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Abstract: The modelling of fractional linear systems through ARMA models is addressed. To
perform this study, a new recursive algorithm for impulse response ARMA modelling is presented.
This is a general algorithm that allows the recursive construction of ARMA models from the
impulse response sequence. This algorithm does not need an exact order specification, as it
gives some insights into the correct orders. It is applied to modelling fractional linear systems
described by fractional powers of the backward difference and the bilinear transformations. The
analysis of the results leads to propose suitable models for those systems.
1 Introduction

Pseudo-fractional auto-regressive moving average
(ARMA) modelling is a pole-zero modelling of fractional
linear systems. These are described by fractional differen-
tial equations in the continuous-time case or auto-regres-
sive integrated moving average (ARIMA) models in the
discrete-time case. The first case is based on the definition
of fractional differintegration, whereas the second deals
with the fractional differencing that is a fractional
version of the well-known finite differences. These
systems are characterised by having a long memory that
cannot be explained by the usual linear systems that have
short memory (exponential). The desire of finding a theor-
etical base for such systems led to the fractional calculus
that has recently received a great deal of attention in the
scientific literature, through the publication of books,
special issues of journals, review articles, as well as a
very large number of research papers. The interest in frac-
tional calculus comes from the fact that it provides foun-
dations for the understanding of several natural
phenomena and the basic theory for building models for
the systems underlying them. However, adoption of the
fractional calculus by the physicists and engineering com-
munity was inhibited historically by the lack of clear
experimental evidence for its need and by the difficulty
in constructing simple models for simulation or even
implementation of simple fractional systems. Fractional
calculus is almost as old as the common calculus, but
only since 30 years ago it has been a subject of specialised
publications and conferences.

The basic building block of this kind of systems is the
non-integer order derivative and integral that have been
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approximated by fractional powers of the backward
difference or the bilinear transformations – the former
is exactly the building block of the fractional differencing,
as said earlier. However, these approximations are
described infinite impulse response (IIR) systems with non-
rational transfer functions. For these, ARMA models are
only approximations. However, the usefulness of ARMA
models makes them very interesting when constructing
discrete-time approximating models for fractional
systems. In the last few years, a lot of attempts to obtain
such models have been done [1–5]. However, it is not
clear how to perform such modelling and how to choose
the most suitable orders, although there are a lot of algor-
ithms, mainly in the stochastic case. In impulse response
modelling, the well-known Padé algorithm is frequently
used [6]. In this paper, we shall not be concerned with the
estimation task involved in ARMA modelling; instead,
we are going to look at the underlying structure of the
ARMA model in order to find alternative relations to
obtain the ARMA parameters from the impulse response.
To be more specific, consider the usual theoretical approach
for computing the ARMA (N, M ) parameters from the
impulse response, hn

XN

i¼0

aihj�i ¼
bj j � 0; . . . ;M

0 j . M

�
ð1Þ

where ai and bi are, respectively, the AR and MA
parameters. A close look into (1) shows that, to compute
the ARMA (N, M ) parameters, we only need the first
NþMþ 1 values of the impulse response fh(n),
n ¼ 0, . . . , NþMg. Here, we propose a new description
of the double Levinson recursion presented in the work of
Ortigueira and Tribolet [7]. The algorithm consists of the
recursive solution of the system obtained from (1) with
j ¼ M to j ¼ NþM for the AR coefficients followed by
the use of the first Mþ 1 equations to obtain the MA par-
ameters. This algorithm gives the possibility of determining
the orders of the systems when looking at the pattern formed
by a sequence of coefficients. We applied this algorithm in
(pseudo) fractional ARMA modelling and observed that the
pattern does not clearly point the orders, but give some
insights into minimum orders.
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2 Algorithm

The procedure we are going to describe is very similar to
the one presented by Ortigueira and Tribolet [7] but,
instead of using the matrix formulation, we adopt a
Schur-like description [8], as it is more direct and easier
to implement. To begin with, we consider (1) and introduce
a function fM

N (j), j ¼ 0, 1, . . . , given by

f N
M ð jÞ ¼

XN

i¼0

aN
M ðiÞhjþM�i ð2Þ

where we enhance the orders N and M. According to (1)
this function has gaps for j ¼ 1, 2, . . . , N. For N ¼ 0, we
thus have

f 0
M ð jÞ ¼ hjþM j ¼ 0; 1; . . . ð3Þ

The algorithm described by Ortigueira and Tribolet [7]
uses an adjoint system [9]. Here, we introduce an adjoint
function defined by

gN
M ð jÞ ¼

XN

i¼0

gN
M ðiÞhN�jþM�i ð4Þ

with

g
0
M ð jÞ ¼ h�jþM j ¼ 0; 1; . . . ð5Þ

As it is clear, gM
N ( j) has gaps for j ¼ 1, 2, . . . , N, too. The

solution of (1) is recursively constructed for successive
values of N from N ¼ 1 to N ¼ N0, where N0 is a positive
integer. To do this, assume that we have constructed the
(N 2 1)th order functions fM

N21( j) and gM
N21( j) j ¼ 0,

1, . . . . We will construct the Nth order functions by the
recursions

f N
M ð jÞ ¼ f N�1

M ð jÞ þ KN
M gN�1

M ðN � jÞ ð6Þ

and

gN
M ð jÞ ¼ gN�1

M ð jÞ þ HN
M f N�1

M ðN � jÞ ð7Þ

where KM
N and HM

N are obtained by forcing both functions to
have a gap at j ¼ N. We obtain

KN
M ¼ �

f N�1
M ðN Þ

gN�1
M ð0Þ

ð8Þ

HN
M ¼ �

gN�1
M ðN Þ

f N�1
M ð0Þ

ð9Þ

As it is easy to verify, we have also

gN
M ð0Þ ¼ f N�1

M ð0Þð1� KN
M � H

N
M Þ ð10Þ

If the system with impulse response hn is really an ARMA
(N0, M0), we will have

bj ¼ f
N0

M0
ð j�M0Þ j ¼ 0; . . . ;M0 ð11Þ

For the AR coefficients we use (2), (4), (6) and (7) and the
KM

N and HM
N sequences to obtain the so-called double

Levinson recursion [7]

a N
M ðiÞ ¼ aN�1

M ðiÞ þ KN
MgN�1

M ðN � iÞ ð12Þ

and

gN
M ðiÞ ¼ gN�1

M ðiÞ þ H
N
M a

N�1
M ðN � iÞ ð13Þ
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with i ¼ 0, 1, . . . , N. KM
N and HM

N are generalised reflection
coefficients. To get some insights into the algorithm,
we will describe an application to an ARMA(6, 4)
model. This has the impulse response represented in the
upper half of Fig. 1. In the lower part, we present the
function fM

N( j), j ¼ 0, 1, . . . for N ¼ M ¼ 4. As it can be
seen, we inserted 4 gaps, but there are still non-zero
values for j . 4, clearly meaning that we are using too
low orders.

In Fig. 2, we repeat the situation, but now the constructed
model is an ARMA(6, 4). As it can be seen, now the gaps
collapsed the function for all the values above M. The
non-zero values are the MA coefficients.

The double Levinson recursion supplies us with a very
important result, which will be useful in determining the
orders of the model. This result is stated in the following
theorem (for proof refer to Machado [2]).

Theorem: Let M � 0 be an integer constant and AM
N (z) and

GMþ1
N (z) the Z transforms of aM

N (i) and gMþ1
N (i). The Nth

degree polynomials AM
N (z) and GMþ1

N (z) corresponding to
M and Mþ 1 zeros, respectively, are, up to a constant,
reverse polynomials

GN
Mþ1ðzÞ ¼ f � z�N

� AN
M ðz
�1
Þ ð14Þ

f being the last coefficient of GMþ1
N (z).
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Fig. 2 Impulse response hn of an ARMA(6, 4) system (top) and
fM

N( j), j ¼ 0, 1, . . . (bottom) of an ARMA(6, 4) model
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Fig. 1 Impulse response hn of a ARMA(6, 4) system (top) and
fM

N(j), j ¼ 0, 1, . . . (bottom) of an ARMA(4, 4) model
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As consequence of this theorem, we obtain

HN
Mþ1 � K

N
M ¼ 1 ð15Þ

Its proof being immediate from the theorem. This result is
very interesting as it allows us to compute the correct
orders:

† it is enough to run the algorithm for N, M values ranging
from 0 to N0, M0 higher than the expected orders;
† for the correct AR order and the correct plus one MA
order the product is one.

To exemplify these assertions, we will consider the follow-
ing two examples.

Example 1: AR case: Consider an AR(3) with coefficients
a ¼ [1 2 1.0871 1.1961 20.4512]. In Table 1, we show
the HM

N . KM
N product pattern for N, M ¼ 0, 1, 2, 3, 4,

where ‘hv’ means a high value obtained when the determi-
nant of the underlying matrix is close to zero (small values
of fM

N(0) after a product almost equal to one). This happens
when the orders are oversized. From the table, we conclude
easily that the system is indeed an AR(3). It is interesting to
remark that if we compute the poles and zero corresponding
to an ARMA(4, 1), the extra pole is cancelled by the zero
(as it should be).

Example 2: ARMA case: We consider now an ARMA(3, 2)
system defined by the previous AR parameters (Example 1)
and with b ¼ [1 1.2 21.6] as MA parameters. As before,
Table 2 showing the HM

N . KM
N product pattern for N,

M ¼ 0, 1, 2, 3, 4, suggests the correct orders. It is important
to refer that:

(a) although the system is not minimum phase, we obtain
the correct MA parameters;
(b) if the MA order is the correct one but the AR one is
oversized, there is no problem as the extra coefficients are
zero.

The application of this algorithm to the pole/zero
modelling of integer order continuous-time systems is also
possible. To do it, we only have to substitute above the
impulse response by the sequence hn ¼ (21)n/n! mn,

Table 1: HM
N . KM

N product pattern for the AR(3) case

N M

1 2 3 4

1 20.012 hv 0.0082 22.5803

2 0.6571 hv 1.1446 1.0401

3 1 hv 1 1

4 hv 6.6935 0.2955 22.1107

Table 2: HM
N . KM

N product pattern for the ARMA(3, 2)
case

N M

1 2 3 4

1 20.0592 62.5179 0.0652 21.7805

2 0.1984 0.9592 0.8598 0.9575

3 0.0422 20.9930 1 1

4 0.0165 0 hv 0.8159
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n ¼ 0, 1, . . . , where mn is the sequence of the momenta
of the impulse response of the continuous-time system
given by mn ¼

Ð
0
1h(t)tn dt.

The importance of (14) lies on the bridge it establishes
between two different MA order polynomials. As a conse-
quence of this theorem we have, from (13) [10]

AN�1
M ðzÞ ¼ AN

M�1ðzÞ þ mN
M z�1

� AN�1
M�1ðzÞ ð16Þ

where mM
N is obtained by forcing the Nth order coefficient to

be zero

mN
M ¼ �

aN
M�1ðN Þ

aN�1
M�1ðN � 1Þ

ð17Þ

The recursion (16) is very interesting as it allows us to
compute the AR part of a given ARMA(N0, M0) from a
sequence of AR models with orders ranging from 1 to
N0þM0. Using (2), we obtain

f N�1
M ð jÞ ¼ f N

M�1ð jþ 1Þ þ mN
M f N�1

M�1 ð jÞ ð18Þ

that allows us to compute the MA parameters from f0
N( j),

resulting from the Levinson recursion (12) with M ¼ 0.
In our applications, we preferred to compute the MA par-
ameters from (1), though.

We applied the recursion (16) to the model used in
Example 1. Immediately at the first recursion (M ¼ 1), all
the polynomial with degree greater than or equal to 4 repro-
duced the AR polynomial we were looking for. All the extra
coefficients were zero. The same happened with the second
at M ¼ 2. When we go beyond the correct MA order, the
coefficient (17) becomes very high because of a division
by a very small value (theoretically, zero).

3 Application to pseudo-fractional modelling

In this section, we assess the estimation of ARMA models
for approximating discrete-time fractional models. We con-
sidered the fractional difference

HbdðzÞ ¼ ð1� z�1
Þ
a; jzj . 1 ð19Þ

and the Tustin (bilinear)

HbilðzÞ ¼
1� z

�1

1þ z�1

� �a

jzj . 1 ð20Þ
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Fig. 3 Impulse response hn of a backward difference system (top)
and fM

N(j), j ¼ 0, 1, . . . (bottom) of an ARMA(4, 4) and an
ARMA(6, 4) models
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Fig. 4 Behaviour of the mM
N as a tool for orders choice, for the differentiator (above) and integrator (below), with a ¼ 0.1 (left), a ¼ 0.5

(middle) and a ¼ 0.9 (right)

‘Iter’ means model iteration
as approximations to the a-order differintegrator. For
each one, we applied the algorithms described earlier and
tried to find patterns that pointed us towards minima
orders. We used only values of jaj , 1, because the
other cases correspond to join integer order poles and/or
zeros to the ARMA model obtained with the fractional
part of a.

The introduction of gaps in the function fM
N( j),

j ¼ 0, 1, . . . is presented in Fig. 3 for backward differences
with order a ¼ 20.4. We present the results obtained with
an ARMA(6, 4) and ARMA(4, 6). As it can be seen, the
values of the function above four are almost zero,
meaning that, although the original system is not ARMA,
it can be modelled with an ARMA. For the bilinear case,
the results are similar. With this in mind, we are going to
study the behaviour of product HMþ1

N . KM
N through the

recursion progression.
The product HMþ1

N . KM
N pattern does not tell much but,

and as in the previous tables, we find that the lower diagonal
values were smaller than those in the upper diagonal in both

Fig. 5 ARMA(9, 9) frequency response plots (solid lines) for the
backward difference, with a ¼ 0.5

Upper graph is the magnitude response (in dB) and the lower graph is
the phase diagram (in radian); dotted line curves correspond to the
exact model
176
cases (19) and (20). This suggests that the MA order is
more important than the AR one. In Tables 3 and 4 , to
better illustrate the behaviour of such patterns for the
backwards difference and bilinear, all the values less than
0.9 were represented by a ‘0’, whereas values between 0.9
and 1.1 were represented by ‘1’ and, finally, the values
above 1.1 were represented by ‘2’ (Figs. 4–6).

To try to find other insights into the orders, we ran the
recursive algorithm, allowing us to conclude that:

(a) small values of the coefficient mM
N in (17) point to

correct N and M orders (Fig. 4);
(b) very high values of mM

N mean that, at least the MA order
is higher than the correct. In this situation we must decrease
it. This situation corresponds to unstable model;
(c) the observation of the mM

N pattern suggests an ARMA(N,
N ) model;
(d) in the difference case, the poles and zeros of the
ARMA(N, N ) model are always positive and interlaced;

Fig. 6 ARMA(9, 9) frequency response plots (solid lines) for
bilinear, with a ¼ 0.5

Upper graph is the magnitude response (in dB) and the lower graph is
the phase diagram (in radian); dotted curves correspond to the exact
model
IET Control Theory Appl., Vol. 1, No. 1, January 2007



(e) in the bilinear case, the poles and zeros of the
ARMA(N, N ) model are symmetric;
(f) our simulations pointed out to values of N from 7 to 10.
For most situations, the approximation is good in both time
and frequency domains.
(g) smaller values of a results in better amplitude fre-
quency response approximations to the exact model, the
largest amplitude deviations occurring in the low-frequency
regions for the difference case (Figs. 5 and 6). For the cases
where jaj . 0.5, leading to a worst amplitude response
modelling, one can always model them as a combination
of two models, thus forcing the ‘new’ fractional to be of
order (1 2 a). The additional integer term corresponds to
either an integrator or a differenciator that results in an
extra (1 2 z21)21 or (1 2 z21) factor, respectively.

We made also a study of the pole-zero distribution
(Figs. 7 and 8) and found that:

(a) in the backward difference case (models N, N ) the poles
and zeros are positive real. With higher-orders complex
poles and zeros may appear (above N ¼ M ¼ 9);

Table 3: HM
N . KM

N product pattern for the ARMA(10, 10)
corresponding to the backward difference case, where
zeros (0) represent values less than 0.9, ones (1)
represent values between 0.9 and 1.1 and twos (2)
represent values greater than 1.1

N M

1 2 3 4 5 6 7 8 9 10

1 0 2 2 2 1 1 1 1 1 1

2 0 0 2 2 2 2 2 1 1 1

3 0 0 0 2 2 2 2 2 2 2

4 0 0 0 0 2 2 2 2 2 2

5 0 0 0 0 0 2 2 2 2 2

6 0 0 0 0 0 0 2 2 2 2

7 0 0 0 0 0 0 0 2 2 2

8 0 0 0 0 0 0 0 0 2 2

9 0 0 0 0 0 0 0 0 0 2

10 0 0 0 0 0 0 0 0 0 0

Table 4: HM
N . KM

N product pattern for the ARMA(10,10)
corresponding to the bilinear case, where zeros (0)
represent values less than 0.9, ones (1) represent values
between 0.9 and 1.1 and twos (2) represent values
greater than 1.1

N M

1 2 3 4 5 6 7 8 9 10

1 0 2 0 2 0 2 0 2 0 2

2 0 0 2 0 2 0 2 0 2 1

3 0 0 0 2 0 2 0 2 0 2

4 0 0 0 0 2 0 2 0 2 0

5 0 0 0 0 0 2 0 2 0 2

6 0 0 0 0 0 0 2 0 2 0

7 0 0 0 0 0 0 0 2 0 2

8 0 0 0 0 0 0 0 0 2 0

9 0 0 0 0 0 0 0 0 0 2

10 0 0 0 0 0 0 0 0 0 0
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(b) in the bilinear case, the poles and zeros are real.
We did not find complex poles or zeros, unless N ¼
M . 16;
(c) in the bilinear case, and for some a, we obtained
unstable models for some N, M , N;
(d) if the pole order is the same of the zero order, the poles
and zeros are interlaced. In the bilinear case, they are sym-
metric to each other;
(e) if the orders are not equal, the ‘extra’ poles or zeros tend
to appear near zero.

Although the last statement is more or less natural, state-
ment (d) deserves some considerations. A presence of a pole
(a , 0) or a zero (a . 0) near z ¼ 1 is needed, as it is the
branch point of the transfer function and it has a very large
influence on the function. The interlaced pole/zero pairs is
needed because we know that zeros, inside the unit circle,
decrease the amplitude and increase the phase, whereas
poles increase the amplitude and decrease the phase. So
the doublets pole/zero determine the variation of the
amplitude and phase. We may ask why they are over the
real axis. If they were not at the real axis, they would con-
tribute to the appearing of peaks and valleys, because the
amplitude and phase changed faster and the doublet effect
was not so clear.
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Fig. 7 ARMA(N, M) polar pole-zero plots for the backward
differences with a ¼ 0.8 for N, M ¼ 10
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Fig. 8 ARMA(N, M) polar pole-zero plots for the bilinear with
a ¼ 0.8 for N, M ¼ 10
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4 Conclusions

The algorithm we have just presented gives a simple way of
computing the AR and MA parameters of an ARMA model
from a given impulse response, of a not necessarily ARMA,
linear system. The algorithm is recursive and gives insights
into the orders computation. We applied it to model two
special cases of fractional linear systems: the systems with
transfer functions that are fractional powers of the backward
difference and bilinear transformations. We presented some
examples. From them, we may conclude that we cannot give
widely valid prescriptions on the modelling orders: different
fractional orders imply different ARMA models. However,
it seems that the pole-zero pair (doublet) has an important
job in the modelling performance.
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