
Citation: Rho, M. Pseudo-Conformal

Sound Speed in the Core of Compact

Stars. Symmetry 2022, 14, 2154.

https://doi.org/10.3390/

sym14102154

Academic Editor: Dubravko

Klabučar

Received: 13 September 2022

Accepted: 9 October 2022

Published: 14 October 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

symmetryS S

Article

Pseudo-Conformal Sound Speed in the Core of Compact Stars
Mannque Rho

Institut de Physique Théorique, Université Paris-Saclay, CNRS, CEDEX, 91191 Gif-sur-Yvette, France;
mannque.rho@ipht.fr

Abstract: By implementing the putative “hadron-quark continuity” conjectured in QCD in terms of
skyrmion-half-skyrmion topological change in an effective field theory for dense matter, we argue
that (quasi-)baryons could “masquerade” deconfined quarks in the interior of compact stars. We
interpret this phenomenon as a consequence of possible interplay between hidden scale symmetry
and hidden local symmetry at high density. A surprising spin-off of the emerging symmetry that we
call “pseudo-conformality” is that the long-standing puzzle of the quenched gA ≈ 1 in nuclei can be
given a simple resolution by the way the hidden symmetries impact nuclear dynamics at low density.

Keywords: hidden symmetries in nuclei; quenched gA; scale-chiral EFT; ultra dense matter; core
structure of neutron stars; pseudo-conformal sound speed

1. The Approach: GnEFT

It was found in [1] that when two hidden symmetries presumed to be encoded in QCD,
scale symmetry and flavor local symmetry, were suitably incorporated into chiral symmetric
effective field theory to capture low-energy nuclear dynamics and extended to a chiral-scale
symmetric EFT—coined as GnEFT in [2]—to address the equation of state of compact-star
matter, the sound speed (SS) of massive stars came out precociously close to the conformal
speed v2

s /c2 = 1/3 in the interior of the stars at a density of n ∼ (3− 6)n0. The trace of the
energy momentum tensor (TEMT) was found to be not zero (even in the chiral limit) at that
density, so the speed cannot be truly conformal. It was therefore referred to—in the absence
of a better terminology—as “pseudo-conformal.” In this article, we explain how this
surprising prediction could account for the possible presence of “deconfined quarks” in the
core of compact stars updating recent developments confronting microscopic approaches
anchored on QCD proper being discussed in the current literature [3–6]. It turns out that
the notion of pseudo-conformality can figure equally importantly in nuclear physics at low
density. In Appendix A, we show how the long-standing mystery of the quenched gA ' 1
in Gamow–Teller transitions in nuclei can be resolved in GnEFT.

Given that the nuclear dynamics involved at non-asymptotic densities is intrinsically
nonperturbative from the QCD point of view, the approach is inevitably anchored in
effective field theory.

The hidden symmetries, suitably incorporated, involve “heavy degrees of freedom
(HdFs)” that encompass the density range from the regime of normal nuclear matter density
n0 ≈ 0.16 fm−3, where standard chiral EFT applies, to ∼ 7n0, where it is most likely broken
down. In the framework of GnEFT that we have formulated, the hidden local symmetry is
represented by the light-quark vector mesons V = (ρ, ω) “conjectured” to be (Seiberg-)dual
to the gluons [7]. It turns out to be significant that this local symmetry is “hidden” in the
sense defined in [8,9]: they are to emerge from pion clouds as composite gauge bosons. For
this phenomenon to take place, it is indispensable that there be the “vector manifestation
(VM)” [10] at some high density with the vector mesons becoming massless. Where the VM
density nVM is located cannot be calculated in the effective theory. It turns out, however,
that the sound velocity behaves qualitatively differently depending on whether nVM is near
or asymptotically higher than the density of the star.
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Our approach relies closely on that the scale symmetry enters via the “genuine dilaton
(GD)” formulated by Crewther and Tunstall [11–13]. The GD is associated with an infrared
(IR) fixed point at which the QCD β function vanishes, i.e., β(αIR) = 0 (where αs is the
strong gauge coupling), realized in the Nambu–Goldstone mode with massless pions π
and dilaton (that we denote as σd) with nonzero pion decay constant fπ and dilaton decay
constant, fσd , fπ = fσd 6= 0. Most significantly for us, it supports massive matter fields at
the IR fixed point. A somewhat similar idea was put forward in [14]. The difference, if any,
between these two ideas, we believe, would not affect our arguments made for nuclear
matter at non-asymptotic density.

It should be stressed that this GD IR structure appears to be drastically different [13,14]
from the IR structure of the dilatonic Higgs models, which purport to go beyond the
standard model. This, we believe, makes a basic difference that leads us to the pseudo-
conformality, not the conformality [4]—which in our picture should set at a much higher
density than in compact stars—that prevails in nuclear dynamics in a density from ∼ n0
to the densities relevant to compact stars and possibly beyond before the dilaton limit,
defined below, sets in [15]. It should be remarked, however, that the “conformal dilaton
phase” of [14] which borders between the conformal window and QCD could support the
conformality discussed in [4]. How the QCD phase moves into the conformal phase, if
present, is not clear.

The scale symmetry is incorporated into the HLS Lagrangian LHLS [8] with the “con-
formal compensator (CC)” field χ [16]

χ = fχeσd/ fχ (1)

which linearly transforms both in mass and length scales. (Note that σd, like the pion in
chiral symmetry transforms nonlinearly under scaling.) One can formally construct a scale-
invariant Lagrangian from LHLS by multiplying a suitable power of the CC field χ such
that the action is scale-invariant. The resulting scale-chiral Lagrangian can be written as

LχHLS = Linv + V (2)

where all scale-symmetry-breaking terms, including quark mass terms, are included in the
“dilaton potential” V. One can rewrite this in terms of the power counting in both chiral
and scale symmetries with the trace anomaly taken into account [11,17] by implementing
the standard power-counting in chiral symmetry [18] with the departure from the IR fixed
point taken as

∆αs ∼ O(p2) ∼ O(∂2). (3)

The resulting scale-chiral expansion [17,19,20]—that we call χPTσd expansion—is a lot more
complicated than the standard chiral perturbation theory (SchiPT), but to the leading order
(LO) in the scale-chiral expansion to which we will restrict, it turns out to be relatively
simple.

To access baryonic matter, the baryon fields ψ† = (p n) are coupled into LχHLS. We
will be dealing with N f = 2 although the GD approach of [11] is for N f = 3. While skipping
details that can be found in the reviews [15], we briefly mention here that the HdFs brought
in by the hidden symmetries are to play the role in GnEFT the putative “hadron-quark
continuity” that plays the crucial role in going, in what we consider to be hadronic variables,
from nuclear matter at low density to compact-star matter at high densities. We call the
resulting Lagrangian LψχHLS with which GnEFT is formulated, as we will subsequently
explain. In the scale-chiral power counting involving the vector mesons [10] and the scalar
χ [17], this Lagrangian will then be of O(∂n) ∼ O(pn) with n = 1, 2, .... We will be mainly
working with the leading order (LO) n ≤ 2.

Now, instead of doing the systematic power expansion, highly successful in SchiPT, to
high-order in χPTσd expansion, which is in principle doable but cumbersome at best with
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uncontrollable paramers, we will instead develop an EFT that maps the resulting LO La-
grangian denoted LLO

ψχHLS to a density functional theory (DFT) built on the renormalization-
group (RG) treatment of baryons on the Fermi sea along the line developed in condensed
matter physics [21]. We apply the approach of how to go from a chiral Lagrangian (in LO
with suitable BR-scaling taken into account) to the “Fermi-liquid fixed point (FLFP)” theory,
first formulated in in [22], to the Lagrangian LLO

ψχHLS. This is the principal tool in GnEFT
that we will employ. Going beyond the FLFP can also be and will be done in “ring-diagram
approximations” in Vlowk RG, as described in [1]. What is needed to access the compact-star
densities in this GnEFT approach, not worked out in [22], is how the HdFs effectuate the
putative hadron-quark continuity (HQC) at n ∼> 2n0 in the Landau (fixed-point) parameters
extracted from the Lagrangian.

In this approach, there is only one unique—not a hybrid—Lagrangian, an effective
Landau(–Migdal) Lagrangian, that is to be valid over the whole range of involved densi-
ties with the fixed-point quasi-particle (QP) mass or Landau mass mL, two-body QP–QP
interaction parameters F, G, etc., built from LLO

ψχHLS. It should be reminded to the readers
that it is Migdal who reformulated Landau theory for nuclear processes [23]. Therefore
from here on, by “Landau,” we will mean “Landau–Migdal.” We should point out that the
Fermi-liquid structure described here focuses on bulk properties of matter, in particular,
the equation of state (EoS), whereas in condensed matter physics, what is currently of high
interest in the EFT of Fermi liquid is gapless Fermi-surface fluctuations, potentially leading
to non-Fermi-liquid states [24].

The key points developed in [1] (refined in [15] with errors corrected) are as follows:

1. Up to the density of n0, the parameters of the (Landau–Migdal) Lagrangian are
controlled by the known properties of the normal nuclear matter. Treated at the
mean-field level, which corresponds to what is known as the Landau Fermi-liquid
fixed point (FLFP) approximation (with N̄ = kF/(ΛFS − kF)→ ∞) [21], it reproduces
more or less all global properties of nuclear matter that are reliably described, to
N3LO, by SchiEFT. How the FLFP approximation fares in nature is aptly illustrated
by the anomalous proton orbital gyromagnetic ratio δgp

l , the quenched gA in nuclei,
and enhanced axial-charge transitions in heavy nuclei [22].

2. The effect of the putative hadron-quark (HQ) continuity is brought into the Lagrangian
by what is given by the topology change at n ∼> 2n0 from skyrmions to half-skyrmions
when the topological baryons of the Lagrangian LχHLS are put on the crystal lattice [1].
Putting skyrmions on the crystal lattice to describe baryon matter is evidently a very
poor procedure at low densities (e.g., at ∼ n0, which is in Fermi liquid), however,
it is justified at high density and in the large Nc limit which underlies the Landau
Fermi-liquid effective field theory. The precise densities involved cannot be pinned
down in theory. However, the transition involves robust features that topology brings
in. The most crucial feature for us is that at the HQ changeover, the condensate of
the bilinear quark fields (q†q), while non-zero locally and supporting chiral waves,
goes to zero when space-averaged at a density of n = n1/2 ∼> 2n0. However, the pion
condensate fπ remains nonzero, thus the quark condensate is not an order parameter
of the chiral phase transition. It somewhat resembles the “pseudo-gap” phenomenon
in condensed matter physics [25].

3. There arise various, highly remarkable, consequences when this topology change
is incorporated into the Lagrangian LψχHLS and treated at the mean field (FLFP)
approximation.
First: There is a cusp in the nuclear symmetry energy Esym wrapped by the ρ-meson
cloud at the skyrmion-to-half-skyrmion density n1/2 ∼> 2n0. This brings in the soft-to-
hard changeover in the EoS at that cross-over density [26] that naturally accounts for
K0, Esym(n0) and L = 3n dEsym

dn |n=n0 to be consistent with nature (e.g., [27], K0 ≈ 240
MeV, Esym(n0) ≈ 31.7 MeV, L(n0) = 57.7± 19 MeV.)
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Second: The coupling between the dilaton χ and ω, both playing a crucial role in the
in-medium nucleon mass, leads, in the chiral limit, to the extremely simple result for
the TEMT for n ∼> n1/2 [1]

〈θµ
µ〉 = ε− 3P = 4Vd(〈χ〉)− 〈χ〉

∂Vd(χ)

∂χ
|χ=〈χ〉. (4)

In this formula, the dilaton potential Vd contains also the baryon fields. In doing this
calculation, it is imperative that the density dependence of the parameters inherited
from matching with QCD (via relevant current correlators and the VEV with the
dilaton field) be treated in accordance with the thermodynamic consistency [28].
Unless this is done correctly, one fails to arrive at (4) [1].
Third: 〈χ〉 becomes density-independent for n ∼> n1/2 only for high VM density,
nVM ∼> 25n0, and 〈χ〉 → cm0 (with c a constant), where m0 is the chiral invariant
nucleon mass. This result, due to a close interplay—with the ρ decoupled from the
nucleons—between the dilaton χ and the ω, signals the emergence of parity doubling
in the baryon spectrum [29,30]. In our approach, the parity doubling is not put in �ab
initio as is done in the literature. It emerges from the interactions. It was verified to
remain valid when O(1/N̄) corrections to the FLFP approximation are made in the
Vlowk formalism. That the TEMT (4) becomes density-independent for n ∼> n1/2 is the
key ingredient of the pseudo-conformality.

2. Predictions on Compact Stars

We now turn to the predictions on compact stars given in the theory GnEFT.
First, we look at the density dependence of the TEMT. One obtains a qualitatively

correct answer by looking at the mean field (a.k.a., FLFP) approximation result (4). Taking
the derivative with respect to density, we have

∂

∂n
〈θµ

µ〉 =
∂ε(n)

∂n

(
1− 3

v2
s (n)
c2

)
(5)

where the sound speed vs is inserted using v2
s /c2 = ∂P(n)

∂n / ∂ε(n)
∂n . Since the condensate 〈χ〉

changes as density changes for the density regime n ∼< n1/2, with n1/2 being the topology
change density, the TEMT changes with density. However, as noted, the dilaton condensate
tends towards a density-independent constant ∝ m0, as n goes above n1/2, the right-hand
side of (5) will go to zero

∂ε(n)
∂n

(
1− 3

v2
s (n)
c2

)
→ 0 for n→ n1/2. (6)

There is no reason to expect ∂ε(n)
∂n → 0 (e.g., no Lee–Wick state), hence, we arrive at what

we call pseudo-conformal speed

v2
pcs/c2 → 1/3. (7)

One arrives at the same result in the Vlowk calculation, going beyond the FLFP approxi-
mation [1]. What was found was that with the HQ changeover from below to above n1/2,
strong nuclear correlations intervene in the way that the TEMT varies over the changeover
density, with a “huge” bump produced with the speed going towards the causality limit
vs/c = 1 and rapidly converging at an increasing density close to, though not necessar-
ily on top of, v2

s /c2 = 1/3 [1]. This becomes notably more prominent if the changeover
density is n ∼> 4n0—in fact, at this n1/2, even the causality is violated [15]. The mechanism
for producing such a big bump may be indicative of how the changeover from hadronic
degrees of freedom in EFT to quark–gluon degrees of freedom in nonperturbative QCD
may be signaling the complexity involved in that region. (This resembles, curiously, how
the HLS degrees of freedom (via the homogeneous or hidden Wess–Zumion term) wraps
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the cusp structure for the η′ potential associated with the UA(1) anomaly [31]. It would be
interesting to see whether there is any connection between the two phenomena.)

The detailed structure depends on the location of the changeover density. It turns
out, however, to be qualitatively the same in the range of phenomenology places, say, at
2 ∼< n1/2/n0 < 4 [15]. The typical structure is illustrated in Figure 1 for n1/2 = 2n0.

Figure 1. Left panel: −ε + 3P; Right panel: sound speed vs. density for α = N−P
N+P where N(P) is the

number of neutrons (protons).

It is important to note that, in the range of densities involved in compact stars

〈θµ
µ〉 > 0 (8)

which gives

∆ =
1
3
− P

ε
> 0 (9)

going independently of density for n ∼> n1/2. It can be seen in Figure 2 that it is parallel
and very close, with small deviation, to the band generated with the “sound velocity
interpolation method” used in [3].
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Figure 2. The predicted P/ε is compared with that generated with the sound velocity (“SV”) inter-
polation method used in [3]. The gray band is from the causality and the green band is from the
conformality. The red line is the GnEFT prediction [32]. The dash-dotted line indicates the location of
the topology/HQ change.
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It should of course be stressed that the approach to the pseudo-conformal speed
v2

pcs/c2 ≈ 1/3 is not conformal v2
s /c2 = 1/3. As noted below, at a higher density, approach-

ing what is called a “dilaton-limit fixed point (DLFP)” [33], where 〈χ〉 goes to zero, the
sound speed should approach the true conformal speed. We believe that the DLFP density
should be close to the VM fixed point nVM ∼> 25n0, way outside of the range of densities
involved in the stars. It is difficult to directly relate what is described in this GnEFT with
the analysis made in [4]. It is, however, tantalizing that the sound speed given in Figure 2
in [4] resembles the pseudo-conformal sound speed (Figure 1). It indicates that we are
dealing here with strongly coupled (pseudo-)conformal matter.

There are further indications that the pseudo-conformal matter resembles “deconfined
quark” matter. Let us look at the polytropic index defined by

γ = d ln P/d ln ε. (10)

Plotted in Figure 3 is the prediction for γ. It shows a large γ ∼ 3 below the n1/2 expected
in nuclear matter, and drops below 1.75 at the topology change and then goes to near 1
at the core density ∼6n0 of the star. This reproduces what was identified as a signal for
“deconfined quark matter" in [3]. However, there are basic differences between our system
and what is described in [3]. In our theory, conformality is broken, though perhaps only
slightly at a high density, in the system. There can also be fluctuations around v2

pcs/c2 = 1/3
coming from the effects by the anomalous dimension β′. Thus, the v2

pcs/c2 must fluctuate
around 1/3, not on top of it.

0 1 2 3 4 5 6

0

1

2

3

4

n/n0

γ

Figure 3. Density dependence of the polytropic index in neutron matter. Here, n1/2 ≈ 2.5n0 was
taken, so the changeover—strong correlation—regions are shifted slightly upwards, but there is no
qualitative difference.

3. Consistency with pQCD Top–Down?

The degrees of freedom that enter above the hadron–quark continuity simulated by
the topology change with what appear to be fractionally charged baryonic quasiparticles
are not so outlandish if one imagines strong nuclear correlations in action as in the way
electrons behave in strongly correlated condensed matter systems. In fact, some albeit
speculative but novel ideas along that line were recently discussed in [34,35].

Now, let us see how these – somewhat unorthodox – ideas can mesh with what is
predicted by QCD.

There have been tour-de-force efforts to arrive at the EoS relevant to the core of
compact stars in perturbative QCD coming as top–down. Some of the results obtained
thus far appear to be quite relevant to what we obtained in GnEFT. Among them are the
results of the pQCD calculation given in [6] that render feasible even a semi-quantitative
comparison with the GnEFT prediction.

In Figure 4 (left panel) is shown the GnEFT prediction for n1/2 ≈ 3n0, corresponding
to the hadron–quark crossover density. (Shown also is for n1/2 = 4n0 which was ruled
out in our scheme because the sound speed exceeds the causality limit.) The prediction
for n1/2 = 2n0 is slightly different from that of n1/2 = 3n0 but they both are essentially
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indistinguishable with the uncertainty involved. What is characteristic of this prediction is
that the cusp in the symmetry energy Esym, “wrapped” by ρ meson cloud with dropping
mass, is first hardened by approaching n1/2. This makes the symmetry energy at ∼ 2n0
bigger than what is given by standard chiral perturbation theory, then softened before
reaching the density of the star core at ∼ 6n0; this feature is reflected in Figure 4 with Esym
bending after n1/2, making the EoS softer toward the central density of the star. It is easy to
see how this softening behavior sets in in the Fermi-liquid fixed point approximation in
GnEFT. As noted, as one approaches the dilaton limit fixed point, the ρ meson decouples
from the baryonic matter (before the VM fixed point) and the remaining (heavy meson)
degrees of freedom, the scalar (dilaton σd), and the isoscalar vector meson (ω) interplay
to keep the nucleon mass stay at ∼ m0. The quasiparticles involved are more or less free
of interactions, hence preserving scale invariance (as also seen in a dense half-skyrmion
simulation, Figure (11) (right panel) in [1]).

Figure 4. Left panel: The GnEFT prediction for n1/2 = 3n0 [32]. n1/2 = 4n0 seems to be ruled out
as the sound speed violates the unitarity bound v2

s /c2 = 1. Right panel: The state-of-the-art pQCD
calculation obtained in [6] indicating the effect of QCD. Note that the central density involved is
∼6n0 in both cases.

In Figure 4 (right panel) is plotted the pQCD result of [6]. Here, one sees the way the
QCD asymptotically high-density calculations are propagated down to lower densities
subjected to “thermodynamic consistency, stability and causality.” The calculation provides
rather stringent constraints, as indicated in the figure, to the EoS at densities relevant to the
core of the star. The result clearly shows that pQCD softens the EoS of the most massive
neutron stars going toward the central density of ∼6n0. Note that the stiffening and then
softening in the EoS take place roughly at the same densities as in GnEFT. Precise matching
would not make much sense given the approximations involved in both pQCD and GnEFT,
but there is a clear qualitative consistency. It would be interesting to understand the
stiffening–softening of the EoS in pQCD as in GnEFT, where the interplay of scale symmetry
and hidden local symmetry is found to play a crucial role in the emerging parity-doubling
symmetry.

4. Conclusions with a Bit of Speculation

In this brief review is recounted what has taken place, initiated in 2007, in the five-year
“World-Class University Program” at Hanyang University in Seoul supported by the Korean
Government, then continued at IBS (Korea) and at Jilin University in Changchun (China),
with the objective of understanding ultradense matter stabie against gravitational collapse.
This issue has currently become a hot topic in physics with the advent of gravitational waves.
The resulting approach of GnEFT with only hadronic degrees of freedom, implemented
with hidden symmetries of QCD with the parameters of the Lagrangian endowed with the
vacuum sliding by density, leads to the results are globally consistent with the available
data.
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What is striking of this approach is that although no explicit QCD degrees of freedom
are involved, the property of the core of massive stars predicted in this approach is uncan-
nily similar to that of “deconfined quarks” with one apparent difference in the nature of
the sound speed.

How can this be?
We have no convincing argument but one possible answer is this.
In the skyrmion–half-skyrmion crystal simulations of dense matter, one can imagine

how the half-skyrmions can turn into fractionally charged baryons. Two half-skyrmions
are confined by a pair of monopoles, so they are not separable. However, surprisingly,
the bound two-1/2-skyrmions are found to propagate scale-invariantly, as observed in [1].
Suppose that it is feasible to liberate the two half-skyrmions by suppressing the monopoles.
Then, it may be feasible to transform two half-skyrmions into three 1/3-charged objects [36].
One can then think of fractionally charged baryons populating the dense matter inside
the core. Indeed, in condensed matter physics, with domain walls, there can be stacks of
sheets containing deconfined fractionally charged objects behaving like “deconfined quarks”
coming from the bulk in which the objects are confined [37]. In [38], highly speculative
ideas along this line are entertained.

In conclusion, we propose that what is seen in the core of compact stars could be
fractionalized quasiparticles masquerading “deconfined quarks.” As a test, we offer the
“duck test” [39]: If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is
a duck.
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Appendix A. The Case of Quenched gA in Light of Scale Symmetry

A most surprising spin-off of the emergence of hidden-scale symmetry in dense matter
is that the same pseudo-conformality also permeates at low density in certain channels of
nuclear interactions. There has been a long-standing mystery that the axial-vector coupling
constant gA in Gamow–Teller transitions in nuclei is observed to be quenched from the
matter-free space valuegA = 1.276 to gobs

A ≈ 1 [40]. This mystery which dates way back to
the early 1970s [41] could be given a simple resolution in terms of emergent scale symmetry
in the same approach, GnEFT, which is successively applicable at a high density to compact
stars.

In GnEFT, the nuclear axial current coupling to the EW current is scale-invariant—
modulo possible anomalous-dimension corrections [42]

J j
5µ = gAψ̄γγµ

τ j

2
ψ (A1)

where j is the isospin index and ψ† = (p n) field. No conformal compensator field χ
figures here in the construction of the Lagrangian. In the mean field of LψχHLS (a.k.a. in
the Fermi-liquid fixed-point approximation), it turns out that one precisely reproduces the
same Landau–Migdal (LM) gLM

A for the quasiparticle, as was obtained in the simplified
treatment made in [22]

gLM
A = gAqLM = gA

(
1− 1

3
ΦF̃π

1 )−2. (A2)
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Here, Φ = f ∗π/ fπ and qLM, identified as the “gA quenching factor,” is a FLFP quantity
with O(N̄) corrections suppressed. The superscript ∗ stands for density dependence. Φ
therefore represents the scaling of fπ as the vacuum changes at varying densities. This
quantity was measured in deeply bound pionic atoms up to ∼ n0 [43]. Here, F̃π

1 is the
pion contribution to the Landau interaction parameter Fl , which is accurately calculable
by standard chiral perturbation theory (SchiPT) for n ∼< 2n0. The product ΦF̃π

1 in (A2)
turns out to be remarkably constant in the range 1/2 ∼< n/n0 ∼< 1, which covers the density
range between light and heavy nuclei. As noted in [22], (A2) is effectively an in-medium
Goldberger–Treiman relation anchored in a low-energy theorem which is satisfied in the
vacuum to a few % of accuracy and could be equally accurate in nuclear matter, although
high-order SchiPT calculations, as far as we are aware, have not been performed to date.
We take (A2) to be of the same accuracy.

Remarkably, the quenching factor (A2) comes out, numerically, as

qLM ≈ 0.79− 0.80 (A3)

in the range of density involved—with a few % uncertainty—in medium and heavy nuclei.
Thus, the effective gA for the quasiparticle, gqpeff

A , is

gqpeff
A ≈ gLM

A ≈ 1.0. (A4)

It’s surprising that what appears to be a solution to the long-standing puzzle in nuclear
physics turns out to be deceptively simple.

The Formula (A2) corresponds to the single-decimation procedure in the Wilsonian
renormalization-group flow calculation in the Landau fixed-point approximation [44]. This
means that the path integral is performed for the Gamow–Teller amplitude from the cut-off
ΛFS above the Fermi sea, all the way to the top of the Fermi surface in the Fermi-liquid
fixed point approximation (ignoring higher-order 1/N̄ terms in the Vlowk RG). The full
Gamow–Teller response is given by the response of the single quasiparticle sitting on the
Fermi surface multiplied by a constant that captures the full nuclear correlations

MGT = qLMgA
(
∑

j
(τ±j σj)

)
Q f Qi

(A5)

where Qi, f stands for single quasiparticle states. As defined, it is qLM that captures the
full correlation effects. How this qLM in the Fermi-liquid theory is related to the shell-
model results is discussed in [42]. (In short, in terms of high-order nuclear perturbation
calculations in shell-model space, this procedure would be equivalent to connecting, with
Goldstone diagrams, the parent ground state to the daughter particle–hole state via a blob
that contains all orders of particle–hole–bubble intermediate states with the intermediate
energy going up to ∆E ∼ 300 MeV connected by the tensor forces.) Here, we assume
that the quasiparticles involved are quasi-nucleons, ignoring resonances (e.g., ∆s), etc. It
is, in practice, difficult to identify the quasiparticle states (Q f Qi) in Ferm-liquid theory
with the corresponding shell-model states. Furthermore, the observation of gobs

A ≈ 1 is in
light nuclei and the Fermi-liquid approach adopted is, however, more likely applicable to
nuclear matter, so how to access shell-model states needs to be addressed.

Although one cannot make one-to-one correspondence between the shell model states
and the Fermi liquid states, what appears to be the most suitable for mapping the FLFP
result in Fermi-liquid theory to shell-model in heavy nuclei is the doubly magic closed-shell
nuclei such as 100Sn proposed in [42]. It is not quite clear how to experimentally zero-in on
the lowest shell-model daughter state in 100In that best corresponds to the quasi-particle–
quasi-hole excitation on the Fermi surface. As such, certain uncertainty will remain that
requires to be scrutinized in analyzing experimental results. One can, however, make an
interesting observation as it stands from the presently available data on this transition.
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What is involved is the strongly enhanced Gamow–Teller transition of a proton in the
completely filled shell (i.e., g9/2) in 100Sn to a neutron in the empty shell (i.e., g7/2) in 100In
with zero momentum transfer and∼ zero MeV energy transfer. This involves a transition as
close as possible in kinematics to the decay of a quasiproton to a quasineutron on the Fermi
surface in the Landau–Migdal theory. The square of the Gamow–Teller transition matrix
element going from the pure proton g9/2 shell to the pure neutron g7/2 shell, referred to as
“extreme single-particle shell-model (ESPSM)” strength, is given by

BESPSM
GT = (160/9). (A6)

Suppose we have the exact wave functions—which are of course not yet available for the
given parent and daughter states—and hence have the exact Gamow–Teller strength for
the transition with the given scale-invariant Gamow–Teller operator that we write Bexact

GT ,
the “exact” quenching factor will then be

qexact
th =

(
Bexact

GT /BESPSM
GT

)1/2. (A7)

Now, since we do not know the exact wave functions, we do not know what Bexact
GT in

the shell-model is. However, nature, i.e., an accurately measured experiment, will give it.
Let’s call it Bnature

GT . Measuring the GT strength will give us what the quenching factor is
in nature. It is the prediction of GnEFT at the FLFP approximation that qexact

th should be given by
(A3).

In order to see how this prediction fares with nature, we pick the measured transition
strength to the single daughter state, i.e., the neutron in g7/2. While not rigorously estab-
lished, the transition seems to go to this state more than 95% in certain model calculations,
so let us simply assume that it goes 100% and take what is measured in [45] corresponding
to “nature” à la GSI

Bnature
GT ≈ 10. (A8)

This would give the measured quenching factor—within the uncertainty involved (say,
∼5%),

qnature ≈ 0.75 (A9)

hence the quenched gA is

gnature
A ≈ 0.96. (A10)

Thus, we have, within the possible uncertainty involved,

gLM
A ' gnature

A . (A11)

We should underline two points here:
One is that gLM

A represents the effect of solely nuclear correlations, not a fundamental
renormalization in the given EFT of the coupling gA as was suggested by some workers
in the field. The nuclear correlations, as formulated, contain not only the single-particle
operator but also many-body (meson-exchange) currents involving nucleon fields [46]. The
constant gLM

A is therefore not a renormalized constant in nuclear axial response functions
that applies to non-supperallowed GT transitions such as axial-charge (i.e., first forbidden)
transitions, double-neutrino and neutrinoless Gamow–Teller transitions.

The other is that gLM
A → 1 in nuclear matter is an intricate consequence of hidden scale

symmetry emerging in a medium at low density.
Now, what can one say as density increases toward the IR fixed-point density? To

see what happens at high density, we reparametrize the scale-chiral field as Z = U(χ/ fχ)
where U = eiπ/ fπ is the chiral field and then let Tr(ZZ†) → 0 in LψχHLS treated in the
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mean-field. We do this to drive the system to the DLFP (dilaton-limit fixed point) density
ndlfp ∼ nVM ∼> 25n0. In order to prevent singularities from developing, one is constrained
to impose the conditions [33]

gA → 1, fπ → fχ. (A12)

Thus, the effective coupling constant for the quasiparticle, gqpeff
A = 1, is seen to maintain the

same value from n ∼ n0 due to the nuclear correlations controlled by scale invariance to
ndlfp ∼ nVM ∼> 25n0 at high density as mσd ∼ 〈χ〉 → 0. We interpret this as a manifestation
of the pseudo-conformal symmetry permeating from finite nuclei at low density to high
compact-star density and to even higher densities approaching ndlfp ∼> 25n0.

Appendix B. Note Added in Proof

The referees to this review raised several constructive issues in their comments. They
do not directly address the thesis developed in this paper, but we find them most likely to
be relevant to future development along the lines of the thinking adopted in this article.
We would like to respond to their comments to the best we can.

There were three issues raised.
The first, raised by one of the referees, is the possible relevance of the color-flavor

locked (CFL) state in the three-flavor QCD at high density. The question is: Given that the
CFL state is conjectured to emerge at asymptotic density in QCD, what does the scenario
developed in this article (anchored on the notion of hadron-quark (HQ) continuity) predict
for the sound speed (SS) in the CFL phase? We cannot give a precise answer to this question
in the framework of the pseudo-conformal notion, but it is very likely that the SS, v2

s /c2,
is not conformal (that is 6= 1/3) in the CFL phase, given that the trace of the energy-
momentum tensor (TEMT) is not likely to be zero even at the asymptotic density. This of
course does not exclude the possibility of (so far unobserved) “quark stars,” possessing
drastically different equation of states (EoSs).

Briefly restated, the pseudo-conformal structure adopted in this review—which is
anchored in the putative HQ continuity (with no phase transitions) via the topology change
mediated by the hadronic HdFs governed by hidden symmetries—cannot be naively
extended to too high a density. The highest density relevant in the given formalism is
the vector manifestation density or the dilaton-limit fixed point density ∼> 25n0. What
is pertinent to the issue is the currently controversial question as to whether the Schäfer–
Wilczek conjecture that underlies the HQ continuity at the asymptotic density is even valid.
There are arguments [47], though not generally agreed upon in the field, that it is indeed
invalid, according to which “the hadronic (e.g., nuclear) matter and the quark matter present
must necessarily be separated by a phase transition as a function of density.”

The second issue is the property of the compact-star SS deduced from a huge number
of randomly generated EoSs that satisfy theoretical and observational constraints [48].
A number of non-trivial correlations in softness and stiffness of EoS at different density
regimes reveal that the SS tends to decrease below the conformal limit in the core of the star,
while it increases beyond conformal in outer layers. Although not ruled out by these results,
the pseudo-conformal structure sound speed is found to deviate distinctively from them. It
exhibits a maximum below the putative HQ transition density n1/2, hence in the outer layer
of the star, with the height dependent on the cross-over density, and converges precociously
to v2

s /c2 near 1/3 towards the star center. Within the approximations made, one expects
certain degrees of fluctuations from 1/3 but not as wildly varying as seen in the agnostic
analysis. A similar behavior is also predicted in the microscopic description of [4], with
the convergence pushed to higher densities than in the pseudo-conformal case. It has been
noted in [26] that there seems to be little, if any, correlation between global star properties
and the plethora of bump structures in the sound speed. Given that the cross-over region is
the least well-controlled theoretically, EFT bottom–up and QCD top–down in density, this
bump structure must be the hardest to resolve theoretically.
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Finally, the third issue is what role the SS plays in the causal maximum mass limit of
neutron stars in the framework of modified gravity such as, e.g., f (R) [49]. Such an issue
addresses whether, or in what way, modified gravity can make impacts on the structure of
the EoSs that one extracts from the astrophysical observables. It appears that, for a given
EoS, the speed of sound can even be considered as a free variable for the causal properties of
compact stars. This would be a serious matter for zeroing-in on the ultradense structure of
massive stars.

In this third category of issues, there is one that addresses whether the physics of
sound speed in massive compact stars can be exploited as a test of string theory in the
gravitational sector. In a post-Newtonian analysis of double-field theory (DFT) as such a
test, it has been suggested [50] that the “Eddington–Robertson–Schiff parameter” γPPN → 1
in support of DFT could be extracted from the interior structure of the proton. In a
private communication [51], J.-H. Park inquired to the author whether the vanishing of
the TEMT in the core of massive compact stars discussed in the main text of this review
could not be interpreted as the vanishing of the TEMT in the proton interior and hence
provide a signal for or against DFT in the gravitational sector. The possible conformal
speed v2

s /c2 = 1/3 [3–5] or the pseudo-conformal speed v2
pcs/c2 ≈ 1/3 could perhaps be

translated to a quantity corresponding to γPPN → 1.
What seems tantalizing in the way that the pseudo-conformal speed is formulated

is that a certain notion, say, pseudo-gap phenomenon, borrowed from condensed matter
physics seems to overlap even with what is at issue in gravity theory.
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