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We study certain linear and antilinear symmetry generators and involution opera-
tors associated with pseudo-Hermitian Hamiltonians and show that the theory of
pseudo-Hermitian operators provides a simple explanation for the recent results of
Bender, Brody and Jond€guant-ph/0208076on theC P T-symmetry of a class of
PT-symmetric non-Hermitian Hamiltonians. We present a natural extension of
these results to the class of diagonalizable pseudo-Hermitian Hamiltddiavith

a discrete spectrum. In particular, we introduce generalized pé&Hiy time-
reversal(7), and charge-conjugatio®) operators and establish tiJ- andCP7-
invariance ofH. © 2003 American Institute of Physics.
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[. INTRODUCTION

Bender, Brody and Jonkkave recently shown that for the classRT-symmetric Hamilto-
nians

H,=p?+x3(ix)", ve[0w), (1)
one can use a complete set of eigenfunctigp$o construct a linear operat@r with the following
properties.

(1) C is an involution generating a symmetry of the system, i.e.,

c?=1, [C,H,]=0. 2)

In particular,H , is CP T-invariant.
(2) In the position representatiot, has the form

C<x,y>=§ () Pa(y), VxyeR. (3)

(3) The inner product

(dldh)cpr= LdX[C PTo(x) Jih(x) 4

is positive-definite, and the eigenfunctiotis are orthonormal with respect to this inner product,
ie.,

<¢m| $n>CPT: Omn- 5

(4) For v=0, where the Hamiltoniahl, is Hermitian,C=P.
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In Eq.(4), yis the contour in the complex plane used to impose the vanishing boundary conditions
for the eigenvalue problem d@f).2 For »<[0,2), ¥ may be taken as the real life

The purpose of this article is twofold. First, we show that the results of Ref. 1, in particular the
items 1-4 of the above list, may be explained as a straightforward application of the theory of
pseudo-Hermitian operato?s’ Second, we outline an extension of these results to the class of
quasi-Hermitian Hamiltonians, i.e., diagonalizable Hamiltonians with a real spectrum, and more
generally diagonalizable pseudo-Hermitian Hamiltoni@Bg.definition, a quasi-Hermitian opera-
tor is an operator obtained from a Hermitian operator by a similarity transfornfafiberefore it
is diagonalizable and has a real spectrum. The converse of this statement is also true; as shown in
Ref. 4, a diagonalizable operator with a real discrete spectrum is related to a Hermitian operator
through a similarity transformationln order to achieve this purpose, we explore certain symme-
try properties and involution operators associated with pseudo-Hermitian Hamiltonians.

The organization of the article is as follows. In Sec. I, we offer a discussion of pseudo-
Hermitian operators and their symmetries. In Sec. Ill, we consider the problem of the existence
and characterization of certain involution operators associated with a pseudo-Hermitian Hamil-
tonian. In Sec. IV, we explain the mathematical structure underlying the results of Ref. 1 for the
Hamiltonians(1) with »<[0,2) andy=R. In Sec. V, we introduce generalized parif), time-
reversal(7), and charge-conjugatioi®) operators for an arbitrary quasi-Hermitian Hamiltonkn
with a discrete spectrum and establish’ € andCP7Z-invariance oH. In Sec. VI, we extend the
results of Sec. V to the more general class of diagonalizable pseudo-Hermitian operators with a
discrete spectrum. Finally, in Sec. VII, we conclude the article with a summary of our main results.

II. PSEUDO-HERMITIAN OPERATORS AND THEIR SYMMETRIES

A linear operatoH acting in a Hilbert spacé{ is said to be pseudo-Hermitiaif there is a
linear, invertible, Hermitian operatoy: H— H such that

HT=7H» L. (6)

For a given pseudo-Hermitian operatdr 7 is not unique®® If one fixes a particulas, one says
that H is z-pseudo-Hermitian. In this casél is Hermitian with respect to the pseudo-inner
product

(Blvhy=(l ), 7

where( | ) is the inner product of{. [We use the term pseudo-inner product for a possibiy
not necessarilyindefinite inner product.

For diagonalizable Hamiltonians with a discrete spectrum pseudo-Hermiticity is equivalent to
the condition that the complex eigenvalues come in complex-conjugate’péne the discrete-
ness of the spectrum is not essential, and as shown in Ref. 7 the diagonalizability condition may
be replaced by a weaker block-diagonalizability condition. Furthermore, for the class of diagonal-
izable Hamiltonians with a discrete spectrum, pseudo-Hermiticity is also equivalent to the condi-
tion that the Hamiltonian admits an antilinear symma@try.

Pseudo-Hermiticity also provides a characterization of the reality of the spectrum for diago-
nalizable Hamiltonians with a discrete spectrum. Specifically it may be used to establish the
equivalence of the following statemetits.

(1) The spectrum is real.
(2) The Hamiltonian is quasi-Hermitian.
(3) Among the operators satisfying(6) there is a positive operatoy, , i.e., the Hamiltonian is
7.+ -pseudo-Hermitian for a positive operatgr, .
(4) The Hamiltonian is Hermitian with respect to a positive-definite inner product, namely

€1 Ny,
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One can actually construet, . Given a quasi-Hermitian Hamiltoniad and an associated com-
plete biorthonormal system{|y,,a),|¢,,a)}, which by definition satisfiesH|,,a)
= Enl wn 7a>’ HT|¢I’] 1a>: E: | ¢n ’a>’ and

<¢n ,a|¢m,b)= SnmOab 8
dn
2 2 n.a)(¢nal=1, )
dn
H=2 3 Edltn.a)(¢n.al, (10
one can expresg, according to
dn
7:=2 2 |$n.a)n.al. (11)

In Egs.(8)—(11) and throughout this article andm are spectral labels taking non-negative integer
values,d,, stands for the multiplicity or degree of degeneracyegf anda andb are degeneracy
labels.

It turns out thaty, is unique up to the choice of the biorthonormal systém, ,a),| ¢, ,a)}.°
However, besides, , there are nonpositive invertible Hermitian operatgrthat are also asso-
ciated with the same biorthonormal system and sati§fy These are determined by a sequence
o:={od} of signsoi== and have the general form

dn
ng==; a; ol dn,a)(bn,al. (12)

Obviously, the choice of the biorthonormal system is arbitrary. This means that given a complete
biorthonormal systenf) ¢, ,a),| ¢, ,a)}, we can express the most genesaatisfying(6) accord-
ing to (12) with | ¢, ,a) replaced with possibly different eigenvectorstof with the same eigen-

value ag ¢,,,a). Labeling these by, ,a) and noting that bothe,,a) and|¢,,a) form bases of
H, we have ¢, ,a)=A'| ¢, ,a) for some invertible linear operatér. {—H. Clearly, the vectors

|'<?>n ,a) and|<~/fn ,a):=A"1|y,,a) form a complete biorthonormal system. Furthermore, the opera-
tor A commutes with the Hamiltonian, and

n=ATy,A. (13

This proves the following proposition. Here we include a direct proof for completeness.

Proposition 1:For a given quasi-Hermitian Hamiltonia with a complete biorthonormal
system{ |, ,a),| #,,a)}, the most general Hermitian invertible linear operagosatisfying(6) is
given by (13) whereA is an invertible linear operator commuting with the Hamilton{arsym-
metry generatgrand o ={o3} is a sequence of signsi= +.

Proof: Let % be an arbitrary Hermitian invertible linear operator satisfyifg Then one can
easily check thaiX:= 1;1177 commutes withH.2 Therefore,X is an invertible linear operator
generating a symmetry dfl. This implies thatX and H have simultaneous eigenvectors. In
particular,X has the form

dn

X=; > Xaoltn @) b, (14)

a,b=1
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wherexj,, are complex coefficients. Expressiggn terms of 7, andX and using Eqs(14), (1)
and(8), we find

dn
n= 77+X=§n: ab2:1 X0p| n @) (bn ,b|. (15)

Taking the adjoint of both sides of this equation and making use of the Hermiticify ofe have
Xap =Xpa- Hence the matrices” with entriesxy, are Hermitian; they may be diagonalized:

X"=U" Xiag U™, (16)

where u" are d,xd, unitary matrices and<3iag are d,xd, diagonal real matrices. Next, we
introduce

dn
U==§ abEzl Uyl ¥ @) (bn b,
dn
D=3 3 XL [4n,2)( a1, 17)

dn
A=DU=2 > IXJ| ulyvn,a)(dnbl,

n ab=1

whereug;, andxj denote the entries af” and the diagonal entries &fj,,, respectively. Note that
becausal” are unitary matrice$) is invertible. In fact, one can check by direct computation that

dn
U_l‘:E 2 U;;llﬂn,a><¢n,b|
n ab=1

satisfiesU "*U=UU'=1. Furthermore, becausé= 7;117;, it is invertible, its eigenvalues)
are nonzero, an® is also invertible. This in turn implies that is invertible. Finally, using Egs.
(15)—(17), (12), (12), (8) and settingora:=x3/|x3|, we can compute
ATn,A= ; gc UL XoUps | én @) (g .b|= 7.
O

Another interesting property of quasi-Hermitian Hamiltonians with a discrete spectrum is that
they admit an exact antilinear symmetry. This follows from the observation that every diagonal-
izable pseudo-Hermitian Hamiltonian with a discrete spectrum is anti-pseudo-Hermitian with re-
spect to the antilinear operator

dn
T+’=; azl |¢n:a>*<¢n!ala (18

where * is the operation of the complex conjugation of numbers. In particular, fofgell| )
eH,

*(Blu)=(dlv)* =(il $).
Anti-pseudo-Hermiticity ofH with respect tor, means

Hf=7,H7 ' (19)
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Again, up to the choice of a complete biorthonormal systét8) is the unique antilinear, Her-
mitian, invertible operator satisfyind.9). This in turn leads to the following theorem. Again here
we include an explicit proof for completeness.

Proposition 2:For a given diagonalizable pseudo-Hermitian Hamiltorttamwith a complete
biorthonormal systerf| ¢, ,a),| ¢, ,a)}, the most general antilinear, Hermitian, invertible operator
satisfying(19) has the form

=ATr, A, (20)

whereA is an invertible linear operator commuting with

Proof: Let 7 be an arbitrary antilinear, Hermitian, invertible operator satisfyii). Then one
can easily check that:=7,*r commutes withH.® Therefore X is an invertible linear operator
generating a symmetry ¢ and having the forni14). Solving for 7 in X:= 77 and using(18),
(14), and(8), we have

dn
r=§ abEzl X0E| @)y { by bl (21)

Now, we recall that 7 is a Hermitian antilinear operator. Therefor@y,,a|7| ¢, ,b)
={i,,b| 74, ,a). Substituting(21) in this equation we findk),=xp,, i.e., the matricex”
formed out ofx}, are in general complex symmetric matrices. As shown in Ref. 10, the latter
admit a factorization of the form

x"=a"Ta", (22)

wherea" arenx n matrices and the superscriptenotes the transpose. Next, we introduce

dn
A’:; ab2:1 agb|¢n1a><¢nvb|i (23)

whereay, are entries of". Clearly,A commutes withH. Moreover, using Eqg18), (21)—(23),
and(8), we have

dn
Al A= > agiag|dn.a)*(dn.bl=r.

For a quasi-Hermitian Hamiltonian with a discrete spectrum, we can us&€Bqto define
antilinear analogs of the operators., namely

dn
7y=2 2, OHldn.a)*(¢n.al, (24)
where againoc={o%} is a sequence of signgi==. This is simply done by setting},

= (/o) * 8ap in (20).

Combining Eqgs(6) and(19), we see thaH commutes with
X:= 7]_17-' (25)

where  and 7 are linear and antilinear Hermitian, invertible, operators suchhkhet 7-pseudo-
Hermitian andranti-pseudo-Hermitian; they have the general ft13) and(20), respectively. In
particular if we setyp= 7, and =7, in (25), we find a set ofcanonical antilinear symmetry
generators:

X, =, r,=nitr,. (26)



J. Math. Phys., Vol. 44, No. 3, March 2003 Pseudo-Hermiticity and generalized symmetries 979

In view of Egs.(8) and(24) and the identity

dn
7,'=2 2 onlun.a)(ynal, (27)
we can easily calculate
dn
X,=2 2 oflun.a)x(¢n 8. (29

It is not difficult to show that in view of10), (8), and(28),

[, ,H]=0, (29
Xyl a)= o7l v @) (30
In particular,
Xo=nitro=nt, 3D
satisfies
[, ,H]=0, (32)
Xl ,a)=¢n.a). (33

Hence the antilinear symmetry generated Xy is an exact symmetry. The converse of this
statement is also valid. That is, if a diagonalizable Hamiltonian with a discrete spectrum admits an
exact symmetry generated by an invertible antilinear operator, then its spectrum 1sitréesl;
quasi-Hermitian. A direct consequence of this statement is that if a diagonalizable pseudo-
Hermitian Hamiltonian with a discrete spectrum has nonreal eigenvalues, then it cannot support
exact antilinear symmetries. Such a Hamiltonian always admits antilinear symméitiethese
symmetries are necessarily broken.

We can repeat the above analysis of quasi-Hermitian Hamiltonians for the more general
diagonalizable pseudo-Hermitian Hamiltonians with a discrete spectPufor the latter Hamil-
tonians nonreal eigenvalues come in complex-conjugate pairs with identical multiplicity, so we
identify the spectral labet with vy, v, , or v_ depending on whether the imaginary partef
is zero, positive, or negative, respectively. In this case, E8js:(10), with n=vy,v. andm
=po.p=, are still valid,d, =d, , and the analog of the positive operafaf) is the operator

d

v d,
1= 2 |$paldpal+2 X (16, 8K, 2+, a) (e, a). (39

a=

Here we usev to denote the common value of. .

It is not difficult to see that the proof of Proposition 1 extends to the class of diagonalizable
pseudo-Hermitian Hamiltonians with a discrete spectrum; it yields the following generalization of
Proposition 1, see also Ref. 5.

Proposition 3:For a given diagonalizable pseudo-Hermitian Hamiltorttamwith a complete
biorthonormal systenf| ¢,,a),| ¢,,a)}, the most general Hermitian invertible linear operator
satisfying (6) is given by (13) where A is an invertible linear operator commuting with the
Hamiltonian,
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dVo d,
10=2 2 oo |ba)bal+ 2 2 (14, a)Ke, .al+|s, a) e, al), (39
vg a=1 v a=1
and o:{a?,o} is a sequence of signs,f’}O: +.
Similarly, one can show that every diagonalizable pseudo-Hermitian Hamiltéhiaith a

discrete spectrum admits antilinear symmetries generate@®y For instance, we have the
canonical antilinear symmetry generat¢26) where nowy_. is given by(34) and

d d

o= 2 Oy lba(bgalt 2 2 (16, a)x(s, alt]b, k(s al). (39
vy a= v a=

We can express these symmetry generators according to

d”o d,
Xe=2 2 oy al+ 2 2 (1, a)x(b, a4y, a)x(s, a), (37
vy a= v a=

where we have used Eq@6), (34), (36), and(8) and the identity

dy, d,
7,0 =2 2 o lhga)(dhpal+ 2 X (v @), el +le, a)(y, al). (39
vg a= v a=

Next, we observe that in light of Eq&L0), (8), and(37),

[X,,H]=0, (39

0-30| lﬂvol a> if n= Vo,
X ,a)y= _ 40
J0n,) o) i e (40)

In particular, the operatdi31) satisfies

[X, ,H]=0, (47

|, @), if n=wyg,
Xy |y ,a)= (42)

|1//,,:, a)y, if n=v..
Therefore, X, generate symmetries éf which are, however, broken.

[ll. INVOLUTION OPERATORS ASSOCIATED WITH A PSEUDO-HERMITIAN
HAMILTONIAN

Among the basic properties of the T, andP T operatorgwithin the scalar/bosonic quantum
mechanicp is that they are involutions of the Hilbert space, i.e., their square is the identity
operator. In this section we study the problem of the existence and characterization of certain
involutions of the Hilbert space which are associated with a given pseudo-Hermitian Hamiltonian.

Proposition 4:The operators, := 5, 17, and X, := 5, 7, are involutions.

Proof: according to Eqs(11), (12), and(8), we have

d

Yo dV
S,=2 2, ol ltga)dualt 2 2 (v, a) (e, al+ly, a)e, a). @3
vg a= v a=

Squaring this expression and usi(®), we find S(Z,z 1. Similarly, we haveﬁ(lz,z 1. O
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Corollary 1: Every diagonalizable pseudo-Hermitian Hamiltonkwith a discrete spectrum
admits a symmetry generated by a linear involut®and a symmetry generated by an antilinear
involution3, i.e.,[H,S]=[H,2]=0 andS?*=32=1.

Proof: Again we recall that because, and 5, satisfy (6), the linear operatoiS=S,
= 77;1770 commutes with the HamiltoniahTherefore, in view of Proposition 4§ and> = X, are
involutions generating symmetries Hf. Clearly, S is linear whereag is antilinear. O

Corollary 2: Let H be a diagonalizable Hamiltonian with a discrete spectrum. THeis
pseudo-Hermitian if and only if it admits an antilinear symmetry generated by an involution.

Proof: If H is pseudo-Hermitian, then according to Proposition 4 it admits such a symmetry.
Conversely, suppose thit admits such a symmetry. Then because this is an antilinear symmetry,
H must be pseudo-Hermitian. O

Proposition 5: A diagonalizable HamiltoniarH with a discrete spectrum is anti-pseudo-
Hermitian with respect to a Hermitian antilinear involution if and only if there is a complete
biorthonormal systen|,,a),|#,,a)} satisfying

(¢n.além.b)=(m.bl ¢, 8). (44)

Proof: SupposeH is anti-pseudo-Hermitian with respect to a Hermitian antilinear involution
7. Then there is a complete biorthonormal systét,,a),|¢,,a)} for which 7=7,. Now,
imposing the condition that?=1 and using Eq(8), one finds(44). Conversely, one can check
that if a complete biorthonormal systeffy,,,a),|¢,,a)} satisfies this equation, the Hermitian
antilinear operator, given by(18) is an involution. As we mentioned above and shown in Ref.
5, H is anti-pseudo-Hermitian with respect to this operator. O

Corollary 3: A pseudo-Hermitian Hamiltoniahl is anti-pseudo-Hermitian with respect to a
Hermitian antilinear involution if and only if for every complete biorthonormal system
{|#n,a),|¢n,a)} there is an invertible linear symmetry generatosatisfying

(AAT)_1| ’ﬁn !a><¢m 1b|(AAT)_1| ‘pn ,a) = 5km5bc- (45)

dn
; agl (.

Proof: According to Proposition 5, anti-pseudo-Hermiticity lofwith respect to a Hermitian
antilinear involution is equivalent to the existence of a complete biorthonormal system

{[%n.8),¢n,a)} satisfying
(bn.a] b bYy= (U, b1y ,0). (46)

Now, let{| ¢, ,a),|¢,,a)} be an arbitrary complete biorthonormal system. Then there is a linear
invertible symmetry generatak satisfying|¢, ,a)=A"'|¢,,a) and|$,,a)=A'|¢,,a). Substi-
tuting these relations if46), we find

(#n .8l AAT by ) = (ihim bl (AAT) "y ). (47)

Next, we multiply{ # ,c|(AAT) "4, ,a) by both sides 0f47) and sum oven anda. This yields

(45). Conversely, assuming the existence of an invertible symmetry gendratatisfying (45),

one can easily check that the complete biorthonormal system defin|é17fj1 ty):=A"|y,,a) and
|bn,a):=AT|y, ,a) satisfies(46). O

Equation(47) is particularly useful as it gives the necessary and sufficient conditions for a

given invertible Hermitian antilinear operatesatisfying(19) to be an involution. For example, in
order to find the necessary and sufficient conditions under whjabf Eq. (36) is an involution,

we write 7,=A'7, A, where

d

Yo

dl/
A=2 2 (Jol)* (el dual+ 2 2 (v a)(8, 2+ 9, a)e, al),

L) a=1
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and substitute this equation {47). This yields the following conditions:

(Guppal by b)y=0% ab (1,0l ,2), (48)
(Gupal . 0)=05 (., .bly,,a), (49)
(by.,8 b, D) =(,. bl 3). (50)

Proposition 6:A diagonalizable Hamiltoniakl with a discrete spectrum is pseudo-Hermitian
with respect to a Hermitian linear involution if and only if there is a complete biorthonormal
system{|¢,,a),|#n,8)}, with n=v,,v. as above, and a sequence of signs{o?; } such that

(b1l by b) =03 o, (.8l ¥,.b), (51
(brpaldy, by=0b (.8l .b), (52
(60,8, D) =(v,_.al,_b). (53

Proof: This follows from a similar argument as the one used in the proof of Proposition 5. It
is based on the observation thatakes the canonical forit85) in some complete biorthonormal
system{| 4, ,a),| b,,a)} and that in this system the conditiesf=1 is equivalent to Eqg51)—

(53). O

Corollary 4: Let H be a diagonalizable pseudo-Hermitian Hamiltonknwith a discrete
spectrum and a complete biorthonormal sys{g, ,a),|#,,a)}. Then the operators, of (36)
and 5, of (35) are involutions if and only if Eq48)—(50) and (51)—(53) are satisfied. Further-
more, in this case

[7:75]=0. (54

Proof: The equivalence of Eq$48)—(50) and(51)—(53) with the condition that-, and %, are
involutions follows from Corollary 4 and Proposition 6. Finally, in view of the identities:

1 _ -1
17](7_7]()' 1

:7-0_

dn
rll=§ a; [ @)y ., (55)

and Eqs(36), (35), (38), and(8), we have

_ -1_ -1_ -1_
ToeNoe=ToNe —T+N+ = N+T4 = NoTq-

IV. APPLICATION TO HAMILTONIANS (1) WITH y=R

Consider the class d® T-symmetric Hamiltonian$d, of Eq. (1) with »[0,2), y=R, and
H=L?(R). Then, following Ref. 1, we may choose a set of eigenvedipgs of H,, satisfying

PT|yn)=im). (56)

Because the eigenvalues ldf, are nondegenerate, we have dropped the degeneracyalatiel
(Note that what we denote Ky, are eigenvectors dfi'. This is the notation used in Refs. 3-7
which differs from that of Ref. 1.Also as usual the®T operator is defined by Ty (X) :=[ ¢
(—x)1* where|y) is an arbitrary state vector represented by the wave funet{of). Moreover,
relying on the numerical evidenc¢hat is also used in Ref. 1, we assume the validity of the
completeness relation
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g (— 1) (X ha(y) = 8(x—Y), (57)

and the orthogonality condition

(¢m1¢n):(_1)n5mna (59
where the indefinite inner produ€t ) is defined by
(.9):= fRdX[PTcﬁ(X)]tﬁ(X)- (59
Introducing the functions
$n(X):=(=1)"P(x)*, (60)

which also belong td{=L?(R), and using Eqs(58) and(59) we can show that
(bmlthn) = jﬁdxqu(X)* Yn(¥)=(=1)"(&m,¥n) = Smn-
This coincides with the biorthonormality relati@8). Furthermore, we write Eq57) in the form
S(x=y) =2 $n(X)n(Y)* = 2 (X| bu)(Ynly),

which is equivalent to the completeness relati®h Therefore{|#,),|¢,)} forms a complete
biorthonormal system, and tHe T-symmetric Hamiltoniang1) are diagonalizabl@.Moreover,
because their spectrum is real and discrete, these Hamiltonians are examples of quasi-Hermitian
Hamiltonians having a discrete spectrum.

Next, we calculate

(QS,‘//):J'RdX ¢(_X)*l,[/(x)
= fRdx $00* Y(~X)
:fRdx d(X)*P(x)=(p|P|)={(b| e, 1)
where

(9l):= [ ax 600" 000). 62

According to Eq(61), the inner product59) is nothing but( | ))p . This observation together with
Egs.(58) and(60) implies

ng (—=1)" n)( bnl.- (63)

Comparing this equation witfl2), we see thaP is an example of the canonical operateys of
Eg. (12) with
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op=(=1)" (64)

This is another verification of the fact that the Hamiltonighsare P-pseudo-Hermitiari.
Note that as a result of E¢56), ¢,(—X)* = ¢,(x). This equation together witt60) implies

(bn(X):(—l)nlﬂn(—X), (65

<‘//m|'r/fn>:f]ﬂdx‘/’m(x)* ‘pn(x):fRdX‘/Im(_X)'pn(_x)*:fRdX’/’m(x)wn(x)*:<'/’n|'//m>y

(66)
(Daln) = [ x4
=(- 1)m+”fRdx¢m( —=X)" hn(=X)
:(_1)m+nfRdX¢m(X)*¢n(X):(_1)m+n<‘/’m|’pn>- (67)

In view of Eqgs.(64) and(67), the condition(51) of Propositions 6 holds. Therefore, E§3) is
consistent with the fact th& is an involution.
Next, we use Eq956) and(8) to calculate

PT:; |¢n> ol <¢n| (68)

Then, multiplying both sides of this equation Byand using Eqs(63) and (8), we find

T=§ (=1)" ) * (. (69)

This shows that the time-reversal operafois nothing but the canonical antilinear operatd4)
with o, given by (64). [This is consistent with the known fadhat theP T-symmetric standard
Hamiltonians of the formH = p2+ V(x;t) which haveR as their configuration space, in general,
and the Hamiltonianél) with v €[0,2) andy=R, in particular, arel-anti-pseudo-Hermitian. See
also Ref. 11] Again, in view of (66) and (67), we see that the conditiof#8) of Corollary 4 is
satisfied and the expressi¢®9) is consistent withr>=1.

Next, we consider the positive operatgr. for the Hamiltoniang(1) with »<[0,2) andy
=R. Because these Hamiltonians are pseudo-Hermitian with respect tozhotind P, they
admit a symmetry generated byjlp, This is a particular example of the symmetry genera®rs
of Proposition 4, wherey=n, 0= (—1)"=(—1)", andv. are absent. We can compué ‘P
using Eq.(43). Alternatively, we may use the identity

n:1=§ | ) (i (70)
together with Eqs(63) and(8). This yields
n:1P=§ (= )" g ) bnl- (71

The symmetry generatoy;lp has the following form in the position representation:
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<x|n11P|y>=§ (—1>“¢n<x>*¢n(y>=; D) Pn(y)- (72)

Comparing this equation with E@3), we see that;, 'P coincides with the charge-conjugation
operatorC of Ref. 1,

C=7.'P. (73

Next, we use Eqg.70), (69), (8), (67), (66), and(9) to compute

T7:= 2, (= 1) o) * (ol Sm){
=2, (=)™ $0) * (Yl )bl
=2 (= 1) o) * (Winl o) i
=2 (= 1) buXtrnl ) * (b
=2 (= 1)) * (bl

:% (= D)™ g inl ) * (bnl = 7' T= 5 'P’T=CPT. (74

Hence,

(o) cpr= fRdX[CPTqﬁ(X)]w(X)
=fRdX[T77+¢(X)]¢(X)

ZLRdX[md)(X)]* llf(X):deX¢(X)*[77+l/f(X)]=<¢|77+¢f>=<<¢|</f>>77+- (75

where we have used the fact that is Hermitian. Equationg75) show that theCP T-inner
product(4) advocated in Ref. 1 is nothing but the positive-definite inner pro(zlec)},?+ that was
extensively used in Ref. 9. Moreover, the orthonormality relaf®nis a simple consequence of
Egs.(12) and (8).

Comparing the expressions given (68) and (74) for the PT and CPT operators with Eq.
(28), we see that théT and CPT operators are specific examples of the canonical antilinear
symmetry generator8).

V. GENERALIZED P, T, AND C OPERATORS FOR QUASI-HERMITIAN OPERATORS

In the preceding section we explored the mathematical basis of the charge conjugation opera-
tor (3) for the Hamiltonians(1) with the choicey=R which is allowed forv[0,2). In this
section we will demonstrate that indeed the approach based on the theory of pseudo-Hermitian
operators applies to quasi-Hermitian Hamiltonians with a discrete spectrum in general and the
P T-symmetric Hamiltoniangl) with »e[0,) in particular.
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As we discussed in Sec. lll, every quasi-Hermitian Hamiltoriiawith a discrete spectrum is
7, -pseudo-Hermitian for a positive operatgr, , and thatH is Hermitian with respect to the
inner product{ | ), . This in turn implies the existence of a complete set of eigenvectors

|#n,@) of H such thaiy,) are orthonormal with respect ¢ | ), .
Lemma liLetH, 7., and|,,a) be as in the preceding paragraph, and

|¢n1a>’:77+|¢naa>a (76)
dn

7>==; 321 (=" ¢ ){bnl, 77)
dn

T:=§ gl (=1)" ) *{bnl, (78)
dn

C==§ gl (—=D)" b Y nl.- (79

Then we have the following.
(D) {| ¢y ,a),|¢n,a)} forms a complete biorthonormal system.
(2) 7, satisfies(11) and

7 =Ty, T (80)

(3) H is P-pseudo-Hermitian an@-anti-pseudo-Hermitian.
(4) PT andCP7, which have the form

d

m:; gl [, @)*(n.a, (81)
dn
CW=§ a; (=D)" ¢y, a)*( by .al, (82

are antilinear symmetry generators ahi a linear symmetry generator fbt; the corresponding
symmetries are exact, in particulak, ,a) satisfy

PTl4n,a)=,,a), (83)
CPT Y, a)=Clin,a)=(—1)"| ¢y, a). (84)
(5) P, 7, and( satisfy
(PT)*=C?=1, (85
C=n,P=Ty.TP. (86)

(6) The operators”? and7 are involutions if and only if

(=)™ bn.a| dm.0) = (¢hn .| .0} = (b bl ¥ ,a). 87

(7) If H is a Hermitian Hamiltonian¢ ~ 1P is a Hermitian invertible linear operator commut-
ing with H. In particular, if for alln anda, |¢,,a)=|#,,a), thenC="P.
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Proof: Statement 1 may be established by checking E)sand(9) directly. Statements 2—4
follow from these equations an@7)—(79). P7 andCP7T are respectively examples of the antilin-
ear symmetry generators, and X,,. Statement 5 is a result of Proposition 4; E&6) may be
checked by direct computation. Statement 6 is a consequence of Corollary 4. In order to prove
statement 7, we introduce

dl’]
A=S 3, vn @) un.al @

which is clearly a Hermitian invertible linear operator commuting withNow it suffices to use
(8) to establishAP=C. Finally, for the case thdip,,a)=|y,,a), Eq.(9) implies A =1. O

In view of the analogy with the systems studied in Sec. IV, we shall respectively call the
operatorsP, 7, andC the generalized parity, time-reversandcharge conjugatioroperators. The
following theorem follows as a direct consequence of Lemma 1.

Theorem 1: Every diagonalizable Hamiltonian with a real discrete spectrum is invariant
under the action of the generalized charge-conjugation opefaod the combined action of the
generalized parity and time-reversal symmetB7). In particular, every such Hamiltonian has
exactP7- and CPZ-symmetry.

Clearly for the Hamiltonian$l) with v€[0,2), the operator®, 7, andC coincide withP,T,
and C. For ve[2), we define the vectore,) according to(60) so that in the position
representation

m(x,y):; ¢n<x>¢n(y>*=§ P * dn(y),  VxyeR. (89)

Next, we note that Eqg56), (60), and consequentlg65) also hold forv e[ 2,). Using(65) and
(57), we can show that in the position representation

P(x,y>=§ (—1)"pn(X) n(¥)*
:; (= 1) (= X) h(—y)*

:; (= 1) (= X) hn(y)

=5(x+y)=P(x,y) Vx,yeR, (90

i.e., P andP have the same position representations. Furthermore, we can easily see that in view
of (81) and(56), P7=PT, so thatT and7 also have the same position representations. Finally, we
can employ(79) and (3) to infer thatC andC have the same position representations as well.

VI. GENERALIZED P, T, AND C OPERATORS FOR PSEUDO-HERMITIAN
HAMILTONIANS

The construction of the operatof3 7, andC may be easily generalized to the class of all
diagonalized pseudo-Hermitian operators with a discrete spectrum. Comparing the opggators
and X, for the quasi- and pseudo-Hermitian Hamiltonians discussed in Sec. lll, and noting that
according to Eqs(77), (81), and(82), P is an example ofp, and P7 andCPT are examples of
X, , we introduce

d d

L) v

P2 2 (1" a)dal+ 2 2 (6, .a)(4, 2

vg a=1 a=1

+1¢, .a) s, .al), (9
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d

Yo

dV
T=2 (-1 [$rpa)x(ipal+ 2 2 (¢, a)x(b, al+|e, a)x(s, 2,
L) a= v a=
(92

d

Yo

dV
C=2 (-1 [dpaldial+2 2 (14, a)¢, al+lv, a)s, .a), (939
L) a v a=

where we have used the conventions of Secs. Ill and IV.
Again we can check that Eq&5) and (86) hold. Furthermore,

d”o

dV
PI=2 2 hpa)x(bpal+ 2 2 (o, )k (g, al+ |y, (¢, al), (99

d

Yo

dV
CPT=2 (-1 2 [ihpay(dual+ 2 2 (4, a)x(e, al+]g, a)x(¢, al).
Yo a= v a=
(95

In view of Egs.(93)—(95), Proposition 4, and the construction given in the proof of Corollary 1,
we can check that the operat@tsPZ, andCP7 are involutions of the Hilbert space commuting
with the HamiltonianH. Therefore, we have the following generalization of Theorem 1.

Theorem 2: Every diagonalizable pseudo-Hermitian Hamiltonkirwith a discrete spectrum
is invariant under the action af, PZ, andCP7. These operators which are involutions of the
Hilbert space generate broken symmetriegiof

We wish to conclude this section by pointing out that the operdfg andC are determined
by a complete biorthonormal system associated with the HamiltddiaAs the latter is unique
only up to invertible symmetries dfl, so are these operators.

VIl. CONCLUSION

In this article, we discussed certain properties of pseudo-Hermitian operators and demon-
strated their application in understanding the mathematical origin and exploring generalizations of
the findings of Bender, Brody, and Jorfen particular, for arbitrary diagonalizable pseudo-
Hermitian Hamiltonians with a discrete spectrum, we introduced generalized parity, time-reversal,
and charge-conjugation operators that coincide with the ordinary parity, time-reversal, and charge-
conjugation for thePT-symmetric Hamiltoniang1). The generalized parity-time-reversal and
charge conjugation operators are examples of generators of a set of generic symmetries of every
diagonalizable pseudo-Hermitian Hamiltonians having a discrete spectrum. A common property of
these symmetries is that they are generated by involutions. The generalized parity and time-
reversal operators are, however, involutions only under certain conditions.
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