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PSEUDO-CONFORMAL QUATERNIONIC CR STRUCTURE ON

(4n + 3)-DIMENSIONAL MANIFOLDS

DMITRI ALEKSEEVSKY AND YOSHINOBU KAMISHIMA

Abstract. We study a geometric structure on a (4n + 3)-dimensional smooth manifold
M which is an integrable, nondegenerate codimension 3-subbundle D on M whose fiber
supports the structure of 4n-dimensional quaternionic vector space H

n. It is thought of
as a generalization of the quaternionic CR structure. In order to study this geometric
structure on M , we single out an sp(1)-valued 1-form ω locally on a neighborhood U

of M such that Nullω = D|U . We shall construct the invariants on the pair (M, ω)
whose vanishing implies that M is uniformized with respect to a finite dimensional flat
quaternionic CR geometry. The invariants obtained on (4n + 3)-manifold M have the
same formula as the curvature tensor of quaternionic (indefinite) Kähler 4n-manifolds.
From this viewpoint, we exhibit a quaternionic analogue of Chern-Moser’s CR structure.

Introduction

The Weyl curvature tensor is a conformal invariant of Riemannian manifolds and the
Chern-Moser curvature tensor is a CR invariant on strictly pseudo-convex CR-manifolds. A
geometric significance of the vanishing of these curvature tensors is the appearance of the fi-
nite dimensional Lie group G with homogeneous space X . The geometry (G, X) is known as
conformally flat geometry (PO(n+1, 1), Sn), spherical CR-geometry (PU(n+1, 1), S2n+1)
respectively. The complete simply connected quaternionic (n+1)-dimensional quaternionic
hyperbolic space H

n+1
H

with the group of isometries PSp(n + 1, 1) has the natural com-
pactification homeomorphic to a (4n+4)-ball endowed with an extended smooth action of
PSp(n + 1, 1). When the boundary sphere S4n+3 of the ball is viewed as the real hyper-
surface in the quaternionic projective space HP

n+1, the elements of PSp(n + 1, 1) act as
quaternionic projective transformations of S4n+3. Since the action of PSp(n+1, 1) is transi-
tive on S4n+3, we obtain a flat (spherical) quaternionic CR geometry (PSp(n+1, 1), S4n+3).
(Compare [16].) Combined with the above two geometries, this exhibits parabolic geometry
on the boundary of the compactification of rank-one symmetric space of noncompact type
over R, C or H. (See [10],[12],[35],[17].)

This observation naturally leads us to the problems: (1) existence of geometric structure
on a (4n + 3)-dimensional manifold M and (2) existence of geometric invariant whose
vanishing implies that M is locally equivalent to the flat quaternionic CR manifold S4n+3.
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For this purpose we shall introduce a notion of pseudo-conformal quaternionic CR (p-
c qCR) structure (D, {ωα}α=1,2,3) on a (4n + 3)-dimensional manifold M . First of all,
in §1 we recall a pseudo-conformal quaternionic structure (p-c q structure) D which was
discussed in [3]. Compare Remark 1.7 for the difference between CR structure. Contrary to
the nondegenerate CR structure, the almost complex structure on D is not assumed to be
integrable. However, by the requirement of structure equations defining the qCR-structure,
we can prove the integrability of quaternionic structure in §2.1:

Theorem A. Each almost complex structure J̄α of the quaternionic CR structure is
integrable on the codimension-1 contact subbundle Nullωα (α = 1, 2, 3).

There exists a canonical pseudo-Riemannian metric g associated to the nondegenerate p-c
qCR structure. In §4 we see that that the integrability of three almost complex structures
{J̄α}α=1,2,3 is equivalent with the condition that (M, g) is a pseudo-Sasakian 3-structure.
Namely the notion is equivalent between nondegenerate quaternionic CR structure and
pseudo-Sasakian 3-structure (cf. [4]). In particular, p-c qCR manifolds contain the class
of pseudo 3-Sasakian manifolds. (Refer to [5],[8],[33],[34] for (positive definite) Sasakian
3-structure.) However, we emphasize that the converse is not true. There are two typical
classes of compact (spherical) p-c qCR manifolds but not pseudo-Sasakian 3-manifolds
[16]; one is a quaternionic Heisenberg manifold M/Γ. Some finite cover of M/Γ is a
Heisenberg nilmanifold which is a principal 3-torus bundle over the flat quaternionic n-
torus T p,q

H
of signature (p, q) (p+q=n), see §7.3. Another manifold is a pseudo-Riemannian

standard space form Σ3,4n
H

/Γ of constant negative curvature of type (4n, 3). It is a compact

quotient of the homogeneous space Σ3,4n
H

= Sp(1, n)/Sp(n). Some finite cover of Σ3,4n
H

/Γ
is a principal S3-bundle over the quaternionic hyperbolic space form Hn

H
/Γ∗. Obviously

those manifolds are not positive-definite compact 3-Sasakian manifolds. (cf. [16], [18] more
generally.)

For the second problem, we shall try to construct the curvature tensor of p-c qCR
structure. This is thought of as a quaternionic analogue of Chern-Moser’s CR curvature
tensor. When M is a 2n + 1-dimensional manifold equipped with a nondegenerate CR
structure (H, J), it follows from the Cartan geometry that there is an su(p+1, q+1)-valued
1-form κ called a Cartan connection whose associated curvature form Π vanishes if and only
if M is locally isomorphic to PU(p+1, q+1)/P+(C) where P+(C) is the maximal parabolic

subgroup (p+ q = n). The 4-th order Chern-Moser CR curvature tensor S = (Sα
β
ρσ) is the

coefficient of the curvature component Φβ
α of Π. By the observation of Webster (cf. [35],

[36]) the other components are obtained from S by further covariant differentiation for
n > 1. In the CR case, the Chern-Moser curvature tensor S vanishes on M if and only if
so does the su(p + 1, q + 1)-valued Cartan curvature form Π.

On a (4n+3)-dimensional p-c q manifold (M,D), there is also an sp(p+1, q+1)-valued
Cartan form κ whose associated curvature form Π has zero curvature if and only if (M,D)
is locally isomorphic to PSp(p+1, q+1)/P+(H). We don’t know whether a curvature tensor
on M could be derived only from the Cartan form Π on the p-c q structure D because D
lacks the structure equations representing the integrability conditions but not the p-c qCR
structure. However, with the aid of pseudo-Riemannian connection of the pseudo-Sasakian
3-structure which is locally equivalent to p-c qCR structure, we can define a quaternionic
CR curvature tensor (cf. §5). Based on this curvature tensor, in §8 we shall establish a
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curvature tensor T which is invariant under the equivalence of p-c qCR structures. Remark
that if T vanishes under the existence of p-c qCR structure, Π also vanishes. The explicit
formula of T is described as follows (cf. Theorem 9.1 of §9).

Theorem B. There exists a fourth-order curvature tensor T = (T i
jkℓ) on a nondegenerate

p-c qCR manifold M in dimension 4n+3 (n ≥ 0). If n ≥ 2, then T = (T i
jkℓ) ∈ R0(Sp(p, q)·

Sp(1)) which has the formula:

T i
jkℓ = Ri

jkℓ −
{

(gjℓδ
i
k − gjkδ

i
ℓ) +

[

IjℓI
i
k − IjkIℓ

i + 2I i
jIkℓ

+JjℓJ
i
k − JjkJ

ℓ
i + 2J i

jJkℓ + KjℓK
i
k − KjkK

i
ℓ + 2Ki

jKkℓ

]}

.

When n = 1, T = (W i
jkℓ) ∈ R0(SO(4)) which has the same formula as the Weyl conformal

curvature tensor. When n = 0, there exists the fourth-order curvature tensor TW on M
which has the same formula as the Weyl-Schouten tensor.

In §7, we introduce the (4n+3)-dimensional manifold S3+4p,4q = Sp(p+1, q+1)/P+(H)
which is a pc-qCR manifold with vanishing p-c qCR curvature tensor T . In particular,
S4n+3 = S3+4n,0 is the positive-definite flat (spherical) quaternionic CR manifold. As in
CR geometry, we prove that the vanishing of T gives rise to a uniformization with respect
to the flat (spherical) p-c qCR geometry, see Theorem 9.3 in §8.1. (Compare [23] for
uniformization in general.)

Theorem C.

(i) If M is a (4n+3)-dimensional nondegenerate p-c qCR manifold of type (3+4p, 4q)
(p + q = n ≥ 1) whose curvature tensor T vanishes, then M is uniformized over
S3+4p,4q with respect to the group PSp(p + 1, q + 1).

(ii) If M is a 3-dimensional p-c qCR manifold whose curvature tensor TW vanishes,
then M is conformally flat ( locally modelled on S3 with respect to the group
PSp(1, 1) ).

In the positive definite case, our p-c qCR geometry presents spherical quaternionic CR
geometry (PSp(n + 1, 1), S4n+3) as in the beginning of Introduction.

When a geometric structure is either contact structure or complex contact structure, it is
known that the first Stiefel-Whitney class or the first Chern class is the obstruction to the
existence of global 1-forms representing their strutures respectively. As a concluding remark
to p-c q structure but not necessarily p-c qCR structure, we verify that the obstruction
relates to the first Pontrjagin class p1(M) of a (4n + 3)-dimensional p-c q manifold M
(n ≥ 1). In §10, we prove that the following relation of the first Pontrjagin classes. (See
Theorem 10.4.)

Theorem D. Let (M,D) be a (4n+3)-dimensional p-c q manifold. Then the first Pontr-
jagin classes of M and the bundle L = TM/D has the relation that 2p1(M) = (n+2)p1(L).
Moreover, if M is simply connected, then the following are equivalent.

(1) 2p1(M) = 0. In particular, the first rational Pontrjagin class vanishes.
(2) There exists a global ImH-valued 1-form ω on M which represents a p-c q structure

D. In particular, there exists a hypercomplex structure {I, J, K} on D.
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1. Pseudo-conformal quaternionic CR structure

When H denotes the field of quaternions, the Lie algebra sp(1) of Sp(1) is identified with
ImH = Ri + Rj + Rk. Let M be a (4n + 3)-dimensional smooth manifold M .

Definition 1.1. A 4n-dimensional orientable subbundle D equipped with a quaternionic
structure Q is called a pseudo-conformal quaternionic structure (p-c q structure) on M if
it satisfies that

(i) D ∪ [D,D] = TM .
(ii) The 3-dimensional quotient bundle TM/D at any point is isomorphic to the Lie

algebra ImH.
(iii) There exists a ImH-valued 1-form ω = ω1i + ω2j + ω3k locally defined on a neigh-

borhood of M such that D = Nullω =
3∩

α=1
Nullωα and dωα|D is nondegenerate.

Here each ωα is a real valued 1-form (α = 1, 2, 3).
(iv) The endomorphism Jγ = (dωβ |D)−1 ◦ (dωα|D) : D→D constitutes the quaternionic

structure Q on D: Jγ
2 = −1, JαJβ = Jγ = −JβJα, (γ = 1, 2, 3) etc.

Lemma 1.2. If we put σα = (dωα|D) on D, then there is the following equality:
σ1(J1X, Y ) = σ2(J2X, Y ) = σ3(J3X, Y ) (∀ X, Y ∈ D). Moreover, the form

(1.1) gD = σα ◦ Jα

is a nondegenerate Q-invariant symmetric bilinear form on D; gD(X, Y ) = gD(JαX, JαY ),
gD(X, JαY ) = σα(X, Y ), (α = 1, 2, 3), etc.

Proof. By (iv) of Definition 1.1, it follows that

σα(JαX, Y ) = σα(Jβ(JγX), Y ) = σγ(JγX, Y )

= σγ(Jα(JβX), Y ) = σβ(JβX, Y ).
(1.2)

Put gD(X, Y ) = σα(JαX, Y ) for X, Y ∈ D (α = 1, 2, 3), which is nondegenerate by (iii).

As −Jβ = σ−1
γ ◦ σα by (iv), calculate that gD(Y, X) = −σα(X, JαY ) = σγ(JβX, JαY ) =

−σβ(Y, JβX) = gD(X, Y ). It follows that gD(X, Y ) = σα(JαX, Y ) = σα(Jα(JαY ), JαX) =

gD(JαY, JαX). �

In general, there is no canonical choice of ω which annihilates D. The fiber of the
quotient bundle TM/D is isomorphic to Im H by ω on a neighborhood U by (ii). The
coordinate change of the fiber H is described as v→λ · v · µ for some nonzero elements
λ, µ ∈ H. If ω′ is another 1-form such that Null ω′ = D on a neighborhood U ′, then it
follows that ω′ = λ ·ω · µ for some H-valued functions λ, µ locally defined on U ∩ U ′. This
can be rewritten as ω′ = u · a · ω · b where a, b are functions with valued in Sp(1) and u is
a positive function. Since ω̄′ = −ω′, it follows that a · ω · b = b̄ ·ω · ā, i.e. (b̄a) ·ω · (b̄a) = ω.
As ω : T (U ∩ U ′)→Im H is surjective, b̄a centralizes Im H so that b̄a ∈ R. Hence, b = ±ā.
As we may assume that D is orientable, ω′ is uniquely determined by

(1.3) ω′ = u · a · ω · ā for some functions a ∈ Sp(1), u > 0 on U ∩ U ′.

We must show that Definition 1.1 does not depend on the choice of ω′ satisfying (1.3).
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Lemma 1.3. Any form ω′ locally conjugate to ω satisfies (iii), (iv) of Definition 1.1.

Proof. First, if A = (aij) ∈ SO(3) is the matrix function determined by

(1.4) Ada





i

j

k



 = a





i

j

k



 ā = A





i

j

k



 ,

then a new quaternionic structure on D is introduced as

(1.5)





J ′
1

J ′
2

J ′
3



 = tA





J1

J2

J3



 .

Then the formula of (1.3) is described as

(ω′
1, ω

′
2, ω

′
3) = (ω1, ω2, ω3)u ·A = u(

3∑

β=1

aβ1ωβ ,

3∑

β=1

aβ2ωβ ,

3∑

β=1

aβ3ωβ).(1.6)

Differentiate (1.6) and restricting to D, use Lemma 1.2 (note that dω′ = u · a · dω · ā on
D|U ∩ U ′),

dω′
α(X, Y ) = u

∑

β

aβαdωβ(X, Y ) = −u(a1αgD(J1X, Y ) + a2αgD(J2X, Y ) + a3αgD(J3X, Y ))

= −ugD((a1αJ1 + a2αJ2 + a3αJ3)X, Y ) = −ugD(J ′
αX, Y ),

(1.7) dω′
α(J ′

αX, Y ) = ugD(X, Y ) (α = 1, 2, 3).

In particular, dω′
α|D is nondegenerate, proving (iii). Put σ′

α = dω′
α|D. As in (iv) of Defini-

tion 1.1, the endomorphism is defined by the rule: I ′γ = (σ′
β|D)−1◦(σ′

α|D), i.e. σ′
β(I ′γX, Y ) =

σ′
α(X, Y ) (∀X, Y ∈ D). Then we show that the quaternionic structure {I ′α}α=1,2,3 coincides

with {J ′
α}α=1,2,3 on D. For this, as σ′

α(X, Y ) = −ugD(J ′
αX, Y ) by (1.7), it follows that

σ′
β(I ′γX, Y ) = −ugD(J ′

β(I ′γX), Y ) and the above equality implies that J ′
β(I ′γX) = J ′

αX

(∀X ∈ D). Hence, I ′γ = −J ′
βJ ′

α = J ′
γ . This proves (iv). �

By Lemma 1.2, we may assume that gD locally defined on D|U has signature (4p, 4q) with

4p-times positive sign and 4q-times negative sign (p + q = n). As above put g′D(X, Y ) =
dω′

α(J ′
αX, Y ) (X, Y ∈ D). We have

Corollary 1.4. If ω′ = uā · ω · a on U ∩ U ′, then g′
D

= u · gD. As a consequence, the
signature (p, q) is constant on U ∩ U ′ (and hence everywhere on M) under the change
ω′ = uā · ω · a.

We are now going to consider an integrability condition on the p-c q structure D.

Definition 1.5. Suppose that the following structure equation is locally given:

(1.8) ρα = dωα + 2ωβ ∧ ωγ

where (α, β, γ) ∼ (1, 2, 3) up to cyclic permutation. If the skew symmetric 2-form ρα

satisfies that

(1.9) Null ρ1 = Null ρ2 = Null ρ3,
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the pair (ω, Q) is a local quaternionic CR structure (qCR structure) on M .

See [6], [4]. If the (local) qCR structure has a ImH-valued 1-form ω defined entirely
on M , then it is noted that the global qCR structure coincides with the pseudo-Sasakian
3-structure of M , see §4.1. Using two Definitions 1.1, 1.5, we come to the following notion
due to the manner of Libermann [27].

Definition 1.6. The pair (D, Q) on M is said to be a pseudo-conformal quaternionic
CR structure (p-c qCR structure) if there exists locally a 1-form η with Null η = D on a
neighborhood U of M such that η is conjugate to a qCR structure on U . Namely there
exists a qCR structure ω on U for which η = λ · ω · λ̄ where λ : U→H is a function and λ̄
is the conjugate of the quaternion.

Remark 1.7. For the nondegenerate CR case, let ω be a 1-form which represents a CR
structure (Nullω, J). Since σα(X, Y ) = gD(X, JαY ) by Lemma 1.2, the corresponding
(complex) formula of the structure equation (1.8) of Definition 1.5 becomes (cf. [35]):

dω = gij̄θ
i ∧ θj̄ ,

where J is assumed to be integrable although the CR structure has no such equation as (1.9).
In the p-c qCR case, however Theorem 2.7 shows that each almost complex structure J̄α

is integrable (cf. (2.9) also). Moreover, each characteristic vector filed ξα is a CR vector
field (cf. (3) of Lemma 2.3). In general, this never occurs from the structure equation to
the nondegenerate CR structure.

2. Quaternionic CR structure

Suppose that ω is a qCR structure on a neighborhood of M . Let ρα = dωα+2ωβ ∧ωγ be
as in (1.8). Put V = Null ρα (α = 1, 2, 3) (cf. (1.9)). Since dimD = 4n, let {v1, v2, v3} be a
basis of V . Put ωi(vj) = aij. As ω1 ∧ ω2 ∧ ω3|V 6= 0, the 3× 3-matrix (aij) is nonsingular.
Put bij = t(aij)

−1 and ξj =
∑

bjkvk. Then ωα(ξβ) = δαβ and locally,

(2.1) V = {ξα, α = 1, 2, 3}
Lemma 2.1. Let L be the Lie derivative. Then, Lξα(D) = D (α = 1, 2, 3).

Proof. For X ∈ D, ωβ(Lξα(X)) = ωβ([ξα, X ]). As

0 = ρβ(ξα, X) = dωβ(ξα, X) + 2ωγ ∧ ωα(ξα, X) =
1

2
(−ωβ([ξα, X ]),

we have ωβ([ξα, X ]) = 0 for β = 1, 2, 3. Hence, Lξα(X) ∈ D =
3∩

β=1
Null ωβ .

�

We prove also that LξV = V for ξ ∈ V .

Lemma 2.2. The distribution V is integrable. The vector fields ξα determined by (2.1)
generates the Lie algebra isomorphic to so(3), i.e. [ξα, ξβ] = 2ξγ. (α, β, γ) ∼ (1, 2, 3).

Proof. By (2.1), note that

V = {ξ ∈ TM | ρ1(ξ, v) = ρ2(ξ, v) = ρ3(ξ, v) = 0, ∀v ∈ TM} = {ξα ; α = 1, 2, 3}.(2.2)
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Since 0 = ρα(ξβ, ξγ) =
1

2
(−ωα([ξβ, ξγ]) + 2), it follows that [ξβ, ξγ] − 2ξα ∈ Null ωα.

Applying ρβ(ξβ, ξγ) =
1

2
(−ωβ([ξβ, ξγ ]) + 0) = 0, it yields also that [ξβ, ξγ]− 2ξα ∈ Null ωβ .

Similarly as ργ(ξβ, ξγ) = 0, we obtain [ξβ , ξγ] − 2ξα ∈ 3∩
β=1

Null ωβ = D for α = 1, 2, 3. As

ρα([ξβ, ξγ] − 2ξα, v) = ρα([ξβ, ξγ], v) for arbitrary v ∈ D, By the definition of ρα, calculate

ρα([ξβ, ξγ], v) = −1

2
ωβ([[ξβ, ξγ], v])

=
1

2
(ωβ([[ξγ, v], ξβ]) + ωβ([[ξβ, v], ξγ])) (by Jacobi identity)

= 0 (by Lemma 2.1).

Since ρα is nondegenerate on D by (iii), [ξβ, ξγ] = 2ξα (α = 1, 2, 3). Hence, such a Lie
algebra V is locally isomorphic to the Lie algebra of SO(3). �

We collect the properties of ωα, ρα, Jα, gD. (Compare [4].)

Lemma 2.3. Up to cyclic permutation of (α, β, γ) ∼ (1, 2, 3), the following properties hold.

(1) Lξαωα = 0, Lξαωβ = ωγ = −Lξβ
ωα.

(2) Lξαρα = 0, Lξαρβ = ργ = −Lξβ
ρα.

(3) LξαJα = 0, LξαJβ = Jγ = −Lξβ
Jα.

(4) LξαgD = 0.

Proof. (1). First note that ιξαωα(x) = ωα(ξα) = 1 (x ∈ M), ιξα(ωβ ∧ ωγ)(X) = ωβ ∧
ωγ(ξα, X) = 0 (α 6= β, γ), and ιξαρα(X) = ρα(ξα, X) = 0 by (3.7).

Lξαωα = (dιξα + ιξαd)ωα = ιξαdωα = ιξα(−2ωβ ∧ ωγ + ρα) by (1.8)

= −2ιξα(ωβ ∧ ωγ) + ιξαρα = 0,
(2.3)

Next,

Lξαωβ = ιξαdωβ = ιξα(−2ωγ ∧ ωα + ρβ) = −2ιξα(ωγ ∧ ωα), while

−2ιξα(ωγ ∧ ωα)(v) = 0 for v 6∈ Null ωγ and −2ιξα(ωγ ∧ ωα)(ξγ) = 1. Hence Lξαωβ = ωγ .
(2).

Lξαρβ = Lξα(dωβ + 2ωγ ∧ ωα)

= (dιξα + ιξαd)dωβ + 2Lξα(ωγ ∧ ωα)

= dιξαdωβ + 2Lξαωγ ∧ ωα + 2ωγ ∧ Lξαωα

= d(Lξα − dιξα)ωβ + 2Lξαωγ ∧ ωα (by (1))

= d(Lξαωβ) − 2Lξγωα ∧ ωα = dωγ − 2ωβ ∧ ωα

= dωγ + 2ωα ∧ ωβ = ργ .

(2.4)
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Similarly,

Lξαρα = Lξα(dωα + 2ωβ ∧ ωγ)

= dιξαdωα + 2Lξαωβ ∧ ωγ + 2ωβ ∧ Lξαωγ

= d(Lξα − dιξα)ωα + 2ωγ ∧ ωγ + 2ωβ ∧ (−ωβ)

= dLξαωα = 0 (by (1)).

(2.5)

(3). As Lξαρα = 0 by property (2),

0 = (Lξαρα)(JβX, Y )

= Lξα(σα(JβX, Y )) − σα(Lξα(JβX), Y ) − σα(JβX,LξαY ).

Noting that Jβ = σ−1
α ◦ σγ by Lemma 1.2, we have

σα((LξαJβ)X, Y ) = σα(Lξα(JβX), Y ) − σα(JβLξα(X), Y )

= Lξα(σα(JβX, Y )) − σα(JβX,LξαY ) − σα(JβLξαX, Y )

= (Lξασγ)(X, Y ) = −σβ(X, Y ) (by property (2))

= σα(JγX, Y )

(2.6)

As σα is nondegenerate on D, LξαJβ = Jγ . Similarly,

σγ((LξαJα)X, Y ) = σγ(Lξα(JαX), Y ) − σγ(JαLξα(X), Y )

= −(Lξασγ)(JαX, Y ) + Lξα(σγ(JαX, Y ))

− σγ(JαX,LξαY ) − σγ(JαLξαX, Y )

= σβ(JαX, Y ) + Lξα(σβ(X, Y )) − σβ(X,LξαY ) − σβ(LξαX, Y )

= σβ(JαX, Y ) + (Lξασβ)(X, Y )

= −σγ(X, Y ) + σγ(X, Y ) = 0,

(2.7)

it follows that LξαJα = 0.

(4). Recall from Lemma 1.2 that gD(X, Y ) = σα(JαX, Y ) = ρα(JαX, Y ) (X, Y ∈ D) for
each α. Then

(LξαgD)(X, Y ) = ξα(gD(X, Y )) − gD(LξαX, Y ) − gD(X,LξαY )

= ξα(ρβ(JβX, Y ))− ρβ(JβLξαX, Y )− ρβ(JβX,LξαY ).
(2.8)

On the other hand, Lξαρβ = ργ by property (2) and so

ξα(ρβ(JβX, Y )) = ρβ(LξαJβX, Y ) + ρβ(JβX,LξαY ) + ργ(JβX, Y ).

Substitute this into the equation (2.8).

(LξαgD)(X, Y ) = ρβ(LξαJβX, Y ) + ρβ(JβX,LξαY )

+ ργ(JβX, Y ) − ρβ(JβLξαX, Y ) − ρβ(JβX,LξαY )

= ρβ((LξαJβ)X, Y ) + ργ(JβX, Y ) (by property (3))

= ρβ(JγX, Y ) + ργ(JβX, Y ) = 0,

hence, LξαgD = 0.
�
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2.1. Three CR structures. Let ({ωα}, {Jα}, {ξα}; α = 1, 2, 3) be a nondegenerate qCR

structure on U ⊂ M such that D|U =
3∩

α=1
Nullωα. We can extend the almost complex

structure Jα to an almost complex structure J̄α on Null ωα = D ⊕ {ξβ, ξγ} by setting:

J̄α|D = Jα,

J̄αξβ = ξγ , J̄αξγ = −ξβ .
(2.9)

(α, β, γ) is a cyclic permutation of (1, 2, 3). First of all, note the following formula (cf.
[21]):

LX(ιY dωa) = ι(LXY )dωa + ιY LXdωa = ι[X,Y ]dωa + ιY LXdωa (∀X, Y ∈ TU).(2.10)

Secondly, we remark the following.

Lemma 2.4. For X ∈ D,

ιXdωa = ιJcXdωb (a, b, c) ∼ (1, 2, 3).

Proof. Let TU = D⊕ V where V = {ξ1, ξ2, ξ3}. If X ∈ D, then dωa(X, ξ) = 0 for ∀ ξ ∈ V .
As dωb(JcX, ξ) = 0 similarly, it follows that ιXdωa = ιJcXdωb = 0 on V . If Y ∈ D,
calculate

dωa(X, Y ) = −dωa(Ja(JaX), Y ) = −dωb(Jb(JaX), Y ) (from Lemma 1.2)

= dωb(JcX, Y ), hence ιXdωa = ιJcXdωb on U.

�

In particular, we have

(2.11) ιXdω2 = ιJ1Xdω3 for ∀ X ∈ D.

There is the decomposition with respect to the almost complex structure J̄1:

Null ω1 ⊗ C = D ⊗ C ⊕ {ξ2, ξ3} ⊗ C = T 1,0 ⊕ T 0,1(2.12)

where T 1,0 = D1,0⊕{ξ2− iξ3}. We shall observe that the same formula as in Lemma 6.8 of
Hitchin [14] can be also obtained for D. (We found Lemma 6.8 when we saw a key lemma
to the Kashiwada’s theorem [19].)

Lemma 2.5. If X, Y ∈ D1,0, then ι[X,Y ]dω2 = iι[X,Y ]dω3.

Proof. Let X ∈ D1,0 so that J1X = iX , then

LXdω2 = (dιX + ιXd)dω2 = d(ιXdω2) = d(ιJ1Xdω3) (by (2.11))

= i(dιX)dω3 = i(LX − ιXd)dω3 = iLXdω3.
(2.13)

Applying Y ∈ D1,0 to the equation (2.11) and using (2.10) (extended to a C-valued one),

LX(ιY dω2) = LX(ιJ1Y dω3) = iLX(ιY dω3) (from (2.11))

= iι[X,Y ]dω3 + ιY iLXdω3

= iι[X,Y ]dω3 + ιY LXdω2 (by (2.13)).

Compared this with (2.10) for ωa = ω2, we obtain iι[X,Y ]dω3 = ι[X,Y ]dω2.
�
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We prove the following equation (which is used to show the existence of a complex
contact structure on the quotient of the quaternionic CR manifold by S1 [2].)

Proposition 2.6. For any X, Y ∈ D1,0, there exsist a ∈ R and u ∈ D1,0 such that

[X, Y ] = a(ξ2 − iξ3) + u.

Conversely, given an arbitrary a ∈ R, we can choose such X, Y ∈ D1,0 and some u ∈ D1,0.

Proof. As g(Jα·, Jα·) = g(·, ·) (cf.Lemma 1.2), we note that dω1|(D1,0,D0,1), dω2|(D1,0,D1,0),

dω3|(D1,0,D1,0) are nondegenerate. Given X, Y ∈ D1,0, put dω2(X, Y ) = g(X, J2Y ) = −1

2
a

for some a ∈ R. (Note that conversely for any a ∈ R, we can choose X, Y ∈ D1,0 such

that dω2(X, Y ) = g(X, J2Y ) = −1

2
a.) Then ω2([X, Y ]) = a so that there is an ele-

ment v ∈ Nullω2 ⊗ C such that [X, Y ] − a · ξ2 = v. As dω3(X, Y ) = g(X, J1J2Y ) =

−g(X, J2(J1Y )) = −ig(X, J2Y ) = − i

2
a, it follows that ω3([X, Y ]) = −ia. Since ω3(v) =

ω3([X, Y ] − ξ2) = ω3([X, Y ]), v = −ia · ξ3 + u for some u ∈ Nullω3 ⊗ C. Then we have
that [X, Y ] = a(ξ2− iξ3)+u. Obviously, ω2(u) = 0. As X, Y ∈ D1,0, ω1(u) = ω1([X, Y ]) =
−2dω1(X, Y ) = 0 for which u ∈ D ⊗ C. We now prove that u ∈ D1,0. First we note that

(2.14) ι[X,Y ]dω2 = aι(ξ2−iξ3)
dω2 + ιudω2.

As ξ2 (respectively ξ3) is characteristic for ω2 (respectively ω3) from Lemma 2.3, ιξ2dω2 = 0
(respectively ιξ3dω3 = 0). Using (3.7), the function satisfies dιξ3ω2 = 0 (respectively
dιξ2ω3 = 0). It follows that ιξ3dω2 = (Lξ3 − dιξ3)ω2 = Lξ3ω2 = −ω1. Then ι(ξ2−iξ3)

dω2 =

(ιξ2dω2 − iιξ3dω2) = iω1 so (2.14) becomes

(2.15) ι[X,Y ]dω2 = aiω1 + ιudω2.

As Lξ2ω3 = ω1, it follows ιξ2dω3 = ω1. Similarly

(2.16) ι[X,Y ]dω3 = aι(ξ2−iξ3)
dω3 + ιudω3 = aω1 + ιudω3.

Substitute (2.15), (2.16) into the equlaity ι[X,Y ]dω2 = iι[X,Y ]dω3 of Lemma 2.5, which
concludes that

(2.17) ιudω2 = iιudω3.

Since dω2(u, X) = dω3(J1u, X) for any X ∈ D ⊗ C, (2.17) implies that dω3(J1u, X) =
ιudω2(X) = dω3(iu, X). As dω3 is nondegenerate on D ⊗ C, we obtain that J1u = iu.
Hence, u ∈ D1,0. �

Recall that a nondegenerate CR structure on an odd dimensional manifold consists of the
pair (Nullω, J) where ω is a contact structure and J is a complex structure on the contact
subbundle Nullω (i.e. J is integrable). In addition, the characteristic (Reeb) vector field ξ
for ω is said to be a characteristic CR-vector field if LξJ = 0. Consider (Nullωa, J̄a) on U
(a = 1, 2, 3). By Lemma 2.3, each ξa is a characteristic vector field for ωa on U . From (3)
of Lemma 2.3, LξαJα = 0. It is easy to check that Lξa J̄a = 0.

Theorem 2.7. Each J̄α is integrable on Nullωα. As a consequence, a nondegenerate
qCR structure {ωα, Jα}α=1,2,3 on a neighborhood U of M4n+3 induces three nondegenerate
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CR structures (Nullωα, J̄α) equipped with characteristic CR-vector field ξα for each ωα

(α = 1, 2, 3). In fact, ωα(ξα) = 1 and dωα(ξα, X) = 0 (∀ X ∈ TM) (α = 1, 2, 3).

Proof. Consider the case for (Nullω1, J̄1). Let Nullω1 ⊗ C = T 1,0 ⊕ T 0,1 where T 1,0 =
D1,0 ⊕ {ξ2 − iξ3}. By Proposition 2.6, if X, Y ∈ D1,0, then [X, Y ] = a(ξ2 − iξ3) + u for
some a ∈ R and u ∈ D1,0. By definition,

J̄1[X, Y ] = aJ̄1(ξ2 − iξ3) + J1u = ai(ξ2 − iξ3) + iu = i[X, Y ],

it follows [X, Y ] ∈ T 1,0. It suffices to show that the element [ξ2− iξ3, v] ∈ T 1,0 for v ∈ D1,0.
As Lξ2J1 = −J3 and −J3v = (Lξ2J1)v = Lξ2(J1v)− J1(Lξ2v),

J1(Lξ2v) = J3v + iLξ2v.(2.18)

Note that [ξ2 − iξ3, v] = Lξ2v − iLξ3v ∈ D ⊗ C on which J̄a = Ja. Then J̄1[ξ2 − iξ3, v] =
J1(Lξ2v) − iJ1(Lξ3v). Moreover, as J2v = (Lξ3J1)v = iLξ3(v) − J1(Lξ3v) and J2v =
J3J1v = iJ3v, it follows that J1(Lξ3v) = −iJ3v + iLξ3v. Using this equality and (2.18), it
follows that

J̄1[ξ2 − iξ3, v] = J1(Lξ2v)− iJ1(Lξ3v) = iLξ2v + Lξ3v

= i(Lξ2v − iLξ3v) = i[ξ2 − iξ3, v].

Therefore, [T 1,0, T 1,0] ⊂ T 1,0 so that J̄1 is a complex structure on Null ω1, i.e. (Nullω1, J̄1)
is a CR structure on U . The same holds for (Nullωb, J̄b) (b = 2, 3). �

3. Model of qCR space forms with type (4p + 3, 4q)

Suppose that p + q = n. Let Hn+1 be the quaternionc number space in quaternionic
dimension n + 1 with nondegenerate quaternionic Hermitian form

(3.1) 〈x, y〉 = x̄1y1 + · · ·+ x̄p+1yp+1 − x̄p+2yp+2 − · · · − x̄n+1yn+1.

If we denote Re〈x, y〉 the real part of 〈x, y〉, then it is noted that Re〈 , 〉 is a nondegenerate
symmetric bilinear form on Hn+1. In the quaternion case, the group of all invertible
matrices GL(n + 1, H) is acting from the left and H∗ = GL(1, H) acting as the scalar
multiplications from the right on Hn+1, which forms the group GL(n + 1, H) ·GL(1, H) =
GL(n+1, H)×

R∗

GL(1, H). Let Sp(p+1, q) ·Sp(1) be the subgroup of GL(n+1, H) ·GL(1, H)

whose elements preserve the nondegenerate bilinear form Re〈 , 〉. Denote by Σ3+4p,4q
H

the
(4n + 3)-dimensional quadric space:

{(z1, · · · , zp+1, w1, · · · , wq) ∈ H
n+1 | |z1|2 + · · ·+ |zp+1|2 − |w1|2 − · · · − |wq|2 = 1}.

In particular, the group Sp(p + 1, q) · Sp(1) leaves Σ
3+4p,4q
H

invariant. Let 〈 , 〉x be the
nondegenerate quaternionic inner product on the tangent space TxHn+1 obtained from
the parallel translation of 〈 , 〉 to the point x ∈ Hn+1. Recall that {I, J, K} is the
standard quaternionic structure on Hn+1 which operates as Iz = zi, Jz = zj, or Kz = zk.
As usual, {Ix, Jx, Kx} acts on TxHn+1 at each point x. Then it is easy to see that
gH
x (X, Y ) = Re〈X, Y 〉x (∀ X, Y ∈ TxH

n+1) is the standard pseudo-euclidean metric of type

(p+1, q) on H
n+1 which is invariant under {I, J, K}. Restricted gH to the quadric Σ3+4p,4q

H

in Hn+1, we obtain a nondegenerate pseudo-Riemannian metric g of type (3+4p, 4q) where
p + q = n. Compare [38], [24] for the following definition.
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Definition 3.1. The quadric Σ3+4p,4q
H

is referred to the quaternionic pseudo-Riemannian
space form of type (3 + 4p, 4q) with constant curvature 1 endowed with a transitive group

of isometries Sp(p + 1, q) · Sp(1) for which Σ3+4p,4q
H

= Sp(p + 1, q) · Sp(1)/Sp(p, q) · Sp(1)
where Sp(p, q) · Sp(1) is the stabilizer at (1, 0, · · · , 0).

When (Σ3+4p,4q
H

, gH) is viewed as a real pseudo-Riemannian space form, the full group of
isometries is O(4p+4, 4q). It is noted that the intersection of O(4p+4, 4q) with GL(n+1, H)·
GL(1, H) is Sp(p+1, q)·Sp(1). When Nx is the normal vector at x ∈ Σ3+4p,4q

H
, TxΣ3+4p,4q

H
=

N⊥
x with respect to gH. If N is a normal vector field on Σ3+4p,4q

H
, then IN, JN, KN ∈

TΣ3+4p,4q
H

such that there is the decomposition TΣ3+4p,4q
H

= {IN, JN, KN}⊕{IN, JN,KN}⊥.

Let D = {IN, JN, KN}⊥ which is the 4n-dimensional subbundle. As gH is a {I, J, K}
-invariant metric, (D, g|D) is also invariant under {I, J, K}. Now, Sp(1) acts freely on

Σ3+4p,4q
H

as right translations:

(λ, (z1, · · · , zp+1, w1, · · · , wq)) = (z1 · λ̄, · · · , zp+1 · λ̄, w1 · λ̄, · · · , wq · λ̄) (λ ∈ Sp(1)).

Definition 3.2. The orbit space Σ3+4p,4q
H

/Sp(1) is said to be the quaternionic pseudo-
Kähler projective space HPp,q of type (4p, 4q).

For the definition of quaternionic pseudo-Kähler manifold in general, see Definition 4.5.
Note that HP

p,q is a quaternionic pseudo-Kähler manifold by Theorem 4.6 provided that
4n ≥ 8. When p = n, q = 0, HP

n,0 is the standard quaternionic projective space HP
n.

When p = 0, q = n, HP
0,n is the quaternionic hyperbolic space H

n
H
. It is easy to see that

HP
p,q is homotopic to the canonical quaternionic line bundle over the quaternionic Kähler

projective space HP
p. There is the equivariant principal bundle:

(3.2) Sp(1)→(Sp(p + 1, q) · Sp(1), Σ3+4p,4q
H

)
π−→ (PSp(p + 1, q), HP

p,q)

On the other hand, let

(3.3) ω0 = −(z̄1dz1 + · · ·+ z̄p+1dzp+1 − w̄1dw1 − · · · − w̄qdwq).

Then it is easy to check that ω0 is an sp(1)-valued 1-form on Σ3+4p,4q
H

. Let ξ1, ξ2, ξ3 be

the vector fields on Σ3+4p,4q
H

induced by the one-parameter subgroups {eiθ}θ∈R, {ejθ}θ∈R,

{ekθ}θ∈R respectively, which is equivalent to that ξ1 = IN, ξ2 = JN, ξ3 = KN . A calcula-
tion shows that

(3.4) ω0(ξ1) = i, ω0(ξ2) = j, ω0(ξ3) = k.

By the formula of ω0, if a ∈ Sp(1), then the right translation Ra on Σ3+4p,4q
H

satisfies that

(3.5) R∗
aω0 = a · ω0 · ā.

Therefore, ω0 is a connection form of the above bundle (3.2). Note that Sp(p + 1, q) leaves
ω0 invariant. We shall check the conditions (i), (ii), (iii), (iv) of Definition 1.1 and (1.9) so

that (Σ3+4p,4q
H

, {I, J, K}, g, ω0) will be a quaternionic CR manifold. First of all, it follows
that

ω0 ∧ ω0 ∧ ω0 ∧
n times

︷ ︸︸ ︷

(dω0 ∧ dω0) ∧ · · · ∧ (dω0 ∧ dω0) 6= 0 at any point of Σ3+4p,4q
H

.
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(Compare [16],[31] for example). In fact, letting ω0 = ω1i + ω2j + ω3k as before,

ω0
3 ∧ dω0

2n = 6ω1 ∧ ω2 ∧ ω3 ∧ (dω1
2 + dω2

2 + dω3
2)n.

This calculation shows (iii). In particular, each ωa is a nondegenerate contact form on

Σ3+4p,4q
H

. Using (3.5) and as ξ1 generates {eiθ}θ∈R ⊂ Sp(1), Lξ1ω1 = 0. (Similarly we have
Lξ2ω2 = Lξ3ω3 = 0.) Noting that ωa(ξa) = 1 and 0 = Lξaωa = ιξadωa from (3.4), each ξa is
the characteristic vector field for ωa. Moreover, note that {ξ1, ξ2, ξ3} generates the fields of

Lie algebra of Sp(1). It follows that D =
3∩

a=1
Nullωa for which there is the decomposition

TΣ
3+4p,4q
H

= {ξ1, ξ2, ξ3} ⊕ D. If {ei}i=1,··· ,4n is the orthonormal basis of D, then the dual

frame θi is obtained as θi(ej) = δi
j and θi(ξ1) = θi(ξ2) = θi(ξ3) = 0. In order to prove that

the distribution uniquely determined by (1.9) are {ξ1, ξ2, ξ3} (cf. (4.3) also), we need the
following lemma.

Lemma 3.3.

dω1(X, Y ) = g(X, IY ), dω2(X, Y ) = g(X, JY ), dω3(X, Y ) = g(X, KY )

where X, Y ∈ D.

Proof. Given X, Y ∈ Dx, let u, v be the vectors at the origin by parallel translation of X, Y

at x ∈ Σ3+4p,4q
H

respectively. Then by definition, g(X, Y ) = Re〈u, v〉. Furthermore,

(3.6) g(X, IY ) = Re(〈u, v · i〉) = Re(〈u, v〉 · i).
From (3.3), if X, Y ∈ Dx, then

dω0(X, Y ) = −(dz̄1 ∧ dz1 + · · ·+ dz̄p+1 ∧ dzp+1 − dw̄1 ∧ dw1 − · · · − dw̄q ∧ dwq)(u, v).

Then a calculation shows that dω0(X, Y ) = −1

2
(〈u, v〉 − 〈u, v〉). It is easy to check that

the i-part of −1

2
(〈u, v〉− 〈u, v〉) is Re(〈u, v〉 · i). Since dω1(X, Y ) is the i-part of dω(X, Y )

and by (3.6), we obtain the equality g(X, IY ) = dω1(X, Y ). Similarly, we have that
g(X, JY ) = dω2(X, Y ), g(X, KY ) = dω3(X, Y ). �

From this lemma, dωa(ei, ej) = g(ei, Jaej) = −Ja
ij. Since {ξ1, ξ2, ξ3} generates Sp(1) of

the bundle (3.2), we obtain dωa + 2ωb ∧ ωc = −Ja
ijθ

i ∧ θj . Applying to J, K similarly, we
obtain the following structure equation of the bundle (3.2):

(3.7) dω0 + ω0 ∧ ω0 = −(Iiji + Jijj + Kijk)θi ∧ θj .

From this equation, the condition (1.9) is easily checked so that Nullωα = {ξ1, ξ2, ξ3}. We
summarize that

Theorem 3.4. (Σ3+4p,4q
H

, {ωa}a=1,2,3, {I, J, K}, g) is a (4n + 3)-dimensional homogeneous
qCR manifold of type (3 + 4p, 4q) where p + q = n ≥ 0. Moreover, there exists the
equivariant principal bundle of the pseudo-Riemannian submersion over the homogeneous
quaternionic pseudo-Kähler projective space HPp,q of type (4p, 4q): Sp(1)→(Sp(p + 1, q) ·
Sp(1), Σ3+4p,4q

H
, g)

π−→ (PSp(p + 1, q), HP
p,q, ĝ).

We shall prove more generally in Theorem 4.6 that (PSp(p + 1, q), HP4p,4q) supports an
invariant quaternionic pseudo-Kähler metric ĝ of type (4p, 4q).
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Remark 3.5. (a) In [2], it is shown that (Σ3+4p,4q
H

, {I, J, K}, g) is a pseudo-Sasakian space
form of constant positive curvature with type (4p + 3, 4q).

(b) When q = 0 or p = 0, we can find discrete cocompact subgroups from Sp(n + 1) · Sp(1)

or Sp(1, n) ·Sp(1) that act properly and freely on Σ3+4n,0
H

= S4n+3 or Σ3,4n
H

= V 4n+3
−1 respec-

tively. Thus, we obtain compact nondegenerate qCR manifolds. In fact, (i) The spherical
space form S4n+3/F which is Sp(1) or SO(3)-bundle over the quaternionic Kähler pro-
jective orbifold HPn/F ∗ of positive scalar curvature. (F ⊂ Sp(n + 1) · Sp(1) is a finite

group.) (ii) The pseudo-Riemannian standard space form V 4n+3
−1 /Γ of type (4n, 3) with

constant sectional curvature −1 which is an Sp(1)-bundle over the quaternionic Kähler
hyperbolic orbifold Hn

H
/Γ∗ of negative scalar curvature. (Γ∗ ⊂ PSp(1, n) is a discrete sub-

group.) As we know, there exists no compact pseudo-Sasakian manifold (or qCR manifold)
whose pseudo-Kähler orbifold has zero Ricci curvature. However in our case, an indefinite
Heisenberg nilmanifold is a compact p-c qCR manifold whose pseudo-Kähler orbifold is the
complex euclidean orbifold (i.e. zero Ricci curvature), see §7.3.

4. Local Principal bundle

Let {ei}i=1,··· ,4n be the basis of D|U such that gD(ei, ej) = gij. We choose a local coframe
θi for which

(4.1) θi|V = 0 and θi(ej) = δij.

As usual the quaternionic structure {Jα}α=1,2,3 can be represented locally by the matrix

Jαj
i such as Jαei = Jαj

iej. Note that ρα(ej, ei) = Jαk
i gjk = Jα

ij by (1.1). Here the matrix
(gij) lowers and raises the indices. Using θi we can write the structure equation (1.8):

(4.2) dωα + 2ωβ ∧ ωγ = −Jα
ijθ

i ∧ θj (α = 1, 2, 3).

If we use ω of Definition 1.1, the above formula is equivalent to the following:

(4.3) dω + ω ∧ ω = −(J1
iji + J2

ijj + J3
ijk)θi ∧ θj .

Denote by E the local transformation groups generated by V acting on a small neigh-
borhood U ′ of U . As E is locally isomorphic to the compact Lie group SO(3) by Lemma
2.2, it acts properly on U ′. (See for example [30].) If we note that each ξa is a nonzero
vector field everywhere on U , then the stabilizer of E is finite at every point. By the slice
theorem of compact Lie groups [9], choosing a sufficiently small neighborhood E ′ of the
identity from E , E ′ acts properly and freely on U ′. We choose such U ′ (respectively E ′)
from the beginning and replace it by U (respectively E). Then there is a principal local
fibration:

(4.4) E→U
π−→ U/E .

If we note that V ⊕ D = TM |U , π maps D isomorphically onto T (U/E) at each point of

U . So {π∗ei | i = 1, · · · , 4n} is a basis of T (U/E) at each point of U/E . Let θ̂i be the dual
frame on U/E such that

(4.5) θ̂i(π∗ej) = δij on U/E .
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Since θi is the coframe of {ei} and π∗θ̂i|V = θi|V = 0, it follows that

(4.6) π∗θ̂i = θi on U (i = 1, · · · , 4n).

Lemma 4.1. Put J1 = I, J2 = J, J3 = K respectively. Let {ϕθ}−ε<θ<ε be a local
one-parameter subgroup of the local group E. Then there exists an element Gθ ∈ SO(3)
satisfying the following:

(1) (ϕθ)∗





ξ1

ξ2

ξ3



 = Gθ





ξ1

ξ2

ξ3



 .

(2)





Iϕθy

Jϕθy

Kϕθy



 ◦ ϕθ∗ = ϕθ∗ ◦ tG(θ)





Iy

Jy

Ky



 .

(4.7)

Proof. Since every leaf of V is locally isomorphic to SO(3), ξa is viewed as the fundamental
vector field to the principal fibration π : U→U/E . Thus we may assume that ξ1, ξ2, ξ3

correspond to i, j, k respectively so that ϕ1
θ = eiθ, ϕ2

θ = ejθ, ϕ3
θ = ekθ up to conjugacy by

an element of SO(3), A calculation shows that (ϕ1
θ)∗((ξ2)x) = cos 2θ·(ξ2)ϕ1

θ
x+sin 2θ·(ξ3)ϕ1

θ
x.

Similarly, (ϕ1
θ)∗((ξ3)x) = − sin 2θ · (ξ2)ϕ1

θ
x + cos 2θ · (ξ3)ϕ1

θ
x, (ϕ1

θ)∗((ξ1)x) = (ξ1)ϕ1
θ
x. This

holds similarly for ϕ1
θ, ϕ

2
θ. It turns out that if ϕθ ∈ E , then there exists an element

Gθ ∈ SO(3) which shows the above formula (1). Since ϕt preserves D (−ε < t < ε), using
(1) we see that

(4.8) ϕ∗
t (ω1, ω2, ω3) = (ω1, ω2, ω3)Gt.

Since there exists an element gt ∈ Sp(1) such that gt





i

j

k



 ḡt = Gt





i

j

k



 (ḡt is the

quaternion conjugate of gt), (4.8) is equivalent with

(4.9) ϕ∗
tω = gt · ω · ḡt.

Differentiate this equation which yields that

(4.10) ϕ∗
t (dω + ω ∧ ω) ≡ gt(dω + ω ∧ ω)ḡt mod ω.

Using the equation (4.2), it follows that

ϕ∗
t ((Iij, Jij, Kij)





i

j

k



 θi ∧ θj) ≡ (Iij, Jij, Kij)gt





i

j

k



 ḡtθ
i ∧ θj

= (Iij, Jij, Kij)Gt





i

j

k



 θi ∧ θj .

Noting that ϕ∗
tθ

i = ϕ∗
t (π

∗θ̂i) = θi, the above equation implies that

(Iij(ϕt(x)), Jij(ϕt(x)), Kij(ϕt(x))) ≡ (Iij(x), Jij(x), Kij(x))Gt(x) mod ω.(4.11)
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Since π∗ϕt∗((ei)x) = π∗((ei)ϕtx) (x ∈ U), it follows ϕt∗((ei)x) = (ei)ϕtx. Letting Gt =
(sij) ∈ SO(3) and using (4.11),

Iϕtx(ϕt)∗((ei)x) = Iϕtx((ei)ϕtx) = Ij
i (ϕtx)((ej)ϕtx)

= (Ij
i (x) · s11 + Jj

i (x) · s21 + Kj
i (x) · s31))((ϕt)∗((ej)x))

= (ϕt)∗(s11 · Ix((ei)x) + s21 · Jx((ei)x) + s31 · Kx((ei)x))

= (ϕt)∗((s11, s21, s31)





Ix

Jx

Kx



 (ei)x).

The same argument applies to Jϕtx, Kϕtx to conclude that





Iϕtx

Jϕtx

Kϕtx



 ◦ ϕt∗ = ϕt∗ ◦

tGt





Ix

Jx

Kx



. This proves (2). �

Lemma 4.2. The quaternionic structure {I, J, K} on D|U induces a family of quaternionic

structures {Îi, Ĵi, K̂i}i∈Λ on U/E.

Proof. Choose a small neighborhood Vi ⊂ U/E and a section si : Vi→U for the principal

bundle π : U→U/E . Let x̂ ∈ Vi and a vector X̂x̂ ∈ TVi. Choose a vector Xsi(x̂) ∈ Dsi(x̂)

such that π∗(Xsi(x̂)) = X̂x̂. Define endomorphisms Îi, Ĵi, K̂i on Vi to be

(Îi)x̂(X̂x̂) = π∗Isi(x̂)Xsi(x̂),

(Ĵi)x̂(X̂x̂) = π∗Jsi(x̂)Xsi(x̂),

(K̂i)x̂(X̂x̂) = π∗Ksi(x̂)Xsi(x̂).

(4.12)

Since π∗ : Dsi(x̂)→Tx̂(U/E) is an isomorphism, Îi, Ĵi, K̂i are well-defined almost complex

structures on Vi. So we have a family {Îi, Ĵi, K̂i}i∈Λ of almost complex structures associated
to an open cover {Vi}i∈Λ of U/E . Suppose that Vi ∩ Vj 6= ∅. If x̂ ∈ Vi ∩ Vj, then there is
an element ϕθ ∈ E such that sj(x̂) = ϕθ · si(x̂). As ϕθ preserves D, ϕθ∗Xsi(x̂) ∈ Dsj(x̂) and

π∗(ϕθ∗Xsi(x̂)) = X̂x̂. Then

(4.13) Xsj(x̂) = ϕθ∗Xsi(x̂).
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Let {Îj, Ĵj, K̂j} be almost complex structures on Vj obtained from (4.12). Using Lemma
4.1 and (4.13), calculate at sj(x̂) (x̂ ∈ Vi ∩ Vj),





(Îj)x̂

(Ĵj)x̂

(K̂j)x̂



 X̂x̂ = π∗





Isj (x̂)

Jsj(x̂)

Ksj(x̂)



Xsj(x̂) = π∗





Iϕθ·si(x̂)

Jϕθ ·si(x̂)

Kϕθ ·si(x̂)



ϕθ∗Xsi(x̂)

= π∗ϕθ∗ ◦ tGθ





Isi(x̂)

Jsi(x̂)

Ksi(x̂)



Xsi(x̂)

= tG(θ)π∗





Isi(x̂)

Jsi(x̂)

Ksi(x̂)



Xsi(x̂) = tGθ





(Îi)x̂

(Ĵi)x̂

(K̂i)x̂



 X̂x̂,

hence





(Îj)x̂

(Ĵj)x̂

(K̂j)x̂



 = tGθ





(Îi)x̂

(Ĵi)x̂

(K̂i)x̂



 on x̂ ∈ Vi∩Vj. Thus, {Îi, Ĵi, K̂i}i∈Λ defines a quater-

nionic structure on U/E . �

4.1. Pseudo-Sasakian 3-structure and Pseudo-Kähler structure. We now take
{ei}i=1,··· ,4n of D|U as the orthonormal basis, i.e. gij = δij . Then the bilinear form gD =
4p
∑

i=1

θi · θi −
4n∑

i=4p+1

θi · θi defined on D induces a pseudo-Riemannian metric on U/E :

(4.14) ĝ =

4p
∑

i=1

θ̂i · θ̂i −
4n∑

i=4p+1

θ̂i · θ̂i

such that gD = π∗ĝ. Let ∇̂ be the covariant derivative on U/E . If ω̂i
j is the Levi-Civita

connection with respect to ĝ, then ∇̂êi = ω̂j
i êj for which ω̂i

j satisfies that

(4.15) dθ̂i = θ̂j ∧ ω̂i
j, ω̂ij + ω̂ji = 0.

Put

(4.16) Ω̂i
j = dω̂i

j − ω̂σ
j ∧ ω̂i

σ =
1

2
R̂i

jklθ̂
k ∧ θ̂ℓ.

Consider the following pseudo-Riemannian metric on U :

g̃x(X, Y ) =

3∑

a=1

ωa(X) · ωa(Y ) + ĝπ(x)(π∗X, π∗Y ) (X, Y ∈ TxU).

(Equivalently g̃ =

3∑

a=1

ωa · ωa +

4p
∑

i=1

θi · θi −
4n∑

i=4p+1

θi · θi.)

(4.17)

Then we have shown in [4] that the local principal fibration E→(U, g̃)
π−→ (U/E , ĝ) is

a pseudo-Sasakian 3-structure. In fact the next equation (4.18) is equivalent with the
normality condition of the pseudo-Sasakian 3-structure. (Compare [33], [5].)
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Proposition 4.3. Let ({ωα}, {Jα}, {ξα})α=1,2,3 be a nondegenerate quaternionic CR struc-
ture on U of a (4n + 3)-manifold M . If ∇ is the Levi-Civita connection on (U, g̃), then,

(4.18) (∇X J̄α)Y = g̃(X, Y )ξα − ωα(Y )X (α = 1, 2, 3).

Proof. For X, Y ∈ TU , consider the following tensor

(4.19) Nωα(X, Y ) = N (X, Y ) + (Xωα(Y )− Y ωα(X))ξα

where N (X, Y ) = [J̄αX, J̄αY ]− [X, Y ]− J̄α[J̄αX, Y ]− J̄α[X, J̄αY ] is the Nijenhuis torsion
of J̄α (α = 1, 2, 3). A direct calculation for a contact metric structure g̃ (cf. [5]) shows that

2g̃((∇X J̄α)Y, Z) = g̃(Nωα(Y, Z), J̄αX) + (LJ̄αXωα)(Y )

− (LJ̄αY ωα)(X) + 2g̃(X, Y )ωα(Z)− 2g̃(X, Z)ωα(Y ).

Since each J̄α is integrable on Nullωα from Theorem 2.7, it follows that the Nijenhuis torsion
of J̄α, N (X, Y ) = 0 (∀ X, Y ∈ Nullωα). By the formula (4.19), Nωα(X, Y ) = 0 for ∀ X, Y ∈
Nullωα. Noting the decomposition TU = {ξ1} ⊕ Null ω1, to obtain (4.18), it suffices to
show that Nω1(ξ1, X) = 0 (similarly for α = 2, 3). As ξα is a characteristic CR-vector field
for (ωα, J̄α) (α = 1, 2, 3), i.e.Lξ1 J̄1 = 0, it follows that J̄1[ξ1, Y ] = [ξ1, J̄1Y ] (∀ Y ∈ Nullω1).
In particular, J̄1[ξ1, J̄1X ] = −[ξ1, X ]. Hence, Nωα(ξ1, X) = 0. As a consequence, we see
that Nωα(X, Y ) = 0 (∀ X, Y ∈ TU). On the other hand, if Nωα(X, Y ) = 0 (∀ X, Y ∈ TU),
then it is easy to see that (LJ̄αXωα)(Y ) − (LJ̄αY ωα)(X) = 0. (See [5].) From (4.17), note
that ωα(X) = g̃(ξα, X). The above equation (4.18) follows. �

As {ωα, θi}α=1,2,3;i=1···4n are orthonormal coframes for the pseudo-Sasakian metric g̃
(cf. (4.17)), the structure equation says that there exist unique 1-forms ϕi

j, τ i
α (i, j =

1, · · · , 4n; α = 1, 2, 3) satisfying:

(4.20) dθi = θj ∧ ϕi
j +

3∑

α=1

ωα ∧ τ i
α (ϕij + ϕji = 0).

Then the normality condition for the pseudo-Sasakian 3-structure is reinterpreted as the
following structure equation.

Theorem 4.4. There exsists a connection form {ωi
j} such that

dJ̄a
ij − ωσ

i J̄a
σj − J̄a

iσωσ
j = 2J̄b

ij · ωc − 2J̄c
ij · ωb ((a, b, c)∼ (1, 2, 3)).(4.21)

Proof. It follows from Proposition 4.3 that (∇X J̄a)ei = g̃(X, ei)ξa for {ei} = D at a

point. From (4.20), let ∇Xei = ϕj
i (X)ej +

3∑

b=1

(τb)iξb which is substituted into the equality

(∇X J̄a)ei = ∇X(J̄aei)− J̄a(∇Xei):

(∇X J̄a)ei = (d(J̄a)ℓ
i(X)− ϕσ

i (X)(J̄a)ℓ
σ + (J̄a)σ

i ϕℓ
σ(X))eℓ

+
3∑

b=1

(J̄a)ℓ
i(τb)ℓ(X)ξb −

∑

c6=a

(τb)i(X)ξc (Here J̄aξb = ξc)

= g̃(X, ei)ξa ((4.18)).

(4.22)
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As g̃(X, ei) = g̃kiθ
k(X) (cf. (4.17)), this implies that d(J̄a)ℓ

i − ϕσ
i (J̄a)ℓ

σ + (J̄a)σ
i ϕℓ

σ = 0

and (J̄a)ℓ
i(τa)ℓ(X)ξa = g̃kiθ

k(X)ξa. It follows that −(τa)i = (J̄a)ijθ
j . Then (τa)ig̃

ik =

−(J̄a)ij g̃
ikθj = (J̄a)jig̃

ikθj , so that (τa)
i = (J̄a)i

jθ
j . As g̃ij = ±δij , use g̃ij to lower the

above equations:

d(J̄a)ij − ϕσ
i (J̄a)σj − (J̄a)iσϕσ

j = 0.

(τa)
i = (J̄a)i

jθ
j .

(4.23)

Putting

(4.24) ωi
j = ϕi

j −
3∑

a=1

(J̄a)i
jωa,

the equation (4.20) reduces to

(4.25) dθi = θj ∧ ωi
j (ωij + ωji = 0).

Differentiate our equation (4.2) dωa + 2ωb ∧ ωc = −J̄a
ijθ

i ∧ θj ((a, b, c) ∼ (1, 2, 3)) and
substitute (4.25). It becomes (after alternation):

(dJ̄a
ij − ωσ

i J̄a
σj − J̄a

iσωσ
j + ωb · 2J̄c

ij − ωc · 2J̄b
ij) ∧ θi ∧ θj = 0.

Since dJ̄a
ij −ωσ

i J̄a
σj − J̄a

iσωσ
j ≡ 0 mod ω1, ω2, ω3 from (4.23), (4.24) and the forms ωa∧θi∧θj

(a = 1, 2, 3) are linearly independent, the result follows. �

Definition 4.5. Let ∇̂ be the Levi-Civita connection on an almost quaternionic pseudo-
Riemannian manifold (X, ĝ) of type (4p, 4q) (p+q = n). Then X is said to be a quaternionic

pseudo-Kähler manifold if for each quaternionic structure {Ĵa; a = 1, 2, 3} defined locally
on a neighborhood of X , there exists a smooth local function A ∈ so(3) such that

∇̂





Ĵ1

Ĵ2

Ĵ3



 = A ·





Ĵ1

Ĵ2

Ĵ3





provided that dim X = 4n ≥ 8. Equivalently if Ω̂ is the fundamental 4-form globally defined
on X , then ∇̂Ω̂ = 0.

We have shown the following result in [2] when dim U/E = 4n ≥ 12 by Swann’s method.

Theorem 4.6. The set (U/E , ĝ, {Îi, Ĵi, K̂i}i∈Λ) is a quaternionic pseudo-Kähler manifold
of type (4p, 4q) provided that dim U/E = 4n ≥ 8. Moreover, (U/E , ĝ) is an Einstein
manifold of positive scalar curvature (4n ≥ 4) such that

(4.26) R̂jℓ = 4(n + 2)ĝjℓ.

Proof. As we put θi = π∗θ̂i, (4.15) implies that dθi = θj ∧ π∗ω̂i
j, π∗ω̂ij + π∗ω̂ji = 0.

Compared this with (4.25) and by skew-symmetry, it is easy to check that

(4.27) π∗ω̂i
j = ωi

j .

Put V̂ = Vi and Ĵ1 = Îi, Ĵ2 = Ĵi, Ĵ3 = K̂i on V̂ . Let s = si : V̂ →U be the section as before.
Since π∗s∗((êj)x) = (êj)x = π∗((ej)s(x̂)), s∗((êj)x) − (ej)s(x̂) ∈ V = {ξ1, ξ2, ξ3}. Then
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θi(s∗((êj)x)) = θi((ej)s(x̂)) from (4.1). A calculation shows that (Ĵa)x̂êi = π∗(Ja)s(x̂)ei =

π∗((J̄
a)j

i (s(x̂))ej) = (J̄a)j
i (s(x̂))êj (cf. (4.12)). As we put Ĵa

x̂ êi = (Ĵa)j
i (x̂)êj, note that

(4.28) J̄a
ij(s(x̂)) = Ĵa

ij(x̂) (a = 1, 2, 3).

In particular,

(4.29) d(J̄a)ij ◦ s∗(X̂x̂) = d(Ĵa)ij(X̂x̂) (∀ X̂x̂ ∈ Tx̂(V̂ )) (a = 1, 2, 3).

Since π∗s∗(X̂x̂) = X̂x̂ (X̂x̂ ∈ Tx̂(V̂ )), (4.27) implies that ω̂σ
j (X̂x̂) = ωσ

j (s∗(X̂x̂)). Plug this
equation and (4.28), (4.29) into (4.21):

d(J̄a)ij(s∗X̂)− ωσ
i (s∗X̂) · (J̄a)σj(s(x̂))− (J̄a)iσ(s(x̂)) · ωσ

j (s∗X̂)

= d((Ĵa)ij)x̂(X̂) − ω̂σ
i (X̂) · (Ĵa)σj(x̂) − (Ĵa)iσ(x̂) · ω̂σ

j (X̂)

= 2(J̄b)ij(s(x̂)) · ωc(s∗X̂) − 2(J̄c)ij(s(x̂)) · ωb(s∗X̂)

= 2(Ĵb)ij(x̂) · ωc(s∗X̂) − 2(Ĵc)ij(x̂) · ωb(s∗X̂).

Using these,

(∇̂X̂(Ĵa)((êi)x̂) = ∇̂X̂(Ĵa)êi − (Ĵa)(∇̂X̂ êi)

= (d(Ĵa)ij(X̂)− (Ĵa)iσ(x̂) · ω̂σ
j (X̂) − ω̂σ

i (X̂) · (Ĵa)σj(x̂))(êj)x̂

= 2(Ĵb)ij(x̂)(êj)x̂ · s∗ωc(X̂) − 2(Ĵc)ij(x̂)(êj)x̂ · s∗ωb(X̂)

=
(

2(Ĵb)x̂ · s∗ωc(X̂) − 2(Ĵc)x̂ · s∗ωb(X̂)
)

(êi)x̂.

Therefore, ∇̂
X̂

(Ĵa) = 2(Ĵb)x̂ · s∗ωc(X̂) − 2(Ĵc)x̂ · s∗ωb(X̂). This concludes that

(4.30) ∇̂





Ĵ1

Ĵ2

Ĵ3



 = 2





0 s∗ω3 −s∗ω2

−s∗ω3 0 s∗ω1

s∗ω2 −s∗ω1 0









Ĵ1

Ĵ2

Ĵ3



 .

As we put Ĵ1 = Îi, Ĵ2 = Ĵi, Ĵ3 = K̂i on V̂ , (U/E , ĝ, {Îi, Ĵi, K̂i}i∈Λ) is a quaternionic
pseudo-Kähler manifold for dim U/E ≥ 8. Using the Ricci identity (cf. (2.11), (2.12) of
[15], [34]), a calculation shows that

(n > 1)

R̂jl = −4(n + 2)
(

s∗(dω1 + 2ω2 ∧ ω3)
)

(êj, êk)Î
k
ℓ (x̂).

R̂jl = −4(n + 2)
(

s∗(dω2 + 2ω3 ∧ ω1)
)

(êj, êk)Ĵ
k
ℓ (x̂).

R̂jl = −4(n + 2)
(

s∗(dω3 + 2ω1 ∧ ω2)
)

(êj, êk)K̂
k
ℓ (x̂).

(4.31)

(n = 1)

R̂jl = −4
(

s∗(dω1 + 2ω2 ∧ ω3)
)

(êj, êk)Î
k
ℓ (x̂) − 4

(

s∗(dω2 + 2ω3 ∧ ω1)
)

(êj , êk)Ĵ
k
ℓ (x̂)

− 4
(

s∗(dω3 + 2ω1 ∧ ω2)
)

(êj, êk)K̂
k
ℓ (x̂).

(4.32)
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Using dωa +2ωb∧ωc = −Ja
ijθ

i∧θj and (4.28), it follows that
(

s∗(dωa+2ωb∧ωc)
)

(êj, êk) =

−Ja
jk(s(x̂)) = −Ĵa

jk(x̂). Since (Ĵa)
j
i · (Ĵa)k

j = −δk
i , R̂jl = +4(n + 2)(Ĵa)jk(x̂) · (Ĵa)k

ℓ (x̂) =

4(n+2)gjℓ when n > 1 and R̂jl = +4(Îjk(x̂)·Îk
ℓ (x̂)+Ĵjk(x̂)·Ĵk

ℓ (x̂)+K̂jk(x̂)·K̂k
ℓ (x̂)) = 4·3gjℓ

when n = 1. �

5. Quaternionic CR curvature tensor

Recall from (4.25) that dθi = θj ∧ ωi
j , ωij + ωji = 0 where π∗ω̂i

j = ωi
j, π∗θ̂i = θi from

(4.20), (4.6) respectively (i, j = 1, · · · , 4n). Define the fourth-order tensor Ri
jkℓ on U by

putting

(5.1) dωi
j − ωσ

j ∧ ωi
σ ≡ 1

2
Ri

jkℓθ
k ∧ θℓ mod ω1, ω2, ω3.

By (4.16), it follows that

(5.2) Ri
jkℓ = π∗R̂i

jkℓ.

The equality (4.26) implies that

(5.3) Rjℓ = 4(n + 2)gjℓ.

Differentiate the structure equation (4.20).

(5.4) 0 = dθj ∧ ϕi
j − θj ∧ dϕi

j +
∑

a

dωa ∧ τ i
a −

∑

a

ωa ∧ dτ i
a.

Substitute (4.2) and (4.20) into (5.4);

θj ∧ (dϕi
j − ϕk

j ∧ ϕi
k −

∑

a

Ja
kjθ

k ∧ τ i
a) +

∑

a

ωa ∧ (dτ i
a − τk

a ∧ ϕi
k)

+ 2ω2 ∧ ω3 ∧ τ i
1 + 2ω3 ∧ ω1 ∧ τ i

2 + 2ω1 ∧ ω2 ∧ τ i
3 = 0.

This implies that

(5.5) θj ∧ (dϕi
j − ϕk

j ∧ ϕi
k −

∑

a

Ja
kjθ

k ∧ τ i
a) ≡ 0 mod ω1, ω2, ω3.

We use (5.5) to define the curvature form:

(5.6) Φi
j = dϕi

j − ϕk
j ∧ ϕi

k +

3∑

a=1

θk ∧ Ja
jkτ

i
a − θi ∧ θj.

Set

1Φ
i = dτ i

1 − τk
1 ∧ ϕi

k + ω2 ∧ τ i
3 − ω3 ∧ τ i

2,

2Φ
i = dτ i

2 − τk
2 ∧ ϕi

k + ω3 ∧ τ i
1 − ω1 ∧ τ i

3,

3Φ
i = dτ i

3 − τk
3 ∧ ϕi

k + ω1 ∧ τ i
2 − ω2 ∧ τ i

1

(5.7)

which satisfy the following relation.

(5.8) θj ∧ Φi
j + ω1 ∧ 1Φ

i + ω2 ∧ 2Φ
i + ω3 ∧ 3Φ

i = 0.
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We may define the fourth-order curvature tensor T i
jkl from Φi

j:

(5.9) Φi
j ≡

1

2
T i

jklθ
k ∧ θℓ mod ω1, ω2, ω3.

Remark 5.1. In view of (5.9), there exist the fourth-order curvature tensors W i
jka (a =

1, 2, 3) and V i
jbc (1 ≤ b < c ≤ 3) for which we can describe:

(5.10) Φi
j =

1

2
T i

jklθ
k ∧ θℓ +

1

2

∑

a

W i
jkaθ

k ∧ ωa +
1

2

∑

b<c

V i
jbcωb ∧ ωc.

6. Transformation of p-c qCR structure

6.1. G-structure. When {θi}i=1,··· ,4n are the 1-forms locally defined on a neighborhood
U of M , we form the H-valued 1-form {ωi}i=1,··· ,n such as

(6.1) ωi = θi + θn+ii + θ2n+ij + θ3n+ik.

We shall consider the transformations f : U→U of the following form:

f∗ω = λ · ω · λ̄ (= u2a · ω · ā),

f∗(ωj) = U ′j
ℓω

ℓ · λ̄ + λṽjωλ̄
(6.2)

such that λ = u · a for some smooth functions u > 0, a ∈ Sp(1) and U ′ ∈ Sp(p, q) with
p + q = n. Let G be the subgroup of GL(n + 1, H) · H∗ consisting of matrices

(6.3)







λ 0

λ · ṽi U ′







· λ.

Recall that Sim(Hn) = H
n

⋊ (Sp(p, q) ·H∗) is the quaternionic affine similarity group of the
quaternionic vector space H

n where H
∗ = Sp(1)×R

+. Then note that G is anti-isomorphic
to Sim(Hn) given by the map

(6.4) t







λ xj

0 X







· λ−→(Xxj∗, X · λ) ∈ H
n

⋊ (Sp(p, q) · H
∗).

(Here x∗ = tx̄.) We represent G as the real matrices. Let ṽ ∈ H
n be a vector. The group

Sp(p, q) · H
∗ is the subgroup of GL(4n, R) acting on H

n by

(6.5) (U ′ · λ)ṽ = U ′ṽ · λ̄
where U ′ ∈ Sp(p, q), λ ∈ H

∗. Write λ = u ·a ∈ R
+×Sp(1) so that Sp(p, q) ·H∗ is embedded

into R
+ × SO(4p, 4q) in the following manner:

U ′ · λ(ṽ) = uU ′ṽā = uU ′ā ◦ (aṽā) = u(U ′ā) ◦ Ada(ṽ) = u · Uṽ (ṽ ∈ H
n = R

4n)(6.6)

in which

(6.7) U = U ′ā ◦ Ada ∈ SO(4p, 4q),
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(6.8) Ada





i

j

k



 = a





i

j

k



 ā = A





i

j

k



 for some A ∈ SO(3).

We put the vector ṽj ∈ H
n in such a way that ṽj = vj + vn+ji + v2n+jj + v3n+jk

(j = 1, · · · , n). Form the real (4× 3)-matrix

(6.9) V j =







−vj+n −vj+2n −vj+3n

vj −vj+3n vj+2n

vj+3n vj −vj+n

−vj+2n vj+n vj







.

It is easy to check that

λṽj · ωλ̄ = λ((1 i j k)V j





ω1

ω2

ω3



)λ̄ = (1 i j k)u2

(
1 0
0 tA

)

V j





ω1

ω2

ω3



 .(6.10)

Then G is isomorphic to the subgroup of GL(4n + 3, R) consisting of matrices

(6.11)


















u2 · tA 0

u2

(
1 0
0 tA

)

V 1

... u · U
u2

(
1 0
0 tA

)

V n


















.

Here A ∈ SO(3), U = (U i
j) ∈ SO(4p, 4q).

Using the coframe field {ω1, ω2, ω3, θ
1, · · · , θ4n}, f is represented by

f∗(ω1, ω2, ω3) = u2(ω1, ω2, ω3)A,

f∗θi = uθkU i
k +

3∑

α=1

ωαvi
α,

where








v4j−3
1 v4j−3

2 v4j−3
3

v4j−2
1 v4j−2

2 v4j−2
3

v4j−1
1 v4j−1

2 v4j−1
3

v4j
1 v4j

2 v4j
3








= u2

(
1 0
0 tA

)

V j (j = 1, · · · , n).

(6.12)

Let F (M) be the principal coframe bundle over M . A subbundle P of F (M) is said to be
a bundle of the nondegenerate integrable G-structure if P is the total space of the princi-
pal bundle G→P→M whose points consist of such coframe fields {ω1, ω2, ω3, θ

1, · · · , θ4n}
satisfying the conditions of Definition 1.1, (1.8), (1.9). A diffeomorphism f : M→M is a
G-automorphism if the derivative f∗ : F (M)→F (M) induces a bundle map f∗ : P→P in
which f∗ has the form locally as in (6.2) (equivalently (6.12)).
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Definition 6.1. Let AutqCR(M) be the group of all G-automorphisms of M .

6.2. Automorphism group Aut(M). Let W be the (n+2)-dimensional arithmetic vector
space H

p+1,q+1 over H equipped with the standard Hermitian metric B of signature (p +
1, q + 1) where p + q = n. Then note that the isometry group Sp(W ) = Aut(W,B) =
Sp(p + 1, q + 1) and W has the gradation W = W−1 + W 0 + W+1, where W±1 are dual
1-dimensional isotropic subspaces and W 0 is (B-non-degenerate ) orthogonal complement
to W−1 +W+1. The gradation W induces the gradation of the Lie algebra g of depth two,
i.e.

g = g−2 + g−1 + g0 + g1 + g2.

Here g0 = R + sp(1) + sp(n).
In [3] we introduced a notion of p-c q structure. This geometry is defined by a codimen-

sion three distribution H on a (4n+3)-dimensional manifold M , which satisfies the only one
condition that the associated graded tangent space grTxM = TxM/Hx + Hx at any point
is isomorphic to the quaternionic Heisenberg Lie algebra M(p, q) ∼= g− = g−2 +g−1, i.e. the
Iwasawa subalgebra of Sp(p+1, q+1). We proved that such a geometry is a parabolic geom-
etry so that it admits a canonical Cartan connection and its automorphism group Aut(M)
is a Lie group. More precisely, if P+(H) is the parabolic connected subgroup of the sym-
plectic group Sp(W ) corresponding to the dual parabolic subalgebra p+(H) = g+ + g0 of
sp(W ), then there is a P+(H)-principal bundle π : B → M with a normal Cartan connec-
tion κ : TB → sp(W ) of type Sp(W )/P+(H). There exists a canonical p-c q structure Hcan

on Sp(p+1, q +1)/P+(H) with all vanishing curvature tensors (cf. §7.2). A p-c q manifold
(M,H) is locally isomorphic to a (Sp(p+1, q+1)/P+(H),Hcan) if and only if the associated
Cartan connection κ is flat (i.e.has zero curvature). Put S4p+3,4q = Sp(p+1, q+1)/P+(H).
Then S4p+3,4q is the flat homogeneous model diffeomorphic to S4p+3 × S4q+3/Sp(1) where
the product of spheres S4p+3 × S4q+3 = {(z+, z−) ∈ H

p+1,q+1 | B(z+, z+) = 1,B(z−, z−) =
−1} is the subspace of W = Hp+1,q+1 and the action of Sp(1) is induced by the diagonal
right action on W . The group of all automorphisms Aut(S4p+3,4q) preserving this flat
structure is PSp(p + 1, q + 1). Suppose that M is a p-c qCR manifold. By definition,
TxM ∼= TxM/Dx + Dx = ImH + H

n ∼= M(p, q) at ∀ x ∈ M . Then each G-automorphism
of AutqCR(M) preserves M(p, q) by the above formula (6.12). Since a p-c qCR structure
is a refinement of a p-c q structure by Definition 1.6, note that AutqCR(M) is a closed
subgroup of Aut(M) which is a Lie group as above.

Corollary 6.2. The group AutqCR(M) is a finite dimensional Lie group for a p-c qCR
manifold M .

7. Pseudo-conformal qCR structure on S3+4p,4q

We shall prove that the qCR homogeneous model Σ3+4p,4q
H

induces a p-c qCR structure

on S3+4p,4q which coincides with the flat p-c q structure.

7.1. Quaternionic pseudo-hyperbolic geometry. Let

(7.1) B(z, w) = z̄1w1 + z̄2w2 + · · ·+ z̄p+1wp+1 − z̄p+2wp+2 − · · · − z̄n+2wn+2
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be the above Hermitian form on Hn+2 = Hp+1,q+1 (p + q = n). We consider the following
subspaces in Hn+2 − {0}:

V 4n+7
0 = {z ∈ H

n+2| B(z, z) = 0},
V 4n+8
− = {z ∈ H

n+2| B(z, z) < 0}.

Let H
∗→((Sp(p + 1, q + 1) · H

∗, H
n+2 − {0}) P−→ (PSp(p + 1, q + 1), HP

n+1) be the

equivariant projection. The quaternionic pseudo-hyperbolic space H
p+1,q
H

is defined to be

P (V 4n+8
− ) (cf. [11]). Let GL(n+2, H) be the group of all invertible (n+2)×(n+2)-matrices

with quaternion entries. Denote by Sp(p + 1, q + 1) the subgroup consisting of

{A ∈ GL(n + 2, H) | B(Az, Aw) = B(z, w), z, w ∈ H
n+2}.

The action Sp(p + 1, q + 1) on V 4n+8
− induces an action on H

p+1,q
H

. The kernel of this
action is the center Z/2 = {±1} whose quotient is the pseudo-quaternionic hyperbolic

group PSp(p + 1, q + 1). It is known that H
p+1,q
H

is a complete simply connected pseudo-

Riemannian manifold of negative sectional curvature from −1 to −1
4 , and with the group of

isometries PSp(p+1, q+1) (cf. [21]). Remark that when q = 0, p = n, P (V 4n+8
− ) = H

n+1
H

is
the quaternionic Kähler hyperbolic space with the group of isometries PSp(n + 1, 1). The

projective compactification of H
p+1,q
H

is obtained by taking the closure H̄
p+1,q
H

in HP
n+1.

Then it is easy to check that H̄
p+1,q
H

= H
p+1,q
H

∪ P (V 4n+7
0 ). The boundary P (V 4n+7

0 ) of

H
p+1,q
H

is identified with the quadric S3+4p,4q by the correspondence:

[z+, z−] 7→
[

z+

||z−||
,

z−
||z−||

]

.(7.2)

Since the pseudo-hyperbolic action of PSp(p + 1, q + 1) on H
p+1,q
H

extends to a smooth

action on S3+4p,4q = P (V 4n+7
0 ) as projective transformations because the projective com-

pactification H̄
p+1,q
H

is an invariant domain of HPn+1.

7.2. Existence of p-c qCR structure on S3+4p,4q. Recall that Σ3+4p,4q
H

=

{(z1, · · · , zp+1, w1, · · · , wq) ∈ H
n+1 | |z1|2 + · · ·+ |zp+1|2−|w1|2−· · ·− |wq|2 = 1} equipped

with qCR structure ω0 (cf. §3). The embedding ι of Σ
3+4p,4q
H

into S4p+3,4q is defined by

(z1, · · · , zp+1, w1, · · · , wq) 7→ [(z1, · · · , zp+1, w1, · · · , wq, 1)]. Then ι(Σ3+4p,4q
H

) is an open

dense submanifold of S4p+3,4q because it misses S4p+3,4(q−1) = S4p+3 × S4q−1/Sp(1) in

S4p+3,4q. We know that Σ3+4p,4q
H

has the transitive isometry group Sp(p + 1, q) · Sp(1)
(cf.Definition 3.1). Then this embedding implies that Sp(p + 1, q) · Sp(1) is identified with
the subgroup P (Sp(p + 1, q)× Sp(1)) of PSp(p + 1, q + 1) leaving the last component zn+2

invariant in V 4n+7
0 ⊂ Hn+2.

By pullback, each element h of PSp(p + 1, q + 1) gives a qCR structure h−1∗ω0 on the

open subset h(Σ3+4p,4q
H

) of S3+4p,4q. Noting that h−1∗Hcan = Hcan and Definition 1.6, we

shall prove that (S3+4p,4q,Hcan) admits a p-c qCR structure by showing that Nullh−1∗ω0

coincides with the restriction of Hcan|h(Σ3+4p,4q
H

).



26

Theorem 7.1. The (4n + 3)-dimensional p-c q manifold (S4p+3,4q,Hcan) supports a p-c
qCR structure, i.e. there exists locally a qCR strucrure ω on a neighborhood U such that

Hcan|U = Nullω.

Moreover, the automorphism group AutqCR(S4p+3,4q) with respect to this p-c qCR structure
is PSp(p + 1, q + 1).

Proof. First we describe the canonical p-c q structure Hcan on S3+4p,4q explicitly. Choose
isotropic vectors x, y ∈ V0 such that B(x, y) = 1 and denote by V the orthogonal comple-
ment to {x, y} in H

p+1,q+1. Then it follows that TxV0 = sp(W )x = yImH + V + xH where
Tx(xH

∗) = xH. Then

T[x]S
4k+3,4q = P∗(TxV0) = (yImH + V + xH)/xH.

We associate to each [x] ∈ S4k+3,4q the orthogonal complement x⊥ = V + xH. It does not
depend on the choice of points from [x]. In fact, if x′ ∈ [x], then x′ = x ·λ for some λ ∈ H∗.
By the definition choosing y′ such that Tx′V0 = y′ImH + V ′ + x′

H where the orthogonal
complement V ′ to {x′, y′} in Hp+1,q+1 is uniquely determined. Let v′ be any vector of V ′

which is described as v′ = y · a + v + x · b for some a, b ∈ H. Then

0 = B(x′, v′) = B(x′, y)a + B(x′, v) + B(x′, x)b

= λ̄B(x, y)a + λ̄B(x, v) + λ̄B(x, x)b = λ̄ · a.

Since λ 6= 0, a = 0 and so v′ = v + x · b. Hence x′⊥ = V ′ + x′
H = V + xH. Therefore

the orthogonal complement x⊥ = V + xH in H
p+1,q+1 determines a codimension three

subbundle

Hcan = ∪
[x]∈S4p+3,4q

P∗(x
⊥).

P∗(x
⊥) = V + xH/xH ⊂ TS4p+3,4q.

(7.3)

On the other hand, recall that if Np is the normal vector at p ∈ Σ3+4p,4q
H

, then (Nullω0)p =

Dp = {INp, JNp, KNp}⊥ by the definition (cf. § 3). Since TpΣ
3+4p,4q
H

= N⊥
p with respect

to gH, it follows that TpH
n+1|Σ3+4p,4q

H
= {Np, INp, JNp, KNp} ⊕ Dp. If we note that

{Np, INp, JNp, KNp} = pH, then we have Dp = pH
⊥. It is easy to see that the orthogonal

complement to pH with respect to gH coincides with the orthogonal complement to p with
respect to the inner product B. Hence, Dp = p⊥. As the tangent subspace ι∗(Dp) at
ι(p) in Tι(p)V0 is (Dp, 0) which is parallel to Dp in TpV0, it implies that B(ι∗(Dp), ι(p)) =

B((Dp, 0), (p, 1)) = 〈Dp, p〉 − 〈0, 1〉 = 0. Hence ι∗(Dp) ⊂ ι(p)⊥ (with respect to B). As

ι(p)⊥ = V + ι(p)H, ι∗(Dp) ⊂ V + ι(p)H. As above ι∗(Dp) = (Dp, 0) at ι(p), but ι(p)H =
(p, 1) ·H . The intersection ι∗(Dp) ∩ ι(p)H = {0}. It implies that ι∗(Dp) = ι∗(Dp)/ι(p)H ⊂
V + ι(p)H/ι(p)H. By (7.3), ι∗((Nullω0)p) = P∗(ι(p)⊥) = Hcan

ι(p). Therefore S4p+3,4q admits

a p-c qCR structure. Then AutqCR(S4p+3,4q) is a subgroup of Aut(S4p+3,4q) = PSp(p +
1, q + 1) from §6.2. �
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7.3. Pseudo-conformal quaternionic Heisenberg geometry.
To prove AutQCR(S4p+3,4q) = PSp(p + 1, q + 1), we recall the quaternionic Heisenberg Lie
group. Let PSp(p + 1, q + 1) be the group of all automorphisms preserving the flat p-c q
structure of S4p+3,4q = PSp(p + 1, q + 1)/P+(H) (cf. § 6.2.) We consider the stabilizer of

the point at infinity {∞} = [1, 0, · · · , 0, 1] ∈ Σ3+4p,4q
H

⊂ S4p+3,4q. Recall the (indefinite)

Heisenberg nilpotent Lie group M = M(p, q) from [16]. It is the product R
3 × H

n with
group law:

(a, y) · (b, z) = (a + b − Im〈y, z〉, y + z).

Here 〈 〉 is the Hermitian inner product of signature (p, q) on H
n as in (7.1) and Im〈 〉

is the imaginary part (p + q = n). It is nilpotent because the commutator subgroup
[M,M] = R3 which is the center consisting of the form (a, 0). In particular, there is the
central extension:

(7.4) 1→R
3→M−→H

n→1.

Denote by Sim(M) the semidirect product M ⋊ (Sp(p, q) · Sp(1) × R
+) where the action

(A · g, t) ∈ Sp(p, q) · Sp(1)× R
+ on (a, y) ∈ M is given by:

(7.5) (A · g, t) ◦ (a, y) = (t2 · gag−1, t ·Ayg−1).

Denote the origin by O = [1, 0, · · · , 0,−1] ∈ Σ3+4p,4q
H

−{∞}. The stabilizer Aut(S3+4p,4q)∞
is isomorphic to Sim(M) (cf. [18]). The orbit M · O is a dense open subset of S4p+3,4q.
The embedding ι is defined by:

(7.6) ((a, b, c), (z+, z−)) ∈ M ι→








||z+||2−||z− ||2

2 − 1 + ia + jb + kc√
2z+√
2z−

||z+||2−||z− ||2

2 + 1 + ia + jb + kc








Then the pair (Sim(M),M) is said to be p-c q Heisenberg geometry which is a subgeometry
of flat p-c q geometry (Aut(S3+4p,4q), S3+4p,4q). We prove the rest of Theorem 7.1.

Proposition 7.2. AutqCR(S4p+3,4q) = PSp(p + 1, q + 1).

Proof. First note that PSp(p+1, q+1) decomposes into Sim(M) · (Sp(p+1, q) ·Sp(1)). We
know (cf. §3) that each element f = (A, a) ∈ Sp(p+1, q) ·Sp(1) satisfies that f∗ω0 = aω0ā,
obviously f ∈ AutqCR(S4p+3,4q). On the other hand, it is shown that an element h of
Sim(M) satisfy that h∗ω0 = λω0λ̄ for some function λ ∈ H∗ by using the explicit formula
of ω0. (See [16].) When h ∈ Sim(M), note that h(∞) = ∞. Let τ : PSp(p + 1, q +
1)∞→Aut(T{∞}(S

3+4p,4q)) be the tangential representation at {∞}. Since the elements

of the center R
3 of M are tangentially identity maps at T{∞}(S

3+4p,4q), τ(PSp(p + 1, q +

1)∞) = H
n
⋊(Sp(p, q)·Sp(1)×R

+) which is isomorphic to the structure group G (cf. (6.11)).
As τ(h) = h∗, h ∈ AutqCR(S3+4p,4q) by Definition 6.1. We have PSp(p + 1, q + 1) ⊂
AutqCR(S3+4p,4q). �

8. Pseudo-conformal quaternionic CR invariant

We shall consider the equivalence problem of p-c qCR structure. Let dω + ω ∧ ω =
−(Iiji+Jijj +Kijk)θi∧θj be the equation (4.3) as before. We examine how this equation



28

behaves under the change of transformation f ∈ AutqCR(M); f∗ω = λ ·ω · λ̄. Put ω′ = f∗ω.
By (6.12),

dω′ + ω′ ∧ ω′ = f∗(dω + ω ∧ ω) = −(Iiji + Jijj + Kijk)f∗θi ∧ f∗θj

= −(Iiji + Jijj + Kijk)(uθkU i
k +

∑

a

ωav
i
a) ∧ (uθℓU j

ℓ +
∑

b

ωbv
j
b)

= −(Iiji + Jijj + Kijk)
(

u2U i
kU

j
ℓ θk ∧ θℓ+

∑

a

ωa ∧ (uvi
aU

j
ℓ θℓ − uvj

aU
i
ℓθ

ℓ)+
∑

a<b

ωa ∧ ωb(v
i
av

j
b − vi

bv
j
a)
)

= −(Iiji + Jijj + Kijk)
(

u2U i
kU

j
ℓ θk ∧ θℓ +

∑

a

ωa ∧ 2uvi
aU

j
ℓ θℓ

+
∑

a<b

ωa ∧ ωb(2vi
av

j
b)
)

.

Choosing wk
a (a = 1, 2, 3) such that U i

kw
k
a = vi

a, the above equation becomes

dω′ + ω′ ∧ ω′ = −(Iiji + Jijj + Kijk)
(

u2U i
kU j

ℓ θk ∧ θℓ+
∑

a

ωa ∧ 2uwk
aU i

kU
j
ℓ θℓ +

∑

a<b

ωa ∧ ωb(2U i
kU

j
ℓ wk

awℓ
b)
)

.

Let U = U ′ā ◦ Ada ∈ SO(4p, 4q) be the matrix as in (6.7) so that Uz = U ′zā (z ∈ H
n)

(cf. (6.6)). If {I, J, K} is the set of the standard quaternionic structure, then

IU(z) = I(U ′zā) = U ′zāi = U ′z(āia)ā

= U ′z(a11i + a21j + a31k)ā = a11U
′ziā + a21U

′zjā + a31U
′zkā

= a11U(zi) + a21U(zj) + a31U(zk) = a11UI(z) + a21UJ(z) + a31UK(z).

This follows that IU = a11UI + a21UJ + a31UK. Since IU(ei) = U j
j Iℓ

jeℓ, a calculation

shows that U j
i Iℓ

j = a11I
j
i U

ℓ
j + a21J

j
i U ℓ

j + a31K
j
i U

ℓ
j , similarly for J, K. As

(8.1)





I ′

J ′

K ′



 = tA





I
J
K





is a new quaternionic structure (cf. (1.5)), it follows that

IijU
i
kU j

ℓ = a11Ikℓ + a21Jkℓ + a31Kkℓ = I ′kℓ.

JijU
i
kU j

ℓ = a12Ikℓ + a22Jkℓ + a32Kkℓ = J ′
kℓ.

KijU
i
kU j

ℓ = a13Ikℓ + a23Jkℓ + a33Kkℓ = K ′
kℓ.

(8.2)

Then we obtain that
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dω′ + ω′ ∧ ω′ = −(I ′iji + J ′
ijj + K ′

ijk)
(

u2θi ∧ θj

+
∑

a

ωa ∧ 2uwi
aθ

j +
∑

a<b

ωa ∧ ωb(2wi
aw

j
b)
)

.
(8.3)

We shall derive an invariant under the change ω′ = λ · ω · λ̄. Recall from (6.12) that

(8.4) (ω′
1, ω

′
2, ω

′
3) = (ω1, ω2, ω3)u

2 · A.

Let dθi = θj ∧ϕi
j +

∑

a

ωa ∧ τ i
a be the structure equation (4.20). We define 1-forms ν′i

a by

setting

(8.5)





ν′i
1

ν′i
2

ν′i
3



 = u−2 · tA





τ i
1

τ i
2

τ i
3



 .

Since τ i
a ≡ 0 mod θk (k = 1, · · ·4n) by (4.23), note that

(8.6) ν′i
a ≡ 0 mod θk.

Using (8.4) and (8.5),

∑

a

ωa ∧ τ i
a = (ω′

1, ω
′
2, ω

′
3) ∧





ν′i
1

ν′i
2

ν′i
3



 =
∑

a

ω′
a ∧ ν′i

a,

the equation (4.20) becomes

(8.7) dθi = θj ∧ ϕi
j +

∑

a

ω′
a ∧ ν′i

a.

Differentiate (8.7), and then substitute (8.3), we obtain that

θj ∧ (dϕi
j − ϕσ

j ∧ ϕi
σ + u2I ′jkθ

k ∧ ν′i
1 + u2J ′

jkθ
k ∧ ν′i

2 + u2K ′
jkθk ∧ ν′i

3) ≡ 0 mod ωα.

Taking into account this equation (which corresponds to (5.5)), we have the fourth-order
tensor up to the terms ω1, ω2, ω3:

(8.8)
1

2
T ′i

jkℓθ
k ∧ θℓ ≡ dϕi

j − ϕσ
j ∧ ϕi

σ +
∑

a

u2 · J′a
jkθ

k ∧ ν′i
a − θi ∧ θj .

Here we put (I ′ij , J
′
ij, K

′
ij) = (J′1

ij, J
′2
ij, J

′3
ij). Since (I ′ij, J

′
ij, K

′
ij) = (Iij, Jij, Kij)A from

(8.1) and (8.5),

∑

a

u2 · J′a
jkθk ∧ ν′i

a = θk ∧ (Ijk, Jjk, Kjk)





τ i
1

τ i
2

τ i
3



 = θk ∧
∑

a

Ja
jkτ

i
a.

The equation (8.8) can be reduced to the following:

T ′i
jkℓθ

k ∧ θℓ ≡ dϕi
j − ϕσ

j ∧ ϕi
σ + θk ∧

∑

a

Ja
jkτ i

a − θi ∧ θj .(8.9)

From (5.9) and (5.6), we have shown
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Proposition 8.1. If ω′ = λ · ω · λ̄ for which ω is a qCR structure, then the curvature

tensor T ′ satisfies that T ′i
jkℓ = T i

jkℓ. In particular, T = (T i
jkℓ) is an invariant tensor under

the p-c qCR structure.

Remark 8.2. 1. Similarly, the quaternionic structures {I ′, J ′, K ′} extends to almost
complex structures {Ī ′, J̄ ′, K̄ ′} respectively.

2. Let f ∈ AutqCR(M) be an element satisfying (6.12). Then,

f∗ei = uUk
i ek. Using (8.2),

If∗ei = uUk
i I

j
kej = u(a11I

m
i + a21J

m
i + a31K

m
i )U j

mej

= f∗((a11I
m
i + a21J

m
i + a31K

m
i )em)

= f∗((a11I + a21J + a31K)ei).

The similar argument to J, K yields that

(8.10)





f−1
∗ If∗

f−1
∗ Jf∗

f−1
∗ Kf∗



 = tA





I
J
K



 on D.

8.1. Formula of curvature tensor. We shall find the formula of T . Substitute (4.24),
(4.23) into (8.9):

T i
jkℓθ

k ∧ θℓ = d(ωi
j +

∑

a

(Ja)i
jωa) − (ωσ

j +
∑

a

(Ja)σ
j ωa) ∧ (ωi

σ +
∑

a

(Ja)i
σωa)

+ θk ∧ (Ijk · I i
ℓθ

ℓ + Jjk · J i
ℓθ

ℓ + Kjk · Ki
ℓθ

ℓ) − θi ∧ θj mod ωa

= dωi
j +

∑

a

(Ja)i
jdωa − ωσ

j ∧ ωi
σ +

∑

a

(Ja
jk(Ja)i

ℓ)θ
k ∧ θℓ − θi ∧ θj mod ωa

= (dωi
j − ωσ

j ∧ ωi
σ)

+
∑

a

(Ja)i
j(−Ja

kℓ)θ
k ∧ θℓ +

∑

a

(Ja
jk(Ja)i

ℓ)θ
k ∧ θℓ − θi ∧ θj mod ωa

=

(

1

2
Ri

jkℓ −
∑

a

(Ja)i
jJ

a
kℓ +

∑

a

Ja
jk(J

a)i
ℓ − gjℓ · δi

k

)

θk ∧ θℓ mod ωa.

By alternation, we have

T i
jkℓ = Ri

jkℓ −
(

2
∑

a

(Ja)i
jJ

a
kℓ −

∑

a

Ja
jk(Ja)i

ℓ +
∑

a

Ja
jℓ(J

a)i
k + (gjℓδ

i
k − gjkδ

i
ℓ)

)

.(8.11)

Recall the space of all curvature tensors R(Sp(p, q) · Sp(1)). (See [1] for example.) It
decomposes into the direct sum R0(Sp(p, q) · Sp(1))⊕RHP(Sp(p, q) · Sp(1)) (n ≥ 2). Here
R0 is the space of those curvatures with zero Ricci forms and RHP ≈ R is the space of
curvature tensors of the quaternionic pseudo-Kähler projective space HPp,q (cf.Definition
3.2).
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Case n ≥ 2. Since we know that Ri
jiℓ = Rjℓ = (4n+8)gjℓ from (5.3), the curvature tensor

T = (T i
jkℓ) satisfies the tracefree condition:

Tjℓ = (T i
jiℓ) = (4n + 8)gjℓ −

(

3 · 3gjℓ + (4n − 1)gjℓ

)

= 0.

This implies that our curvature tensor T belongs to R0(Sp(p, q) · Sp(1)) when n ≥ 2.

Case n = 1. When dim M = 7, either p = 1, q = 0 or p = 0, q = 1. Choose the
orthonormal basis {ei}i=1,2,3,4 with e1 = e, e2 = Ie, e3 = Je, e4 = Ke. Form another
curvature tensor:

R′i
jkℓ = (gjℓδ

i
k − gjkδ

i
ℓ) +

[

IjℓI
i
k − IjkI

i
ℓ + 2I i

jIkℓ

+JjℓJ
i
k − JjkJ i

ℓ + 2J i
jJkℓ + KjℓK

i
k − KjkK

i
ℓ + 2Ki

jKkℓ

]

.
(8.12)

For any two distinct ei, ej,

R′i
jij = (gjjδ

i
i − gjiδ

i
j) +

[

IjiI
i
i − IjiI

i
j + 2IijI

i
j + JjiJ

i
i − JjiJ

i
j + 2J i

jJij

+KjiK
i
i − KjiK

i
j + 2Ki

jKij

]

= gjj + 3
[

IijI
i
j + JijJ

i
j + KijK

i
j

]

.

Since i 6= j and ej is either one of ±Iei,±Jei,±Kei, I2
ij + J2

ij + K2
ij = 1 (for example, if

ej = Iei, then I i
j
2

= 1, J i
j = 0, Ki

j = 0 so that IijI
i
j = gjj.) Thus, R′i

jij = 4gjj. It follows

from the Schur’s theorem (cf. [21] for example) that

(8.13) R′i
jkℓ = 4(gjℓδ

i
k − gjkδ

i
ℓ).

When n = 1, we conclude that

(8.14) T i
jkℓ = Ri

jkℓ − R′i
jkℓ = Ri

jkℓ − 4(gjℓδ
i
k − gjkδi

ℓ).

As the curvature Ri
jkℓ satisfies the Einstein property from (5.3); Rjℓ = 4 · 3gjℓ, the scalar

curvature σ = 4 · 12. On the other hand, the curvature tensor Ri
jkℓ has the decomposition:

Ri
jkℓ = W i

jkℓ +
4 · 12

4 · 3 (gjℓδ
i
k − gjkδ

i
ℓ)

in the space R(SO(4)) where SO(4) = Sp(1) · Sp(1). Hence,

(8.15) T i
jkℓ = W i

jkℓ ∈ R0(SO(4))

for which W i
jkℓ corresponds to the Weyl curvature tensor (of (U/E , ĝ)).

Case n = 0. If dim M = 3, then the above tensor is empty, so we simply set T = 0. Define
the Riemannian metric on a neighborhood U of a 3-dimensional p-c qCR manifold M :

(8.16) gx(X, Y ) = ω1(X) · ω1(Y ) + ω2(X) · ω2(Y ) + ω3(X) · ω3(Y )

(∀ X, Y ∈ TxU). Suppose that ω′ = λ · ω · λ̄. Since (ω′
1, ω

′
2, ω

′
3) = u2 · (ω1, ω2, ω3)A for

A ∈ SO(3), the metric g changes into g′ = ω′
1 · ω′

1 + ω′
2 · ω′

2 + ω′
3 · ω′

3 satisfying that

(8.17) g′x(X, Y ) = u4 · gx(X, Y ) (∀ X, Y ∈ TxU).

Then g′ is conformal to g on U . Define TW (ω) to be the Weyl-Schouten tensor TW (g) of
the Riemannian metric g on U . Then, it turns out that

(8.18) TW (ω′) = TW (ω).
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As a consequence, TW (ω) is an invariant tensor of U under the change ω′ = λ · ω · λ̄.

9. Uniformization of p-c qCR structure

If {ω(α), (I(α), J(α), K(α)), g(α), Uα}α∈Λ is a p-c qCR structure on M where ∪
α∈Λ

Uα = M ,

then we have the curvature tensor T (α) = ((α)T
i

jkℓ) on each (Uα, ω(α)) (n ≥ 1). Sim-

ilarly, TW (α) = TW (ω(α)) on (Uα, ω(α)) for 3-dimensional case (n = 0). Then it fol-

lows from Proposition 8.1 and (8.18) that if ω(β) = λαβ · ω(α) · λ̄αβ on Uα ∩ Uβ, then

T (α) = T (β), TW (α) = TW (β). By setting T |Uα = T (α) (respectively TW |Uα = TW (α)),
the curvature T (respectively TW ) is globally defined on a (4n + 3)-dimensional p-c qCR
manifold M (n ≥ 0). This concludes that

Theorem 9.1. Let M be a p-c qCR manifold of dimension 4n+3 (n ≥ 0). If n ≥ 1, there
exists the fourth-order curvature tensor T = (T i

jkℓ) on M satisfying that:

(i) When n ≥ 2, T = (T i
jkℓ) ∈ R0(Sp(p, q) · Sp(1)) which has the formula:

T i
jkℓ = Ri

jkℓ −
{

(gjℓδ
i
k − gjkδ

i
ℓ) +

[

IjℓI
i
k − IjkI i

ℓ + 2I i
jIkℓ

+JjℓJ
i
k − JjkJ i

ℓ + 2J i
jJkℓ + KjℓK

i
k − KjkKi

ℓ + 2Ki
jKkℓ

]}

.

(ii) When n = 1, T = (W i
jkℓ) ∈ R0(SO(4)) which has the same formula as the Weyl

conformal curvature tensor.
(iii) If n = 0, there exists the fourth-order curvature tensor TW on M which has the

same formula as the Weyl-Schouten curvature tensor.

We have associated to a p-c qCR structure ({ωa}, {Ja}, {ξa})a=1,2,3 the pseudo-Sasakian

metric g =

3∑

a=1

ωa ·ωa +π∗ĝ on U for which E→(U, g)
π−→ (U/E , ĝ) is a pseudo-Riemannian

submersion and the quotient (U/E , ĝ, {Îi, Ĵi, K̂i}i∈Λ) is a quaternionic pseudo-Kähler man-

ifold by Theorem 4.6. Let (g)Ri
jkℓ (respectively R̂i

jkℓ) denote the curvature tensor of g

(respectively ĝ). If RHP is the generator of RHP(Sp(p, q) · Sp(1)) ≈ R (n ≥ 2), then it can
be described as (cf. [1]):

(9.1) RHP = (gjℓgik − gjkgiℓ) +

3∑

a=1

Ja
jℓJ

a
ik −

3∑

a=1

Ja
jkJ

a
iℓ + 2

3∑

a=1

Ja
ijJ

a
kℓ

where i, j, k, ℓ run over {1, · · · , 4n}. Then the formula (12.8) of curvature tensor of g [33]
(n ≥ 1) shows the following.

Lemma 9.2.

π∗R̂ijkℓ = (g)Rijkℓ +

(
3∑

a=1

Ja
jℓJ

a
ik −

3∑

a=1

Ja
jkJ

a
iℓ + 2

3∑

a=1

Ja
ijJ

a
kℓ

)

= (g)Rijkℓ − (gjℓδik − gjkδiℓ) + RHP.

(9.2)

We now state the uniformization theorem.
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Theorem 9.3. (1) Let M be a (4n + 3)-dimensional p-c qCR manifold (n ≥ 1). If the
curvature tensor T vanishes, then M is locally modelled on S4p+3,4q with respect to the
group PSp(p + 1, q + 1).

(2) If M is a 3-dimensional p-c qCR manifold whose curvature tensor TW vanishes,
then M is conformally flat (locally modelled on S3 with respect to the group PSp(1, 1) ).

Proof. Using (5.2) and (9.1), the formula of Theorem 9.1 becomes

(9.3) T i
jkℓ = π∗R̂i

jkℓ − RHP.

Compared this with (9.2), we obtain that

(9.4) T i
jkℓ = (g)Ri

jkℓ − (gjℓδ
i
k − gjkδi

ℓ).

The equality (9.4) is also true for n = 1. In fact, when n = 1, RHP = 4(gjℓδ
i
k − gjkδ

i
ℓ) (cf.

(8.12), (8.13)) and from (9.2), (g)Ri
jkℓ − (gjℓδ

i
k − gjkδi

ℓ) = π∗R̂i
jkℓ − RHP = T i

jkℓ by (8.14).

Suppose that T (respectively TW ) vanishes identically on M . First we show that M
is locally isomorphic to S4p+3,4q (respectively M is locally isomorphic to S3.) As T |Uα =

((α)T i
jkℓ) = 0 on Uα, for brevity, we omit α so that T = (T i

jkℓ) vanishes identically on U
for n ≥ 2. As a consequence,

(9.5) (g)Ri
jkℓ = gjℓδ

i
k − gjkδ

i
ℓ on D|U.

Since (U, g) is a pseudo-Sasakian 3-structure with Killing fields {ξ1, ξ2, ξ3}, the normality

of (4.18) can be stated as (g)R(X, ξa)Y = g(X, Y )ξa − g(ξa, Y )X (cf. [33]). It turns out
that

(9.6) (g)R(ξa, X, Y, Z) = g(X, Z)g(ξa, Y ) − g(X, Y )g(ξa, Z)

(∀X, Y, Z ∈ TU). Then (9.5) and (9.6) imply that (U, g) is the space of positive constant

curvature. As R̂i
jkℓ = RHP by (9.3), the quotient space (U/E , ĝ) is locally isometric to

the quaternionic pseudo-Kähler projective space (HPp,q, ĝ0). (Note that if T i
jkℓ = 0 for

n = 1, then π∗R̂i
jkℓ = Ri

jkℓ = 4(δjℓδ
i
k − δjkδ

i
ℓ) from (8.14). When p = 1, q = 0, the base

space (U/E , ĝ) is locally isometric to the standard sphere S4 which is identified with the
1-dimensional quaternionic projective space HP1. If p = 0, q = 1, then (U/E , ĝ) is locally
isometric to the quaternionic hyperbolic space H1

H
= HP0,1 in which we remark that the

metric ĝ is negative definite.) Hence, the bundle: E→(U, g)
π−→ (U/E , ĝ) is locally isometric

to the Hopf bundle as the Riemannian submersion (n ≥ 1) (cf.Theorem 3.4):

Sp(1)→(Σ4p+3,4q
H

, g0)−→(HP
p,q, ĝ0).

This is obviously true for n = 0.

Let ϕ : (U, g)→(Σ
4p+3,4q
H

, g0) be an isometric immersion preserving the above principal
bundle. If V0 = {ξ0

1, ξ
0
2, ξ

0
3} is the distribution of Killing vector fields which generates

Sp(1) of the above Hopf bundle, then we can assume that ϕ∗ξa = ξ0
a (a = 1, 2, 3) (by a

composite of some element of Sp(1) if necessary). As ωa(X) = g(ξa, X) (X ∈ TU) and

ω0
a(X) = g0(ξa, X) (X ∈ TΣ4p+3,4q

H
) respectively, the equality g = ϕ∗g0 implies that

(9.7) ωa = ϕ∗ω0
a (a = 1, 2, 3), ω = ϕ∗ω0.
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If we represent ϕ∗θi = θkT i
k +

∑

a

ωav
i
a for some matrix T i

j and vi
a ∈ R, then the equality

ϕ∗ξa = ξ0
a shows that vi

a = 0 for i = 1, · · · , 4n. Thus,

(9.8) ϕ∗θi = θkT i
k.

For each α ∈ Λ, we have an immersion ϕα : Uα→Σ4p+3,4q
H

as above so that there is a
collection of charts {Uα, ϕα}α∈Λ on M . Put gαβ = ϕβ ◦ϕα

−1 : ϕα(Uα ∩Uβ)→ϕβ(Uα ∩Uβ)
when Uα ∩Uβ 6= ∅. It suffices to prove that gαβ extends uniquely to an element of PSp(p+
1, q + 1) = AutqCR(S4p+3,4q). Suppose that

(9.9) ω(β) = λ · ω(α) · λ = u2 · a · ω(α) · ā on Uα ∩ Uβ 6= ∅

where λ = u ·a. The immersions ϕα : Uα→Σ
4p+3,4q
H

, ϕβ : Uβ→Σ
4p+3,4q
H

satisfy ω(α) = ϕ∗
αω0,

ω(β) = ϕ∗
βω0 as in (9.7). If we put µ = λ ◦ ϕα

−1 on ϕα(Uα ∩ Uβ), then the above relation
shows that

(9.10) g∗αβω0 = µ · ω0 · µ̄.

Using the fact that dω(α)
a (J(α)

a X, Y ) = g(α)(X, Y ) (∀ X, Y ∈ D, a = 1, 2, 3) from (1.1) and

g(α) = ϕ∗
α∗g0, calculate that

ω0
a(ϕα∗J

(α)
a X, ϕα∗Y ) = dωa(J

(α)
a X, Y ) = g0(ϕα∗X, ϕα∗Y ) = dω0

a(J
0
aϕα∗X, ϕα∗Y ).

As dω0
a is nondegenerate on D, for each α ∈ Λ we have

(9.11) ϕα∗ ◦ J(α)
a = J0

a ◦ ϕα∗ on D (a = 1, 2, 3).

Let ϕ∗
αθi = θk

(α) · (α)T i
k for some matrix (α)T i

k as in (9.8). Then (9.11) means that (α)T k
i ·

(Ja)j
k = (Ja)k

i · (α)T j
k , which implies that (α)T i

k ∈ GL(n, H). Noting that g(α)(X, Y ) =
g0(ϕα∗X, ϕα∗Y ), this reduces to

(9.12) (α)T i
k ∈ Sp(p, q).

Let {ω(α), ω
i
(α)}i=1,··· ,n, {ω(β), ω

i
(β)}i=1,··· ,n be two coframes on the intersection Uα ∩ Uβ

where ω(α) is a ImH-valued 1-form and each ωi
(α) is a H-valued 1-form, simlarly for β.

Noting (6.3) and (9.9), the coordinate change of the fiber H
n satisfies that

(9.13)








ω(β)

ω1
(β)
...

ωn
(β)








=







λ 0

ṽi U ′














ω(α)

ω1
(α)
...

ωn
(α)








· λ̄.

In order to transform them into the real forms, recall that GL(n, H) · GL(1, H) is the
maximal closed subgroup of GL(4n, R) acting on R4n preserving the standard quaternionic
structure {I, J, K}. For each fiber of Dα (= Dβ) on the intersection, there exists a matrix

Ũ = (Ũ i
j) = U ′ · λ ∈ GL(n, H) ·GL(1, H) such that:

(9.14) e
(α)
j = Ũ i

je
(β)
i
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with respect to the basis {e(α)
i }x ∈ (Dα)x, {e(β)

i }x ∈ (Dβ)x. From Corollary 1.4,

±u2δkℓ = u2g(α)(e
(α)
k , e

(α)
ℓ ) = g(β)(Ũ

i
ke

(β)
i , Ũ j

ℓ e
(β)
j ) = ±δij Ũ

i
kŨ

j
ℓ ,

so (u−1Ũ i
k) ∈ Sp(p, q) · Sp(1) = GL(n, H) · GL(1, H) ∩ SO(4p, 4q) up to conjugacy (n ≥ 1).

Put U = (U i
k) = (u−1Ũ i

k) ∈ Sp(p, q) · Sp(1), then

(9.15) Ũ = uU = (uU i
k) ∈ Sp(p, q) · Sp(1)× R

+.

Using coframes {θi
(α)}, {θi

(β)} (induced from {ωi
(α), ω

i
(β)}i=1,··· ,n), the equation (9.14) trans-

lates into θi
(β) = θk

(α)Ũ
i
k on D. Using (9.13), it follows that

θi
(β) = θk

(α)Ũ
i
k +

3∑

a=1

ω(α)
a · vi

a on Uα ∩ Uβ .

Here vi
a are determined by ṽi, see (6.12). Then,

gαβ
∗(θi) = (ϕα

−1)∗ϕβ
∗(θi) = (ϕα

−1)∗(θj

(β)
· (β)T i

j )

= (ϕα
−1)∗

(

(θk
(α)Ũ

j
k +

3∑

a=1

ω(α)
a · vj

a) · (β)T i
j

)

= θℓ · ((α)T−1)
k

ℓ Ũ
j
k · (β)T i

j +

3∑

a=1

ω0
a · (vj

a · (β)T i
j ).

(9.16)

If we put S = (Si
ℓ) = (((α)T

−1
)k
ℓ · Ũ j

k · (β)T i
j ), then (9.15) and (9.12) imply S ∈ Sp(p, q) ·

Sp(1)×R+. By (9.10), (9.16), gαβ satisfies the conditions of (6.12). Therefore the diffeomor-
phism gαβ : ϕα(Uα∩Uβ)→ϕβ(Uα∩Uβ) is viewed locally as an element of AutqCR(S4p+3,4q) =

PSp(p+1, q +1) because Σ4p+3,4q
H

⊂ S4p+3,4q. As PSp(p+1, q +1) acts real analytically on
S4p+3,4q, gαβ extends uniquely to an element of PSp(p+1, q+1). Therefore, the collection
of charts {Uα, ϕα}α∈Λ gives rise to a uniformization of a p-c qCR manifold M with respect
to (PSp(p + 1, q + 1), S4p+3,4q).

Recall that the orthogonal Lorentz group PO(4, 1)0 is isomorphic to PSp(1, 1) as a
Lie group. The same is true for the 3-dimensional conformal geometry (PSp(1, 1), S3) =
(PO(4, 1)0, S3) (n = 0). �

10. Quaternionic bundle

It is known that the first Stiefel-Whitney class is the obstruction to the existence of a
global 1-form of the contact structure (cf. [13], [32]) and the first Chern class is the obstruc-
tion to the existence of a global 1-form of the complex contact structure (cf. [22],[7],[37],[25])
respectively. It is natural to ask whether the first Pontrjagin class p1(M) is the obstruction
to the existence of global 1-form of p-c q structure (respectively p-c qCR structure) on a
(4n+3)- manifold M (n ≥ 1). In order to consider this, we need the elementary properties
of the quaternionic bundle theory whose structure group is GL(n, H) · GL(1, H) but not
GL(n, H). To our knowledge, the fundamental properties of the quaternionic bundle with
GL(n, H) · GL(1, H) as the structure group are not provided explicitly. So we prepare the
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necessary facts here. Let D be the 4n-dimensional bundle defined by D = ∪
α
Dα where

Dα = D|Uα = Null ω(α) in which there is the relation on the intersection Uα ∩ Uβ :

(10.1) ω(β) = λ̄ · ω(α) · λ = u2 · āω(β) · a where λ = u · a ∈ H
∗.

We have already discussed the transition functions on D in (9.13). In fact, the gluing
condition of D in Uα ∩ Uβ is given by

(10.2)






v
(α)
1
...

v
(α)
n




 = uT






v
(β)
1
...

v
(β)
n




 · a,

in which u(T · ā) ∈ Sp(p, q) · Sp(1)× R
+ (p + q = n).

Definition 10.1. A quaternionic n-dimensional bundle is a vector bundle over a para-
compact Hausdorff space M with fiber isomorphic to the n-dimensional quaternionic vector
space H

n. For an open cover {Uα}α∈Λ of M , if Uα ∩Uβ 6= ∅, then there exists a transition
function gαβ : Uα ∩ Uβ→GL(n, H) ·GL(1, H).

As a consequence, D is a quaternionic n-dimensional bundle on M . Note that as
GL(1, H)·GL(1, H) ≈ SO(4)×R+, the quaternionic line bundle is isomorphic to an oriented
real 4-dimensional bundle. Define the inner product 〈 , 〉 of type (p, q) on Hn (p + q = n)
by

〈z, w〉 = z̄1w1 + · · ·+ z̄pwp − z̄p+1wp+1 − · · · − z̄nwn.

Then 〈 , 〉 satisfies that 〈z, w · λ〉 = 〈z, w〉 · λ, 〈z · λ, w〉 = λ̄〈z, w〉, 〈z, w〉 = 〈w, z〉 for
λ ∈ H, and so on. By a subspace W in H

n we mean a right H-module. Choosing v0 ∈ H
n

with 〈v0, v0〉 > 0, let V = {v0 · λ | λ ∈ H} be a 1-dimensional subspace of H
n. Denote

V ⊥ = {v ∈ H
n| 〈v, x〉 = 0, ∀ x ∈ V }. Then it is easy to check that V ⊥ is a right H-module

for which there is a decomposition: Hn = V ⊕ V ⊥ as a right H-module. The following is a
quaternionic analogue of the splitting theorem.

Proposition 10.2. Given a quaternionic n-dimensional bundle ξ with an (indefinite) inner
product 〈 〉 on each fiber, there exists a quaternionic line bundle ξi (i = 1, · · · , n) over a
paracompact Hausdorff space N and a (splitting) map f : N→M for which:

(1) f∗ξ = ξ1 ⊕ · · · ⊕ ξn.

(2) f∗ : H∗(M)→H∗(N ) is injective. Moreover,

(3) The bundle isomorphism b : ξ1 ⊕ · · · ⊕ ξn→ξ compatible with f can be

chosen to preserve the (indefinite) inner product.

Proof. Let Hn−{0}→ξ0
π−→ M be the subbundle of ξ consisting of nonzero sections. Noting

that H
n is a right H-module, it induces a fiber bundle with fiber HP

n−1: HP
n−1→Q

q−→ M .
Since the cohomology group H∗(HP

n−1; Z) is a free abelian group, q∗ : H∗(M)→H∗(Q) is
injective by the Leray-Hirsch’s theorem (cf. [28].) Put

q∗ξ = {(ℓ, v) ∈ Q × ξ | q(ℓ) = π(v)}.
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Then, (q∗ξ, pr, Q) is a quaternionic bundle. Choose ℓ = v1H with 〈v1, v1〉 > 0. Let
ξ1 = {(ℓ, v) ∈ q∗ξ | v ∈ ℓ} which is the quaternionic 1-dimensional subbundle of q∗ξ. The
(right) H-inner product 〈, 〉 on ξ induces a (right) H-inner product on q∗ξ such that the
bundle projection Pr : q∗ξ→ξ preserves the inner product obviously. Moreover, we obtain
that

q∗ξ = ξ1 ⊕ ξ1
⊥.

Since ξ1
⊥ is a quaternionic (n − 1)-dimensional bundle over Q, an induction hypothesis

for n − 1 implies that there exist a paracompact Hausdorff space N and a splitting map
f1 : N→Q such that f∗

1 ξ⊥1 = ξ2 ⊕ · · · ⊕ ξn and f∗
1 : H∗(Q)→H∗(N ) is injective. Moreover

if b1 : ξ2 ⊕ · · ·⊕ ξn→ξ1
⊥ is the bundle map compatible with f1, then b1 preserves the inner

product on the fiber between ξ2⊕· · ·⊕ξn and ξ1
⊥ by induction. Putting f = q◦f1 : N→M ,

we see that f∗ : H∗(M)→H∗(N ) is injective and f∗ξ = f∗
1 ξ1⊕ξ2⊕· · ·⊕ξn. If Pr1 : f∗

1 ξ1→ξ1

is the bundle map, then Pr1 ⊕ b1 : f∗
1 ξ1 ⊕ (ξ2 ⊕ · · ·⊕ ξn)→ξ1 ⊕ ξ⊥1 is the bundle map. Then

the map Pr ◦ (Pr1 ⊕ b1) : f∗
1 ξ1 ⊕ ξ2 ⊕ · · · ⊕ ξn−→ξ is compatible with f and preserves the

inner product 〈, 〉. This proves the induction step for n. �

Let ξ be a quaternionic line bundle over M with gluing condition on Uα ∩ Uβ:

(10.3) zα = λ̄(x)zβµ(x) = u(x) · b̄(x)zβa(x) (u > 0, a, b ∈ Sp(1)).

Consider the tensor ξ̄⊗
H

ξ so that the gluing condition on Uα ∩ Uβ is given by

(z̄α ⊗
H

zα) = u2(x)ā(x)(z̄βb(x)⊗
H

b̄(x)zβ)a(x)

= u2(x)ā(x)(z̄β ⊗
H

zβ)a(x).

Then ξ̄ ⊗
H

ξ is a quaternionic line bundle over M whenever ξ is a quaternionic line bundle.

Lemma 10.3. If ξ̄ ⊗
H

ξ is viewed as a real 4-dimensional vector bundle, then p1(ξ̄⊗
H

ξ) =

p1(ξ̄) + p1(ξ). Moreover, p1(ξ̄) = p1(ξ) so that p1(ξ̄⊗
H

ξ) = 2p1(ξ).

Proof. Let γ be the canonical real 4-dimensional vector bundle over BSO(4) (cf. [28]).
Then, ξ is determined by a classifying map f : M→BSO(4) such that f∗γ = ξ. Let
pri : BSO(4)×BSO(4)→BSO(4) be the projection (i = 1, 2). As γ inherits a quaternionic
structure from ξ through the bundle map, there is a quaternionic line bundle pr∗1γ̄ ⊗

H

pr∗2γ

over BSO(4)×BSO(4). Now, let h : BSO(4)×BSO(4)→BSO(4) be a classifying map of this
bundle so that h∗γ = pr∗1γ̄ ⊗

H

pr∗2γ. When ιi : BSO(4)→BSO(4) × BSO(4) is the inclusion

map on each factor, ι∗1pr∗2γ is the trivial quaternionic line bundle (we simply put θ1
h
) and so

ι∗1h
∗p1(γ) = ι∗1p1(pr∗1γ̄ ⊗

H

pr∗2γ) = p1(γ̄ ⊗
H

θ1
h
) = p1(γ̄). Similarly, ι∗2h

∗p1(γ) = p1(γ). Hence

we obtain that

h∗p1(γ) = p1(γ̄) × 1 + 1 × p1(γ).

Let f ′ : M→BSO(4) be a classifying map for ξ̄ such that f ′∗γ = ξ̄. Then the map h(f ′×f)d
composed of the diagonal map d : M→M × M satisfies that

(h(f ′ × f)d)∗γ = f ′∗γ̄ ⊗
H

f∗γ = ξ̄⊗
H

ξ.
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Therefore, p1(ξ̄⊗
H

ξ) = d∗(f ′×f)∗(p1(γ̄)×1+1×p1(γ)) = p1(f
′∗γ̄)+p1(f

∗γ) = p1(ξ̄)+p1(ξ).

Next, the conjuagte ξ̄ is isomorphic to ξ as real 4-dimensional vector bundle without
orientation. But the correspondence (1, i, j, k) 7→ (1,−i,−j,−k) gives an isomorphism of
ξ̄ onto (−1)3ξ. And so, the complexification ξ̄C of ξ̄ (viewed as a real vector bundle) is
isomorphic to (−1)6ξC = ξC. By definition, p1(ξ̄) = p1(ξ). �

10.1. Relation between the first Pontrjagin classes.
Suppose that {ω(α), (I(α), J(α), K(α)), g(α), Uα}α∈Λ represents a p-c q structure D on a
(4n + 3)-manifold M = ∪

α∈Λ
Uα. Let L be the quotient bundle TM/D. Choose the local

vector fields {ξ(α)
1 , ξ

(α)
2 , ξ

(α)
3 } on each neighborhood Uα such that ω

(α)
a (ξ

(α)
b ) = δab. Then,

L|Uα is spanned by {ξ(α)
1 }i=1,2,3 for each α ∈ Λ. Moreover, the gluing condition between

L|Uα and L|Uβ is exactly given by

(10.4)






ξ
(α)
1

ξ
(α)
2

ξ
(α)
3




 = u2A






ξ
(β)
1

ξ
(β)
2

ξ
(β)
3




 .

(Compare Definition 1.6.) It is easy to see that

3∑

a=1

ω(α)
a · ξ(α)

a =

3∑

a=1

ω(β)
a · ξ(β)

a on L|Uα∩Uβ .

We can define a section θ : TM→L which is an L-valued 1-form by setting

(10.5) θ|Uα = ω
(α)
1 · ξ(α)

1 + ω
(α)
2 · ξ(α)

2 + ω
(α)
3 · ξ(α)

3

which induces the exact sequence of bundles: 1→D→TM
θ−→ L→1.

Let E be the quaternionic line bundle obtained from the union
⋃

α∈Λ

Uα×H by identifying

(10.6) (p, zα) ∼ (q, zβ) if and only if

{
p = q ∈ Uα ∩ Uβ,
zα = λ · zβ · λ̄ = u2a · zβ · ā for a fnction λ ∈ H

If L ⊕ θ is the Whitney sum composed of the trivial (real) line bundle θ on M , then it
is easy to see that L ⊕ θ is isomorphic to the quaternionic line bundle E. In particular,
p1(E) = p1(L ⊕ θ). We prove that

Theorem 10.4. The first Pontrjagin classes of M and the bundle L has the relation:

2p1(M) = (n + 2)p1(L ⊕ θ).

Proof. As D is a quaternionic bundle in our sense, there is a splitting map f : N→M such
that f∗D = ξ1 ⊕ · · ·⊕ ξn from Proposition 10.2. Let Ψ : ξ1 ⊕ · · ·⊕ ξn→D be a bundle map
which is compatible with f . Since Ψ is a right H-linear map on the fiber at each point
x ∈ N , we can describe

Ψ






v1
...

vn






x

= P (x)






v1
...

vn






f(x)
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for some function P : N→GL(n, H). By (3) of Theorem 10.2, choosing an appropriate
inner product 〈, 〉 of typw (p, q) on D and the direct inner product on ξ1 ⊕ · · · ⊕ ξn, Ψ
preserves the inner product between them. We may assume that

(10.7) P (x) ∈ Sp(p, q) (p + q = n).

We examine the gluing condition of each ξi on f−1(Uα)∩ f−1(Uβ) 6= ∅. For x ∈ f−1(Uα)∩
f−1(Uβ), let v

(α)
i ∈ ξi|f−1(Uα). Suppose that there is an element v

(β)
i ∈ ξi|f−1(Uβ) such

that v
(α)
i ∼ v

(β)
i , i.e. v

(α)
i = λ̄iv

(β)
i µi (λi, µi ∈ H

∗; i = 1, · · · , n). Since Ψ(v
(α)
i ) ∼ Ψ(v

(β)
i ) at

f(x), it follows from (10.2) that Ψ






v
(α)
1
...

v
(α)
n




 = uT ·Ψ






v
(β)
1
...

v
(β)
n




 · a at f(x) ∈ Ua ∩Uβ . As

P






v
(α)
1
...

v
(α)
n




 = Ψ






v
(α)
1
...

v
(α)
n




 = uT · P






v
(β)
1
...

v
(β)
n




 · a = P · uP−1TP






v
(β)
1
...

v
(β)
n




 · a,

it follows that





v
(α)
1
...

v
(α)
n




 = u · P−1TP






v
(β)
1
...

v
(β)
n




 · a.

Since v
(α)
i = λ̄iv

(β)
i µi as above, we have that (x ∈ f−1(Uα) ∩ f−1(Uβ)):

(1) u(x)P (x)−1T (f(x))P (x) =






λ̄1(x) · · · 0

0
.. . 0

0 0 λ̄n(x)




 .

(2)






µ1(x) · · · 0

0
.. . 0

0 0 µn(x)




 =






a(x) · · · 0

0
.. . 0

0 0 a(x)




 .

Recall that Sp(p, q) = {A|A∗ · Ip,q · A = Ip,q} where Ip,q =












1
.. .

1
−1

. . .

−1












.

From the fact that T, P ∈ Sp(p, q) (cf. (10.2),(10.7)), the equality (1) shows that





|λ1|2 . . . 0
...

. . .
...

0 . . . −|λn|2




 = u2(P−1TP )∗ · Ip,q · (P−1TP ) = u2Ip,q.
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Hence, λi = u · λi/|λi| = u · νi where νi = λi/|λi| ∈ Sp(1). It follows from (2) that µi = a
for each i. We obtain that

(10.8) v
(α)
i = u(x) · ν̄i(x)v

(β)
i a(x) (i = 1, · · · , n).

Each ξi is a quaternionic line bundle over N equipped with (10.8) on f−1(Uα) ∩ f−1(Uβ).

If we consider ξ̄i ⊗
H

ξi, then the gluing condition on f−1(Uα) ∩ f−1(Uβ) is given by

(v̄
(α)
i ⊗

H

v
(α)
i ) = u2(x)ā(x)(v̄

(β)
i ⊗

H

v
(β)
i )a(x).

Since λ = u · a is the same as that of E from (10.6), each ξ̄i ⊗
H

ξi is isomorphic to f∗(E).

As E ∼= L ⊕ θ1, we see that f∗(L ⊕ θ1) = ξ̄i ⊗
H

ξi (i = 1, · · · , n). By Lemma 10.3,

f∗p1(L ⊕ θ1) = 2p1(ξi) for each i. Since f∗p1(D) ≡ p1(ξ1) + · · ·+ p1(ξn) mod 2-torsion in
H4(N ; Z), f∗(2p1(D)) = 2p1(ξ1) + · · ·+ 2p1(ξn) = nf∗p1(L⊕ θ1) = nf∗p1(L). Noting that
the splitting map f∗ is injective, 2p1(D) = np1(L) in H4(M ; Z). As TM ∼= D⊕L, we have
2p1(M) = (n + 2)p1(L). �

Corollary 10.5. Let (M,D) be a (4n + 3)-dimensional simply connected p-c q manifold

associated with the local forms {ω(α), (I(α), J(α), K(α)), g(α), Uα}α∈Λ. Then the following
are equivalent.

(1) 2p1(M) = 0. In particular, the rational Pontrjagin class vanishes.
(2) L is the trivial bundle so that {ξα}α=1,2,3 exists globally on M .
(3) There exists a ImH-valued 1-form ω on M which represents a p-c q structure D.

In particular, there exists a hypercomplex structure {I, J, K} on D.

Proof. First note that the Whitney sum L⊕θ1 is the quaternionic line bundle E with struc-
ture group lying in SO(3)×R

+ ⊂ Sp(1)·Sp(1)×R
+. As above we have the quaternionic line

bundle of ℓ-times tensor
ℓ
⊗
H

E with structure group SO(3)×R
+. Viewed as the 4-dimensional

real vector bundle, it determines a classifying map g : M→B(SO(3)×R+) = BSO(3). Note
that p : B(Sp(1) × R+)→B(SO(3) × R+) is the two-fold covering map. As M is simply
connected by the hypothesis, the map g lifts to a classifying map g̃ : M→BSp(1) such that
g = p◦ g̃. Let γ be the 4-dimensional universal bundle over BSO(3). (Compare [28].) Then
the pull back p∗γ is the 4-dimensional canonical bundle over BSp(1) = HP∞ whose first

Pontrjagin class p1(p
∗γ) generates the cohomology ring H∗(HP

∞; Z). So the bundle
ℓ
⊗
H

E

is classified by the map g̃ where [g̃] = g̃∗p1(p
∗γ) ∈ H4(M ; Z), which coincides with p1(

ℓ
⊗
H

E).

(1) ⇒ (2). If 2p1(M) = 0, then Theorem 10.4 shows (n+2)p1(L) = 0, i.e. p1((
n+2
⊗
H

E)) = 0.

(See Lemma 10.3.) Hence, the classifying map g̃ : M→BSp(1) for
n+2
⊗
H

E is null homotopic

so that g̃∗p∗γ =
n+2
⊗
H

E is trivial. There exists a family of functions {hα} ∈ Sp(1)×R
+ such

that the transition function gαβ(x) = δ1h(α, β)(x) (x ∈ Uα ∩ Uβ). As the gluing relation
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for
n+2
⊗
H

E is given by z 7→ u
2(n+2)
αβ āαβ · z · aαβ , letting hα = aα · uα ∈ Sp(1)× R+, it follows

that
u

2(n+2)
αβ · āαβ · z · aαβ = (h−1

α hβ)z = u−1
α uβaαāβ · z · aβ āα (z ∈ H).

Then, u
2(n+2)
αβ = u−1

α uβ ∈ R
+ and aαβ = ±aβ āα. As uαβ > 0, uαβ = (u−1

α )
1

2(n+2) · u
1

2(n+2)

β .

Since the gluing relation of E = L ⊕ θ is given by zα = u2
αβ · āαβ · zβ · aαβ, putting

u′
α = (uα)

1
(n+2) , u′

β = (uβ)
1

(n+2) , a calculation shows zα = u′
α
−1

u′
β · aαāβ · zβ · aβ āα.

Moreover if C(α) ∈ SO(3) is the matrix defined by āα ·





i

j

k



 · aα = C(α)





i

j

k





(similarly for C(β)), then

(10.9) u2
αβ · Aαβ = u′−1

α u′
β · C(α)−1 ◦ C(β).

Substitute this into (10.4), it follows that

u′
α · C(α)






ξ
(α)
1

ξ
(α)
2

ξ
(α)
3




 = u′

β ·C(β)






ξ
(β)
1

ξ
(β)
2

ξ
(β)
3




 on Uα ∩ Uβ.

We can define the vector fields {ξ1, ξ2, ξ3} on M to be

(10.10)





ξ1

ξ2

ξ3





∣
∣Uα = u′

α · C(α)






ξ
(α)
1

ξ
(α)
2

ξ
(α)
3




 .

Then {ξ1, ξ2, ξ3} spans L, therefore, L is trivial.

(2) ⇒ (3). Since (ω
(β)
1 , ω

(β)
2 , ω

(β)
3 ) = (ω

(α)
1 , ω

(α)
2 , ω

(α)
3 )u2

αβ ·Aαβ , (10.9) implies that

(ω
(β)
1 , ω

(β)
2 , ω

(β)
3 )u′−1

β · C(β)−1 = (ω
(α)
1 , ω

(α)
2 , ω

(α)
3 )u′−1

α · C(α)−1 on Uα ∩ Uβ .

Then, a ImH-valued 1-form ω on M can be defined by

(10.11) ω|Uα = (ω
(α)
1 , ω

(α)
2 , ω

(α)
3 )u′−1

α · C(α)−1





i

j

k



 .

Note that ω satisfies that ω|Uα = λ̄α · ω(α) · λα for some function λα : Uα→H
∗ (α ∈ Λ).

Recall that two quaternionic structures on Uα ∩ Uβ are related:




I(α)

J(α)

K(α)



 = Aαβ





I(β)

J(β)

K(β)



 .

As Aαβ = C(α)−1 ◦C(β), it follows that

(10.12) C(α) ·





I(α)

J(α)

K(α)



 = C(β) ·





I(β)

J(β)

K(β)



 .
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Letting





I
J
K



 |Uα = C(α) ·





I(α)

J(α)

K(α)



, there exists a hypercomplex structure {I, J, K}

on D.
(3) ⇒ (1). If the global ImH-valued 1-form ω exists, then ω defines a three independent

vector fields isomorphic to L, i.e. p1(L) = 0. Hence apply Theorem 10.4. �
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