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ABSTRACT This paper describes the design of analog pseudo-differential fractional frequency filter with

the order of (2 + α), where 0 < α < 1. The filter operates in a mixed-transadmittance mode (voltage

input, current output) and provides a low-pass frequency response according to Butterworth approximation.

General formulas to determine the required transfer function coefficients for desired value of fractional order

α are also introduced. The designed filter provides the beneficial features of fully-differential solutions but

with a less complex circuit topology. It is canonical, i.e. employs minimum number of passive elements,

whereas all are grounded, and current conveyors as active elements. The proposed structure offers high

input impedance, high output impedance, and high common-mode rejection ratio. By simple modification,

voltage response can also be obtained. The performance of the proposed frequency filter is verified both by

simulations and experimental measurements proving the validity of theory and the advantageous features of

the filter.

INDEX TERMS current conveyor, fractional Butterworth transfer function, fractional-order filter, pseudo-

differential filter,

I. INTRODUCTION

W
ITHIN the last decades, there is a significantly rising

attention being paid to fractional-order (FO) calculus

due to its promising utilization in various research areas such

as economy and finance [1] – [3], medical and health science

[4] – [6], agriculture and food processing [7] – [10], automo-

tive [11] – [13], and also in electrical engineering [14] – [43]

to design, describe, model and/or control various systems

and function blocks. Basically, the presence of fractional

order (α) represents another degree of freedom to mathe-

matically describe the behavior of a function block. This

enables to provide characteristics in between integer-orders

in comparison to classic (integer-order) circuits, which may

become beneficial while more accurate signal generation and

measurement, and/or system modeling and control is needed.

In the discipline of electrical engineering and analog signal

processing, FO frequency filters [14] – [28], oscillators [29]

– [32], controllers [33] – [36], and FO element emulators and

converters [37] – [43] are mostly discussed.

In case of analog circuit design and signal processing,

the presence of the fractional-order element (FOE), having

impedance with a non-integer power law dependence on the

Laplace operator s, is generally necessary. However, FOEs

are currently not readily available as discrete elements, as

it is the case of classic resistors, capacitors and inductors,

although a number of promising technologies is being in-

vestigated as recently summarized in [45]. Currently, there

are generally two approaches to overcome the absence of

discrete FOEs, both approximating the behavior of FOE in a

specific frequency range and with required accuracy. The first

approach approximates directly the term sα being present in

the transfer function by integer-order polynomial function.

The originally FO transfer function turns into an integer-

order one, which results in a more complex circuit counting

more active and passive elements, see e.g. [15], [16]. The

second approach approximates primarily the required FOE,

most commonly by a RC ladder network, such as Foster I,

Foster II, Cauer I and Cauer II [44]. The advantage of this

second approach is that the complexity of the final circuit

solution increases only by the count of the resistors and

capacitors that are used to approximate the FOE, see e.g.

[14], [24]. Additionally, once FOEs become readily available

as solid-state, it will be only necessary to replace the RC
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TABLE 1. Comparison of relevant fractional-order filters

Ref. Filter order ABB type:count Passive el. type:count FOE impl. Transfer function Mode Sim/Meas

[14] α OTA:3 FC:2 Foster II LP, HP, BP, BS, AP voltage yes/no
[15] α OTA:10 C:2 sα approx. LP voltage yes/no
[16] α OTA:10 C:2 sα approx. AP current yes/no
[17] α OTA:2 FC:1 Foster I AP current yes/no
[18] 1 + α opamp:2 R:10, C:3 sα approx. LP, HP voltage yes/yes
[19] 1 + α CFOA:4 R:9/8, C:3/4 sα approx. LP, HP voltage yes/yes
[20] 1 + α CFOA:8 R:16, C:3 sα approx. LP, HP, BP, BS voltage yes/no
[21] 1 + α opamp:3 FC:1, R:6, C:1 Foster I LP voltage yes/no
[22] 1 + α CG-CCDDCC:4, VGA:1 FC:1, R:2, C:1 Foster I LP, HP, BP, BS, AP current yes/no
[23] α+ β DVCC:1 FC:1, FL:1, R:1 Foster I LP voltage yes/no
[24] α+ β + γ opamp:2 FC:3, R:6 Foster I LP voltage yes/yes
[27] 5 + α opamp:10 C:7, R22 sα approx. LP voltage yes/yes

[28]

1 + α, 2 + α,

OTA:4, IOGC-CA:1 FC:1–4, C:0–4 Foster I LP voltage yes/no
3 + α, 1 + α+ β,
2 + α+ β, α+ β,

α+ β + γ, 1 + α+ β + γ
α+ β + γ + δ

proposed 2 + α DDCC:1, DVCC:2, CCII:1 FC:1, C:2, R:4/6 Foster II LP mixed, voltage yes/yes

List of previously unexplained abbreviations used in this table:
CFOA: Current Feedback Operational Amplifier, CG-CCDDCC: controlled gain current-controlled differential difference current conveyor, VGA:
Variable Gain Amplifier, IOGC-CA: individual output gain controlled current amplifier
C: capacitor, R: resistor, FC: capacitive FOE, FL: inductive FOE
LP: low-pass, HP: high-pass, BP: band-pass, BS: band-stop, AP: all-pass

TABLE 2. Comparison of relevant pseudo-differential filters

Ref. Filter order ABB type:count R/C:count All grounded Transfer function Mode Sim/Meas CMRR

[52] 1 DC-DVCC:2 4/2 no LP, HP, AP current yes/no no
[53] 1 DDCC:1 3/1 no AP voltage yes/no no
[54] 1 DV-DXCCII:1 3/2 no AP voltage yes/no no
[55] 2 FDCCII:3 6/4 yes BP mixed yes/no no
[56] 2 FDCCII: 1 5/4 no BP voltage yes/no no
[57] 2 CDCC:7 8/2 yes LP, HP, BP current yes/no no
[58] 2 DDCC:2, CCII:1 2/2 yes BS voltage yes/yes yes
[59] 2 DDCC:2, DVCC:2 3/2 yes LP, HP, BP, BS, AP voltage yes/yes yes
[60] 3 DDCC:4 3/3 yes LP voltage yes/no no
[61] 4 DDCC:4, CCII: 2 4/4 yes LP voltage yes/yes yes
[62] 5 CDCC:10 15/5 yes LP current yes/no no

proposed
3

DDCC:1, DVCC:2, CCII:1
4(6)/3

yes LP mixed, voltage
no/no no

2 + α 4(6)/2 + FC:1 yes/yes yes

List of previously unexplained abbreviations used in this table:
CCII: Second Generation CC, DDCC: Differential Difference CC, DVCC: Differential Voltage CC, CDCC: Current Differencing CC, DC-DVCC:
Digitally-Controlled DVCC, DV-DXCCII: Differential Voltage Dual-X CC, FDCCII: Fully differential CC

ladder network by the specific FOE. This is not the case

of the FO circuits being designed using the first approach

(i.e. designed by direct approximation of sα), whereas these

circuit solutions will become basically obsolete. An overview

of FO frequency filters designed by both above described

approaches can be found in Table 1. Different types of active

building blocks (ABBs) are used to design fractional filters

of α- or (1 + α)-order, primarily operational transconduc-

tance amplifiers (OTAs) and operational amplifiers (opamps).

Fractional-order solutions of higher-order filters are rare as

presented in [25] – [27], that are based on Butterworth ap-

proximation. However, the issue of circuits described in [25]

– [27] is that both partial transfer functions are determined by

using Butterworth approximation. Thus, the resulted (N+α)-

order transfer function does not correspond to Butterworth

approximation anymore, see e.g. [25] and [26] featuring at

the pole-frequency the decrease in magnitude of 6 dB and

not the commonly expected 3 dB, or showing significant

peaking for some values of α [27]. Design of FO higher-

order filters is also discussed in [28], where the proposed

filter offers a wide variety of possible order combinations and

to design up to (3 + α)-order filter. Although experimental

results are presented, the obtained frequency responses do not

follow any common approximation type. Therefore, in this

paper we primarily provide general formulas to determine

(2 + α)-order transfer function coefficients for Butterworth

approximation.

Next to FO filter design, in this paper we also contribute to

the design of pseudo-differential frequency filters. Compared

to “true” fully-differential circuits, whose circuit topology

is also fully differential (e.g. [46] – [51]), the pseudo-

differential structures as presented e.g. in [52] – [62] also pro-

vide the advantages of higher ability to reject the common-

mode noise signals, suppress power supply noise, or feature

higher dynamic range together with reduced harmonic dis-

tortion of the processed signal. However, pseudo-differential
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filters keep the simplicity of the circuit solutions being com-

parable to single-ended filters [63] – [65]. The solutions of

pseudo-differential filters from [52] – [62] use different types

of ABBs, primarily from the family of current conveyors

(CCs). Table 2 summarizes the key features of such pseudo-

differential filters. Basically, the proposed circuit solution

may be used for the design of 3rd-order filter, where the

fractional capacitor (FC) is replaced by classic capacitor.

However, within further circuit analyses, simulations and

experimental measurements, its FO version is assumed.

In this paper, we merge the two research topics and con-

tribute both to pseudo-differential and FO frequency filter

design. The filter operates in mixed (transadmittance) mode

and provides a low-pass (2 + α)-order response according

to Butterworth approximation. The current conveyors are

advantageously used as active elements to maintain both high

input and output (infinite in ideal case) impedance. By a

simple modification, the filter can operate also in voltage

mode. The performance of the proposed filter is verified both

by simulation and experimental measurements to show its

proper behavior.

The paper is organized as follows: Section II provides the

theory on pseudo-differential filters, while the description

of fractional (2 + α)-order transfer function approximated

according to Butterworth is presented in Section III. The

proposed filter is described in Section IV, where both the

transadmittance- and voltage-mode transfer functions are

given. Designing two prototypes of FOEs (α = 0.3 and

α = 0.6) the simulation and experimental measurement

results are presented in Section V, where not only the mag-

nitude and phase frequency responses, but also the low total

harmonic distortion (THD) and the common-mode rejection

ratio (CMRR) were determined. Section VI concludes the

paper.

II. THEORY ON PSEUDO-DIFFERENTIAL FILTERS

Dealing generally any differential circuit, the following nota-

tion for differential input voltage (v1d), common-mode input

voltage (v1c) and differential output voltage (v2d) is assumed

[66]:

v1d = v1+ − v1−, v1c =
v1+ + v1−

2
, v2d = v2+ − v2−,

(1)

whereas similarly a set of relations valid for current-mode

differential circuits is specified:

i1d = i1+ − i1−, i1c =
i1+ + i1−

2
, i2d = i2+ − i2−. (2)

The differential input signal v1d (or i1d) is simply the differ-

ence between the two input signals v1+ and v1− (or i1+ and

i1−), whereas the common-mode input signal v1c (or i1c) is

the average of the two input signals.

In the view of (1), the differential-output voltage v2d is

then defined as:

v2d = Admv1d +Acmv1c, (3)

where Adm and Acm are the differential and the common-

mode voltage gains, respectively. The capability of the dif-

ferential circuit to reject the common-mode signal in voltage-

mode signal processing is determined by the common-mode

rejection ratio (CMRR) defined as [66]:

CMRR = 20 log

(

Adm

Acm

)

. (4)

Similarly to (3) and using (2), the differential output cur-

rent i2d can be defined as:

i2d = Bdmi1d +Bcmi1c, (5)

where Bdm and Bcm are the differential and the common-

mode current gains, respectively, and similarly to (4) the

common-mode rejection ratio of a current-mode differential

circuit can be determined:

CMRR = 20 log

(

Bdm

Bcm

)

. (6)

From the viewpoint of general mathematical description of

differential circuits using (1)–(6) it is evident that the inner

circuit topology is never taken into account. Hence, dealing

with differential circuits, it is not necessary to absolutely

assume the circuit topology to be differential also. As a

result, the “pseudo” fully-differential (or simply pseudo-

differential) filters can be designed being specific with rather

single-ended circuit topology but still providing differential

input and output. Compared to “true” fully-differential filters,

the main benefit of pseudo-differential filters is their signif-

icantly reduced complexity in the count of required active

and passive elements of the final structure, which is usually

twice as small. At the same time, they keep the positive

properties of “true” fully-differential filters, such as high

common-mode rejection ratio and low harmonic distortion.

III. (2 + α) BUTTERWORTH APPROXIMATION

For the purpose of (2 + α)-order frequency filter design, the

following general low-pass transfer function is assumed:

HLP
2+α(s) =

1

s2+αk1 + s2k2 + sk3 + k4
, (7)

where 0 < α < 1, and k1, k2, k3, and k4, are the transfer

function coefficients that were determined using an optimiza-

tion algorithm to match the target Butterworth fractional low-

pass magnitude response.

The relation for the magnitude of the target Butterworth

FO low-pass transfer function generalized to fractional order

(2 + α) can be written as follows:

|HLP−T
2+α (ω)| = 1√

1 + ω2(2+α)
, (8)

that provides unity pass-band gain, magnitude of −3 dB

at cut-off angular frequency 1 rad/s, and stop-band roll-off

−20(2 + α) dB/dec.

Using numerical optimization algorithm, the coefficients

k1, k2, k3, and k4 from (7) were found such that the max-

imum absolute error between magnitude in dB of (7) and
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FIGURE 1. Coefficients k1, k2, k3, and k4 to approximate fractional

Butterworth magnitude response using (7) reached by optimization process.

(8) is minimized. For this purpose, the MATLAB function

fminsearch was used with the following fitness function:

f = max
i

∣

∣20 log
∣

∣HLP
2+α(x, ωi)

∣

∣− 20 log
∣

∣HLP−T
2+α (ωi)

∣

∣

∣

∣ ,

(9)

where x is the sought vector of the coefficients k1, k2, k3, and

k4. Each search used 100 frequency points logarithmically

spaced in the wide frequency range from ω1 = 0.01 rad/s to

ω100 = 100 rad/s to cover both pass- and stop-band of (8).

The individual runs of fminsearch function were performed

for the fractional component α decreasing from 0.99 to 0.01

with a linear step 0.01.

As a result, the transfer function coefficients k1, k2, k3,

and k4 that yield the lowest error according to (9) for specific

value of fractional order α are shown in Fig. 1. For better

convenience, to determine the transfer function coefficients

k1, k2, k3, and k4 in (7) according to Butterworth approxi-

mation for specific values of fractional order α, the following

interpolation matrix can be used:








k1
k2
k3
k4









=









0.357 0.138 −0.026 0.519
0.630 1.051 −0.507 0.820
1.415 0.542 −0.108 0.151
1.000 −0.004 −0.001 0.005

















1
α
α2

α3









,

(10)

and in Fig. 1 shown as k1aprx, k2aprx, k3aprx, and k4aprx
are compared to coefficients values of k1, k2, k3, and k4
determined using the fitness function (9).

To prove sufficient accuracy while determining the trans-

fer function coefficients using the interpolation matrix (10),

the relative error between coefficients k1, k2, k3, and k4
determined using the MATLAB fminsearch function and the

interpolated coefficients using (10) is shown in Fig. 2. It can

be seen that for 0.03 < α < 1 the relative error is always

below 2%.

Before the coefficients k1, k2, k3, and k4 determined by

(10) can be utilized to compute the values of the capacitors

FIGURE 2. Relative error between coefficients k1, k2, k3, and k4 found using

the MATLAB fminsearch function and determined by (10).
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FIGURE 3. Schematic symbols of (a) DVCC, (b) DDCC, (c) CCII.

and resistors in the filter structure, the frequency shifting to

the cut-off frequency ω0 should be carried out, as the target

function (8) has the −3 dB cut-off frequency 1 rad/s, which

is not practical. Thus the transfer function coefficients should

be modified by dividing them by the respective power of ω0

as follows:

HLP
2+α,ω0

(s) =
1

s2+α k1

ω
2+α

0

+ s2 k2

ω2
0

+ s k3

ω0
+ k4

. (11)

IV. PROPOSED PSEUDO-DIFFERENTIAL

FRACTIONAL-ORDER FILTER

To design the frequency filter, the current conveyors DVCC

(Differential Voltage Current Conveyor), DDCC (Differential

Difference Current Conveyor) and CCII (Second Generation

Current Conveyor) as active elements have been advanta-

geously used, whose schematic symbols are shown in Fig. 3.

Both DVCC and DDCC are based on CCII, just have

additional input voltage terminals Y, and therefore, for all

types it holds that the Y terminal iY currents are zero. Also

for all active elements and their Z+/− terminal currents it

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI

10.1109/ACCESS.2021.3091544, IEEE Access

Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

Y1

Y2

Y3

X

DDCC1

Z+

Z‒ 
v1+ Y1

Y2

X

DVCC2

Z+

Z‒ 

R2C1

v1‒ 

R1

Y1

Y2

X

DVCC3

Z+

Z‒ 

R3C2

Y

X

Z+

CCII4

i2‒ 
Z‒ 

R4

Cα 

i2+ 

(a)

Y1

Y2

Y3

X

DDCC1

Z+

Z‒ 
v1+ Y1

Y2

X

DVCC2

Z+

Z‒ 

R2C1

v1‒ 

R1

Y1

Y2

X

DVCC3

Z+

Z‒ 

R3C2

Y

X

Z+

CCII4

v2‒ Z‒ 

R4

Cα 

v2+ 

R5 R6

(b)

FIGURE 4. Proposed pseudo-differential (2 + α)-order frequency filter

operating in: (a) transadmittance-mode, (b) voltage-mode.

holds:

iZ+ = iX, iZ− = −iX. (12)

The only significant difference between the assumed current

conveyor types is the formula specifying the voltage at X

terminal:

for DVCC : vX = vY1 − vY2

for DDCC : vX = vY1 − vY2 + vY3

for CCII : vX = vY







(13)

Using the current conveyors, the proposed pseudo-

differential filter suitable to provide a (2+α)-order low-pass

frequency response operating in transadmittance- or voltage-

mode is shown in Fig. 4(a) and Fig. 4(b), respectively. The

differential input voltage v1d is always directly applied to

the Y1 and Y2 terminals of DDCC1 and hence high input

impedance of the proposed filters is ensured.

Following the general mathematical description of differ-

ential filters as discussed in Section II, the output currents i2+
and i2− of the filter from Fig. 4(a) can be determined as:

i2+(s) =
1

R4

1

s2+αu1 + s2u2 + su3 + 1
v1d + 0v1c, (14)

i2−(s) = − 1

R4

1

s2+αu1 + s2u2 + su3 + 1
v1d+0v1c, (15)

where u1 = C1C2CαR1R2R3, u2 = C1C2R1R2, and

u3 = C1R1, whereas Cα is the pseudo-capacitance of the

fractional capacitor and α is its fractional order.

From (14) and (15), the differential transadmittance gain is

defined as:

Gdm =
2

R4

1

s2+αu1 + s2u2 + su3 + 1
, (16)

and the common-mode transamittance gain Gcm is zero.

As shown in Fig. 4(b), adding extra two resistors (R5 and

R6) the proposed filter may be operated in voltage-mode. The

output voltages v2+ and v2− are then determined as:

v2+(s) = −R5

R4

1

s2+αu1 + s2u2 + su3 + 1
v1d+0v1c, (17)

R1

C1

R2

C2

R3

C3

R4

C4

R5

C5

R6

C6

R7

C7

R0Cα 

FIGURE 5. 7th-order Foster II RC network.

TABLE 3. Values of resistors and capacitors in 7th-order Foster-II RC network

α = 0.3 α = 0.6
R0 12.7 kΩ 50.5 kΩ
R1 2.12 kΩ 290 Ω
R2 3.83 kΩ 1.14 kΩ
R3 5.87 kΩ 2.78 kΩ
R4 8.82 kΩ 6.28 kΩ
R5 13.2 kΩ 14.1 kΩ
R6 20.0 kΩ 32.3 kΩ
R7 33.3 kΩ 87.7 kΩ
C1 24.0 pF 143 pF
C2 49.2 pF 135 pF
C3 119 pF 207 pF
C4 295 pF 342 pF
C5 735 pF 569 pF
C6 1.80 nF 922 pF
C7 4.04 nF 1.30 nF

v2−(s) =
R6

R4

1

s2+αu1 + s2u2 + su3 + 1
v1d + 0v1c, (18)

and for the differential voltage gain it holds:

Adm = −R5 +R6

R4

1

s2+αu1 + s2u2 + su3 + 1
, (19)

whereas the common-mode voltage gain Acm is zero and the

common-mode rejection ratio CMRR is infinite, in theory.

V. SIMULATIONS AND EXPERIMENTAL

MEASUREMENTS

The properties of the proposed pseudo-differential FO fre-

quency filter from Fig. 4(b), i.e. operating in voltage-mode,

were verified by simulations and mainly also by experimental

measurements. Both for simulations and experiments the

Universal Current Conveyor UCC-N1B integrated circuit

[67] was used to obtain the required types of active elements.

A. FRACTIONAL-ORDER ELEMENT DESIGN

Due to commercial unavailability of fractional capacitors in

general, the required Cα was approximated using the 7th-

order Foster-II RC network as shown in Fig. 5. Using [44],

the values of the resistors and capacitors of the Foster-II net-

work were determined, whereas to validate the performance

of the proposed filter, two different FOEs were chosen:

• α = 0.3, Cα = 7.038 µFs−0.7,

• α = 0.6, Cα = 0.158 µFs−0.4,

with central frequency (fC) of 50 kHz and approximation

range from 5 kHz to 500 kHz. Both assumed FOEs feature

the impedance module of 3184 Ω at fC . The calculated val-

ues of the resistors and capacitors are summarized in Table 3,

whereas for simulations and experimental measurements, the

values for resistors and capacitors were selected from the E24

and E12 series, respectively.

VOLUME 4, 2016 5
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(a) (b)

FIGURE 6. Simulation and experimental measurement results of the approximated FOEs for two values of α: (a) impedance magnitude, (b) impedance phase.

(a) (b)

FIGURE 7. Simulation and experimental measurement results of the filter: (a) magnitude responses, (b) phase responses.

The impedance module and phase shift of the two approx-

imated FOEs obtained by measurements and compared to

simulation results are shown in Fig. 6. From Fig. 6(a), for

α = 0.3 the value of module of the approximated FOEs

at central frequency 50 kHz is 3176 Ω, whereas for for

α = 0.6 the impedance module is and 3198 Ω, which is

very close to expected value of 3184 Ω for ideal FOEs. The

results in Fig. 6(b) showing the phase shift validate proper

approximation in the specified frequency range, i.e. from

5 kHz to 500 kHz.

B. PERFORMANCE ANALYSIS OF THE FILTER

For the selected values of α, using (10) the coefficients k1,

k2, k3 and k4 of the general transfer function (7) were deter-

mined. Choosing the values of capacitors C1 = C2 = 1 nF

and the filter pole-frequency f0 = 50 kHz and using (19),

the values of resistors R1, R2 and R3 were determined as

5.00 kΩ, 1.86 kΩ and 1.41 kΩ, respectively, and are the same

for both FOEs as their module at the pole-frequency is also

the same. The values of the resistors R4, R5, and R6 were

selected to be 1 kΩ.

The magnitude and phase responses of the proposed filter

obtained both by simulations and experimental measure-

ments are displayed in Fig. 7(a) and Fig. 7(b), respectively.

From the characteristics, it can be clearly seen that both sim-

ulation and experimental measurements follow theoretical

presumptions very well. For experimental measurements, the

deviation at frequencies above approx. 600 kHz is attributed

to parasitic properties and frequency limitations of the active

element UCC-N1B [67].

In addition to the measured magnitude and phase response

characteristics, the ability of the pseudo-differential filter to

suppress the common-mode signal, the CMRR was experi-

mentally measured. The results are shown in Fig. 8. For both

cases of used FOE, the value of CMRR is above 50 dB in the

pass band of the filter. The decrease in CMRR above approx.

200 kHz is due to the actual behavior of the UCC-N1B

and the mismatch of the voltage gains β1 and β2 between

6 VOLUME 4, 2016
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FIGURE 8. Measured CMRR of the pseudo-differential filter.

FIGURE 9. Measured THD of the pseudo-differential filter.

terminals Y1 and X, and terminals Y2 and X of the active

element as we investigated earlier in [58].

Finally, the total harmonic distortion (THD) was also eval-

uated by means of experimental measurements. The reached

results are shown in Fig. 9. Similarly, to measuring CMMR,

also here the THD is close for both values of fractional order

α and is below 2% for the amplitude of the input signal up to

0.7 V at frequency 1 kHz.

Performing the experimental measurements to reach the

results as presented above, primarily the network analyser

Agilent 4395A was used. To obtain the differential input

signal and be to able to measure the differential output re-

sponse, single-to-differential (S/D) and differential-to-single

(D/S) converters had to be added and were implemented

using AD8476 [68] and AD8429 [69] integrated circuits

respectively. For the sake of evaluating also CMRR of the

proposed pseudo-differential filter, the AD8271 [70] was

used to apply common-mode signal at the input of the filter.

The total block connection for experimental measurements

AD8476

AD8271

AD8271

Measured 

filter
AD8429

v1+

v1‒ 

v2+

v2‒ 

v1d

v1c

v2d

S/D converter D/S converter

FIGURE 10. Block diagram of the experimental measurement setup.

FIGURE 11. The PCB prototype of the pseudo-differential voltage-mode filter

from Fig. 4(b).

is shown in Fig. 10. For sake of completeness the PCB

prototype of the measured voltage-mode pseudo-differential

filter is also shown in Fig. 11.

VI. CONCLUSION

This article contributes to the design of FO filters, whereas

the mathematical calculus enabling to determine the (2+α)-
order transfer function coefficients according to Butterworth

approximation for arbitrary α was presented. Additionally,

new circuit solution of the pseudo-differential filter was also

proposed and used to prove and support the theory both of

the designing pseudo-differential and fractional-order filters.

The structure operates in mixed-mode (transadmittance) and

thanks to current conveyors, used as active elements, it fea-

tures high input and output impedance. It was shown that

simple modification enables to operate the filter in voltage-

mode. Both simulation and experimental measurements show

proper behavior of the filter in magnitude and phase and

moreover prove high CMRR and dynamic range keeping

total harmonic distortion low.
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