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Abstract—We present a new adaptive physical layer network
coding (PLNC) method, called pseudo exclusive-or (PXOR), for
LDPC coded two-way relay (TWR) block fading channels. Based
on the pairwise check decoding (PCD) we proposed earlier, the
check relationship table generated by the PXOR mapping obtains
the same Hamming distances of the PLNC mapped codewords
as that of conventional XOR mapping. In the meantime, the
PXOR mapping optimizes the Euclidean distances by adjusting
the symbol distances dynamically in order to compensate the
amplitude fading and phase deviation due to channel fading.
Simulation results on system end-to-end error probability show
that the proposed PXOR considerably outperforms the conven-
tional XOR while achieving the same performance as the closest-
neighbor cluster with much lower complexity.

I. INTRODUCTION

With the advent of physical layer network coding (PLNC),
two-way relaying increases the spectral efficiency of wireless
cooperative networks efficiently [1]–[6]. In terms of capacity
deduction of two-way relay (TWR) channels, the achievable
rate regions based on full decoding [7], [8] and partial de-
coding [9], [10] have been reported recently. It is known that
partial decoding is capable of achieving a larger rate region as
opposed to full decoding. Particularly, compared with tradi-
tional amplify-and-forward (AF) and decode-and-forward (D-
F) protocols, the denoise-and-forward (DNF) protocol, a type
of partial decoding, has demonstrated significant performance
gain [11]. Consequently, the realization of partial decoding by
practical coding and modulation techniques remains to be a
fundamental and challenging task.

Recently, two kinds of partial decoding realizations, con-
ventional XOR [12]–[14] and arithmetic-sum [15], have been
reported for TWR Gaussian channels based on certain linear
codes. Note that both methods are designed specifically for
symmetric and Gaussian channels. For TWR channel with
fading, the conventional XOR does not always work well
due to the undesired phase and amplitude offset between the
two channels in multiple-access (MA) phase. Authors in [16]
therefore proposed an adaptive PLNC mapping with respect to
the instantaneous channel fading, named as closest-neighbor
cluster (CNC) mapping. To further ensure reliable communica-
tion, the authors extended this method for convolutional-coded
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Fig. 1: Channel coding model for TWR block fading channels.

system in [17] and discussed the code design based on trellis-
coded modulation (TCM). However, it requires to change the
coding structure at the two source nodes and adapt between
two transmission protocols.

In our earlier work [18], we extended the adaptive PLNC
mapping CNC to LDPC (low density parity check) coded
TWR block fading channels, and proposed the pairwise check
decoding (PCD) based on the symbol distance priority max-
imization (SDPM). The generated check relationship table
(check-relation-tab) (denoted as PCD(I)) is, however, enor-
mous usually and not easy to optimize due to the shattered
pairwise check constraints.

In this paper, we introduce an alternative partial decoding,
using the Hamming distance priority maximization (HDPM)
based on PCD, for LDPC coded TWR block fading channels.
In this regard, we propose a new adaptive PLNC mapping,
called pseudo exclusive-or (PXOR). It preserves the same
Hamming distance of the generated check-relation-tab (named
as PCD(II)) as that of the conventional XOR mapping and
obtains approximately the same symbol distance as the CNC
mapping. For the system end-to-end (ETE) error probabili-
ty, simulation results show that the proposed coded PXOR
mapping with PCD(II) considerably outperforms the coded
conventional XOR mapping with belief propagation (BP) and
achieves the same performance as the complicated coded CNC
mapping with PCD(I) for two TWR block fading channels.

II. CHANNEL CODING MODEL FOR TWR CHANNELS

We consider a TWR fading channel where two source
nodes, denoted as A and B, exchange information with the
help of a relay node, denoted as C. We assume that all
the nodes operate in the half-duplex mode. The channel on
each communication link is assumed to be corrupted with
block fading and additive white Gaussian noise (AWGN). For



simplicity, we also assume the channel gains are reciprocal
and unchanged during a whole packet transmission.

The proposed channel coding is illustrated in Fig. 1, where
the communication takes place in two phases. First, the
information packet from each source, denoted as Si, for
i ∈ {A,B}, is encoded individually by a traditional LDPC
code with parity check matrix Hi. Unlike the existing work,
we do not impose the constraint that HA and HB must
be identical. Instead, we only require that they have the
same size and the same location of non-zero elements. We
further assume that the encoder is operated in GF(q), where
q ∈ {21, 22, 23, . . .}. Note that q-ary (q > 2) coding could
improve the performance compared with binary coding. The
encoded packet, Ci, is modulated by using q-ary modulation,
such as q-PSK or q-QAM, generating Xi, and then transmitted
simultaneously to the relay node. The n-th symbol of each
packet is denoted as Ci(n) ∈ Zq, Zq = {0, 1, . . . , q−1}, and
Xi(n) ∈ Qq, respectively. The superimposed packet received
by the relay, denoted as YC is given by

YC = HACXA + HBCXB + WC , (1)

where Hii′ denotes the complex-valued channel coefficient of
link from node i to node i′, and Wi′ denotes complex AWGN
with variance σ2

i′ of node i′. Therein, {i, i′} ∈ {A,B,C}.
We assume perfect symbol synchronization at the two

sources and perfect channel estimation at the relay. After
receiving the superimposed packet, the relay first computes the
probability of the adaptive PLNC mapped coded symbol pair,
denoted as CC = M(CA,CB), based on the instantaneous
channel states during the MA phase, then obtains their hard-
decision using the JNCD decoder, the details of which have
been presented in [18]. Here, M denotes a certain adaptive
PLNC mapping, see for example the CNC mapping in [16].
Note that no full decoding of CA and CB as an intermediate
step is needed. No extra channel encoding at the relay is
needed either. Then, the relay broadcasts the modulated coded
symbols of CC , denoted as XC , and mapping rule M() to
two source nodes. The received signals at the nodes A and B
are respectively written as

YA = HCAXC + WA;YB = HCBXC + WB . (2)

Each source node computes the probability of the desired
information CA(CB) from the received symbols YB(YA)
by using the adaptive PLNC mapping rule with the help of
its self-information CB(CA). Lastly, the traditional LDPC
decoding algorithm, e.g. BP, is applied, the output of which is
the desired information packet SA(SB). Note that each source
node should know the check matrix of the other source.

III. ANALYSIS OF OUTAGE PROBABILITY

In this section, we derive the system outage probability of
TWR fading channel, which serves as a good approximation of
the achievable frame error rate (FER) in the limit of infinite
block length [19]. Here, the system is said to be in outage
if the achievable sum-rate falls below a target. Since the
capacity region of two-way relaying with partial decoding is

still unknown [9], [10], we resort to the capacity outer bound
as follows [8, Theorem 2], based on which a lower bound of
the outage probability can be obtained.

(RAB , RBA) :
{

RAB ≤ min
(
βCAC , (1 − β)CCB

)
,

RBA ≤ min
(
βCBC , (1 − β)CCA

)} (3)

where β is the time sharing parameter, Rij and Cij are denoted
as the instantaneous data rate and channel capacity of the link
from node i to node j, for i, j ∈ {A,B,C}, respectively.

Let us further assume that the TWR channels considered
here are reciprocal, i.e. Cij = Cji for i, j ∈ {A,B,C}. From
(3), we can easily obtain the upper bound of the maximum
sum-rate for the considered TWR channels

Su = max
(RAB ,RBA)∈(3)

RAB + RBA = min(CAC , CBC), (4)

which is also given in [11]. Therein, each of the terms Cij ,
i, j ∈ {A,B,C}, is the channel capacity of a traditional point-
to-point channel with input alphabet xij ∈ Qq and received
signal yij = αijxij + wij , where wij ∼ N (0, σ2) and αij

denotes a real- or complex-valued channel coefficient of the
link from node i to j with E{|α2

ij |} = 1.
With the further assumption of equiprobable channel in-

puts, extending the well-known formula for the capacity of
continuous-valued Gaussian channels [20, Eqs. 3-5] to the case
of block fading channels yields

Cij(αij) = log2(q)

− 1
q

q−1∑
m=0

E

{
log2

q−1∑
n=0

exp
[
− |yij−αijxn

ij |2−|yij−αijxm
ij |2

2σ2

]}
(5)

in bit/channel use. Here, E represents expectation over yij

given xij = xm
ij and αij , where xm

ij or xn
ij is an element of

the modulated signal sets
{
Qq : x0

ij , x
1
ij , . . . , x

q−1
ij

}
.

In addition, we denote the data rate rij as the aver-
age spectral efficiency of the link from node i to node j,
{i, j} ∈ {A,B}, and the target rate of overall system as
Sr = rAB + rBA. Then, we have

Sr = β
(
RAB logqAB

2 +RBA logqBA

2

)
= 1

2

(
R logq

2 +R logq
2

)
= R logq

2,
(6)

where R is denoted as the channel code rate. Then the outage
probability can be lower bounded as

Pout ≥ P (Su < Sr)
= P

(
min

{
CAC(αAC), CBC(αBC)

}
< Sr

)
,

(7)

which can be easily evaluated by Monte Carlo averaging over
the block fading coefficients and the AWGN.

IV. PROPOSED PSEUDO EXCLUSIVE-OR MAPPING (PXOR)

Since the CNC mapping tries to maximize the symbol
distance, it is unavoidable that the dimension of CNC mapped
symbols may violate traditional channel coding theory (Galois
field) by using the SDPM. Although we have proposed an
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Fig. 2: Tanner graph of check function versus symbol pairs at relay.

exhaustive search optimization in [18], the size of the desired
check-relation-tab for PCD decoder (named as PCD(I)) usually
grows exponentially with the row weight and is not easy
to be optimized due to the irregular dimension of the CNC
mapped symbols. In this work we introduce an alternative
partial decoding by using the HDPM based on the PCD. In this
regard, the check-relation-tab (named as PCD(II)) generated
by the one-to-one correlation optimization (OCO) is proposed
and a new PXOR mapping is presented.

A. One-to-one correlation optimization (OCO)

Similar to [18], the PCD algorithm will be suitable for use if
we know the check functions of symbol pairs at the relay. As
an example, we derive the check function of fC

0 for a virtual
LDPC code at the relay from fA

0 and fB
0 (fA

0 ∈ HA, fB
0 ∈

HB) using the segmental Tanner graph in Fig. 2, where the
code length is 12 and the row weight and column weight are
6 and 3 respectively. The solid circles and squares denote the
check functions, while non-solid ones denote the transmitted
symbols at each source node. Likewise, the solid and non-
solid ellipses denote the check functions and the corresponding
received symbol pairs. fs

r denote the r-th check function of
the LDPC code at node s, where r ∈ [0, 5], s ∈ {A,B,C}. ln
denotes the symbol pair (CA(n),CB(n)), for n ∈ [0, 11].

We can see that the table size of Tab.II in [18] is far away
from the minimum value q′(rk−1) and the weighted factors
FW are always not equal to 1, where rk and q′ denote the
k-th row weight of the applied check matrixes and the range
of PLNC mapped symbols, q ≤ q′ ≤ q2, respectively. These
phenomenons decrease the Hamming distance of the desired
codewords, which is undesired. Then, we introduce an OCO
method to generate check-relation tabs, as shown in Tabs. I
and II. Here, one-to-one correlation between any two elements
of the four possible values {a, b, c, d} is realized, which is
same to the check-relation tabs generated by the conventional
XOR. Note that we may not achieve the one-to-one relation-
ship even through the exhausting search optimization if five
possible values {a, b, c, d, e} are mapped, as described in [18].
Obviously, Tab.II here has a very small size 4(rk−1) compared
to that of [18] (approaching 5rk ) if GF(4) LDPC codes are
applied at two source nodes.

B. Theoretical principles for PXOR mapping

Since the conventional XOR mapping preserves the code-
word space for linear codes but is restricted to static mapping,
we shall propose the PXOR mapping, which obtains the
same Hamming distance as the conventional XOR mapping

TABLE I: Check-relation-tab of fC
0 for virtual encoder if q = 22

(0, 0) (2, 2) (4, 4) (6, 6) (8, 8) (11, 11)
M1 a a a a a a
M2 a a a a b b
M3 a a a a c c
M4 a a a a d d

M5

...
...

...
...

...
...

M6 d d d d c c
1024 × 6 d d d d d d

TABLE II: Check-relation-tab of fC
0 for PCD decoder if q = 22

(11, 11) FW (0, 0) (2, 2) (4, 4) (6, 6) (8, 8)
M1 a 1 a a a a a
M2 a 1 a a a b b
M3 a 1 a a a c c
M4 a 1 a a a d d

M5

...
...

...
...

...
...

...
M6 d 1 d d d c c

1024 × 7 d 1 d d d d d

and maps dynamically according to the block fading channel
coefficient, in order to maximize the MED. For linear block
codes HA and HB , if all row weights are even and all non-
zero elements in identical rows are the same, then we have
the following theorems.

Theorem 1: Any one of the q clusters, composed by the
random symbol pairs based on the exclusive law [16], can be
mapped to any one of the q distinct symbols.

Theorem 2: All possible q clusters, composed by randomly
exchanging any q distinct symbols of one node A(B), generate
the identical codeword space.

Corollary 2.1: There are 1
qPq

q kinds of possible q clusters
satisfying the Theorem 2, where P denotes permutation.

The proofs of these theorems and corollary are straightfor-
ward and here omitted.

For example, 4 clusters
{
(0, 0), (1, 1), (2, 2), (3, 3)

}
,{

(0, 1), (1, 0), (2, 3), (3, 2)
}

,
{
(0, 2), (1, 3), (2, 0), (3, 1)

}
and{

(0, 3), (1, 2), (2, 1), (3, 0)
}

can be mapped to any one of
24 order permutations from the conventional XOR mapped
symbols {0, 1, 2, 3} according to the Theorem 1 when q = 22.
Namely, 4 clusters can be randomly mapped to {0, 1, 2, 3},
{0, 1, 3, 2}, {0, 2, 1, 3} and relatives. Accordingly, we pick
up 4 columns [0, 1, 2, 3]′, [1, 0, 3, 2]′, [2, 3, 0, 1]′, [3, 2, 1, 0]′,
which are q distinct symbols of one node A(B), from the
former 4 clusters. Arbitrarily exchanging two columns among
the aforementioned 4 columns, we obtain 5 additional kinds
of PXOR mapping excluding the base clusters following the
Theorem 2. Lastly, 6 clusters can be generated by the PXOR
mapping, as shown in Tab. III. To avoid confusion, we let
{a, b, c, d} indicate the broadcasted symbols {1, 2, 3, 4}.

C. Network coding design based on PXOR mapping

This subsection focuses on maximizing the symbol distance
to optimize the MED under the constraint of no any loss in
Hamming distance. By assuming that all symbols in GF(q)
have same probability of occurrence, each symbol pair is



TABLE III: Adaptive PXOR mapping for 4-ary LDPC codes

(0, 0)(0, 1)(0, 2)(0, 3)(1, 0)(1, 1)(1, 2)(1, 3)(2, 0)(2, 1)(2, 2)(2, 3)(3, 0)(3, 1)(3, 2)(3, 3)
M1 a b c d b a d c c d a b d c b a
M2 a b c d c d a b b a d c d c b a
M3 a b c d d c b a b a d c c d a b
M4 a b c d d c b a c d a b b a d c
M5 a b c d c d a b d c b a b a d c
M6 a b c d b a d c d c b a c d a b

3M

3M

4M

3M

4M

1M

2M

2M

θγ cos

θγ sin

4M

1M

4M

3M

Fig. 3: Adaptive PXOR mapping according to the channel ratio
HBC/HAC = γ(cos θ + j sin θ) when q = 22.

also generated with the same probability when the length
of codeword tend to infinite. Then, optimizing the MED
between q modulated PXOR mapped symbols is equivalent to
optimize the MED between any two modulated PXOR mapped
codewords approximatively.

Data: given γ, θ, q, Mi, i ∈ [1, 1
qPq

q ]
Result: Network coding rule based on PXOR mapping

1 Compute MED di
min and number Ndi

min
of symbol pairs

with MED among all Mi mapped symbols;
2 Select maximum value Vdmin

from {di
min, i ∈ [1, 1

qPq
q ]};

3 if di
min = dj

min = Vdmin
, i �= j then

4 Select minimum value VNdmin
from {Ndi

min
, Ndj

min
};

5 if Ndi
min

= VNdmin
then

6 Select Mi

7 else
8 Select Mj

9 end
10 else
11 if di

min = Vdmin
then

12 Select Mi

13 end
14 end

Algorithm 1: Network coding design for PXOR mapping

According to Algorithm 1, network coding rule based on
the PXOR mapping (listed in Tab. III) is depicted in Fig. 3.
Note that M5 and M6 are omitted, it is because that they
could not increase the MED or decrease the number of
symbol pairs with the MED (also named as MED number)
although they maybe increase sub MED compared to M3 and
M4 respectively. Moreover, optimized MED by the PXOR
mapping and the conventional XOR mapping are presented,
as depicted in Fig. 4(a,b). Therein, all MEDs are normalized
by 1.6568 × (4 + 4

√
2)|HAC |2, where (4 + 4

√
2) is the

(a) MED of XOR (1 code) (b) MED of PXOR (4 codes)

(c) MED number of XOR (d) MED number of PXOR

Fig. 4: Normalized MED and number of symbol pairs with MED
versus channel ratio HBC/HAC when q = 22

(x-axis: γ cos θ, y-axis: γ sin θ, z-axis: dmin(a,b), Ndmin (c,d)).

MED when HAC = HBC = 1. Fig. 4(a, b) shows that the
MEDs are increased generally except for the areas around the
center when the PXOR mapping is applied. In addition, the
MED numbers for two considered mapping are also produced,
as depicted in Fig. 4(c,d). The MED number is normalized
by (1/3.6122) log10

2 . We can see that the MED number can
decrease dramatically in the aforesaid areas around the center
for the PXOR mapping from Fig. 4(c,d). Obviously, Fig. 4
confirms that the proposed PXOR mapping is an effective
method for increasing the MED and decreasing the MED
number. Note that the areas with the extremely small MED are
shrinked quickly when the codeword length tends to infinite.

V. SIMULATION RESULTS

Suppose that the channel gains on all links follow
Rayleigh or Rice distribution and are independent. We assume
E[|HAC |2] = E[|HBC |2] = 1, where notation E[.] denotes
expectation function. For simplicity, each node uses the same
transmission power 1 and the same noise power σ2. Define
an average SNR per information symbol as 1

2Rσ2 , where R
is the code rate. The selection for the PXOR mapping is
based on instantaneous realizations of the channel gain pairs
{HAC ,HBC} using Fig. 3 while the CNC mapping using
Fig.4 in [16]. In the simulation, the proposed PXOR with
PCD(II) based on HDPM is employed. For comparison, three
benchmark systems are considered. One is the uncoded case,
where QPSK modulation is applied and the relay demodu-
lates using different PLNC mappings. Another is the coded
conventional XOR case, where the same codes are applied
at two sources and relay performs traditional BP decoding
based on conventional XOR. The other is CNC mapping with
PCD(I) decoding at the relay based on SDPM [18]. The black
solid lines, denoted as “Outage Probability”, are actually the
lower bound of the outage probability in (7). According to the
theoretical principles for PXOR mapping, we generate a 4-ary
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code from a binary LDPC codes ”504.504.3.504”, which is
produced by MacKay [21], through replacing {1, . . . , 1} by
{η, . . . , η}, η ∈ Z4. Code length, code rate, row weight and
column weight are 1008, 0.5, 6 and 3, respectively. Note that
each simulated FER value is obtained after observing at least
100 error frames. The maximum iteration is 25.

Fig. 5 shows the ETE performance of the Rayleigh channels.
For the three uncoded cases, the CNC outperforms the PXOR
about 3 dB and the latter is better than the XOR about 1 dB
at FER = 1.8×10−3. Moreover, the coding gains of the coded
XOR and the coded PXOR are 8.5 dB and 9 dB, respectively.
The coding gain of the coded CNC is 6 dB at FER = 7.5 ×
10−4. We also see that both the coded PXOR and coded CNC
outperform the coded XOR about 2 dB at FER = 2.8× 10−4.

The similar observations can be made in Fig. 6 where the
channel becomes Rice fading with the Rician factor 0 dB. For
the three uncoded cases, the XOR is worse than the PXOR
for about 1.2 dB while the latter is inferior to the CNC about
3.3 dB. At FER = 4.8 × 10−3, the coding gains of the coded
XOR and the coded PXOR are 9.2 dB and 9.7 dB, respectively.
We also observe that coded CNC has about 6.7 dB at FER =
1.8 × 10−3 in terms of coding gain. It is clear that both the
coded CNC and the coded PXOR are better than the coded
XOR about 1.7 dB at FER = 5.8 × 10−4.

VI. CONCLUSION

In this paper, we proposed a new PLNC at the relay, named
as pseudo exclusive-or, or PXOR, for LDPC coded TWR

block fading channels. We randomly permute two columns
from q clusters mapped by conventional XOR, 1

qPq
q kinds of

PXOR mapping are generated. By adaptively selecting these
PXOR maps according to channel gains, the MED of received
signals is optimized directly. Simulation results show that the
proposed coded PXOR mapping significantly outperforms the
coded conventional XOR and meanwhile achieves the same
performance as the highly complex coded CNC mapping.
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