)}^{i}, \omega_{(\beta)}^{i}\right\}_{i=1, \cdots, n}$), the equation (9.14) translates into $\theta_{(\beta)}^{i}=\theta_{(\alpha)}^{k} \tilde{U}_{k}^{i}$ on \mathcal{D}. Using (9.13), it follows that

$$
\theta_{(\beta)}^{i}=\theta_{(\alpha)}^{k} \tilde{U}_{k}^{i}+\sum_{a=1}^{3} \omega_{a}^{(\alpha)} \cdot v_{a}^{i} \text { on } U_{\alpha} \cap U_{\beta} .
$$

Here v_{a}^{i} are determined by \tilde{v}^{i}, see (6.12). Then,

$$
\begin{align*}
g_{\alpha \beta}{ }^{*}\left(\theta^{i}\right) & =\left(\varphi_{\alpha}{ }^{-1}\right)^{*} \varphi_{\beta}{ }^{*}\left(\theta^{i}\right)=\left(\varphi_{\alpha}{ }^{-1}\right)^{*}\left(\theta_{(\beta)}^{j} \cdot{ }^{(\beta)} T_{j}^{i}\right) \\
& =\left(\varphi_{\alpha}{ }^{-1}\right)^{*}\left(\left(\theta_{(\alpha)}^{k} \tilde{U}_{k}^{j}+\sum_{a=1}^{3} \omega_{a}^{(\alpha)} \cdot v_{a}^{j}\right) \cdot{ }^{(\beta)} T_{j}^{i}\right) \tag{9.16}\\
& =\theta^{\ell} \cdot\left({ }^{(\alpha)} T^{-1}\right)_{\ell}^{k} \tilde{U}_{k}^{j} \cdot{ }^{(\beta)} T_{j}^{i}+\sum_{a=1}^{3} \omega_{a}^{0} \cdot\left(v_{a}^{j} \cdot{ }^{(\beta)} T_{j}^{i}\right) .
\end{align*}
$$

If we put $S=\left(S_{\ell}^{i}\right)=\left(\left({ }^{(\alpha)} T^{-1}\right)_{\ell}^{k} \cdot \tilde{U}_{k}^{j} \cdot{ }^{(\beta)} T_{j}^{i}\right)$, then (9.15) and (9.12) imply $S \in \operatorname{Sp}(p, q)$. $\mathrm{Sp}(1) \times \mathbb{R}^{+}$. By (9.10), (9.16), $g_{\alpha \beta}$ satisfies the conditions of (6.12). Therefore the diffeomorphism $g_{\alpha \beta}: \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right)$ is viewed locally as an element of Aut ${ }_{q C R}\left(S^{4 p+3,4 q}\right)=$ $\operatorname{PSp}(p+1, q+1)$ because $\Sigma_{\mathbb{H}}^{4 p+3,4 q} \subset S^{4 p+3,4 q}$. As $\operatorname{PSp}(p+1, q+1)$ acts real analytically on $S^{4 p+3,4 q}, g_{\alpha \beta}$ extends uniquely to an element of $\operatorname{PSp}(p+1, q+1)$. Therefore, the collection of charts $\left\{U_{\alpha}, \varphi_{\alpha}\right\}_{\alpha \in \Lambda}$ gives rise to a uniformization of a p-c q $C R$ manifold M with respect to $\left(\operatorname{PSp}(p+1, q+1), S^{4 p+3,4 q}\right)$.

Recall that the orthogonal Lorentz group $\mathrm{PO}(4,1)^{0}$ is isomorphic to $\operatorname{PSp}(1,1)$ as a Lie group. The same is true for the 3 -dimensional conformal geometry $\left(\operatorname{PSp}(1,1), S^{3}\right)=$ $\left(\mathrm{PO}(4,1)^{0}, S^{3}\right)(n=0)$.

10. Quaternionic bundle

It is known that the first Stiefel-Whitney class is the obstruction to the existence of a global 1-form of the contact structure (cf. [13], [32]) and the first Chern class is the obstruction to the existence of a global 1-form of the complex contact structure (cf. [22],[7],[37],[25]) respectively. It is natural to ask whether the first Pontrjagin class $p_{1}(M)$ is the obstruction to the existence of global 1-form of p-c q structure (respectively p-c qCR structure) on a (4n+3)- manifold $M(n \geq 1)$. In order to consider this, we need the elementary properties of the quaternionic bundle theory whose structure group is $\mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$ but not $\mathrm{GL}(n, \mathbb{H})$. To our knowledge, the fundamental properties of the quaternionic bundle with $\mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$ as the structure group are not provided explicitly. So we prepare the
necessary facts here. Let \mathcal{D} be the $4 n$-dimensional bundle defined by $\mathcal{D}=\cup_{\alpha} \mathcal{D}_{\alpha}$ where $\mathcal{D}_{\alpha}=\mathcal{D} \mid U_{\alpha}=$ Null $\omega^{(\alpha)}$ in which there is the relation on the intersection $U_{\alpha} \cap U_{\beta}$:

$$
\begin{equation*}
\omega^{(\beta)}=\bar{\lambda} \cdot \omega^{(\alpha)} \cdot \lambda=u^{2} \cdot \bar{a} \omega^{(\beta)} \cdot a \text { where } \lambda=u \cdot a \in \mathbb{H}^{*} . \tag{10.1}
\end{equation*}
$$

We have already discussed the transition functions on \mathcal{D} in (9.13). In fact, the gluing condition of \mathcal{D} in $U_{\alpha} \cap U_{\beta}$ is given by

$$
\left(\begin{array}{c}
v_{1}^{(\alpha)} \tag{10.2}\\
\vdots \\
v_{n}^{(\alpha)}
\end{array}\right)=u T\left(\begin{array}{c}
v_{1}^{(\beta)} \\
\vdots \\
v_{n}^{(\beta)}
\end{array}\right) \cdot a,
$$

in which $u(T \cdot \bar{a}) \in \operatorname{Sp}(p, q) \cdot \operatorname{Sp}(1) \times \mathbb{R}^{+}(p+q=n)$.
Definition 10.1. A quaternionic n-dimensional bundle is a vector bundle over a paracompact Hausdorff space M with fiber isomorphic to the n-dimensional quaternionic vector space \mathbb{H}^{n}. For an open cover $\left\{U_{\alpha}\right\}_{\alpha \in \Lambda}$ of M, if $U_{\alpha} \cap U_{\beta} \neq \emptyset$, then there exists a transition function $g_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow \mathrm{GL}(n, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H})$.

As a consequence, \mathcal{D} is a quaternionic n-dimensional bundle on M. Note that as $\mathrm{GL}(1, \mathbb{H}) \cdot \mathrm{GL}(1, \mathbb{H}) \approx \mathrm{SO}(4) \times \mathbb{R}^{+}$, the quaternionic line bundle is isomorphic to an oriented real 4-dimensional bundle. Define the inner product \langle,$\rangle of type (p, q)$ on $\mathbb{H}^{n}(p+q=n)$ by

$$
\langle z, w\rangle=\bar{z}_{1} w_{1}+\cdots+\bar{z}_{p} w_{p}-\bar{z}_{p+1} w_{p+1}-\cdots-\bar{z}_{n} w_{n} .
$$

Then \langle,$\rangle satisfies that \langle z, w \cdot \lambda\rangle=\langle z, w\rangle \cdot \lambda,\langle z \cdot \lambda, w\rangle=\bar{\lambda}\langle z, w\rangle,\langle z, w\rangle=\overline{\langle w, z\rangle}$ for $\lambda \in \mathbb{H}$, and so on. By a subspace W in \mathbb{H}^{n} we mean a right \mathbb{H}-module. Choosing $v_{0} \in \mathbb{H}^{n}$ with $\left\langle v_{0}, v_{0}\right\rangle>0$, let $V=\left\{v_{0} \cdot \lambda \mid \lambda \in \mathbb{H}\right\}$ be a 1 -dimensional subspace of \mathbb{H}^{n}. Denote $V^{\perp}=\left\{v \in \mathbb{H}^{n} \mid\langle v, x\rangle=0, \forall x \in V\right\}$. Then it is easy to check that V^{\perp} is a right \mathbb{H}-module for which there is a decomposition: $\mathbb{H}^{n}=V \oplus V^{\perp}$ as a right \mathbb{H}-module. The following is a quaternionic analogue of the splitting theorem.

Proposition 10.2. Given a quaternionic n-dimensional bundle ξ with an (indefinite) inner product 〈〉 on each fiber, there exists a quaternionic line bundle $\xi_{i}(i=1, \cdots, n)$ over a paracompact Hausdorff space N and a (splitting) map $f: N \rightarrow M$ for which:
(1) $f^{*} \xi=\xi_{1} \oplus \cdots \oplus \xi_{n}$.
(2) $f^{*}: H^{*}(M) \rightarrow H^{*}(N)$ is injective. Moreover,
(3) The bundle isomorphism b: $\xi_{1} \oplus \cdots \oplus \xi_{n} \rightarrow \xi$ compatible with f can be chosen to preserve the (indefinite) inner product.

Proof. Let $\mathbb{H}^{n}-\{0\} \rightarrow \xi_{0} \xrightarrow{\pi} M$ be the subbundle of ξ consisting of nonzero sections. Noting that \mathbb{H}^{n} is a right \mathbb{H}-module, it induces a fiber bundle with fiber $\mathbb{H} \mathbb{P}^{n-1}: \mathbb{H} \mathbb{P}^{n-1} \rightarrow Q \xrightarrow{q} M$. Since the cohomology group $H^{*}\left(\mathbb{H} \mathbb{P}^{n-1} ; \mathbb{Z}\right)$ is a free abelian group, $q^{*}: H^{*}(M) \rightarrow H^{*}(Q)$ is injective by the Leray-Hirsch's theorem (cf. [28].) Put

$$
q^{*} \xi=\{(\ell, v) \in Q \times \xi \mid q(\ell)=\pi(v)\} .
$$

Then, $\left(q^{*} \xi, \operatorname{pr}, Q\right)$ is a quaternionic bundle. Choose $\ell=v_{1} \mathbb{H}$ with $\left\langle v_{1}, v_{1}\right\rangle>0$. Let $\xi_{1}=\left\{(\ell, v) \in q^{*} \xi \mid v \in \ell\right\}$ which is the quaternionic 1-dimensional subbundle of $q^{*} \xi$. The (right) \mathbb{H}-inner product \langle,$\rangle on \xi$ induces a (right) \mathbb{H}-inner product on $q^{*} \xi$ such that the bundle projection $\operatorname{Pr}: q^{*} \xi \rightarrow \xi$ preserves the inner product obviously. Moreover, we obtain that

$$
q^{*} \xi=\xi_{1} \oplus \xi_{1}{ }^{\perp} .
$$

Since ξ_{1}^{\perp} is a quaternionic ($n-1$)-dimensional bundle over Q, an induction hypothesis for $n-1$ implies that there exist a paracompact Hausdorff space N and a splitting map $f_{1}: N \rightarrow Q$ such that $f_{1}^{*} \xi_{1}^{\perp}=\xi_{2} \oplus \cdots \oplus \xi_{n}$ and $f_{1}^{*}: H^{*}(Q) \rightarrow H^{*}(N)$ is injective. Moreover if $b_{1}: \xi_{2} \oplus \cdots \oplus \xi_{n} \rightarrow \xi_{1}{ }^{\perp}$ is the bundle map compatible with f_{1}, then b_{1} preserves the inner product on the fiber between $\xi_{2} \oplus \cdots \oplus \xi_{n}$ and $\xi_{1}{ }^{\perp}$ by induction. Putting $f=q \circ f_{1}: N \rightarrow M$, we see that $f^{*}: H^{*}(M) \rightarrow H^{*}(N)$ is injective and $f^{*} \xi=f_{1}^{*} \xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n}$. If $\operatorname{Pr}_{1}: f_{1}^{*} \xi_{1} \rightarrow \xi_{1}$ is the bundle map, then $\operatorname{Pr}_{1} \oplus b_{1}: f_{1}^{*} \xi_{1} \oplus\left(\xi_{2} \oplus \cdots \oplus \xi_{n}\right) \rightarrow \xi_{1} \oplus \xi_{1}^{\perp}$ is the bundle map. Then the map $\operatorname{Pr} \circ\left(\operatorname{Pr}_{1} \oplus b_{1}\right): f_{1}^{*} \xi_{1} \oplus \xi_{2} \oplus \cdots \oplus \xi_{n} \longrightarrow \xi$ is compatible with f and preserves the inner product \langle,$\rangle . This proves the induction step for n$.

Let ξ be a quaternionic line bundle over M with gluing condition on $U_{\alpha} \cap U_{\beta}$:

$$
\begin{equation*}
z_{\alpha}=\bar{\lambda}(x) z_{\beta} \mu(x)=u(x) \cdot \bar{b}(x) z_{\beta} a(x) \quad(u>0, a, b \in \operatorname{Sp}(1)) . \tag{10.3}
\end{equation*}
$$

Consider the tensor $\bar{\xi} \underset{\mathbb{H}}{\otimes} \xi$ so that the gluing condition on $U_{\alpha} \cap U_{\beta}$ is given by

$$
\begin{aligned}
& \left(\bar{z}_{\alpha} \underset{\mathbb{H}}{\otimes} z_{\alpha}\right)=u^{2}(x) \bar{a}(x)\left(\bar{z}_{\beta} b(x) \underset{\mathbb{H}}{\otimes} \bar{b}(x) z_{\beta}\right) a(x) \\
& =u^{2}(x) \bar{a}(x)\left(\bar{z}_{\beta} \underset{\mathbb{H}}{\otimes} z_{\beta}\right) a(x) .
\end{aligned}
$$

Then $\bar{\xi} \underset{\mathbb{H}}{\otimes} \xi$ is a quaternionic line bundle over M whenever ξ is a quaternionic line bundle.
Lemma 10.3. If $\bar{\xi} \underset{\mathbb{H}}{\otimes} \xi$ is viewed as a real 4-dimensional vector bundle, then $p_{1}(\underset{\mathcal{H}}{\underset{\mathbb{H}}{ }} \underset{\xi}{ } \xi)=$ $p_{1}(\bar{\xi})+p_{1}(\xi)$. Moreover, $p_{1}(\bar{\xi})=p_{1}(\xi)$ so that $p_{1}(\bar{\xi} \underset{\mathbb{H}}{\otimes} \xi)=2 p_{1}(\xi)$.

Proof. Let γ be the canonical real 4-dimensional vector bundle over $B \mathrm{SO}(4)$ (cf. [28]). Then, ξ is determined by a classifying map $f: M \rightarrow B \mathrm{SO}(4)$ such that $f^{*} \gamma=\xi$. Let $\mathrm{pr}_{i}: B \mathrm{SO}(4) \times B \mathrm{SO}(4) \rightarrow B \mathrm{SO}(4)$ be the projection $(i=1,2)$. As γ inherits a quaternionic structure from ξ through the bundle map, there is a quaternionic line bundle $\operatorname{pr}_{1}^{*} \bar{\gamma} \underset{\mathbb{H}}{\otimes} \operatorname{pr}_{2}^{*} \gamma$ over $B \mathrm{SO}(4) \times B \mathrm{SO}(4)$. Now, let $h: B \mathrm{SO}(4) \times B \mathrm{SO}(4) \rightarrow B \mathrm{SO}(4)$ be a classifying map of this bundle so that $h^{*} \gamma=\operatorname{pr}_{1}^{*} \bar{\gamma} \underset{\mathbb{H}}{\otimes} \operatorname{pr}_{2}^{*} \gamma$. When $\iota_{i}: B \mathrm{SO}(4) \rightarrow B \mathrm{SO}(4) \times B \mathrm{SO}(4)$ is the inclusion map on each factor, $\iota_{1}^{*} \mathrm{pr}_{2}^{*} \gamma$ is the trivial quaternionic line bundle (we simply put $\theta_{\mathbf{h}}^{1}$) and so $\iota_{1}^{*} h^{*} p_{1}(\gamma)=\iota_{1}^{*} p_{1}\left(\operatorname{pr}_{1}^{*} \bar{\gamma} \underset{\mathbb{H}}{\otimes} \operatorname{pr}_{2}^{*} \gamma\right)=p_{1}\left(\bar{\gamma} \underset{\mathbb{H}}{\otimes} \theta_{\mathbf{h}}^{1}\right)=p_{1}(\bar{\gamma})$. Similarly, $\iota_{2}^{*} h^{*} p_{1}(\gamma)=p_{1}(\gamma)$. Hence we obtain that

$$
h^{*} p_{1}(\gamma)=p_{1}(\bar{\gamma}) \times 1+1 \times p_{1}(\gamma) .
$$

Let $f^{\prime}: M \rightarrow B \mathrm{SO}(4)$ be a classifying map for $\bar{\xi}$ such that $f^{\prime *} \gamma=\bar{\xi}$. Then the map $h\left(f^{\prime} \times f\right) d$ composed of the diagonal map $d: M \rightarrow M \times M$ satisfies that

$$
\left(h\left(f^{\prime} \times f\right) d\right)^{*} \gamma=f^{\prime *} \bar{\gamma} \underset{\mathbb{H}}{\otimes} f^{*} \gamma=\bar{\xi} \underset{\mathbb{H}}{\otimes} \xi
$$

Therefore, $p_{1}(\underset{\xi}{\underset{\mathbb{H}}{\otimes}} \underset{\mathcal{T}}{\boldsymbol{\xi}})=d^{*}\left(f^{\prime} \times f\right)^{*}\left(p_{1}(\bar{\gamma}) \times 1+1 \times p_{1}(\gamma)\right)=p_{1}\left(f^{\prime *} \bar{\gamma}\right)+p_{1}\left(f^{*} \gamma\right)=p_{1}(\bar{\xi})+p_{1}(\xi)$.
Next, the conjuagte $\bar{\xi}$ is isomorphic to ξ as real 4 -dimensional vector bundle without orientation. But the correspondence $(1, \boldsymbol{i}, \boldsymbol{j}, \boldsymbol{k}) \mapsto(1,-\boldsymbol{i},-\boldsymbol{j},-\boldsymbol{k})$ gives an isomorphism of $\bar{\xi}$ onto $(-1)^{3} \xi$. And so, the complexification $\bar{\xi}_{\mathbb{C}}$ of $\bar{\xi}$ (viewed as a real vector bundle) is isomorphic to $(-1)^{6} \xi_{\mathbb{C}}=\xi_{\mathbb{C}}$. By definition, $p_{1}(\bar{\xi})=p_{1}(\xi)$.

10.1. Relation between the first Pontrjagin classes.

Suppose that $\left\{\omega^{(\alpha)},\left(I^{(\alpha)}, J^{(\alpha)}, K^{(\alpha)}\right), g_{(\alpha)}, U_{\alpha}\right\}_{\alpha \in \Lambda}$ represents a p-c q structure \mathcal{D} on a (4n+3)-manifold $M=\underset{\alpha \in \Lambda}{\cup} U_{\alpha}$. Let L be the quotient bundle $T M / \mathcal{D}$. Choose the local vector fields $\left\{\xi_{1}^{(\alpha)}, \xi_{2}^{(\alpha)}, \xi_{3}^{(\alpha)}\right\}$ on each neighborhood U_{α} such that $\omega_{a}^{(\alpha)}\left(\xi_{b}^{(\alpha)}\right)=\delta_{a b}$. Then, $L \mid U_{\alpha}$ is spanned by $\left\{\xi_{1}^{(\alpha)}\right\}_{i=1,2,3}$ for each $\alpha \in \Lambda$. Moreover, the gluing condition between $L \mid U_{\alpha}$ and $L \mid U_{\beta}$ is exactly given by

$$
\left(\begin{array}{c}
\xi_{1}^{(\alpha)} \tag{10.4}\\
\xi_{2}^{(\alpha)} \\
\xi_{3}^{(\alpha)}
\end{array}\right)=u^{2} A\left(\begin{array}{c}
\xi_{1}^{(\beta)} \\
\xi_{2}^{(\beta)} \\
\xi_{3}^{(\beta)}
\end{array}\right) .
$$

(Compare Definition 1.6.) It is easy to see that $\sum_{a=1}^{3} \omega_{a}^{(\alpha)} \cdot \xi_{a}^{(\alpha)}=\sum_{a=1}^{3} \omega_{a}^{(\beta)} \cdot \xi_{a}^{(\beta)}$ on $L \mid U_{\alpha} \cap U_{\beta}$. We can define a section $\theta: T M \rightarrow L$ which is an L-valued 1-form by setting

$$
\begin{equation*}
\theta \mid U_{\alpha}=\omega_{1}^{(\alpha)} \cdot \xi_{1}^{(\alpha)}+\omega_{2}^{(\alpha)} \cdot \xi_{2}^{(\alpha)}+\omega_{3}^{(\alpha)} \cdot \xi_{3}^{(\alpha)} \tag{10.5}
\end{equation*}
$$

which induces the exact sequence of bundles: $1 \rightarrow \mathcal{D} \rightarrow T M \xrightarrow{\theta} L \rightarrow 1$.
Let E be the quaternionic line bundle obtained from the union $\bigcup_{\alpha \in \Lambda} U_{\alpha} \times \mathbb{H}$ by identifying

$$
\left(p, z_{\alpha}\right) \sim\left(q, z_{\beta}\right) \text { if and only if }\left\{\begin{array}{l}
p=q \in U_{\alpha} \cap U_{\beta}, \tag{10.6}\\
z_{\alpha}=\lambda \cdot z_{\beta} \cdot \bar{\lambda}=u^{2} a \cdot z_{\beta} \cdot \bar{a} \text { for a fnction } \lambda \in \mathbb{H}
\end{array}\right.
$$

If $L \oplus \theta$ is the Whitney sum composed of the trivial (real) line bundle θ on M, then it is easy to see that $L \oplus \theta$ is isomorphic to the quaternionic line bundle E. In particular, $p_{1}(E)=p_{1}(L \oplus \theta)$. We prove that

Theorem 10.4. The first Pontrjagin classes of M and the bundle L has the relation:

$$
2 p_{1}(M)=(n+2) p_{1}(L \oplus \theta) .
$$

Proof. As \mathcal{D} is a quaternionic bundle in our sense, there is a splitting map $f: N \rightarrow M$ such that $f^{*} \mathcal{D}=\xi_{1} \oplus \cdots \oplus \xi_{n}$ from Proposition 10.2. Let $\Psi: \xi_{1} \oplus \cdots \oplus \xi_{n} \rightarrow \mathcal{D}$ be a bundle map which is compatible with f. Since Ψ is a right \mathbb{H}-linear map on the fiber at each point $x \in N$, we can describe

$$
\Psi\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)_{x}=P(x)\left(\begin{array}{c}
v_{1} \\
\vdots \\
v_{n}
\end{array}\right)_{f(x)}
$$

for some function $P: N \rightarrow \mathrm{GL}(n, \mathbb{H})$. By (3) of Theorem 10.2, choosing an appropriate inner product \langle,$\rangle of typw (p, q)$ on \mathcal{D} and the direct inner product on $\xi_{1} \oplus \cdots \oplus \xi_{n}, \Psi$ preserves the inner product between them. We may assume that

$$
\begin{equation*}
P(x) \in \operatorname{Sp}(p, q) \quad(p+q=n) . \tag{10.7}
\end{equation*}
$$

We examine the gluing condition of each ξ_{i} on $f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right) \neq \emptyset$. For $x \in f^{-1}\left(U_{\alpha}\right) \cap$ $f^{-1}\left(U_{\beta}\right)$, let $v_{i}^{(\alpha)} \in \xi_{i} \mid f^{-1}\left(U_{\alpha}\right)$. Suppose that there is an element $v_{i}^{(\beta)} \in \xi_{i} \mid f^{-1}\left(U_{\beta}\right)$ such that $v_{i}^{(\alpha)} \sim v_{i}^{(\beta)}$, i.e. $v_{i}^{(\alpha)}=\bar{\lambda}_{i} v_{i}^{(\beta)} \mu_{i}\left(\lambda_{i}, \mu_{i} \in \mathbb{H}^{*} ; i=1, \cdots, n\right)$. Since $\Psi\left(v_{i}^{(\alpha)}\right) \sim \Psi\left(v_{i}^{(\beta)}\right)$ at $f(x)$, it follows from (10.2) that $\Psi\left(\begin{array}{c}v_{1}^{(\alpha)} \\ \vdots \\ v_{n}^{(\alpha)}\end{array}\right)=u T \cdot \Psi\left(\begin{array}{c}v_{1}^{(\beta)} \\ \vdots \\ v_{n}^{(\beta)}\end{array}\right) \cdot a$ at $f(x) \in U_{a} \cap U_{\beta}$. As

$$
P\left(\begin{array}{c}
v_{1}^{(\alpha)} \\
\vdots \\
v_{n}^{(\alpha)}
\end{array}\right)=\Psi\left(\begin{array}{c}
v_{1}^{(\alpha)} \\
\vdots \\
v_{n}^{(\alpha)}
\end{array}\right)=u T \cdot P\left(\begin{array}{c}
v_{1}^{(\beta)} \\
\vdots \\
v_{n}^{(\beta)}
\end{array}\right) \cdot a=P \cdot u P^{-1} T P\left(\begin{array}{c}
v_{1}^{(\beta)} \\
\vdots \\
v_{n}^{(\beta)}
\end{array}\right) \cdot a,
$$

it follows that

$$
\left(\begin{array}{c}
v_{1}^{(\alpha)} \\
\vdots \\
v_{n}^{(\alpha)}
\end{array}\right)=u \cdot P^{-1} T P\left(\begin{array}{c}
v_{1}^{(\beta)} \\
\vdots \\
v_{n}^{(\beta)}
\end{array}\right) \cdot a .
$$

Since $v_{i}^{(\alpha)}=\bar{\lambda}_{i} v_{i}^{(\beta)} \mu_{i}$ as above, we have that $\left(x \in f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right)\right)$:

$$
\begin{align*}
& \text { (1) } u(x) P(x)^{-1} T(f(x)) P(x)=\left(\begin{array}{ccc}
\bar{\lambda}_{1}(x) & \cdots & 0 \\
0 & \ddots & 0 \\
0 & 0 & \bar{\lambda}_{n}(x)
\end{array}\right) . \tag{1}\\
& \text { (2) } \quad\left(\begin{array}{ccc}
\mu_{1}(x) & \cdots & 0 \\
0 & \ddots & 0 \\
0 & 0 & \mu_{n}(x)
\end{array}\right)=\left(\begin{array}{ccc}
a(x) & \cdots & 0 \\
0 & \ddots & 0 \\
0 & 0 & a(x)
\end{array}\right) .
\end{align*}
$$

Recall that $\operatorname{Sp}(p, q)=\left\{A \mid A^{*} \cdot \mathrm{I}_{p, q} \cdot A=\mathrm{I}_{p, q}\right\}$ where $\mathrm{I}_{p, q}=\left(\begin{array}{ccccccc}1 & & & & & & \\ & \ddots & & & & & \\ & & 1 & & & \\ & & & -1 & & \\ & & & & \ddots & \\ & & & & & & -1\end{array}\right)$.
From the fact that $T, P \in \operatorname{Sp}(p, q)$ (cf. (10.2),(10.7)), the equality (1) shows that

$$
\left(\begin{array}{ccc}
\left|\lambda_{1}\right|^{2} & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & -\left|\lambda_{n}\right|^{2}
\end{array}\right)=u^{2}\left(P^{-1} T P\right)^{*} \cdot \mathrm{I}_{p, q} \cdot\left(P^{-1} T P\right)=u^{2} \mathrm{I}_{p, q} .
$$

Hence, $\lambda_{i}=u \cdot \lambda_{i} /\left|\lambda_{i}\right|=u \cdot \nu_{i}$ where $\nu_{i}=\lambda_{i} /\left|\lambda_{i}\right| \in \operatorname{Sp}(1)$. It follows from (2) that $\mu_{i}=a$ for each i. We obtain that

$$
\begin{equation*}
v_{i}^{(\alpha)}=u(x) \cdot \bar{\nu}_{i}(x) v_{i}^{(\beta)} a(x) \quad(i=1, \cdots, n) . \tag{10.8}
\end{equation*}
$$

Each ξ_{i} is a quaternionic line bundle over N equipped with (10.8) on $f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right)$. If we consider $\bar{\xi}_{i} \underset{\mathbb{H}}{\otimes} \xi_{i}$, then the gluing condition on $f^{-1}\left(U_{\alpha}\right) \cap f^{-1}\left(U_{\beta}\right)$ is given by

$$
\left(\bar{v}_{i}^{(\alpha)} \underset{\mathbb{H}}{\otimes} v_{i}^{(\alpha)}\right)=u^{2}(x) \bar{a}(x)\left(\bar{v}_{i}^{(\beta)} \underset{\mathbb{H}}{\otimes} v_{i}^{(\beta)}\right) a(x) .
$$

Since $\lambda=u \cdot a$ is the same as that of E from (10.6), each $\bar{\xi}_{i} \otimes \mathbb{H}_{i}$ is isomorphic to $f^{*}(E)$. As $E \cong L \oplus \theta^{1}$, we see that $f^{*}\left(L \oplus \theta^{1}\right)=\bar{\xi}_{i} \otimes \underset{\mathbb{H}}{ } \xi_{i} \quad(i=1, \cdots, n)$. By Lemma 10.3, $f^{*} p_{1}\left(L \oplus \theta^{1}\right)=2 p_{1}\left(\xi_{i}\right)$ for each i. Since $f^{*} p_{1}(\mathcal{D}) \equiv p_{1}\left(\xi_{1}\right)+\cdots+p_{1}\left(\xi_{n}\right) \bmod 2$-torsion in $H^{4}(N ; \mathbb{Z}), f^{*}\left(2 p_{1}(\mathcal{D})\right)=2 p_{1}\left(\xi_{1}\right)+\cdots+2 p_{1}\left(\xi_{n}\right)=n f^{*} p_{1}\left(L \oplus \theta^{1}\right)=n f^{*} p_{1}(L)$. Noting that the splitting map f^{*} is injective, $2 p_{1}(\mathcal{D})=n p_{1}(L)$ in $H^{4}(M ; \mathbb{Z})$. As $T M \cong \mathcal{D} \oplus L$, we have $2 p_{1}(M)=(n+2) p_{1}(L)$.

Corollary 10.5. Let (M, \mathcal{D}) be a $(4 n+3)$-dimensional simply connected $p-c q$ manifold associated with the local forms $\left\{\omega^{(\alpha)},\left(I^{(\alpha)}, J^{(\alpha)}, K^{(\alpha)}\right), g_{(\alpha)}, U_{\alpha}\right\}_{\alpha \in \Lambda}$. Then the following are equivalent.
(1) $2 p_{1}(M)=0$. In particular, the rational Pontrjagin class vanishes.
(2) L is the trivial bundle so that $\left\{\xi_{\alpha}\right\}_{\alpha=1,2,3}$ exists globally on M.
(3) There exists a $\operatorname{Im} \mathbb{H}$-valued 1 -form ω on M which represents a $p-c q$ structure \mathcal{D}. In particular, there exists a hypercomplex structure $\{I, J, K\}$ on \mathcal{D}.

Proof. First note that the Whitney sum $L \oplus \theta^{1}$ is the quaternionic line bundle E with structure group lying in $\mathrm{SO}(3) \times \mathbb{R}^{+} \subset \mathrm{Sp}(1) \cdot \mathrm{Sp}(1) \times \mathbb{R}^{+}$. As above we have the quaternionic line bundle of ℓ-times tensor $\underset{\mathbb{H}}{\ell} E$ with structure group $\mathrm{SO}(3) \times \mathbb{R}^{+}$. Viewed as the 4 -dimensional real vector bundle, it determines a classifying map $g: M \rightarrow B\left(\mathrm{SO}(3) \times \mathbb{R}^{+}\right)=B \mathrm{SO}(3)$. Note that $p: B\left(\mathrm{Sp}(1) \times \mathbb{R}^{+}\right) \rightarrow B\left(\mathrm{SO}(3) \times \mathbb{R}^{+}\right)$is the two-fold covering map. As M is simply connected by the hypothesis, the map g lifts to a classifying map $\tilde{g}: M \rightarrow B \operatorname{Sp}(1)$ such that $g=p \circ \tilde{g}$. Let γ be the 4 -dimensional universal bundle over $B S O(3)$. (Compare [28].) Then the pull back $p^{*} \gamma$ is the 4-dimensional canonical bundle over $B \operatorname{Sp}(1)=\mathbb{H} \mathbb{P}^{\infty}$ whose first Pontrjagin class $p_{1}\left(p^{*} \gamma\right)$ generates the cohomology ring $H^{*}\left(\mathbb{H} \mathbb{P}^{\infty} ; \mathbb{Z}\right)$. So the bundle $\underset{\mathbb{H}}{\stackrel{\ell}{\otimes}} E$ is classified by the map \tilde{g} where $[\tilde{g}]=\tilde{g}^{*} p_{1}\left(p^{*} \gamma\right) \in H^{4}(M ; \mathbb{Z})$, which coincides with $p_{1}\left(\stackrel{\ell}{\mathbb{H}}_{\mathbb{R}}^{\mathbb{H}} E\right)$.
$(1) \Rightarrow(2)$. If $2 p_{1}(M)=0$, then Theorem 10.4 shows $(n+2) p_{1}(L)=0$, i.e. $p_{1}((\underset{\mathbb{H}}{\otimes+2} E))=0$. (See Lemma 10.3.) Hence, the classifying map $\tilde{g}: M \rightarrow B \operatorname{Sp}(1)$ for $\stackrel{n+2}{\underset{H}{\otimes}} E$ is null homotopic so that $\tilde{g}^{*} p^{*} \gamma=\underset{\mathbb{H}}{\stackrel{n+2}{\otimes}} E$ is trivial. There exists a family of functions $\left\{h_{\alpha}\right\} \in \operatorname{Sp}(1) \times \mathbb{R}^{+}$such that the transition function $g_{\alpha \beta}(x)=\delta^{1} h(\alpha, \beta)(x) \quad\left(x \in U_{\alpha} \cap U_{\beta}\right)$. As the gluing relation
for $\underset{\mathbb{H}}{\underset{\mathbb{H}}{\otimes+2}} E$ is given by $z \mapsto u_{\alpha \beta}^{2(n+2)} \bar{a}_{\alpha \beta} \cdot z \cdot a_{\alpha \beta}$, letting $h_{\alpha}=a_{\alpha} \cdot u_{\alpha} \in \operatorname{Sp}(1) \times \mathbb{R}^{+}$, it follows that

$$
u_{\alpha \beta}^{2(n+2)} \cdot \bar{a}_{\alpha \beta} \cdot z \cdot a_{\alpha \beta}=\left(h_{\alpha}^{-1} h_{\beta}\right) z=u_{\alpha}^{-1} u_{\beta} a_{\alpha} \bar{a}_{\beta} \cdot z \cdot a_{\beta} \bar{a}_{\alpha} \quad(z \in \mathbb{H})
$$

Then, $u_{\alpha \beta}^{2(n+2)}=u_{\alpha}^{-1} u_{\beta} \in \mathbb{R}^{+}$and $a_{\alpha \beta}= \pm a_{\beta} \bar{a}_{\alpha}$. As $u_{\alpha \beta}>0, u_{\alpha \beta}=\left(u_{\alpha}^{-1}\right)^{\frac{1}{2(n+2)}} \cdot u_{\beta}^{\frac{1}{2(n+2)}}$. Since the gluing relation of $E=L \oplus \theta$ is given by $z_{\alpha}=u_{\alpha \beta}^{2} \cdot \bar{a}_{\alpha \beta} \cdot z_{\beta} \cdot a_{\alpha \beta}$, putting $u_{\alpha}^{\prime}=\left(u_{\alpha}\right)^{\frac{1}{(n+2)}}, u^{\prime}{ }_{\beta}=\left(u_{\beta}\right)^{\frac{1}{(n+2)}}$, a calculation shows $z_{\alpha}=u_{\alpha}^{\prime}{ }^{-1} u^{\prime}{ }_{\beta} \cdot a_{\alpha} \bar{a}_{\beta} \cdot z_{\beta} \cdot a_{\beta} \bar{a}_{\alpha}$. Moreover if $C(\alpha) \in \mathrm{SO}(3)$ is the matrix defined by $\bar{a}_{\alpha} \cdot\left(\begin{array}{l}\boldsymbol{i} \\ \boldsymbol{j} \\ \boldsymbol{k}\end{array}\right) \cdot a_{\alpha}=C(\alpha)\left(\begin{array}{l}\boldsymbol{i} \\ \boldsymbol{j} \\ \boldsymbol{k}\end{array}\right)$ (similarly for $C(\beta)$), then

$$
\begin{equation*}
u_{\alpha \beta}^{2} \cdot A^{\alpha \beta}=u_{\alpha}^{\prime-1} u_{\beta}^{\prime} \cdot C(\alpha)^{-1} \circ C(\beta) \tag{10.9}
\end{equation*}
$$

Substitute this into (10.4), it follows that

$$
u^{\prime}{ }_{\alpha} \cdot C(\alpha)\left(\begin{array}{c}
\xi_{1}^{(\alpha)} \\
\xi_{2}^{(\alpha)} \\
\xi_{3}^{(\alpha)}
\end{array}\right)=u_{\beta}^{\prime} \cdot C(\beta)\left(\begin{array}{c}
\xi_{1}^{(\beta)} \\
\xi_{2}^{(\beta)} \\
\xi_{3}^{(\beta)}
\end{array}\right) \quad \text { on } U_{\alpha} \cap U_{\beta}
$$

We can define the vector fields $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ on M to be

$$
\left(\begin{array}{c}
\xi_{1} \tag{10.10}\\
\xi_{2} \\
\xi_{3}
\end{array}\right) \left\lvert\, U_{\alpha}=u^{\prime}{ }_{\alpha} \cdot C(\alpha)\left(\begin{array}{c}
\xi_{1}^{(\alpha)} \\
\xi_{2}^{(\alpha)} \\
\xi_{3}^{(\alpha)}
\end{array}\right)\right.
$$

Then $\left\{\xi_{1}, \xi_{2}, \xi_{3}\right\}$ spans L, therefore, L is trivial.
$(2) \Rightarrow(3)$. Since $\left(\omega_{1}^{(\beta)}, \omega_{2}^{(\beta)}, \omega_{3}^{(\beta)}\right)=\left(\omega_{1}^{(\alpha)}, \omega_{2}^{(\alpha)}, \omega_{3}^{(\alpha)}\right) u_{\alpha \beta}^{2} \cdot A^{\alpha \beta},(10.9)$ implies that

$$
\left(\omega_{1}^{(\beta)}, \omega_{2}^{(\beta)}, \omega_{3}^{(\beta)}\right) u_{\beta}^{\prime-1} \cdot C(\beta)^{-1}=\left(\omega_{1}^{(\alpha)}, \omega_{2}^{(\alpha)}, \omega_{3}^{(\alpha)}\right) u_{\alpha}^{\prime-1} \cdot C(\alpha)^{-1} \text { on } U_{\alpha} \cap U_{\beta}
$$

Then, a $\operatorname{ImH} \mathbb{H}$-valued 1 -form ω on M can be defined by

$$
\omega \left\lvert\, U_{\alpha}=\left(\omega_{1}^{(\alpha)}, \omega_{2}^{(\alpha)}, \omega_{3}^{(\alpha)}\right) u_{\alpha}^{\prime-1} \cdot C(\alpha)^{-1}\left(\begin{array}{c}
\boldsymbol{i} \tag{10.11}\\
\boldsymbol{j} \\
\boldsymbol{k}
\end{array}\right)\right.
$$

Note that ω satisfies that $\omega \mid U_{\alpha}=\bar{\lambda}_{\alpha} \cdot \omega^{(\alpha)} \cdot \lambda_{\alpha}$ for some function $\lambda_{\alpha}: U_{\alpha} \rightarrow \mathbb{H}^{*}(\alpha \in \Lambda)$. Recall that two quaternionic structures on $U_{\alpha} \cap U_{\beta}$ are related:

$$
\left(\begin{array}{c}
I^{(\alpha)} \\
J^{(\alpha)} \\
K^{(\alpha)}
\end{array}\right)=A^{\alpha \beta}\left(\begin{array}{c}
I^{(\beta)} \\
J^{(\beta)} \\
K^{(\beta)}
\end{array}\right)
$$

As $A^{\alpha \beta}=C(\alpha)^{-1} \circ C(\beta)$, it follows that

$$
C(\alpha) \cdot\left(\begin{array}{c}
I^{(\alpha)} \tag{10.12}\\
J^{(\alpha)} \\
K^{(\alpha)}
\end{array}\right)=C(\beta) \cdot\left(\begin{array}{c}
I^{(\beta)} \\
J^{(\beta)} \\
K^{(\beta)}
\end{array}\right)
$$

Letting $\left(\begin{array}{c}I \\ J \\ K\end{array}\right) \left\lvert\, U_{\alpha}=C(\alpha) \cdot\left(\begin{array}{c}I^{(\alpha)} \\ J^{(\alpha)} \\ K^{(\alpha)}\end{array}\right)\right.$, there exists a hypercomplex structure $\{I, J, K\}$ on \mathcal{D}.
$(3) \Rightarrow(1)$. If the global $\operatorname{Im} \mathbb{H}$-valued 1-form ω exists, then ω defines a three independent vector fields isomorphic to L, i.e. $p_{1}(L)=0$. Hence apply Theorem 10.4.

References

[1] D. A. Alekseevsky, "Riemannian spaces with exceptional holonomy groups," Functional Anal. Appl. Vol. 2 (1968) $97-105$.
[2] D. A. Alekseevsky and Y. Kamishima, "Quaternionic $C R$ structure on ($4 \mathrm{n}+3$)-dimensional manifolds", Preprint.
[3] D. A. Alekseevsky and Y. Kamishima, "Quaternionic pseudo-conformal structures," preprint.
[4] D. A. Alekseevsky and Y. Kamishima, "Quaternionic and para-quaternionic $C R$ structure on ($4 \mathrm{n}+3$)dimensional manifolds", Central European J. of Mathematics (electronic), vol. 2(5) (2004), 732-753.
[5] D.E. Blair, 'Riemannian geometry of contact and symplectic manifolds Contact manifolds ,' Progress in Math., 203 Birkhäuser, 2002.
[6] O. Biquard, "Quaternionic structures in mathematics and physics," Rome, 1999, World Sci. Publishing, River Edge, NJ, 2001; 23-30.
[7] W.M. Boothby, "A note on homogeneous complex contact manifolds," Proc. Amer. Math. Soc., Vol. 13 (1962) 276 - 280.
[8] C.P. Boyer, K.Galicki and B.M. Mann, "The geometry and topology of 3-Sasakian manifolds," Jour. reine ange. Math., Vol. 455 (1994) 183 - 220.
[9] G. Bredon, 'Introduction to compact transformation groups,' Academic Press, New York, 1972.
[10] D. M. Burns and S. Shnider, "Spherical hypersurfaces in complex manifolds," Invent. Math., Vol. 33 (1976) $223-246$.
[11] S.S. Chen and L. Greenberg, 'Hyperbolic Spaces,' Contribution to Analysis (A Collection of Papers Dedicated to Lipman Bers, eds. L. Ahlfors and others), Academic Press, New York and London, (1974) $49-87$.
[12] S.S. Chern and J. Moser, "Real hypersurfaces in complex manifolds," Acta Math., Vol. 133 (1974) 48 - 69.
[13] J. W. Gray, "Some global properties of contact structures," Ann. of Math., Vol. 69, (1959) 421 - 450.
[14] N. J. Hitchin, "The self-duality equations on a Riemannian surface," Proc. London Math. Soc., Vol. 55, (1987) $59-126$.
[15] S. Ishihara, "Quaternion Kählerian manifolds," J. Diff. Geom., Vol. 9 (1974) 483 - 500.
[16] Y. Kamishima, "Geometric rigidity of spherical hypersurfaces in quaternionic manifolds," Asian J. Math., Vol. 3, No. 3 (1999) $519-556$
[17] Y. Kamishima, "Geometric flows on compact manifolds and Global rigidity," Topology, Vol. 35 (1996) $439-450$.
[18] Y.Kamishima and T. Udono, "Three dimensional Lie group actions on compact ($4 n+3$)-dimensional geometric manifolds" Differential Geometrty and its Applications, Vol. 21 (2004) $1-26$.
[19] T. Kashiwada, "On a contact metric structure," Math. Z., Vol. 238, (2001) 829 - 832.
[20] S. Kobayashi, 'Transformation groups in differential geometry', Ergebnisse der Math. 70, Springer Verlag, 1972.
[21] S. Kobayashi and K. Nomizu, 'Foundations of differential geometry I,II,' Interscience John Wiley \& Sons, New York, 1969.
[22] S. Kobayashi, "Remarks on complex contact manifolds," Proc. Amer. Math., Vol. 10 (1959) $164-167$.
[23] R. Kulkarni, "On the principle of uniformization," J. Diff. Geom., Vol. 13 (1978) 109 -138.
[24] R. Kulkarni, "Proper actions and pseudo-Riemannian space forms," Advances in Math., Vol. 40 (1981) $10-51$.
[25] C. Lebrun, "Fano manifolds, contact structures, and quaternionic geometry," Int. J. Math. Vol. 3 (1995) 419-437.
[26] J. Lelong-Ferrand, Transformations conformes et quasi conformes des variétés riemanniennes compactes, Acad. Roy. Belgique Sci. Mem. Coll., Vol. 8 (1971), 1 - 44.
[27] P. Libermann, "Sur les structures presque complexes et autres structures infinitésimales régulières," Bull. Soc. Math., France Vol. 83 (1955) 195 - 224.
[28] J. Milnor and J. Stasheff, 'Characteristic Classes,' Ann. of Math. Studies, Vol. 76 (1974) Princeton Univ. Press.
[29] M. Obata, "The conjectures on conformal transformations of Riemannian manifolds," J. Diff. Geom., Vol. 6 (1971), 247-258.
[30] R. S. Palais, 'A global formulation of the Lie theory of transformation groups,' Mem. Amer. Math. Soc., Vol 22 (1957).
[31] S. Sasaki, "Spherical space forms with normal contact metric 3-structure," J. Diff. Geom., Vol. 6 (1972) 307-315.
[32] R. Stong, "Contact manifolds," J. Diff. Geom., Vol. 9 (1974) 219-238.
[33] S. Tanno, "Killing vector fields on contact Riemannian manifolds and fibering related to the Hopf fibrations," Tôhoku Math. Jour., Vol. 23 (1971) 313 - 333.
[34] S. Tanno, "Remarks on a triple of K-contact structures," Tôhoku Math. Jour., Vol. 48 (1996) 519 531.
[35] S. Webster, "Pseudo-Hermitian structures on a real hypersurface," J. Diff. Geom., vol. 13 (1978) 25-41.
[36] S. Webster, "On the pseudo conformal geometry of a Kähler manifold," Math. Z., vol. 157 (1977) 265 - 270.
[37] J. Wolf, "Complex homogeneous contact structures and quaternionic symmetric spaces," Jour. Math. Mech., Vol. 14 (1965) 1033 - 1047.
[38] J. Wolf, 'Spaces of constant curvature,' McGraw-Hill, Inc., 1967.
Department of Mathematics, Hull University, GEN. Cottingham Road HU6 7RX, Hull, England

E-mail address: d.v.alekseevsky@maths.hull.ac.uk
Department of Mathematics, Tokyo Metropolitan University,Minami-Ohsawa 1-1, Hachioji, Tokyo 192-0397, Japan

E-mail address: kami@comp.metro-u.ac.jp

[^0]: Date: February 28, 2006.
 1991 Mathematics Subject Classification. 53C55, 57S25.51M10 vin-cr06.tex.
 Key words and phrases. Pseudo-conformal quaternionic structure, Quaternionic $C R$ structuire, Quaternionic Kähler manifold, Sasakian 3 -structure, G-structure, integrability, uniformization, transformation group.

