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Some preliminary information

• V. Turunen, M. Ruzhansky, Pseudo-differential operators and symmetries,

Birkhäuser, 2009;

• The length of the book is 725 pages; it contains the details of the subject that

we are developing and some necessary backgrounds (e.g. on the representation

theory of Lie groups, etc.); describes a new point of view, not trying to

duplicate existing excellent books (Kumano-go, Shubin, Taylor, ...)

• This approach to pseudo-differential operators on Lie groups may seem

non-familiar for the Rn–analysts since it relies on the representation theory of

Lie groups; however, the representation theory that we use is quite simple, is

very relevant, it clarifies/simplifies things, and it allows to attack global

problems (e.g. global hypoellipticity, global solvability, etc.);

• With this approach we can consequently treat quite general manifolds;

• In many respects the resulting theory is overall simpler since it refers to

natural symmetries of spaces, that contain geometric and physical information,

and which are destroyed when working in local coordinates.

• In this talk we discuss some aspects (Tn, S3 and SU(2), compact groups).
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Some advertisement: book contents

M. Ruzhansky, V. Turunen:

Pseudo-Differential Operators and Symmetries

Contents:

Part I Foundations of Analysis

A Sets, Topology and Metrics

B Elementary Functional Analysis

C Measure Theory and Integration

D Algebras

Part II Commutative Symmetries

1 Fourier Analysis on Rn

2 Pseudo-differential Operators on Rn

3 Periodic and Discrete Analysis

4 Pseudo-differential Operators on Tn

5 Commutator Characterisation of Pseudo-differential Operators

(To be continued...)
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Book contents, continued

M. Ruzhansky, V. Turunen:

Pseudo-Differential Operators and Symmetries

... Contents:

Part III Representation Theory of Compact Groups

6 Groups

7 Topological Groups

8 Linear Lie Groups

9 Hopf Algebras

Part IV Non-commutative Symmetries

10 Pseudo-differential Operators on Compact Lie Groups

11 Fourier Analysis on SU(2)

12 Pseudo-differential Operators on SU(2)

13 Pseudo-differential Operators on Homogeneous Spaces
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Some observations

A linear elliptic PDE Dirichlet problem in a bounded smooth Ω ⊂ Rn leads to
a pseudo-differential equation on M = ∂Ω (e.g. Calderon projections).

Traditional pseudo-differential calculus on M works via localisations,

destroying the geometric and other global structures of M .

Suppose M = ∂Ω is “symmetric” (or diffeomorphic to “symmetric”)

⇒ efficient global calculus on ∂Ω
⇒ solving the original boundary value problem.

Homogeneous spaces: A transitive action G×M →M of a Lie group G

on a manifold M ; calculus on M as a “shadow” from that on G.

Chapter 13: ΨDOs on M ←→ ΨDOs on G (in this case M = G/K or K\G).
Interesting observation: harmonic analysis on Lie groups and the theory of

ΨDOs on Rn seem to be “notationally incompatible”.

Examples: G = Tn = Rn/Zn [Agranovich 1990], [Turunen & Vainikko 1998],
[Turunen 2000], [R. & Turunen 2008]. Also, the spheres,

SO(n)× Sn−1 → Sn−1, SU(n)×M →M with M = {x ∈ Cn : ‖x‖Cn = 1}.
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Short overview

Chapters 1–2 on Rn [Kohn & Nirenberg, Hörmander 1965]:

f̂(ξ) =

∫

Rn
f(x) e−i2πx∙ξ dx, Af(x) =

∫

Rn
ei2πx∙ξ σA(x, ξ) f̂(ξ) dξ,

∣
∣∂αξ ∂

β
xσA(x, ξ)

∣
∣ ≤ Cαβ 〈ξ〉

m−|α|

Chapters 3–5 on the torus Tn = Rn/Zn:

f̂(ξ) =

∫

Tn
f(x) e−i2πx∙ξ dx, Af(x) =

∑

ξ∈Zn

i2πx∙ξ σA(x, ξ) f̂(ξ),

∣
∣4αξ ∂

β
xσA(x, ξ)

∣
∣ ≤ Cαβ 〈ξ〉m−|α|

[Agranovich 1990], [McLean 1991], [Turunen 2000], [R. & Turunen 2008].

Chapters 5–13 on a compact Lie group G:

f̂(ξ) =

∫

G

f(x) ξ(x)∗ dx, Af(x) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
ξ(x) σA(x, ξ) f̂(ξ)

)
,

∥
∥4αξ ∂

β
xσA(x, ξ)

∥
∥ ≤ Cαβ 〈ξ〉

m−|α|, ∙ ∙ ∙
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dim(ξ) Tr
(
ξ(x) σA(x, ξ) f̂(ξ)

)
,

∥
∥4αξ ∂

β
xσA(x, ξ)

∥
∥ ≤ Cαβ 〈ξ〉

m−|α|, ∙ ∙ ∙

1 October 2009 M. Ruzhansky “Pseudo-differential operators and symmetries” (with V. Turunen) Page 6



Short overview

Chapters 1–2 on Rn [Kohn & Nirenberg, Hörmander 1965]:
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Torus Tn = (R/2πZ)n

The idea behind:

Tn as manifold −→ Tn as group

ξ ∈ Zn defines eξ(x) := eix∙ξ

eξ : Tn → U(1) hence T̂n ' Zn

{eξ : ξ ∈ Zn} is basis for L2(Tn)

(note: same idea for R̂n ' Rn)

FT: C∞(Tn)→ S(Zn), û(ξ) =
∫
Tn u(y) e

−iy∙ξ d−y, u(x) =
∑
ξ∈Zn e

ix∙ξ û(ξ).

“Toroidal” pseudo-differential operators (Au)(x) =
∑

ξ∈Zn

eix∙ξ σA(x, ξ) û(ξ)

toroidal symbol σA ∈ C∞(Tn× Zn ) satisfies
∣
∣
∣4αξ ∂

β
xσA(x, ξ)

∣
∣
∣ ≤ Cαβ 〈ξ〉m−|α|

where 4αξ = 4
α1
ξ1
∙ ∙ ∙4αnξn is the partial difference operator, where for

e1 = (1, 0, 0, . . . , 0) ∈ Nn we define (4ξ1σ)(ξ) = σ(ξ + e1)− σ(ξ), etc.

[Agranovich ’90], [McLean ’91], [Turunen ’00]; [R-Turunen ’06]-periodisation:

the set of such operators gives a “toroidal” quantisation of the usual

Hörmander’s class OpSmρ,δ(T
n) defined by local coordinates – more later.
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Discrete and Periodic analysis

For the calculus, we need discrete Taylor polynomials. What is the analogue of

the Taylor expansion on a lattice Zn? We propose the following:

Theorem (Taylor expansion on Zn) Let p : Zn → C. Then

p(ξ + θ) =
∑

|α|<M

1

α!
θ(α)4αξ p(ξ) + rM (ξ, θ)

where θ(α) := θ
(α1)
1 ∙ ∙ ∙ θ(αn)n , θ

(αj)
j := θj (θj − 1) ∙ ∙ ∙ (θj − (αj + 1)) and

∣
∣4ωξ rM (ξ, θ)

∣
∣ ≤

∑

|α|=M

1

α!

∣
∣
∣θ(α)

∣
∣
∣ max
ν∈Q(θ)

∣
∣
∣4α+ωξ p(ξ + ν)

∣
∣
∣ ,

with “discrete box” Q(θ) := {ν ∈ Zn : θj ≤ νj ≤ 0 or 0 ≤ νj ≤ θj} .

Using this theorem, one develops all the calculus of globally defined toroidal

symbols on Tn. Formulae are same as usual, but with ∂ξ–derivatives replaced
by differences Δξ . By periodisation theorems it is equivalent to the standard

calculus on Tn (as a manifold), but here we have full symbols (thus also FFT).
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∑

|α|<M

1

α!
θ(α)4αξ p(ξ) + rM (ξ, θ)

where θ(α) := θ
(α1)
1 ∙ ∙ ∙ θ(αn)n , θ

(αj)
j := θj (θj − 1) ∙ ∙ ∙ (θj − (αj + 1)) and

∣
∣4ωξ rM (ξ, θ)

∣
∣ ≤

∑

|α|=M

1

α!

∣
∣
∣θ(α)

∣
∣
∣ max
ν∈Q(θ)

∣
∣
∣4α+ωξ p(ξ + ν)

∣
∣
∣ ,

with “discrete box” Q(θ) := {ν ∈ Zn : θj ≤ νj ≤ 0 or 0 ≤ νj ≤ θj} .

Using this theorem, one develops all the calculus of globally defined toroidal

symbols on Tn. Formulae are same as usual, but with ∂ξ–derivatives replaced
by differences Δξ . By periodisation theorems it is equivalent to the standard

calculus on Tn (as a manifold), but here we have full symbols (thus also FFT).
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Pseudo-differential operators on Tn

For any operator A : C∞(Tn)→ C∞(Tn), consider its toroidal quantisation:

Aϕ(x) =
∑

ξ∈Zn

eix∙ξ σA(x, ξ) f̂(ξ)

where its toroidal symbol σA ∈ C∞(Tn × Zn) is uniquely defined by the formula

σA(x, ξ) = e
−ix∙ξAeξ(x) where eξ(x) := e

ix∙ξ.

Let m ∈ R. Define toroidal symbol class Sm(Tn × Zn) to consist of functions
a(x, ξ) which are smooth in x for all ξ ∈ Zn, and which satisfy

∣
∣4αξ ∂

β
xσA(x, ξ)

∣
∣ ≤ Caαβm 〈ξ〉m−|α|, for all x ∈ Tn, α, β ∈ Nn0 , ξ ∈ Z

n.

Theorem (Agranovich, McLean): On Tn, Hörmander’s usual (also (ρ, δ))
class of pseudo-differential operators OpSm(Rn ×Rn) of order m ∈ R which are
2π-periodic in x coincides with the class OpSm(Tn × Zn), i.e. we have

OpSm(Tn × Rn) = OpSm(Tn × Zn).
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Relations between symbols

This theorem tells us about equality between classes of operators. However, we

can now also tell about relations between specific symbols and operators, e.g.:

Theorem.Let 0 < ρ ≤ 1 and 0 ≤ δ ≤ 1. Symbol ã ∈ Smρ,δ(T
n × Zn) is a toroidal

symbol if and only if there exists an Euclidean symbol a ∈ Smρ,δ(T
n × Rn) such

that ã = a|Tn×Zn . Moreover, this extended symbol a is unique modulo

S−∞(Tn × Rn).

Chapter 4. Pseudo-differential operators on Tn in toroidal quantization:

• periodisation operators, Poisson summation formula;

• relation between toroidal and Euclidean symbols and the corresponding

operators;

• toroidal calculus: compositions, adjoints, compound symbols, ellipticity, ...

• boundedness on L2(Tn), Lp(Tn), and on Sobolev spaces W p,s(Tn); toroidal

wave front sets;

• Fourier series operators, calculus of FSO’s, boundedness of FSO’s on L2(Tn);

• Applications to hyperbolic problems and integral operators;
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n × Zn) is a toroidal

symbol if and only if there exists an Euclidean symbol a ∈ Smρ,δ(T
n × Rn) such
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Noncommutative symmetries: S3 and SU(2)

To develop similar things on general compact Lie groups we rely on the

representation theory. Let us look at the example of S3. It is much more

convenient for us to look at S3 as SU(2) because then we have lots of things

that are known about representations of SU(2).

The quaternion space H is (the associative R-algebra) with a vector space basis

{1, i, j,k}, where 1 ∈ H is the unit and

i2 = j2 = k2 = −1 = ijk.

S3 in H and SU(2) are isomorphic and diffeomorphic (there is a bijective

differentiable mapping between them). This gives ΨDOs on sphere S3 parallel

to ΨDOs on SU(2).

Thus, S3
C∞

−−−−−−−−→
group

isomorphism

SU (2) This gives ΨDOs on sphere S3.

Note that by using the Poincaré conjecture, we can also extend everything to

arbitrary closed (simply connected) 3–manifolds.
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Summary of pseudo-differential operators on SU(2)

SU(2) = the group of 2-by-2 complex unitary matrices of determinant = 1.

Let us define (these are irreducible unitary representations of S3 (of SU(2)

actually) tlmn ∈ C
∞(S3), where l ∈ 1

2
N and −l ≤ m,n ≤ +l such that

l −m, l − n ∈ Z. In Euler’s angles

tlmn(φ, θ, ψ) = e
−i(mφ+nψ) P lmn(cos(θ)),

P lmn are the Legendre–Jacobi functions.

These are analogues of eik∙x on T3

I will try to avoid representation theory language in this talk but:

for [ξ] ∈ Ŝ3, representations in [ξ] are tξ = {tlmn}
l
m,n=−l : Hom(S

3,U(2l + 1)),

where l = dim(ξ) ∈ 1
2
N

(Laplacian has 2l+1 spherical harmonics of order l; tl – their transformations)

For simplicity, we forget for now about underlying representation theory and

just present some outcomes.

1 October 2009 M. Ruzhansky “Pseudo-differential operators and symmetries” (with V. Turunen) Page 12



Summary of pseudo-differential operators on SU(2)

SU(2) = the group of 2-by-2 complex unitary matrices of determinant = 1.

Let us define (these are irreducible unitary representations of S3 (of SU(2)

actually) tlmn ∈ C
∞(S3), where l ∈ 12N and −l ≤ m,n ≤ +l such that

l −m, l − n ∈ Z. In Euler’s angles

tlmn(φ, θ, ψ) = e
−i(mφ+nψ) P lmn(cos(θ)),

P lmn are the Legendre–Jacobi functions.

These are analogues of eik∙x on T3

I will try to avoid representation theory language in this talk but:
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Fourier analysis on S3

Thus, on S3, we have a family of group homomorphisms

tl : S3 → U(2l + 1) ⊂ C(2l+1)×(2l+1), l ∈ 12N0.

Fourier coefficient f̂(l) of f ∈ C∞(S3) is

f̂(l) =

∫

S3
f(x) tl(x)∗ dx.

Note that f̂(l) ∈ C(2l+1)×(2l+1) is now a matrix! Fourier series is

f(x) =
∑

l∈ 12N0

(2l + 1) Tr
(
f̂(l) tl(x)

)
.

Notice: f̂ ∗ g(l) = ĝ(l) f̂(l).

If A : C∞(S3)→ C∞(S3) continuous & linear then we can define its symbol as

(x, l) 7→ σA(x, l), σA(x, l) = t
l(x)∗(Atl)(x) ∈ C(2l+1)×(2l+1)
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Global quantisation of operators on S3

Then we have

Af(x) =
∑

l∈ 12N0

(2l + 1) Tr
(
tl(x) σA(x, l) f̂(l)

)

where the symbol of A is σA(x, l) ∈ C(2l+1)×(2l+1) (is matrix-valued!)

We also note that if

Af(x) =

∫

S3
K(x, y) f(y) dy =

∫

S3
f(y) RA(x, y

−1x) dy,

then σA(x, l) =
∫
S3 RA(x, y)t

l(y)∗dy, so we have all the familiar features.

Questions:

• how to define symbols to recover Hörmander’s classes Ψm(S3)?

e.g. do matrices σA(x, l) have some structure?

• what are difference operators in symbolic inequalities?

Answers: very interesting!
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Comparing definitions

Euclidean space Rn:

f̂(ξ) =

∫

Rn
f(x)e−2πix∙ξdx, Af(x) =

∫

Rn
e2πix∙ξσA(x, ξ)f̂(ξ)dξ,

with |∂αξ ∂
β
xσA(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|
.

Torus Tn = Rn/Zn:

f̂(ξ) =

∫

Tn
f(x)e−2πix∙ξdx, Af(x) =

∑

ξ∈Zn

e2πix∙ξσA(x, ξ)f̂(ξ),

with |Δαξ ∂
β
xσA(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|
.

Sphere S3:

f̂(l) =

∫

S3
f(x)tl(x)∗dx, Af(x) =

∑

l∈ 12N0

(2l + 1) Tr
(
tl(x)σA(x, l)f̂(l)

)
,

with |Δαl ∂
β
xσA(x, l)| ≤ Cαβ(1 + l)

m−|α|.

Question: what are difference operators Δl on symbols on S3?
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Global calculus

With this, all the features of the standard calculus carry over to G:

Compositions in Rn [Mikhlin, Calderon & Zygmung, Kohn & Nierenberg]:

σAB(x, ξ) ∼
∑

α≥0

1

α!
(∂αξ σA)(x, ξ) (D

α
xσB)(x, ξ).

Compositions on Tn [Turunen & Vainikko 1998 for Sm1,0(R), R. & Turunen 2007

for Smρ,δ(R
n) & also for FIOs/FSOs]:

σAB(x, ξ) ∼
∑

α≥0

1

α!
(4αξ σA)(x, ξ) (D

(α)
x σB)(x, ξ),

D
(α)
x = D

(α1)
x1 ∙ ∙ ∙D

(αn)
xn , where D

(0)
xj = I and

D
(k+1)
xj = D

(k)
xj

(
∂
i∂xj
− kI

)
= ∂
i∂xj

(
∂
i∂xj
− I
)
∙ ∙ ∙
(

∂
i∂xj
− kI

)
.

Compositions on sphere S3:

σAB(x, l) ∼
∑

α≥0

1

α!
(4αl σA)(x, l) (D

(α)
x σB)(x, l),

with appropriate definitions of differences 4αl and derivatives D
(α)
x .
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Symbol classes

Theorem. [R. & Turunen 2008]

A : C∞(S3)→ C∞(S3) belongs to the usual Hörmander’s class Ψm(S3) if and

only if its Lie group symbol σA ∈ Sm(S3)

(where σA(x, l) = t
l(x)∗(Atl)(x)) ∈ C(2l+1)×(2l+1), l ∈ 12N0).

Definition.

Symbol σA ∈ Sm(S3) if and only if for every N ≥ 0 we have
∣
∣4αl ∂

β
xσAu(x, l)ij

∣
∣ ≤ CAαβmN (1 + |i− j|)

−N (1 + l)m−|α|,

where for u ∈ SU(2) we define

σAu(x, l) = t
l(u)∗σA(x, l) t

l(u)

and kernel KA(x, y) of A is smooth outside the diagonal x = y.

There are 3 difference operators Δ+,Δ−,Δ0 and Δ
α
l = Δ

α1
+ Δ

α2
− Δ

α3
0 .

Operators Δ+,Δ−,Δ0 act on symbols on S3 and there are explicit formulae

for them.

Note: blue condition means rapid off-diagonal decay of matrices!
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Symbol classes

Theorem. [R. & Turunen 2008]
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Part III (Chapters 6–9): Representation theory

These constructions on the torus are global since we rely not on the structure

of Tn as a surface, but as a group. First, recall a little bit.

U(m) = {m×m complex matrices A such that A∗ = A−1}

SU(m) = {A ∈ U(m) : detA = 1}

If G is a compact Lie group, its unitary dual Ĝ is defined as

Ĝ = {[φ] : φ continuous irreducible unitary representation of G}

Unitary representations: for each φ from the equivalence class [φ], we have

φ ∈ Hom(G,U(H)) for some (finite–dimensional) vector space H.

m = dimH is called the dimension of the representation φ (dimφ := m).

If the group is commutative (e.g. Rn, Tn), its

representations are one-dimensional (m = 1) – will be important!
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Peter–Weyl theorem

Peter–Weyl theorem:
√
dimψ ψij is an orthonormal basis of L

2(G,μG), where

ψ = {ψij}mi,j=1 and [ψ] ∈ Ĝ.

Examples:

e2πix∙k, k ∈ Zn, is an orthonormal basis of Tn.

e2πix∙ξ, ξ ∈ Rn, is an “orthonormal basis” of Rn.

Since these groups are commutative, 1 × 1 representations are just complex

valued functions, and they simply give the basis.

This also implies that familiar symbols on Rn and Tn are just complex valued

(and they are matrix-valued for non-commutative groups, e.g. on S3 ).
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Chapter 10: ΨDOs on compact Lie groups

Unitary dual Ĝ consists of equivalence classes [ξ] of irreducible unitary

representations ξ of G. Choosing a particular representation from [ξ], we can

think that ξ(x) ∈ Cdim ξ×dim ξ, where dim ξ is the dimension of representation ξ.
Note: often there are explicit formulae for ξ(x).

Fourier coefficient f̂(ξ) of f ∈ C∞(G) is

f̂(ξ) =

∫

G

f(x) ξ(x)∗ dμG(x).

Note that f̂(ξ) ∈ Cdim ξ×dim ξ is now a matrix! Fourier series is

f(x) = F−1G (f̂) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
f̂(ξ) ξ(x)

)
.

Notice: f̂ ∗ g(ξ) = ĝ(ξ) f̂(ξ).

If A : C∞(G)→ C∞(G) continuous & linear then we can define its symbol as

(x, ξ) 7→ σA(x, ξ), σA(x, ξ) = ξ(x)
∗(Aξ)(x).
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Chapter 10: ΨDOs on compact Lie groups

Then we have

Af(x) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
ξ(x) σA(x, ξ) f̂(ξ)

)

where the symbol of A is σA(x, ξ) ∈ Cdim ξ×dim ξ (is matrix-valued!)

We also note that if

Af(x) =

∫

G

K(x, y) f(y) dy =

∫

G

f(y) RA(x, y
−1x) dy,

then σA(x, ξ) =
∫
G
RA(x, y)ξ(y)

∗dy, so we have all the familiar features.

Questions:

• how to define symbols to recover Hörmander’s classes Ψm(G)?

e.g. do matrices σA(x, ξ) have some structure?

• what are difference operators in symbolic inequalities?

Answers: very interesting!
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e.g. do matrices σA(x, ξ) have some structure?

• what are difference operators in symbolic inequalities?

Answers: very interesting!

1 October 2009 M. Ruzhansky “Pseudo-differential operators and symmetries” (with V. Turunen) Page 21



Comparing definitions

Euclidean space Rn [Kohn & Nirenberg, Hörmander 1965]:

f̂(ξ) =

∫

Rn
f(x)e−2πix∙ξdx, Af(x) =

∫

Rn
e2πix∙ξσA(x, ξ)f̂(ξ)dξ,

with |∂αξ ∂
β
xσA(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|
.

Torus Tn = Rn/Zn [Agranovich 1990, McLean 1991, Turunen 2000]:

f̂(ξ) =

∫

Tn
f(x)e−2πix∙ξdx, Af(x) =

∑

ξ∈Zn

e2πix∙ξσA(x, ξ)f̂(ξ),

with |Δαξ ∂
β
xσA(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|
.

Compact Lie group G:

f̂(ξ) =

∫

G

f(x)ξ(x)∗dx, Af(x) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
ξ(x)σA(x, ξ)f̂(ξ)

)
,

with |Δαξ ∂
β
xσA(x, ξ)| ≤ Cαβ〈ξ〉

m−|α|
.

Question: what are difference operators Δξ on Ĝ?
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Space L2(Ĝ)

On Ĝ we work with mappings

F : Ĝ→
⋃

[ξ]∈Ĝ

L(Hξ) ⊂
∞⋃

m=1

Cm×m,

satisfying F ([ξ]) ∈ L(Hξ) for every [ξ] ∈ Ĝ. In matrix representations, we can
view F ([ξ]) ∈ Cdim(ξ)×dim(ξ) as a dim(ξ)× dim(ξ) matrix.

The space L2(Ĝ) consists of all mappings

||F ||2
L2(Ĝ)

:=
∑

[ξ]∈Ĝ

dim(ξ) ‖F ([ξ])‖2HS <∞

where ||F ([ξ])||HS =
√
Tr(F ([ξ]) F ([ξ])∗).

Parseval’s identity Let f, g ∈ L2(G). Then we have

(f, g)L2(G) =
∑

[ξ]∈Ĝ

dim(ξ) Tr
(
f̂(ξ) ĝ(ξ)∗

)
= (f̂(ξ), ĝ(ξ))L2(Ĝ).
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What is 〈ξ〉 on Ĝ?

For every ξ ∈ Ĝ we can construct the eigenspace Hξ of the Laplacian LG:

−LG|Hξ = λ
2
ξI, for some λξ ∈ R. We have dimH

ξ = (dim(ξ))2. We denote

〈ξ〉 := (1 + λ2[ξ])
1/2

Proposition (Dimension and eigenvalues) There exists a constant C > 0

such that the inequality dim(ξ) ≤ C〈ξ〉
dimG
2 holds for all ξ ∈ Rep(G).

The space S(Ĝ) consists of all mappings H such that for all k ∈ N we have
∑

[ξ]∈Ĝ

dim(ξ) 〈ξ〉k ||H(ξ)||HS <∞.

Proposition S(Ĝ) is a Montel nuclear space.

The space S ′(Ĝ) is the space of all H for which there exists some k ∈ N:
∑

[ξ]∈Ĝ

dim(ξ) 〈ξ〉−k||H(ξ)||HS <∞.

Fourier transform: continuous bijection C∞(G)←→ S(Ĝ), D′(G)←→ S ′(Ĝ).
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Spaces Lp(Ĝ)

For 1 ≤ p <∞, we will write Lp(Ĝ) ≡ `p
(
Ĝ, dimp(

2
p−

1
2 )
)
for the space of all

H ∈ S ′(Ĝ) such that

||H||Lp(Ĝ) :=




∑

[ξ]∈Ĝ

(dim(ξ))p(
2
p−

1
2 ) ||H(ξ)||pHS





1/p

<∞.

For p =∞, we write L∞(Ĝ) ≡ `∞
(
Ĝ, dim−1/2

)
for all H ∈ S ′(Ĝ):

||H||L∞(Ĝ) := sup
[ξ]∈Ĝ

(dim(ξ))−1/2 ||H(ξ)||HS <∞.

Important cases of L2(Ĝ) = `2
(
Ĝ, dim1

)
and L1(Ĝ) = `1

(
Ĝ, dim3/2

)
are

||H||L2(Ĝ) :=




∑

[ξ]∈Ĝ

dim(ξ) ||H(ξ)||2HS





1/2

, ||H||L1(Ĝ) :=
∑

[ξ]∈Ĝ

(dim(ξ))3/2 ||H(ξ)||HS .

1 October 2009 M. Ruzhansky “Pseudo-differential operators and symmetries” (with V. Turunen) Page 25



Some properties of spaces Lp(Ĝ)

Interpolation of Lp(Ĝ) spaces Let 1 ≤ p0, p1 <∞. Then

(
Lp0(Ĝ), Lp1(Ĝ)

)

θ,p
= Lp(Ĝ),

where 0 < θ < 1 and 1
p
= 1−θ

p0
+ θ

p1
.

Fourier transforms on L1(G) and L1(Ĝ) We have

||f̂ ||L∞(Ĝ) ≤ ||f ||L1(G), ||F−1G H||L∞(G) ≤ ||H||L1(Ĝ).

Hausdorff–Young inequality Let 1 ≤ p ≤ 2 and 1
p
+ 1

q
= 1. Let f ∈ Lp(G)

and H ∈ Lp(Ĝ). Then ||f̂ ||Lq(Ĝ) ≤ ||f ||Lp(G) and ||F
−1
G H||Lq(G) ≤ ||H||Lp(Ĝ).

Duality of Lp(Ĝ) Let 1 ≤ p <∞ and 1
p
+ 1

q
= 1. Then

(
Lp(Ĝ)

)′
= Lq(Ĝ).

Sobolev spaces Lpk(Ĝ) For k ∈ N we can define

Lpk(Ĝ) =
{
H ∈ Lp(Ĝ) : 4αH ∈ Lp(Ĝ) for all |α| ≤ k

}
.
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Some (general) conclusions

• One can define full symbols and symbolic calculus on manifolds where
there is a Lie group acting on it (e.g. Lie groups, homogeneous spaces).

• Tn: toroidal symbols, calculus, equivalence to standard symbols in local
charts. Relation is provided by periodisation. Well-suited for numerics.

• Difference conditions allow to relax regularity in ξ: e.g. for L2-results.

• =⇒ parametrix for hyperbolic systems with multiplicities.

• Using geometric information, global calculus can be extended to e.g all
compact (simply-connected) manifolds (in dimensions ≤ 3, and higher).

• BVP on Ω =⇒ ΨDE on ∂Ω =⇒ ΨDE on Sn−1 =⇒ ΨDE on SU(n).

• Symbolic calculus on (3-dimensional) SU(2) is an example of a
non-commutative calculus, where p(x, l) is a matrix of size

(2l + 1)× (2l + 1), l ∈ 12N. There are 3 first order difference operators.

• Developments of many related aspects: standard questions of microlocal
analysis, non-compact spaces, etc.
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• Developments of many related aspects: standard questions of microlocal
analysis, non-compact spaces, etc.
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Some (general) conclusions

• One can define full symbols and symbolic calculus on manifolds where
there is a Lie group acting on it (e.g. Lie groups, homogeneous spaces).

• Tn: toroidal symbols, calculus, equivalence to standard symbols in local
charts. Relation is provided by periodisation. Well-suited for numerics.

• Difference conditions allow to relax regularity in ξ: e.g. for L2-results.

• =⇒ parametrix for hyperbolic systems with multiplicities.

• Using geometric information, global calculus can be extended to e.g all
compact (simply-connected) manifolds (in dimensions ≤ 3, and higher).

• BVP on Ω =⇒ ΨDE on ∂Ω =⇒ ΨDE on Sn−1 =⇒ ΨDE on SU(n).

• Symbolic calculus on (3-dimensional) SU(2) is an example of a
non-commutative calculus, where p(x, l) is a matrix of size

(2l + 1)× (2l + 1), l ∈ 12N. There are 3 first order difference operators.

• Developments of many related aspects: standard questions of microlocal
analysis, non-compact spaces, etc.
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Thank you
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