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Abstract

This paper considers whether a passive isometric input

device, such as a ✂☎✄✝✆✟✞✡✠☞☛✌✆✎✍✏✍ TM, used together with visual

feedback, could provide the operator with a pseudo-haptic

feedback.

For this aim, two psychophysical experiments have been

conducted. The first experiment consisted of a compliance

discrimination, between two virtual springs hand-operated

by means of the ✂☎✄✑✆✟✞✡✠☞☛✌✆✎✍✒✍ TM. In this experiment, the stiff-

ness (or compliance) JND turned out to be 6%. The second

experiment assessed stiffness discrimination between a vir-

tual spring and the equivalent spring in reality. In this case,

the stiffness (or compliance) JND was found to be 13.4%.

These results are consistent with previous outcomes on

manual discrimination of compliance. Consequently, this

consistency reveals that the passive apparatus that was used

can, to some extent, simulate haptic information.

In addition, a final test indicated that the proprioceptive

sense of the subjects was blurred by visual feedback. This

gave them the illusion of using a non isometric device.

1. Introduction

Isotonic or isometric 3D input devices1 are clever de-

vices for the purpose of 3D interactions and 3D manipula-

tions of objects. They are compatible with almost all ma-
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1Zhai classified the input devices into two categories : ISOMETRIC

devices (they offer resistance and stay put while you exert force on them)

and ISOTONIC devices (they offer no significant resistance and are used

to track users as they move around the virtual world) [21].

jor CAD softwares available on the market. Their user-

friendliness has shown their potential usability as a tool

for off-line robot programming and teleoperation, or vir-

tual prototyping. For instance, to teleprogram the Mars

Pathfinder Sojourner robot, the operator uses a ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM

as an input tool along with a virtual reality interface [1].

The ✕✟✖✑✗✦✙✡✛✢✜✘✗✤✣✥✣ TM is an isometric input device with six de-

grees of freedom (dof) which is now commercialized by the

Spacetec company [3]. The Magellan ✕✟✖✘✗✦✙✧✛✧★✪✩✬✫✘✭✮✛ TM [2]

- another 6dof isometric device - was successfully used by

the DLR - the German Space Agency - operators and astro-

nauts to teleoperate a space robot within the context of the

well-known ROTEX experiment [11].

Since isometric or isotonic input interfaces are com-

pletely passive, they have never been regarded as being able

to return forces. How the use of the properties of an isomet-

ric input device, the Spacetec ✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM 2003C model,

together with visual feedback to provide force information

to the operator is the subject of the following paragraph.

To begin with, there is to take advantage of the mechani-

cal characteristics of the isometric device : its internal stiff-

ness and its thrust. Those characteristics are combined with

visual feedback to provide a kind of pseudo-force feedback.

For example, let us assume that one manipulates a virtual

cube in a 3D virtual environment (VE). The cube must be

inserted inside a narrow duct. As the cube penetrates the

duct, its speed is reduced. In other words, the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM

output resolution, which controls the cube motion, is de-

creased. Consequently, the user will instinctively increase

its pressure on the ball which results in the feeding back of

an increasing reaction force by the static device. The cou-

pling between the slowing down of the object on the screen

and the increasing reaction force coming from the device

gives the user the illusion of a force feedback as if a friction

force between the cube and the duct was directly applied to

him.

This “illusion” of force feedback was first qualitatively

estimated with a group of 18 people during an experiment



called the swamp. The subjects were told to manipulate a

virtual cube, displayed on the horizontal plane, and to cross

square areas (see Figure 1). When over these areas, the

speed of the cube was either accelerated or slowed down.

The subjects were told to describe their sensations when the

cube was crossing the areas, and to compare the sensations

they felt when using either the ✕✟✖✑✗✦✙✡✛✢✜✘✗✤✣✥✣ TM or a classical

2D mouse. While using the ✕✎✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM, their accounts re-

Figure 1. Swamp experiment: cube crossing

a slowing down area.

vealed that the subjects felt “something” as the cube crossed

these areas. Most subjects experienced a sense of friction,

gravity or viscosity when the cube’s movement was slowed

down. They found that forces were much more perceptible

with the ✕✟✖✑✗✦✙✡✛✢✜✘✗✤✣✥✣ TM than with the 2D mouse. The per-

ception of forces was a bit less sharp when the cube was

accelerated. This is probably due to the fact that the reac-

tive force from the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM is more perceptible during

compression phases.

Those qualitative indications revealed the potentialities

of this concept, but they did not measure or identify the

characteristics of such an illusion. It was necessary to eval-

uate the feedback more quantitatively. A compliance dis-

crimination task between a real and a virtual spring was

chosen as a simple evaluation task. The real spring was

tested first in the real environment (RE), then the virtual

spring was tested in the VE. The virtual spring was graph-

ically displayed on a computer screen and was dynami-

cally animated when pushing the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM ball. If the

✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM, used together with visual feedback, allows one

to discriminate a virtual spring stiffness from a real one,

then the whole system may thus be fit for feeding haptic in-

formation which was supposedly difficult to provide with-

out a force feedback interface.

First, an overview of previous work in the field of 3D in-

put interfaces evaluation and sensory illusions will be pre-

sented. It will be followed by a description of the exper-

imental system which was set up for the evaluation of the

stiffness of the real and virtual springs. Previous works

concerning compliance or stiffness discrimination and JND

(Just Noticeable Difference) will also be mentioned. The

two following sections describe two psychophysical exper-

iments: the compliance discrimination between two virtual

springs, and the compliance discrimination between a vir-

tual spring and a real one. The first experiment is a VE

evaluation; while the second experiment is the main subject

of the study. The paper ends with a general conclusion and

a reference to further work.

2 Previous work

Force/tactile interfaces have been developed in recent

years [6] in order to provide force/touch feedback to users.

They receive motor actions from the user and send haptic

images to him. These interfaces are used to simulate a wide

range of object dynamics such as hardness and elasticity.

Yet, today, they are still expensive and complex.

The perception of real or virtual environments is not re-

stricted to the intra-sensory interpretation cues. Cues sent

by different senses are somehow interpreted together. For

instance, manipulating objects combines tactile, kinesthetic

sensations and often vision [7]. Given these complexities,

it would seem more appropriate to investigate the “plural-

istic” nature of sensory perception, rather than one isolated

sense. Aldridge [4] observed that the visual representation

of a virtual object has some effect on the integration of the

touch feedback. He stated that further experiments needed

to be carried out in order to explore the extent of such “vi-

sual dominance”.

Previous work on visual dominance showed that multi-

ple cues offer a high level of redundancy and can improve

signal-to-noise ratios. For instance, it has been shown that

lip-reading modifies the auditory cortex, and enhances audi-

tory perception [14]. One interesting issue is how these dif-

ferent sources of information are all combined to form what

might be called holistic perceptions. A famous example of

visual dominance is the Ventriloquist’s effect [19]. Diderot

(1749), offered early support for the existence of sensory

dominance [13]. Several researchers have demonstrated a

dominance of vision over taction [7]. Lee and Lishman pro-

vided evidence that vision plays an integral role in human

stance control (balance). This “visual proprioceptive con-

trol” is shown to dominate over non-visual information. Lee

and Lishman described also the tuning role that visual pro-

prioception plays in learning a new stance (i.e. ankle-foot

proprioception). This suggests that vision plays a major role

in making things feel the way they do.

But vision may sometimes make things feel different

than they are. Katz [7] observed that different materials

(paper, rubber, leather, etc..) can easily be interpreted dif-

ferently by blindfolded subjects. Srinivasan [16] found that

vision could also mislead someone during a compliance dis-

crimination task between two springs . The displacement

of the springs was visually observed on a computer screen,

while springs were pressed manually by means of a me-



chanical apparatus. Srinivasan observed that an inapropri-

ate vision feedback can totally invert the stiffness percep-

tion and the result of the discrimination, which ushers in

the illusion concept.

Illusion plays a central role in a VE perception. Illusion

is a non veridical perception, a mistake made by the brain

and not by our senses. Well-known optical illusions such as

the Müller-Lyer illusion are extensively described in scien-

tific works [10]. Some haptic illusions may also be revealed

by simple experiments. For example, Weber first observed

that the temperature of an object influences the haptic per-

ception of its weight: a cold coin seems heavier than the

same coin when warmer [15]. Another haptic illusion is the

size-weight illusion: a large radius ball seems heavier than

a ball of the same weight, but with a smaller radius. Re-

cently, Ellis and Lederman [8] established the size-weight

illusion as a primarily haptic phenomenon, despite its hav-

ing been more traditionally considered an example of vision

influencing haptic processing. The resort to intra and inter-

sensory illusions and dominance can be relevant when used

in VR applications. The following paper concentrates on

the use of these potentialities.

3. Experimental set-up

As already stated, the aim of the experimental system

described is to measure the capacity to feed back haptic in-

formation by means of a passive isometric input device and

vision feedback, which is the key issue of the scheme. It

is coupled with the force applied on the ✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM, and

any change in the visual feedback generates a difference

in force perception. The perception of the stiffness of the

spring involves a multi-modal combination of force and dis-

placement. Thus, it seemed to be an appropriate model to

demonstrate the general concept.

An experiment of compliance discrimination of springs

was then chosen because of the simplicity of the model of

stiffness, relevant previous works on manual discrimina-

tion of compliance, and the fact that springs are a classical

and fundamental element in computer graphics and com-

puter haptics modeling. The stiffness discrimination lies

between a virtual spring and a real one. In the VE case,

the spring displacement is visually displayed on a computer

screen. The force information of the spring stiffness is in-

herent to the reactive force from one’s interaction with the

✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM . Those two independent sensory cues (virtual

displacement motion and reactive force of the ✕✟✖✑✗✦✙✡✛✢✜✘✗✤✣✥✣ TM)

should allow the user to discriminate the stiffness of a vir-

tual spring from that of a real one. If this works out, the con-

cept is apt to provide haptic information which was a priori

not to be simulated without an actual force feedback device.

Real springs are tested in RE conditions. Each spring looks

like a trumpet piston (see Figure 2). Three real springs were

Figure 2. Real spring embedded in a piston

used with different degrees of stiffness: 249, 363 and 544

N/m. Their stiffness was empirically derived by measur-

ing spring displacement when fixed weights were applied

on each of them. Friction effects inside the real piston were

nearly canceled by directly applying lubricant on the spring

and inside the static part of the piston.

The visual display of the virtual spring is fundamental:

spatial reference must be the same one when comparing

the virtual spring motions and the real ones. The virtual

spring is thus visually displayed on a monoscopic worksta-

tion screen, as similar as possible to the real one (see Figure

3), and of the same size as the real spring. Special attention

was given to many graphical features (color, texturing, etc.)

in order to recreate the virtual piston with the highest pos-

sible realism. A ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM ball was also rendered on the

left side of the screen to facilitate the comprehension of the

scale factor between VE and RE.

The displacement of the virtual spring ✱ virtual is deduced

from the force applied by the user ✲ user using the well-

known equation 1, in which ✳ virtual is the virtual spring

stiffness. The force applied by the user on the ball is mon-

itored by internal ✕✟✖✘✗✚✙✡✛✯✜✑✗✤✣✥✣ TM sensors. The ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM

(force applied by user )/(sensors output) profile was man-

ually identified with a dynamometer. A maximum 10%

uncertainty in the output data was observed. A maximum

pushing limit is indicated on the virtual display by a red

mark on the moving part of the piston. It corresponds to the

sensing limit of the ✕✎✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM’s force sensors in the case

of the stiffest virtual spring. The red mark is also printed on

the real spring to keep the same visual aspect.

✱ virtual ✴ ✲ user ✵ ✳ virtual (1)

In order to obtain similar tactile and grasping sensations in

the real and virtual cases, the same moving part of the piston

was fixed on the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM, by means of two plastic links

(see Figure 4). The grasping of the virtual spring is thus



similar to the real one, thanks to the plastic upper link on

the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM on which the subject can put his forefinger

and his middle finger (see Figure 4).

Figure 3. Visual display of a virtual spring

Finally, for the testing of the real spring, subjects grasp

the real piston as shown in Figure 2, and push the moving

part of the piston with an active motion of the thumb. For

the testing of the virtual spring, the subject applies a force

on the ✕✎✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM by pushing the moving part of the piston

fixed on the ✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM’s base with the thumb (see Figure

4). He/she looks at the screen so as to see the displacement

of the virtual spring resulting from his/her actions.

Figure 4. “Modified” isometric device

4. Previous work on compliance discrimination

In the RE case, the compliance discrimination has been

widely studied. The Just Noticeable Difference (JND) is

the just detectable increment (or decrement) of intensity for

a specific stimulus. Jones and Hunter [12] found that the

compliance discrimination JND in forearms was 23% of the

intensity of the stimulus. Tan studied the manual discrim-

ination of the compliance with active motion of the finger

by using an electromechanical apparatus called the ‘linear

grasper’. She first found a JND of 8% in the case of a fixed

squeezing distance [18]. But after reducing terminal force

cues by using a roving squeezing distance, the JND reached

up to 22% [18]. When the mechanical work cues were also

eliminated through an equal-work-force-displacement pro-

file, the JND was found to vary between 15% and 99% [17].

In the VE case, Tzafestas found a JND of 44% with the

help of the LRP dextrous hand master which is an exoskele-

ton glove with 14 active dof [20]. The virtual discrimination

was made between two virtual balls displayed on a com-

puter screen. The balls were pressed alternatively with the

thumb and the forefinger of the master glove.

As far as the authors of this paper know, no studies on

compliance discrimination have ever been carried out using

simultaneously a real spring and a virtual one.

5. Compliance discrimination between two vir-
tual springs

It seems at first that the experimental set-up presents

many uncertainties linked to the identification of the

✕✟✖✘✗✚✙✡✛✯✜✑✗✤✣✥✣ TM’s force/output profile, graphical approxima-

tions, manual evaluation in RE of the stiffness of the

springs, small differences in graspings and frictions be-

tween RE and VE. Therefore the reliability of the VE has to

be taken into account first. In order to evaluate the virtual

model of the spring, a compliance discrimination experi-

ment between two virtual springs is first carried out.

5.1. Experimental procedure

4 people, from the age of 21 to 38, took part in this exper-

iment. There were 3 men and 1 woman with no known per-

ception disorders. All the subjects were right-handed and

used their dominant hand to perform the grasping task.

The psychophysic method used was a constant stimuli

method with a forced choice and (+,-) paradigm (see [9] for

a description of the method). During each trial the subject

had to choose between two virtual springs displayed on the

same computer screen and to say which one of the two was

the stiffer.

Three values of virtual reference stiffness were used:

249, 363 and 544 N/m. Each spring was compared with five

possible stiffer springs whose stiffness varied from the ref-

erence stiffness by +0, +5, +10, +15 and +20 percent. Each

subject tested all the possible pairs. For each subject each

pair appeared 25 times in random order. The total amount of

trials was then 100 a pair and the total amount of trials was

1500. For each trial the reference stiffness was randomly



associated either with the top spring or with the bottom one

on the screen. During each trial the subject had the pos-

sibility to test each spring as many times as he wanted to,

but he was asked to answer as fast as possible. No response

feedback was given after each trial. When testing a virtual

spring subjects were told not to go beyond the red mark

printed on the moving part of the piston.

5.2. Results and discussion

The analysis of the results used to determine the differ-

ential threshold can be found in [9] and [5]. The Weber

fraction is a common parameter used to evaluate the per-

formance of the discrimination. The Weber fraction is the

JND divided by stimulus intensity. It is sometimes assim-

ilated to JND in literature ([17], [12]). The average Weber

fraction found for compliance discrimination between two

virtual springs with our system is of 6% (see Figure 5). The
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Figure 5. Weber fraction for compliance dis­

crimination of virtual springs

red mark drawn on the piston to represent the maximum

squeezing limit is considered a terminal force cue for sub-

jects. The conditions of the experiment are similar to Tan’s

first experiment –i.e. with a constant squeezing distance–

when she found a JND of 8% [18]. The JND discrimi-

nation between virtual springs seems then consistent with

previous works addressing manual compliance discrimina-

tion, although the discrimination has been made within a

VE with uncoupled sensory information. Furthermore all

subjects found that the model of the spring was visually and

haptically realistic.

The result of this experiment indicates that the config-

uration of this system can simulate the model of a virtual

spring realistically. However, a compliance discrimination

in a VE can be performed with most of other input devices,

without force feedback, but by using sound or visual substi-

tutions as force cues. It is therefore necessary to study the

concept with a task which could not be performed, or so it

seems, without using a force feedback device.

6. Compliance discrimination between a real
spring and a virtual one

The test that was chosen is still a compliance discrim-

ination task, but between a real spring and a virtual one

in this case. Since isotonic input devices do not return

real force information, this task should not be achievable

with isotonic 2D mice, or joysticks without force feedback.

With the adopted apparatus, the discrimination task is still

not achievable if one simply presses the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM with

closed eyes. Obviously this is due to the fact that there will

be no feedback of displacement information. Neither is it

possible when one stops touching the ✕✎✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM, since

he/she no longer receives force information.

6.1. Experimental procedure

Figure 6. Overview of the experimental set up

27 people, from the age of 21 to 63, took part in this

experiment. There were 20 men and 7 women with no

known perception disorders. Among them, 3 men were left-

handed. All the subjects used their dominant hand to per-

form the grasping task. The psychophysic method used was

also a method of constant stimuli with a forced choice and a

(+,-) paradigm. During each trial the subject first had to test

the stiffness of a real spring (the reference stimulus), and

then, to test the stiffness of a virtual spring (the compari-

son stimulus). The testing and grasping of real and virtual



springs were performed as described in Section 3. After in-

vestigating the stiffness stimuli of both the virtual and real

springs, the subject had to tell whether the virtual spring

was more or less stiff than the real spring of reference (see

Figure 6).

Three real springs were used with stiffness of 249, 363

and 544 N/m. Each real spring was compared with twelve

possible virtual springs whose stiffness varied from the ref-

erence RE stiffness by: -40, -30, -20, -10, 0, +10, +20, +30,

+40, +50, +60 or +70 percent. Each subject tested all the

possible pairs. For each subject each pair appeared only

once in random order. The total amount of trials was then

27 a pair and the total amount of trials was 972. During each

trial, the subject had the possibility to go from one spring

to the other without time limit. No response feedback was

given after each trial When testing the virtual spring sub-

jects were asked not to go beyond the red mark printed on

the moving part of the piston. But in the RE case subjects

had no restrictions concerning the pushing of the piston and

their going beyond the red mark.

6.2. Results

The analysis of the results follows the classical method

described in [9] and [5]. The proportion (or probability) of

“the virtual spring is stiffer” answers when the virtual spring

is compared to the real one is used to trace the psychometric

function concerning the three values of stiffness (see Fig-

ure 7). Assuming that these functions correspond to normal

distributions, the z-score transformation of the probability

of “stiffer” answers will become a linear function (see Fig-

ure 8). On Figure 8, the best fitting straight lines are found

through the least square method. A z-score equal to 0.67
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Figure 7. Psychometric functions

(probability of 75%) is generally associated with the up-

per Differential Limen (DLu) and a z-score equal to -0.67
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Figure 8. Z­score transformations

(probability of 25%) is generally associated with the lower

Differential Limen (DLl). The Point of Subjective Equality

(PSE) represents the value of the compared stimulus subjec-

tively perceived as being equal to the stimulus of reference.

In most cases, the PSE does not correspond exactly to the

physical value of the standard reference stimulus. PSEs are

given by a z-score equal to 0.0 (probability of 50%) and

are displayed on Figure 9. The Weber fraction is given by

equation 2. The Weber fraction for the three values of stiff-

ness are shown on Figure 10. The resulting average Weber

fraction ✶ is equal to 13.4%.

✶ ✴✸✷ ✱✺✹✼✻✾✽❀✿❁✂❃❂❅❄ ✵ ✿❁✂❃❂ (2)
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Figure 9. PSE variation
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Figure 10. Weber fraction for compliance dis­
crimination between a virtual spring and a

real one

6.3. Discussion

At the end of the experiment, the subjects were asked

to comment upon their cognitive strategies when evaluat-

ing the virtual and the real springs, and to tell whether they

used the red marks or not, as they sometimes used them

and sometimes did not pay any attention to them. The an-

swers make it difficult to know whether the red mark was al-

ways used as a terminal force cue for the virtual/real spring

comparison or not. The 13.4% JND should thus be com-

pared with 8% and 22% JNDs previously found by Tan in

fixed and roving squeezing distance experiments [18]. The

herein result seems consistent with previous studies con-

cerning manual discrimination of compliance. Nevertheless

all previous experiments were carried out within a single en-

vironment while in this experiment, the transition between

the RE and the VE is also to be taken into account and has

probably had a negative influence on the result of the per-

formance.

The PSE represents the subjective displacement of the

reference stimulus during the bilateral transitions from the

RE to the VE. The PSE difference from the reference stim-

ulus is always positive and it decreases monotonically with

stiffness and thus with maximum displacement of the thumb

(see Figure 9). Consequently the subjects have a tendency

to underestimate the virtual spring. The less stiff the ref-

erence spring is, the more underestimated the comparison

virtual spring is. Many reasons could account for this phe-

nomenon:

– Some psychological effect stemming from the bilateral

transitions between the VE and the RE and a lack of con-

fidence in the virtual spring, or perhaps as well as a prob-

lem of sensory memory persistence generating a negative

error upon the reference stimuli during the transient phase

of adaptation to VE.

– Another explanation could be the contradiction be-

tween the proprioceptive feeling of motion of the thumb and

the visual feedback of the displacement of the spring. The

thumb is nearly static when pressing the ✕✟✖✘✗✚✙✡✛✯✜✑✗✤✣✥✣ TM while

the spring moves extensively on the screen, especially in the

case of the less stiff spring. This makes for a phenomenon

of sensory dominance: the visual feedback replaces the pro-

prioceptive sense to some extent. The visual feedback must

be assimilated by the brain to assess the displacement of the

spring and the mechanical work, which is another impor-

tant factor in compliance evaluation [17]. But the studies

on the transfer from RE to VE and on sensory substitution

[16] [7] fail to conclude whether visual feedback can or can-

not compensate for both mechanical work and displacement

cues within the context of this study.

7. Conclusion

At the beginning of the experiment described above,

there were many uncertainties concerning the feasibility of

a comparison between a virtual and a real physical model

because of the difficulty of the bilateral transition between

RE and VE and problems related to the verisimilitude of

the virtual spring model. But with the apparatus that was

set up, subjects were able to discriminate successfully be-

tween a virtual spring and a real one with a JND of 13.4%.

This JND value is consistent with previous works on man-

ual compliance discrimination [18] [17] [12]. It shows the

possibility to feed back haptic information to the user with-

out using a force feedback device but simply by combin-

ing a passive isometric input device with a visual feedback.

This may remain impossible when using an isotonic input

interface.

The experiment is based on the coupling of the visual

feedback and the internal isometric device resistance which

naturally reacts to the user’s applied force. The overall sys-

tem returns a force cue called pseudo-haptic feedback. This

pseudo-haptic feedback will probably not replace an actual

haptic one but can be useful for some simple simulations,

making full use of the 6 possible degrees of freedom of iso-

metric input devices.

The most surprising result is the substitution of the pro-

prioceptive information at the level of the thumb by the vi-

sual feedback . All subjects were able to discriminate be-

tween a real spring and a virtual one without the proprio-

ceptive information from the thumb since the displacement

during the virtual spring evaluation was very small. Fur-

thermore, at the end of the experiment, the last 10 sub-

jects were asked to draw a line segment corresponding to

the maximum displacement of their thumb when pressing

a virtual spring. The result (see Figure 11) indicates an



overestimation of the displacement of their thumbs varying

from 2 to 8 times the actual displacement, with an average

overestimation of 5 times, which means that the illusion of

their proprioceptive sense is strong– as if they perceived the

✕✟✖✘✗✦✙✧✛✯✜✘✗✦✣✰✣ TM as a non isometric device.

The experiment relies on the “illusion” concept which

could be used in many more VR applications. The visual

dominance was used to influence the perception of the dis-

placement of a virtual spring. Indeed, people found that the

virtual spring model was realistic. This virtual spring con-

stitutes a multi-modal virtual object whose perceptive cues

are uncoupled and provided by different sensory modalities

on the haptic and visual modes.
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Maximum thumb
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Figure 11. Thumb displacement perceived

Future work deals with the evaluation of pseudo-haptic

use of isometric interfaces. First, further evaluation of

the pseudo-haptic feedback through different perceptual

tasks should be performed such as discrimination of the

weight of objects. Secondly, a comparison with force

feedback devices is also necessary to position the potential

of pseudo-haptic feedback. Finally, applications of pseudo-

haptic feedback on industrial tasks remain to be defined,

particularly when resorting to the 6 degrees of freedom

of the ✕✟✖✘✗✚✙✡✛✢✜✘✗✤✣✥✣ TM. A performance experiment will be

set up to measure if this illusion can be used to improve

performance in an industrial task.
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