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Abstract
We characterize the expressive power of quantum circuits with the pseudo-dimension, a measure of complexity for
probabilistic concept classes. We prove pseudo-dimension bounds on the output probability distributions of quantum circuits;
the upper bounds are polynomial in circuit depth and number of gates. Using these bounds, we exhibit a class of circuit
output states out of which at least one has exponential gate complexity of state preparation, and moreover demonstrate that
quantum circuits of known polynomial size and depth are PAC-learnable.

Keywords Quantum computing · Computational learning theory · Complexity theory

1 Introduction

An important line of research in classical learning theory
is characterizing the expressive power of function classes
using complexity measures. Such complexity bounds can
in turn be used to bound the size of training data
required for learning. Among the most prominent of these
are the Vapnik-Chervonenkis (VC) dimension introduced
by Vapnik and Chervonenkis (1971). Other well-known
measures are the pseudo-dimension due to Pollard (1984),
the fat-shattering dimension due to Alon et al. (1997),
the Rademacher complexities (see Bartlett and Mendelson
2002), and more generally covering numbers in metric
spaces.

The goal of characterizing an object’s expressive power
also appears in different guises throughout quantum
information. A well-known example is quantum state
tomography. Aaronson (2007) related a variant of state
tomography to a classical learning task whose fat-shattering
dimension can be bounded using a particular function class
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related to the set of quantum states. Associated with this is
a corresponding upper bound on sample complexity.

Aaronson (2007) observes that there is no analogous the-
orem for general quantum process tomography, but leaves
as an open question whether there are restricted classes
of operations that are information-efficiently learnable. We
answer this question in the affirmative. In particular, we
show that for quantum circuits with depth and size polyno-
mial in the number of qubits, quantum process tomography
is possible using only polynomially many examples.

Gate complexity of unitary implementation and state
preparation are yet another example of how one may capture
the richness of a function class that corresponds to a
quantum computational process (see, e.g., Aaronson 2016).
For unitary complexity, the challenge is to determine, e.g.,
how many two-qubit unitaries (i.e., two-qubit logical gates,
in a computational setting) are required to implement a
certain multi-qubit unitary (i.e., a quantum circuit). For
the gate complexity of state preparation, it is to determine
how many unitaries produce a certain multi-qubit state. An
alternative perspective, adopted in this work, is to consider
the expressive power of a set of circuits with a fixed number
of unitaries.

In this work we describe a new way of applying
complexity measures from classical learning, specifically
pseudo-dimension, to quantum information. We associate
with a quantum circuit a natural probabilistic function
class describing the outcome probabilities of measurements
performed on the circuit output. In this way, a function
class corresponding to a quantum circuit can be studied with
the classical tool of pseudo-dimension. Here, we show that
the pseudo-dimension of such a class can be bounded in
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terms of a polynomial of the circuit depth and size. We
also give two applications of these bounds, one for the
gate complexity of quantum state preparation, the other in
learnability of quantum circuits.

These findings are noteworthy not only because of
the results themselves, but because we demonstrate the
power of pseudo-dimension to gain insight into quantum
computation. We hope that these tools may be applied to
other problems in quantum computing in future work.

1.1 Related work

Aaronson (2007) showed that using the framework of PAC
learning, one can introduce a variant of quantum state
tomography and prove an upper bound on the required
number of copies of the unknown state. This idea was
developed further in Aaronson et al. (2018) and Aaronson
(2018).

Motivated by Aaronson’s work, Cheng et al. (2016)
use pseudo-dimension and fat-shattering dimension to
characterize the learnability of measurements, as a dual
problem to learning the state. We apply this mathematical
framework to study the problem of learning the circuit
itself, in particular by offering a natural function class
corresponding to a quantum circuit.

Rocchetto (2017) proved that stabilizer states, prevalent
in error correction, are computationally efficiently learn-
able, establishing a connection between efficient classical
simulability and computationally efficient learnability. This
was realized experimentally for small optical systems in
Rocchetto et al. (2019). Similarly, in Section 5 we pose as
an open problem whether there are quantum operations that
can be PAC-learned with modest computation, which could
then in principle be demonstrated in an experiment.

In Chung and Lin (2018), the authors study the problem
of PAC learning classes of functions with computational
basis states as input and quantum output, possibly mixed.
We highlight two main differences: first, whereas we
assume the training data to be measurement statistics,
Chung and Lin (2018) consider examples given as classical-
quantum states. Thus, the two scenarios are not directly
comparable. Our learning result yields a semi-classical
strategy for the problem described in Chung and Lin (2018),
though it is possibly suboptimal. Second, the learnability
result of Chung and Lin (2018) is only for finite concept
classes, whereas our result does not have this restriction.
While Chung and Lin (2018) show learnability of quantum
circuits with a finite gate set, we allow for arbitrary 2-
qudit gates, i.e., a continuous gate set. Note that our
corresponding notions of learnability differ.

While we take a formal approach to learning quantum
circuits, others have studied learning unitaries numerically,
e.g., with heuristics such as gradient descent (Kiani et al.

2020). Practical machine learning algorithms have also been
used for state tomography by Torlai et al. (2018), and similar
techniques could be applied to restricted classes of process
tomography.

Another branch of quantum learning deals with whether
quantum examples can decrease the information-theoretic
complexity of learning a classical function. There are
different flavors of this question, e.g., depending on whether
learning is distribution-specific or distribution-independent.
Arunachalam and deWolf (2017) gives an overview of some
of these aspects of quantum learning.

In classical learning theory, bounding the complexity
measures of function classes (based on complexity-theoretic
assumptions) has been studied widely. Goldberg and Jerrum
(1995) derived an upper bound on the VC-dimension of
a function class in terms of the runtime required by
an algorithm implementing the elements of that class.
Karpinski and Macintyre (1997) established an analogous
bound for the function class implemented by a neural
network (for various activation functions) in terms of
the number of nodes and the number of programmable
parameters of the network. Koiran (1996) demonstrated
that by bounding the complexity of function classes
implemented on a given architecture, one can lower bound
the size of an architecture implementing a specific “hard”
function.

1.2 Overview of results

We consider the general scenario in which one mea-
sures the output state of a 2-local qudit quantum circuit,
generating a probability distribution. We do not assume
geometric locality, i.e., we do not assume that 2-qudit
unitaries act on neighboring qudits. We show an upper
bound on the pseudo-dimension of the distributions aris-
ing from these quantum circuits. By doing so, we provide
insight into the complexity or “hardness” of the circuit and
the output state that gives rise to the probability distribu-
tion. Below, we provide informal statements of the key
results.

Theorem (Pseudo-dimension bounds, Informal) Consider
quantum circuits with fixed architecture, namely those for
which the input qudits of the 2-qudit gates are specified, but
the gates may vary subject to this constraint. That is, we
allow for arbitrary 2-qudit unitaries, and in particular we
do not restrict ourselves to a finite gate library.

Parameterize a quantum circuit N by its qudit
dimension d, depth δ, and number of gates or size γ .

Theorem 2: For a suitable function class FN corre-
sponding to the possible probability distributions formed by
product measurements in the computational basis on the
circuit output, Pdim(FN ) ≤ O(d4 · γ log γ ).
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Consider quantum circuits with variable architecture,
i.e., those for which the input qudits of the gates are
not specified. For such circuits of depth δ and number of
gates or size γ, one may similarly define function classes
Fδ,γ for circuits whose gates are unitaries, and Gδ,γ

for circuits whose gates are quantum operations, which
describe the possible probability distributions formed by
product measurements on the circuit output. Then,

Theorem 3: Pdim(Fδ,γ ) ≤ O(δ · d4 · γ 2 log γ ).
Theorem 4: Pdim(Gδ,γ ) ≤ O(δ · d8 · γ 2 log γ ).

All upper bounds are polynomial in the dimension d , the
depth δ, and the size γ .

In Section 4.1, we demonstrate how to apply these
complexity upper bounds to explicitly construct, for each
n ∈ N, a finite-but-large set of n-qubit quantum states, out
of which at least one cannot be implemented by a 2-local
qudit circuit of subexponential depth or size.

Theorem (Gate Complexity of State Preparation, Informal)

For any subset C ⊆ {|x0〉}x∈{0,1}n , define

|ψC〉 =
⎧⎨
⎩

1√|C|
∑

|x0〉∈C

|x0〉 if C �= ∅
|0〉⊗n ⊗ |1〉 if C = ∅.

If each state in {|ψC〉}C can be generated from the input
state |0〉⊗(n+1) by some circuit of depth δ and size γ , then
2n ≤ O

(
δ · γ 2 log γ

)
. As a corollary, there exists at least

one such C so that |ψC〉 requires a circuit exponential in
depth and size.

Analogously to Aaronson (2007), in Section 4.2 we use
our pseudo-dimension bounds to prove a relaxed variant of
quantum process tomography, which following Aaronson’s
terminology can be called pretty-good circuit tomography:

Theorem (Learnability, Informal) Given a circuit with
depth Δ and size Γ , both polynomial in the number of
qudits and known in advance to the learner, polynomially-
many training examples, each a triple of input state, output
measurement, and corresponding probability, suffice to
learn the quantum operation implemented by a 2-local
quantum circuit of depth Δ and size Γ .

That is, for confidence δ, accuracy, ε, and error margins
α and β, all in (0, 1), a candidate circuit of depthΔ and size
Γ that performs sufficiently well (in a sense made rigorous
in Section 4.2) on

O

(
1

ε

(
Δd8Γ 2 logΓ log2

(
Δd8Γ 2 logΓ

(β − α)ε

)
+ log

1

δ

))

many samples will with probability at least 1 − δ

approximate the actual circuit from which the samples are
drawn.

In this framework, each training example is a three-tuple
of the input state, the observed measurement outcome, and
the corresponding measurement probability. Alternately,
one may take each training example as a two-tuple of
the input state and the measurement outcome, whose
probability is the corresponding measurement probability
(see Aaronson 2007, Appendix 8).

We review the basics of quantum information, quantum
computation, and classical learning theory in Section 2. We
also discuss prior classical results as motivation. Section 3
contains our main results on the pseudo-dimension of
quantum circuits and the respective proofs. In Section 4,
we apply these results to fin lower bounds on the gate
complexity of quantum state preparation and to a learning
problem for quantum operations. We conclude with open
questions in Section 5.

2 Preliminaries

As our readership includes both physicists and computer
scientists, in this section we review the mathematical
frameworks of quantum information theory and learning
theory. Further details appear in the reference texts
(Heinosaari and Ziman 2013; Nielsen and Chuang 2010).

2.1 Quantum information and computation

The most general descriptor of a d-level quantum system or
statistical ensemble thereof is a density matrix, an element
of

S
(
C

d
)

:= {ρ ∈ C
d×d | ρ ≥ 0, tr[ρ] = 1}.

Here, ρ ≥ 0 means that the matrix ρ is Hermitian and
all its eigenvalues are non-negative. An important subset
of density matrices is the set of pure states, which are
one-dimensional projections. Following Dirac notation, we
denote the projector onto the subspace spanned by a unit
vector |ψ〉 ∈ C

d by |ψ〉〈ψ |. By the spectral theorem,
every quantum state can be written as a convex combination
of pure states, though this decomposition is not unique in
general.

Central to the framework of quantum mechanics is
the measurement, the mechanism by which one may
observe properties of a quantum system. These are typically
described by so-called positive-operator valued measures
(POVMs). As we focus on measurements with a finite
set of outcomes {i}, it suffices to think of measurements
as collections of so-called effect operators {Ei}mi=1 with
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, and . We denote the
set of effect operators by

Again, we highlight a special case: if we take an
orthonormal basis {|ψi〉}di=1 of C

d , then the set {Ei =
|ψi〉〈ψi |}di=1 is called a projective measurement.

Born’s rule connects measurements to measurement
outcomes: given a state characterized by a density operator,
the effect operator has a corresponding probability pi =
tr[ρEi]. Thus the requirement that the effect operators sum
to the identity can be seen as probabilities summing to
one. In the special case of pure state ρ = |ψ〉〈ψ | and
projective measurement {Ei = |ψi〉〈ψi |}di=1, the probability
of outcome i is pi = tr[ρEi] = |〈ψ |ψi〉|2.

So far we have described the components of static
quantum theory. The dynamics of quantum states are
described by so-called quantum operations, which we
denote by

T
(
C

d
)

:= { T : Cd×d → C
d×d | T is linear,

completely positive, and trace-non-increasing}.
Here, a map T is completely positive if T ⊗Idn is positivity-
preserving for every n ∈ N. If T ∈ T

(
C

d
)
is trace-

preserving, we call T a quantum channel. An important
example is the unitary quantum channel, T (ρ) = UρU∗ for
some unitary U ∈ C

d×d .
Note that any element of T

(
C

d
)
is a linear map between

vector spaces of dimension d2 and can thus be understood
as a d2 × d2 matrix.

2.2 Classical learning theory and complexity
measures

Next we describe the “probably approximately correct”
(PAC) model of learning, introduced and formalized by
Vapnik and Chervonenkis (1971) and Valiant (1984). In
(realizable) PAC learning for spaces X, Y and a concept
class F ⊆ YX, a learning algorithm receives as input
labeled training data {(xi, f (xi))}mi=1 for some f ∈ F ,
where the samples xi are drawn independently according
to some unknown probability distribution D on X that is
unknown to the learner. Given the training examples, the
goal of the learner is to approximate the unknown function
f by a hypothesis function h, with high probability.

We can formalize this as follows: first, we introduce a
loss function � : Y × Y → R+ to quantify the discrepancy
between the hypothesis h and the function f . We call a
concept class F PAC-learnable if there exists a learning
algorithm A such that for every probability distribution D

on X, f ∈ F and δ, ε ∈ (0, 1), running A on training
data drawn according to D and f yields a hypothesis h

such that Ex∼D[�(h(x), f (x))] ≤ ε with probability ≥
1− δ (with regard to the choice of training data). Moreover,
we quantify the minimum amount of training data that an
algorithm A needs to meet the above conditions by a map
mF : (0, 1) × (0, 1) → N, (δ, ε) �→ m(δ, ε), the so-called
sample complexity of F . We focus on proper learning, in
which the learning algorithm must output as its hypothesis
an element of the concept class, i.e., we require h ∈ F .

A standard approach to assessing learnability is to
characterize the complexity of the respective concept
class F . Many such complexity measures are used,
the most common being the VC-dimension for binary-
valued function classes F ⊆ {0, 1}X, named after
its progenitors (Vapnik and Chervonenkis 1971). This
combinatorial parameter can be shown to fully characterize
the learnability: a concept class F ⊆ {0, 1}X is PAC-
learnable (w.r.t. the 0-1-loss) if and only if the VC-
dimension of F is finite. Moreover, the sample complexity
of PAC learning F can be expressed in terms of its VC-
dimension (see Blumer et al. 1989; Hanneke 2016).

In this work, we employ a widely used extension of the
VC-dimension to real-valued concept classes:

Definition 1 (Pseudo-dimension (Pollard 1984)) Let F ⊆
R

X be a real-valued concept class. A set {x1, ..., xk} ⊆ X is
pseudo-shattered by F if there are y1, ..., yk ∈ R such that
for any C ⊆ {1, ..., k} there is an fC ∈ F such that for all
1 ≤ i ≤ k, i ∈ C if and only if fC(xi) ≥ yi .

The pseudo-dimension of F is defined to be

Pdim(F ) := sup{n ∈ N0 | ∃S ⊆ X s.t. |S| = n and

S is pseudo-shattered by F }.
Alternatively, one can express the pseudo-dimension in

terms of the VC-dimension. Namely,

Pdim(F ) = VC({X × R � (x, y) �→ sgn(f (x) − y) | f ∈ F }).

Here, the VC-dimension for a function class H ⊆ {±1}Z
is defined as

VC(H ) := sup{n ∈ N0 | ∃z1, . . . , zn ∈ Z s.t. ∀b ∈ {±1}n
∃hb ∈ H s.t. ∀i : hb(zi) = bi}.

There is also a scale-sensitive version of the pseudo-
dimension:

Definition 2 (Fat-Shattering Dimension (Alon et al. 1997))
Let F be a real-valued concept class and let α > 0. A
set {x1, ..., xk} ⊆ X is α-fat-shattered by F if there are
y1, ..., yk ∈ R such that for any C ⊆ {1, ..., k} there is an
fC ∈ F such that for all 1 ≤ i ≤ k:

1. i /∈ C ⇒ fC(xi) ≤ yi − α and
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2. i ∈ C ⇒ fC(xi) ≥ yi + α.

The α-fat-shattering dimension of F is defined to be

fatF (α) := sup{n ∈ N0| ∃S ⊆ X s.t. |S| = n ∧ S

is α-fat-shattered by F }.

Note that, trivially, fatF (α) ≤ Pdim(F ) holds for every
α > 0 and for every real-valued function class F .

Sample complexity upper bounds for [0, 1]-valued
function classes in terms of the fat-shattering dimension
have been proved in Bartlett and Long (1998) and Anthony
and Bartlett (2000).

3 Pseudo-dimension bounds for quantum
circuits

We now formulate how to characterize the expressive power
of quantum circuits. In particular, we consider circuits with
n input registers of qudits, size (i.e., number of gates) γ, and
depth (i.e., number of layers) δ. More precisely, we consider
circuits composed of two-qudit unitaries, i.e., logical gates
with two inputs. Note that two-qudit gates include one-qudit
gates. We assume that gates in the same layer and acting
on disjoint pairs of qudits can act in parallel. Additionally,
we assume that each qudit is acted upon by at least
one gate, else it effectively does not participate in the
circuit.

In this section, we assign function classes to quantum
circuits and then derive bounds on the pseudo-dimension
of these function classes, in terms of the number of qudits
and the size and depth of the circuits. First, we fix quantum
circuit structure and inputs, varying only the entries of the
unitary gates and thereby the resulting function. Then, we
broaden our scope to variable circuit architectures, variable
inputs, and circuits whose “gates” are general quantum
operations.

An important tool that will recur throughout our work is
the following result on polynomial sign assignments, used
in Goldberg and Jerrum (1995) to derive VC-dimension
bounds from computational complexity.

Theorem 1 (Warren 1968, Theorem 3) Let {p1, . . . , pm}
be a set of real polynomials in n variables with m ≥
n, each of degree at most d ≥ 1. Then the number of
consistent non-zero sign assignments to {p1, . . . , pm} is at
most

(
4edm

n

)n

.

Here, e is Euler’s number and a “consistent non-zero sign
assignment” to a set of polynomials {p1, . . . , pm} is a vector
b ∈ {±1}m s.t. there exist x1, . . . , xn ∈ R for which it holds
that sgn(pi(x1, . . . , xn)) = bi for all 1 ≤ i ≤ m.

The following implication of Theorem 1 for consistent
but not necessarily non-zero sign assignments (which we
define as above, but with b ∈ {−1, 0, 1}m) to sets of
polynomials was observed in Goldberg and Jerrum (1995,
Corollary 2.1).

Corollary 1 Let {p1, . . . , pm} be a set of real polynomials
in n variables with m ≥ n, each of degree at most
d ≥ 1. Then the number of consistent sign assignments to

{p1, . . . , pm} is at most
(
8edm

n

)n

.

Proof (Sketch) This can be obtained by applying Theorem 1
to the set {p1 + ε, p1 − ε, . . . , pm + ε, pm − ε} with ε > 0
chosen sufficiently small.

3.1 Fixed circuit structure

Suppose we fix the architecture of a quantum circuit of
depth δ and size γ . Specifically, we restrict our attention to
2-local quantum circuits, i.e., circuits whose logical gates
have support on two qudits, not necessarily neighboring
each other (see Fig. 1). “Fixed architecture” means that we
specify the positions of the two-qudit unitaries, namely their
order and which qudits they act on. Though the unitaries’
positions are fixed, we may vary the entries of the unitaries
themselves. Here, we allow for arbitrary 2-qudit unitaries.
In particular, we do not restrict ourselves to a finite gate
library. Can we bound the pseudo-dimension of the function
class of measurement probability distributions that this
circuit generates? And how does the bound depend on d (the
dimensionality of the qudits), δ and γ ?

To formalize this question: let n ∈ N be the number of
qudits, d ∈ N be their dimensionality, and N be a fixed
quantum circuit architecture of depth δ and size γ acting
on n qudits. We enumerate the positions of the two-qudit
unitaries in N by tuples (i, j) with 1 ≤ i ≤ δ denoting

Fig. 1 An example 2-local circuit. U(i,j) denotes the j th 2-qudit
unitary in the ith layer of the circuit
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the layer and 1 ≤ j ≤ γi the position of the unitary among
all the unitaries inside layer i, where w.l.o.g. we count from
top to bottom and take into account only the first qudit on
which a unitary acts.

Note that
δ∑

i=1
γi = γ , and trivially γi ≤ γ and γi ≤

n
2 , as we assume that every qudit is acted upon by at
least one gate. We write the unitary at position (i, j) as
U(i,j). These constitute the “free parameters” which we
can vary in order to make the quantum circuit perform
different tasks. The overall unitary implemented by N
when plugging in the unitaries {U(i,j)}1≤i≤δ,1≤j≤γi

at the
respective positions we denote by UN |{U(i,j)}. Note that
UN |{U(i,j)} strongly depends on the two-qudit unitaries
that are plugged into the architecture, but sometimes we
will suppress this dependence and simply write UN for
notational ease.

The quantum circuit N now gives rise to the following
set of output states:

SN

(
(Cd)⊗n

)
:=

{
UN |{U(i,j)}

∣∣0〉⊗n
∣∣ U(i,j) ∈ U

(
(Cd)⊗2

)}
.

These output states in turn give rise to a function class
of measurement probability distributions with regard to
product measurements:

FN :=
{
f : X → [0, 1] | ∃|ψ〉 ∈ SN

(
(Cd )⊗n

)
: f (x) = |〈x|ψ〉|2

}
,

where we takeX = Sd×. . .×Sd to be the Cartesian product
of n unit spheres of Cd .

The main insight of this subsection is the following:

Theorem 2 With the notation and assumptions from above,
it holds that Pdim(FN ) ≤ 8d4 · γ · log(16e · γ ).

Here and throughout the paper, log denotes the logarithm
to base 2.

To prove this result, we provide the following.

Lemma 1 With the notation and assumptions from above,
there exists a polynomial pN with real coefficients, in
2γ d4 + 2dn real variables of degree ≤ 2(γ + n) such that
every f ∈ FN can be obtained from pN by fixing values
for the first 2γ d4 variables. Moreover, in each term of p,
the degree in the first 2γ d4 real variables is ≤ 2γ and the
degree in the last 2dn real variables is ≤ 2n.

Notably, there is no explicit dependence on depth δ.

Proof We first observe that

|〈x|UN |0〉⊗n|2 = |〈0|⊗nU
†
N |x〉|2.

We study this expression in a layer-wise analysis. When
reading the circuit from right to left, the state that enters

layer δ is transformed by the unitary
γδ⊗

j=1
U(δ,j)† such that

each amplitude of the state after the δth layer is a linear
combination of the amplitudes of |x〉, where each coefficient
is a multilinear monomial of degree γδ in some of the γδ ·d4

complex entries of the {U(δ,j)†}1≤j≤γδ .
By iterating this reasoning, we see that the state after the

(δ − i)th layer has amplitudes which are given by a linear
combination of the amplitudes of |x〉, where each coefficient
is a multilinear polynomial of degree ≤

i∑
k=0

γδ−k in (some

of) the entries of the unitaries {U(δ−k,jk)†}0≤k≤i,1≤jk≤γk
.

In particular, the |0〉⊗n-amplitude of the state U
†
N |x〉 can

be written as a linear combination of the amplitudes of |x〉,
where each coefficient is given by a multilinear polynomial

qN of degree ≤
δ∑

k=0
γδ−k = γ in (some of) the γ · d4

complex entries of the unitaries {U(i,ji )†}0≤i≤δ,1≤ji≤γi
.

Recalling that the probability of observing outcome
|0〉⊗n is the square of the absolute value of the correspond-
ing amplitude of |x〉, we obtain from the polynomial qN a
polynomial pN = |qN |2 that describes the output proba-
bilities. As qN has degree at most γ in the γ · d4 complex
parameters of the unitaries, pN has degree at most 2γ in the
corresponding 2γ · d4 real parameters. Fixing these 2γ d4

parameters corresponds to fixing the circuit, and therefore
one may obtain every f ∈ FN by fixing these parameters
in pN .

Moreover, pN is a polynomial in the 2dn real parameters
which give rise to the amplitudes of |x〉. (Here, the
assumption that |x〉 is a product state enters.) As each such
amplitude has degree ≤ n in the 2dn complex parameters,
the degree of pN in these real parameters is at most 2n.

Remark 1 We formulate the result only for measure-
ment operators consisting of tensor products of 1-
dimensional projections, and continue to do so through-
out this manuscript. For x ∈ X, we can write |x〉 =
n⊗

i=1

(
d−1∑
j=0

α
(i)
j |j〉

)
, so we associate dn complex variables

with x. That each amplitude of |x〉 can be written as a prod-
uct of n complex parameters gives rise to the upper bound
of n in the degree.

We could instead look at more general measurement
operators consisting of 1-dimensional projections without
requiring product structure, i.e., entangled measurements.
In this scenario, we would write |x〉 = ∑

z∈{0,...,d−1}n
xz|z〉,

associating dn complex variables with x. In this setup, each
amplitude of x is simply a polynomial of degree 1 in these
complex variables.

As we fix the variables corresponding to x and y in
the shattering assumption that appears in our proof of
Theorem 2, their corresponding degrees are not relevant to
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our argument; only the degree in the entries of the unitaries
enters our analysis. Therefore, both product measurements
or entangled measurements lead to the same pseudo-
dimension bound. This is due to the fact that allowing for
entangled measurements changes the set of allowed inputs
but not the function class itself.

Now that we have established Lemma 1, we can prove
Theorem 2 with reasoning analogous to that in Goldberg
and Jerrum (1995).

Proof (Theorem 2) Let {(xi, yi)}mi=1 ⊆ X × R be such that
for every C ⊆ {1, . . . , m} there exists fC ∈ FN such that
fC(xi) − yi ≥ 0 if and only if i ∈ C.

By Lemma 1, there exists a polynomial pN in 2γ d4 +
2dn real variables of degree ≤ 2(γ + n) such that for every
C ⊆ {1, . . . , m} there exists an assignment �C to the first
2γ d4 variables of pN such that pN (�C, xi) − yi ≥ 0 if
and only if i ∈ C.

In particular, this implies (using the “moreover” part of
Lemma 1) that the set P = {pN (·, xi) − yi}mi=1 is a set of
m polynomials of degree ≤ 2γ in 2γ d4 real variables that
has at least 2m different consistent sign assignments.

We now claim that m ≤ 8d4 · γ · log(16e · γ ). If m <

2γ d4, this holds trivially. Hence, w.l.o.g. m ≥ 2γ d4. So by
Corollary 1, we have

2m ≤
(
8e · 2γ · m

2γ d4

)2γ d4

.

Taking logarithms now gives

m ≤ 2γ d4
(
log(16e · γ ) + log

(
m

2γ d4

))
.

Now we distinguish cases. If 16e · γ ≥ m

2γ d4
, then the

above immediately implies m ≤ 4γ d4 · log(16e · γ ). If

16e · γ ≤ m

2γ d4
, then we obtain m ≤ 4γ d4 · log

(
m

2γ d4

)
,

which in turn implies m ≤ 8γ d4. In both cases we have
m ≤ 8d4 · γ · log(16eγ ). By definition of the pseudo-
dimension, we conclude Pdim(FN ) ≤ 8d4 · γ · log(16eγ ),
as claimed.

The attentive reader may notice that we do not explicitly
refer to the unitarity assumption in our reasoning; our
argument mainly uses linearity. This already hints at a
generalization to quantum circuits not of unitaries but of
operations, which we will describe in Section 3.4. In that
subsection, we will also see how the unitarity assumption
implicit in this proof produces a better upper bound than in
the general setting of quantum operations.

Remark 2 We formulate our bounds in terms of the
pseudo-dimension, not its scale-sensitive version called
fat-shattering dimension, even though the latter is more

commonly used in classical learning. In our scenario,
however, the pseudo-dimension and the fat-shattering
dimension effectively coincide. This is because we could
apply our reasoning for general matrices instead of only
unitaries in the setting of Theorem 2 as well and achieve
the same bounds. In that case, however, the resulting real-
valued function class is closed under scalar multiplication
with non-negative scalars and it follows from the definition
that for such classes, the fat-shattering dimension equals the
pseudo-dimension.

3.2 Variable circuit structure

Whereas in the previous subsection we fixed a quantum
circuit architecture and only varied the entries of the
two-qudit unitaries plugged into this structure, we now
additionally vary the structure of the quantum circuit
architecture itself and consider the complexity of the class of
all quantum circuits of a given depth and size. Once again,
we consider 2-local quantum circuits, i.e., circuits with one-
and two-qudit gates acting on arbitrary pairs of qudits.

The class of states which is of relevance in this analysis is

Sδ,γ

(
(Cd)⊗n

)
:= {|ψ〉 | ∃ quantum circuit N of depth δ

and size γ such that |ψ〉 ∈ SN

(
(Cd)⊗n

)
}.

Again, this set of states gives rise to a function class via

Fδ,γ := {f : X → [0, 1] | ∃|ψ〉 ∈ Sδ,γ

(
(Cd)⊗n

)
:

f (x) = |〈x|ψ〉|2},

where X is as above given by X = Sd × . . .×Sd . As before,
we want to bound the pseudo-dimension of this function
class.

We summarize the result of this subsection in the
following:

Theorem 3 With the notation and assumptions from above,
it holds that Pdim(Fδ,γ ) ≤ O(δ · d4 · γ 2 log γ ).

As with Theorem 2, the main step towards this result
consists of relating the functions appearing in Fδ,γ to
polynomials. The difference here is that we must upper
bound the number of polynomials, as below.

Lemma 2 With the notation and assumptions from above,
there exists a set Pδ,γ of polynomials with real coefficients,
in 2γ d4 + 2dn real variables of degree ≤ 2(γ + n) such
that for every f ∈ Fδ,γ there exists a polynomial p ∈ Pδ,γ
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such that f can be obtained from p by fixing values for the
first 2γ d4 variables, and such that

|Pδ,γ | ≤ γ ! δγ−δ

(γ − δ)! (n!)δ .

Moreover, in each term of p ∈ Pδ,γ the degree in the first
2γ d4 real variables is ≤ 2γ and the degree in the last 2dn

real variables is ≤ 2n.

Proof There are at most γ ! δγ−δ

(γ−δ)! ways to assign them among

the δ layers. The term γ !
(γ−δ)! counts assigning a single gate

to each layer, to ensure that there are no trivial (empty)
layers. Having assigned each layer one gate, the remaining
γ − δ gates may be distributed to any of the δ layers.

Next, we bound the number of ways of assigning qudits
to the circuit layers, so that the qudits are inputs to the fixed-
position unitaries. For our purposes, it suffices to crudely
upper bound this by n! for each single layer and thus by
(n!)δ overall. Hence, there are at most

γ ! δγ−δ

(γ − δ)! (n!)δ

different quantum circuit architectures. The proof is
completed by applying Lemma 1 to every such quantum
circuit architecture.

Now that we have established Lemma 2, we can prove
Theorem 3 by reasoning analogous to that in Goldberg
and Jerrum (1995) (see the Appendix for the proof of
Theorem 3).

3.3 Extension to circuits with variable inputs

We now modify the results of Sections 3.1 and 3.2 to allow
not only for the fixed input |0〉⊗n, but also for variable
input. This is of use, for instance, in Section 4.2, in which
we consider the PAC-learnability of quantum circuits (of
unitary gates or more general quantum channels). In that
context, allowing variable input amounts to learning the
entire quantum circuit, rather than just its action on |0〉⊗n.
This is necessary in order to meaningfully compare the
learning problem in Section 4.2 to exact circuit tomography.

To consider variable input states, we define the following
function classes, analogously to those in Sections 3.1 and
3.2:

F ′
N := { f : X × Y → [0, 1] | ∃UN |{U(i,j)},

U(i,j) ∈ U
(
(Cd)⊗2

) : f (x, y) = |〈x|UN |y〉|2},
where Y can be taken as the computational basis states

{0, 1, ..., d−1}n, or more generally as Y = X = Sd×...×Sd .

Lemma 3 With the notation and assumptions from above
the following holds: There exists a polynomial p′

N in
2γ d4 + 4dn real variables of degree ≤ 2γ + 4n such
that every f ∈ F ′

N can be obtained from p′
N by fixing

values for the first 2γ d4 variables. Moreover, in each term
of p′

N the degree in the first 2γ d4 real variables is ≤
2γ , the degree in the 2dn real variables corresponding to
x ∈ X is ≤ 2n, and the degree in the 2dn real variables
corresponding to y ∈ Y is ≤ 2n.

Proof Consider the product state input |y〉 = ∑
z yz|z〉.

As we consider product states, each yz is a product of
n complex parameters. Following the same reasoning as
before, for a fixed z ∈ {0, . . . , d − 1}, 〈z|UN |x〉 is a
multilinear polynomial qz

N . Then, the amplitude 〈y|UN |x〉
is

q ′
N (x, y) = 〈y|UN |x〉 =

∑
z∈{0,1,...,d−1}n

yz 〈z|UN |x〉

=
∑

z∈{0,1,...,d−1}n
yz qz

N (x).

In the above equation, q ′
N (x, y) has degree at most n in

y, and so upon squaring the amplitude q ′
N (x, y) to obtain

p′
N (x, y) as in Lemma 1, we have a degree at most 2n in

the 2dn real variables corresponding to y. The rest follows
from Lemma 1.

The bound from Theorem 2 still holds for the case of
variable circuit input, with the proof proceeding almost
identically upon replacing Lemma 1 by Lemma 3. The
2d · n additional variables that arise from the polynomial y-
dependence do not alter the bound because we fix the values
of these variables in the pseudo-shattering assumption.

3.4 Extension to circuits of quantum operations

We finish this section by describing an extension of
Theorems 2 and 3 to the case of circuits of quantum
operations, instead of only unitaries. This generalization
is relatively straightforward because the decisive property
of unitaries used in our previous proofs was not the
preservation of inner products, but rather linearity. This
setting is useful to, e.g., describe circuits with imperfect
gates. Rather than consider a logical gate that implements
a unitary exactly, each gate can instead be considered
a quantum operation that executes the desired unitary
with some probability, and, e.g., depolarizes input qudits
with some probability. (Other noise models are of course
possible.) Note that although quantum operations can, by
Stinespring’s dilation theorem, be viewed as subsystem
dynamics of a larger, unitarily evolving system, if we only
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have access to measurement data for the subsystem then we
cannot directly apply our result for the unitary case.

We use analogous notation to that introduced at the
beginning of Section 3.1, writing TN |{T (i,j)} for the overall
quantum operation implemented by N when plugging the
two-qudit quantum operations {T (i,j)}1≤i≤δ,1≤j≤γi

into the
respective positions of the quantum circuit.

The quantum circuit N (of operations) now gives rise to
the set of output states

DN

(
(Cd)⊗n

)
:= {TN |{T (i,j)}(|0n〉〈0n|) |

T (i,j) ∈ T
(
(Cd)⊗2

)
},

where we write |0n〉 = |0〉⊗n, so |0n〉〈0n| = (|0〉〈0|)⊗n.
By taking into account all possible quantum circuits of

size γ and depth δ, we obtain

Dδ,γ

(
(Cd)⊗n

)
:= {ρ | ∃ circuit N of two-qudit operations

of size γ and depth δ such that ρ ∈ DN

(
(Cd)⊗n

)
}.

These states now yield again a p-concept class

Gδ,γ := {f :X→[0, 1] | ∃ρ ∈Dδ,γ

(
(Cd)⊗n

)
:f (x)=〈x|ρ|x〉}.

In this scenario, we show:

Theorem 4 With the notation and assumptions from above,
it holds that Pdim(Gδ,γ ) ≤ O(δ · d8 · γ 2 log γ ).

Proof We only sketch the reasoning, as it is similar to that
in the proof of Theorem 3. We first need to establish an
analogue of Lemma 2. To this end, observe that a quantum
operation acting on two-qudit states can be interpreted as
a d4 × d4 matrix with complex entries. Moreover, we may
write

〈x|TN (|0n〉〈0n|)|x〉 = tr[TN (|0n〉〈0n|)|x〉〈x|]
= tr[|0n〉〈0n|T ∗

N (|x〉〈x|)]
= 〈0n|T ∗

N (|x〉〈x|)|0n〉,
where T ∗

N denotes the adjoint operation of TN with regard
to the Hilbert-Schmidt inner product.

As before, we can do a layer-wise analysis of the
transformation of |x〉〈x| and observe that the entries of the
(sub-normalized) density matrix after a layer can be written
as linear combinations of the entries of the (sub-normalized)
density matrix before the layer. Moreover, the coefficients
can be written as multilinear polynomials with the degree
determined by the number of two-qudit operations in the
layer. Hence, we obtain the result of Lemma 1 with d8

instead of d4. The bound on the number of different
quantum circuit architectures can be derived in exactly the
same way as before, so the analogue of Lemma 2 holds,
completing the proof of the theorem.

Theorem 4 and its proof sketch also help to elucidate
the relevance of the unitarity assumption in Theorems 2
and 3. Unitarity justifies our restriction to pure states, but
in other respects Theorems 2 and 3 do not exploit unitary.
The difference between Theorems 3 and 4 amounts to the
size of the matrices that represent the unitaries or quantum
operations.

4 Applications

In this section, we explore two different applications of
our pseudo-dimension upper bounds. First, we employ the
pseudo-dimension to exhibit a large but finite discrete
set of quantum states, out of which at least one is
hard to implement in the sense that preparing it requires
exponentially many 2-qubit unitaries. Second, we combine
the pseudo-dimension bound with results from the theory
of p-concept learning to derive the PAC-learnability of
quantum circuits.

4.1 Lower bounds on the gate complexity
of quantum state preparation

It is well known that almost all n-qubit unitaries require
an exponential (in n) number of 2-qubit unitaries to be
implemented. Similarly, almost all pure n-qubit states
require an application of exponentially (in n) many 2-
qubit unitaries to be generated from the |0〉⊗n state (see,
e.g., Nielsen and Chuang 2010). However, in neither
case are there explicit examples of unitaries or states
saturating this exponentiality bound (see Aaronson 2016
for more information on the gate complexity of unitary
implementation and state preparation). We will use the
pseudo-dimension as a tool to exhibit a discrete set of
pure qubit states such that at least one of them requires
exponentially many 2-qubit unitaries to be generated from
|0〉⊗n.

The drawback of our result is that the size of this set
is 22

n
and thus unsatisfyingly large. By relatively simple

deliberations this size can be reduced by an order of 2n

elements, though this is negligible compared to the overall
size.

We now describe the construction of the candidate set of
states. For a subset C ⊆ {|x0〉}x∈{0,1}n , namely a subset of
the set of all computational basis states of n + 1 qubits that
end on 0, with C �= ∅, define

|ψC〉 = 1√|C|
∑
x0∈C

|x0〉.

For C = ∅ we take

|ψ∅〉 = |0〉⊗n ⊗ |1〉.
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(Note that the (n + 1)st qubit only really matters for |ψ∅〉.)
Our set of interest will be

S := {|ψC〉 | C ⊆ {|x0〉}x∈{0,1}n}.
This discrete set of 22

n
multi-qubit quantum states now

gives rise to a class of p-concepts

FS = {fC : X → [0, 1] | ∃C ⊆ {|x0〉}x∈{0,1}n :
fC(x) = |〈x|ψC〉|2}.

This class has large pseudo-dimension, as described in
the following lemma.

Lemma 4 With the notation introduced above, it holds that
Pdim(FS ) ≥ 2n.

Proof Consider the subset of computational basis states
{|x0〉}x∈{0,1}n and the corresponding threshold values
yx0 = 1

2n = min
C⊆{|x0〉}x∈{0,1}n

1
|C| independently of x0. By

construction of S and thus FS the following holds:
For any C ⊆ {|x0〉}x∈{0,1}n

fC(x0) = |〈x0|ψC〉|2 =
{

1
|C| if |x0〉 ∈ C

0 else
.

In particular, we have

fC(x0) ≥ yx0 ⇐⇒ |x0〉 ∈ C.

Hence, Pdim(FS ) ≥ 2n, because we have found an
example of a set of size 2n that is pseudo-shattered.

We now combine this simple observation with Theo-
rem 3, which gives us the following:

Theorem 5 With the notation introduced above, if γ and
δ are such that each state in S can be generated from the
state |0〉⊗(n+1) by some circuit of size γ and depth δ, then

2n ≤ O
(
δ · 24 · γ 2 log γ

)

Proof Under the assumption of the Theorem we can
conclude FS ⊆ Fδ,γ . Now combine the lower bound of
Lemma 4 with the upper bound from Theorem 3.

Corollary 2 There exists a C ⊆ {|x0〉}x∈{0,1}n such that
|ψC〉 = 1√|C|

∑
|x0〉∈C

|x0〉 cannot be implemented by a

quantum circuit of 2-qubit unitaries with subexponential (in
n) size or depth.

Note that any set of functions which pseudo-shatters a set
of size 2n has to have at least 22

n
elements. Hence, the large

size of the set C is an automatic consequence of our line of
reasoning.

Remark 3 We note that a set of n-qubit states with
cardinality doubly exponential in n s.t. at least one of them
needs an exponential number of gates (up to logarithmic
factors) to be implemented can also be obtained with more
standard reasoning. Namely, it is well known that there
are n-qubit states the approximation of which up to trace-

distance ε requires

(
2n log

(
1
ε

)
log(n)

)
unitary gates (see Nielsen

and Chuang 2010, chap. 4.5.4). So if we pick a 1
2 -net of size

O
(
22

n)
for the set of pure n-qubit quantum states, this will

have the desired properties.

We sketch another way of using our pseudo-dimension
bound to study the gate complexity of state preparation
and which might lead to a smaller set of candidates.
Given n-qubit pure states |ψ1〉, . . . , |ψm〉 and efficiently
implementable (i.e., with polynomially many 2-qubit
unitary gates arranged in polynomially many layers)
unitaries U1, . . . , Uk , one can study the set of states
{Ui |ψj 〉}1≤i≤k,1≤j≤m.

If an exponential (in n) pseudo-dimension lower bound
can be established for
{f : X → [0, 1] | ∃1 ≤ i ≤ k, 1 ≤ j ≤ m : f (x) = |〈x|Ui |ψj 〉|2},
then, since every Ui is efficiently implementable, one can
conclude that at least one among the states |ψj 〉 is not
efficiently implementable.

The advantage of such a pseudo-dimension-based rea-
soning would be that m need not be doubly exponential
in n, since we can compensate for this in k. This realiza-
tion can already be used to reduce the size of the set of
candidate states given in Corollary 2. However, we have
not yet been able to identify sufficiently many efficiently
implementable unitaries to reduce the size below doubly
exponential. Nevertheless, there is likely room for improve-
ment in applying our method to the gate complexity of
quantum state preparation.

4.2 Learnability of quantum circuits

We now use our pseudo-dimension bounds to study
learnability. Specifically, we use the pseudo-dimension
bound for the case of variable inputs (Section 3.3) combined
with the generalization to quantum operations (Section 3.4).
We proceed quite similarly to Aaronson (2007).

The learning problem which we want to study is the fol-
lowing: Let μ be a probability measure on (X ×Y )×[0, 1],
unknown to the learner. Let S = {((x(i), y(i)), p(i))}mi=1 be
corresponding training data drawn i.i.d. according to μ. A
learner must, upon input of training data S, size Γ ∈ N,
depth Δ ∈ N, confidence δ ∈ [0, 1), accuracy, ε ∈ [0, 1)
and error margin β ∈ (0, 1), output a hypothesis quantum
circuit N of size Γ and depth Δ consisting of two-qudit
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operations such that, with probability ≥ 1 − δ with regard
to the choice of training data,

P((x,y),p)∼μ [|fN (x, y) − p| > β] ≤ ε

+ inf
M

P(x,p)∼μ [|fM (x, y) − p| > β] ,

where the infimum runs over all quantum circuits M of size
Γ and depthΔ. Here, fN denotes the function fN (x, y) =
〈x|TN (|y〉〈y|)|x〉 and fM is defined analogously, similarly
to Section 3.3.

We use our pseudo-dimension bound in order to upper
bound the size of the training data sufficient for solving this
task. More precisely, we make use of sample complexity
upper bounds from the fat-shattering dimension as proved in
Anthony and Bartlett (2000) and Bartlett and Long (1998),
together with the fact that the fat-shattering dimension is
upper-bounded by the pseudo-dimension.

First we restrict our scope to the “realizable” scenario,
i.e., we will assume the probability measure to be of the
form

μ((x, y), p) =
{

μ1(x, y) if p = fN∗(x, y)

0 else

for some quantum circuit N∗ of size Γ and depth Δ. This
will in particular imply that for quantum circuits M of size
Γ and depth Δ

inf
M

P((x,y),p)∼μ [|fM (x, y) − p| > β] = 0.

Colloquially, realizability means that there exists a set of
“correct” parameters Γ and Δ and these are known to the
learner, i.e., training samples are promised to be drawn from
circuits of size Γ and depth Δ.

We will focus on a proper learning scenario, i.e., we will
assume the unknown target circuit to be in some (known)
class, namely the class of circuits whose size and depth
satisfy certain polynomial bounds, and require the learner to
output an element of that same class as hypothesis.

We will make use of the following classical result:

Theorem 6 (Anthony and Bartlett 2000, Corollary 3.3) Let
X be an input space, letF ⊆ [0, 1]X. LetD be a probability
measure on X, let f∗ ∈ F . Let δ, ε, α, β ∈ (0, 1) with
β > α. Let S = {x1, . . . , xm} be a set of m samples
drawn i.i.d. according to D. Let h ∈ F be such that
|h(xi) − f∗(xi)| ≤ α for all 1 ≤ i ≤ m.

Then, a sample size

m = O

(
1
ε

(
fatF

(
β−α
8

)
log2

(
fatF

(
β−α
8

)
(β−α)ε

)
+ log 1

δ

))
suffices to guarantee that, with probability ≥ 1 − δ with
regard to the choice of training data S ,

Px∼D[|h(x) − f∗(x)| > β] ≤ ε.

In our setting, this result implies:

Corollary 3 Let N∗ be a quantum circuit of quantum
operations with size Γ and depth Δ. Let μ be probability
measure on X × Y unknown to the learner. Let

S = {((x(i), y(i)), fN∗(x
(i), y(i))}mi=1

be corresponding training data drawn i.i.d. according to
μ. Let δ, ε, α, β ∈ (0, 1). Then, training data of size

m = O
(
1
ε

(
Δd8Γ 2 log(Γ ) log2

(
Δd8Γ 2 log(Γ )

(β−α)ε

)
+ log 1

δ

))
suffice to guarantee that, with probability ≥ 1 − δ with
regard to choice of the training data, any quantum circuit
N of size Γ and depth Δ that satisfies

|fN (xi, yi) − fN∗(xi, yi)| ≤ α ∀1 ≤ i ≤ m

also satisfies

P(x,y)∼μ[|fN (x, y) − fN∗(x, y)| > β] ≤ ε.

Proof Combine Theorem 6 with Theorem 3 (more pre-
cisely, with its version for variable input states, which can
be proved for operations analogously to the reasoning in
Section 3.3) and use that the fat-shattering dimension is
always upper-bounded by the pseudo-dimension.

Note that in particular, this implies that for the class of
circuits of quantum operations with polynomial size and
depth in the number of qudits, a hypothesis that performs
well on training data will also perform well in a probably
approximately correct sense.

Next, we want to discuss briefly how our result compares
to the work (Aaronson 2007) on the learnability of
quantum states. There, it is shown that quantum states can
be PAC-learned with a sample complexity that depends
linearly on the number of qubits and (among other
dependencies) polynomially on 1

ε
, where ε denotes the

desired accuracy. However, this result does not imply
learnability of quantum channels with a sample complexity
that depends polynomially on the number of qubits. This
observation is already stated in Aaronson (2007), and we
provide an alternate, intuitive explanation for why the result
on states does not directly apply to operations.

One can straightforwardly apply the result of Aaronson
(2007) to learn the Choi-Jamiolkowski state of a quantum
channel. One can then compute measurement probabilities
of output states of a channel T acting on n-qubit states,
using its Choi-Jamiolkowski state τ . For this we must make
use of the formula

tr[ET (ρ)] = 2ntr[τ(E ⊗ ρT )].
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Here, we see that any error on the side of the Choi-
Jamiolkowski state will be multiplied by a factor
exponential in n, and thus in this case the overall n-
dependence of the sample complexity bound fromAaronson
(2007) becomes exponential via the accuracy-dependence.

This motivates our study of learnability of a restricted
class of quantum operations. Finding such operations for
which process tomography is possible was left as an open
problem in Aaronson (2007). Our answer to this question
is that a PAC-version of quantum process tomography is
possible when we restrict our scope to operations that can
be implemented by quantum circuits of depth and size
polynomial in the number of qudits. However, note that this
is subject to a realizability assumption: the learner must
known in advance a polynomial bound on the size and
depth of the circuit. We show that imposing the operations
be efficiently implementable automatically reduces the
information-theoretic complexity of learning, requiring only
a modest number of training examples. We do not make
any statement about the computational complexity of this
learning task; this remains an open problem.

How can this probably approximately correct version
of quantum process tomography be put to use? Given
polynomially many uses of a black box implementing an
unknown quantum operation of polynomial size and depth,
one can exhibit a circuit of two-qudit quantum operations
that approximates the unknown channel. In other words, we
obtain a classical description of an approximate copy of the
channel.

5 Open problems

Finally, in this section we discuss future directions and
possible generalizations of our results.

Two natural parameters of a circuit, depth and size,
appear polynomially in the pseudo-dimension upper
bounds. Notably, these bounds are independent of the num-
ber of qudits in the circuit. Are our upper bounds tight in
their dependence on size and depth? Can similar techniques
produce pseudo-dimension lower bounds? For example, by
considering a single 2-qudit unitary it is relatively straight-
forward to see that the pseudo-dimension of a circuit is
≥ (d). Can we close the gap in dimension-dependence
between this linear lower bound and our quartic upper
bound?

Our application of pseudo-dimension for lower bounds
on the gate complexity of state preparation complements
known methods (described, e.g., in Nielsen and Chuang
2010), based on counting dimensions or covering argu-
ments. We exhibit a class of states of size 22

n
, for which at

least one has exponential gate complexity of state prepara-

tion. Can we exploit this new technique to exhibit a smaller
set of states? Perhaps the most exciting application of
pseudo-dimension bounds could be provable lower bounds
on the gate complexity of state preparation, if the reason-
ing in Section 4.1 is sharpened or the tools are developed
further.

If circuit depth and size are known in advance, one
can information-efficiently learn the circuit. If the learner
receives training data generated by an approximation of
the circuit, does the result still hold? Can the realizability
assumption be relaxed?

Does “pretty-good circuit tomography” have applica-
tions? On the theory side, this might involve exploiting the
learning process as an approximate copy-machine for quan-
tum circuits. Of interest for both theory and experiment is
whether circuits can be learned with a reasonable amount
of computation. One can imagine progress on this question
for process tomography similar to that for state tomogra-
phy; demonstrating a class of states for which learning is
computationally efficient in Rocchetto (2017) made it pos-
sible to learn physically interesting states in a laboratory
in Rocchetto et al. (2019). An efficiency improvement in
the process tomography case might also have experimental
ramifications.
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Appendix

Here, we prove Theorem 3, namely that Pdim(Fδ,γ ) ≤
O(δ · d4 · γ 2 log γ ).

Proof (Theorem 3)
We rely upon Lemma 2. Let {(xi, yi)}mi=1 ⊆ X × R be

such that for every C ⊆ {1, . . . , m}, there exists fC ∈ Fδ,γ

such that fC(xi) − yi ≥ 0 if and only if i ∈ C.
By Lemma 2, there exists a set of polynomials Pδ,γ in

2γ d4 + 2dn real variables such that |Pδ,γ | ≤ γ ! δγ−δ

(γ−δ)! (n!)δ
and such that for every C ⊆ {1, . . . , m}, there exists a pC ∈
Pδ,γ and an assignment �C to the first 2γ d4 variables of
pC such that pC(�C, xi) − yi ≥ 0 if and only if i ∈ C.

In particular, this implies (using the “moreover”-part of
Lemma 2) that the set P = {p(·, xi) − yi}mi=1 | p ∈ Pδ,γ }
is a set ofm·|Pδ,γ | ≤ m

γ ! δγ−δ

(γ−δ)! (n!)δ polynomials of degree

≤ 2γ in 2γ d4 real variables that has at least 2m different
consistent sign assignments. So by Corollary 1, we have

2m ≤
(
8e · 2γ · m

2γ d4
· γ ! δγ−δ

(γ − δ)! (n!)δ
)2γ d4

.

Taking logarithms yields

m ≤ 2γ d4
(
log(16e · γ ) + log

(
m

2γ d4
· γ ! δγ−δ

(γ − δ)! (n!)δ
))

.

Repeating the argument in the proof of Theorem 2, we
distinguish cases and observe that in both cases,

m ≤ 8d4 · γ · log
(
16eγ · γ ! δγ−δ

(γ − δ)! (n!)δ
)
.

Expanding the logarithm and using Stirling’s formula up
to two terms, we have

We use the fact that n ≤ 2γ (because we assume that
each qudit is acted upon by at least one gate) in the second
step, and note that because γ ≥ δ, the asymptotic behavior

of all of the above terms are subsumed by the first term
in the bracket. We have also confirmed that the log(16eγ )

term above may be neglected. Thus, by the definition of the
pseudo-dimension we conclude Pdim(FN ) ≤ O(δ · d4 ·
γ 2 log γ ).
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