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Pseudo-Hermiticity and generalized PT- and
CPT-symmetries

Ali Mostafazadeha)
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We study certain linear and antilinear symmetry generators and involution opera-
tors associated with pseudo-Hermitian Hamiltonians and show that the theory of
pseudo-Hermitian operators provides a simple explanation for the recent results of
Bender, Brody and Jones~quant-ph/0208076! on theCPT-symmetry of a class of
PT-symmetric non-Hermitian Hamiltonians. We present a natural extension of
these results to the class of diagonalizable pseudo-Hermitian HamiltoniansH with
a discrete spectrum. In particular, we introduce generalized parity~P!, time-
reversal~T!, and charge-conjugation~C! operators and establish thePT- andCPT-
invariance ofH. © 2003 American Institute of Physics.
@DOI: 10.1063/1.1539304#

I. INTRODUCTION

Bender, Brody and Jones1 have recently shown that for the class ofPT-symmetric Hamilto-
nians

Hn5p21x2~ ix !n, nP@0,̀ !, ~1!

one can use a complete set of eigenfunctionscn to construct a linear operatorC with the following
properties.

~1! C is an involution generating a symmetry of the system, i.e.,

C251, @C,Hn#50. ~2!

In particular,Hn is CPT-invariant.
~2! In the position representation,C has the form

C~x,y!5(
n

cn~x!cn~y!, ;x,yPR. ~3!

~3! The inner product

^fuc&CPTªE
g
dx @CPTf~x!#c~x! ~4!

is positive-definite, and the eigenfunctionscn are orthonormal with respect to this inner product,
i.e.,

^cmucn&CPT5dmn . ~5!

~4! For n50, where the HamiltonianH0 is Hermitian,C5P.

a!Electronic mail: amostafazadeh@ku.edu.tr
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In Eq. ~4!, g is the contour in the complex plane used to impose the vanishing boundary conditions
for the eigenvalue problem of~1!.2 For nP@0,2), g may be taken as the real lineR.

The purpose of this article is twofold. First, we show that the results of Ref. 1, in particular the
items 1–4 of the above list, may be explained as a straightforward application of the theory of
pseudo-Hermitian operators.3–7 Second, we outline an extension of these results to the class of
quasi-Hermitian Hamiltonians, i.e., diagonalizable Hamiltonians with a real spectrum, and more
generally diagonalizable pseudo-Hermitian Hamiltonians.~By definition, a quasi-Hermitian opera-
tor is an operator obtained from a Hermitian operator by a similarity transformation.8 Therefore it
is diagonalizable and has a real spectrum. The converse of this statement is also true; as shown in
Ref. 4, a diagonalizable operator with a real discrete spectrum is related to a Hermitian operator
through a similarity transformation.! In order to achieve this purpose, we explore certain symme-
try properties and involution operators associated with pseudo-Hermitian Hamiltonians.

The organization of the article is as follows. In Sec. II, we offer a discussion of pseudo-
Hermitian operators and their symmetries. In Sec. III, we consider the problem of the existence
and characterization of certain involution operators associated with a pseudo-Hermitian Hamil-
tonian. In Sec. IV, we explain the mathematical structure underlying the results of Ref. 1 for the
Hamiltonians~1! with nP@0,2) andg5R. In Sec. V, we introduce generalized parity~P!, time-
reversal~T!, and charge-conjugation~C! operators for an arbitrary quasi-Hermitian HamiltonianH
with a discrete spectrum and establish thePT- andCPT-invariance ofH. In Sec. VI, we extend the
results of Sec. V to the more general class of diagonalizable pseudo-Hermitian operators with a
discrete spectrum. Finally, in Sec. VII, we conclude the article with a summary of our main results.

II. PSEUDO-HERMITIAN OPERATORS AND THEIR SYMMETRIES

A linear operatorH acting in a Hilbert spaceH is said to be pseudo-Hermitian3 if there is a
linear, invertible, Hermitian operatorh:H→H such that

H†5hHh21. ~6!

For a given pseudo-Hermitian operatorH, h is not unique.6,9 If one fixes a particularh, one says
that H is h-pseudo-Hermitian. In this case,H is Hermitian with respect to the pseudo-inner
product

^̂ fuc&&hª^fuhc&, ~7!

where^ u & is the inner product ofH. @We use the term pseudo-inner product for a possibly~but
not necessarily! indefinite inner product.#

For diagonalizable Hamiltonians with a discrete spectrum pseudo-Hermiticity is equivalent to
the condition that the complex eigenvalues come in complex-conjugate pairs.3 Here the discrete-
ness of the spectrum is not essential, and as shown in Ref. 7 the diagonalizability condition may
be replaced by a weaker block-diagonalizability condition. Furthermore, for the class of diagonal-
izable Hamiltonians with a discrete spectrum, pseudo-Hermiticity is also equivalent to the condi-
tion that the Hamiltonian admits an antilinear symmetry.5

Pseudo-Hermiticity also provides a characterization of the reality of the spectrum for diago-
nalizable Hamiltonians with a discrete spectrum. Specifically it may be used to establish the
equivalence of the following statements.4

~1! The spectrum is real.
~2! The Hamiltonian is quasi-Hermitian.
~3! Among the operatorsh satisfying~6! there is a positive operatorh1 , i.e., the Hamiltonian is

h1-pseudo-Hermitian for a positive operatorh1 .
~4! The Hamiltonian is Hermitian with respect to a positive-definite inner product, namely

^̂ u &&h1
.5,6
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One can actually constructh1 . Given a quasi-Hermitian HamiltonianH and an associated com-
plete biorthonormal system$ucn ,a&,ufn ,a&%, which by definition satisfies Hucn ,a&
5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, and

^fn ,aucm ,b&5dnmdab , ~8!

(
n

(
a51

dn

ucn ,a&^fn ,au51, ~9!

H5(
n

(
a51

dn

Enucn ,a&^fn ,au, ~10!

one can expressh1 according to

h15(
n

(
a51

dn

ufn ,a&^fn ,au. ~11!

In Eqs.~8!–~11! and throughout this articlen andm are spectral labels taking non-negative integer
values,dn stands for the multiplicity or degree of degeneracy ofEn , anda andb are degeneracy
labels.

It turns out thath1 is unique up to the choice of the biorthonormal system$ucn ,a&,ufn ,a&%.6

However, besidesh1 , there are nonpositive invertible Hermitian operatorsh that are also asso-
ciated with the same biorthonormal system and satisfy~6!. These are determined by a sequence
sª$sn

a% of signssn
a56 and have the general form

hsª(
n

(
a51

dn

sn
aufn ,a&^fn ,au. ~12!

Obviously, the choice of the biorthonormal system is arbitrary. This means that given a complete
biorthonormal system$ucn ,a&,ufn ,a&%, we can express the most generalh satisfying~6! accord-
ing to ~12! with ufn ,a& replaced with possibly different eigenvectors ofH† with the same eigen-
value asufn ,a&. Labeling these byuf̃n ,a& and noting that bothufn ,a& anduf̃n ,a& form bases of
H, we haveuf̃n ,a&5A†ufn ,a& for some invertible linear operatorA:H→H. Clearly, the vectors
uf̃n ,a& anduc̃n ,a&ªA21ucn ,a& form a complete biorthonormal system. Furthermore, the opera-
tor A commutes with the Hamiltonian, and

h5A†hsA. ~13!

This proves the following proposition. Here we include a direct proof for completeness.
Proposition 1:For a given quasi-Hermitian HamiltonianH with a complete biorthonormal

system$ucn ,a&,ufn ,a&%, the most general Hermitian invertible linear operatorh satisfying~6! is
given by ~13! whereA is an invertible linear operator commuting with the Hamiltonian~a sym-
metry generator! ands5$sn

a% is a sequence of signssn
a56.

Proof: Let h be an arbitrary Hermitian invertible linear operator satisfying~6!. Then one can
easily check thatXªh1

21h commutes withH.3 Therefore,X is an invertible linear operator
generating a symmetry ofH. This implies thatX and H have simultaneous eigenvectors. In
particular,X has the form

X5(
n

(
a,b51

dn

xab
n ucn ,a&^fn ,bu, ~14!
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wherexab
n are complex coefficients. Expressingh in terms ofh1 andX and using Eqs.~14!, ~11!

and ~8!, we find

h5h1X5(
n

(
a,b51

dn

xab
n ufn ,a&^fn ,bu. ~15!

Taking the adjoint of both sides of this equation and making use of the Hermiticity ofh, we have
xab

n* 5xba
n . Hence the matricesxn with entriesxab

n are Hermitian; they may be diagonalized:

xn5un xdiag
n un†, ~16!

where un are dn3dn unitary matrices andxdiag
n are dn3dn diagonal real matrices. Next, we

introduce

Uª(
n

(
a,b51

dn

uab
n ucn ,a&^fn ,bu,

Dª(
n

(
a51

dn

Auxa
nu ucn ,a&^fn ,au, ~17!

AªDU5(
n

(
a,b51

dn

Auxa
nu uab

n ucn ,a&^fn ,bu,

whereuab
n andxa

n denote the entries ofun and the diagonal entries ofxdiag
n , respectively. Note that

becauseun are unitary matricesU is invertible. In fact, one can check by direct computation that

U21
ª(

n
(

a,b51

dn

uba* nucn ,a&^fn ,bu

satisfiesU21U5UU2151. Furthermore, becauseX5h1
21h, it is invertible, its eigenvaluesxa

n

are nonzero, andD is also invertible. This in turn implies thatA is invertible. Finally, using Eqs.
~15!–~17!, ~12!, ~11!, ~8! and settingsn

a
ªxa

n/uxa
nu, we can compute

A†hsA5(
n

(
abc

uac
n xc

nubc
n* ufn ,a&^fn ,bu5h.

h

Another interesting property of quasi-Hermitian Hamiltonians with a discrete spectrum is that
they admit an exact antilinear symmetry. This follows from the observation that every diagonal-
izable pseudo-Hermitian Hamiltonian with a discrete spectrum is anti-pseudo-Hermitian with re-
spect to the antilinear operator5

t1ª(
n

(
a51

dn

ufn ,a&!^fn ,au, ~18!

where! is the operation of the complex conjugation of numbers. In particular, for alluf&,uc&
PH,

! ^fuc&ª^fuc&* 5^cuf&.

Anti-pseudo-Hermiticity ofH with respect tot1 means

H†5t1Ht1
21 . ~19!
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Again, up to the choice of a complete biorthonormal system,~18! is the unique antilinear, Her-
mitian, invertible operator satisfying~19!. This in turn leads to the following theorem. Again here
we include an explicit proof for completeness.

Proposition 2:For a given diagonalizable pseudo-Hermitian HamiltonianH with a complete
biorthonormal system$ucn ,a&,ufn ,a&%, the most general antilinear, Hermitian, invertible operator
satisfying~19! has the form

t5A†t1A, ~20!

whereA is an invertible linear operator commuting withH.
Proof: Let t be an arbitrary antilinear, Hermitian, invertible operator satisfying~19!. Then one

can easily check thatXªt1
21t commutes withH.3 Therefore,X is an invertible linear operator

generating a symmetry ofH and having the form~14!. Solving fort in Xªt1
21t and using~18!,

~14!, and~8!, we have

t5(
n

(
a,b51

dn

xab
n* ufn ,a&!^fn ,bu. ~21!

Now, we recall that t is a Hermitian antilinear operator. Thereforêcn ,autucn ,b&
5^cn ,butucn ,a&. Substituting~21! in this equation we findxab

n 5xba
n , i.e., the matricesxn

formed out ofxab
n are in general complex symmetric matrices. As shown in Ref. 10, the latter

admit a factorization of the form

xn5anTan, ~22!

wherean aren3n matrices and the superscriptT denotes the transpose. Next, we introduce

Aª(
n

(
a,b51

dn

aab
n ucn ,a&^fn ,bu, ~23!

whereaab
n are entries ofan. Clearly,A commutes withH. Moreover, using Eqs.~18!, ~21!–~23!,

and ~8!, we have

A†t1A5(
n

(
a,b51

dn

aca
n* acb

n* ufn ,a&!^fn ,bu5t.

For a quasi-Hermitian Hamiltonian with a discrete spectrum, we can use Eq.~20! to define
antilinear analogs of the operatorshs , namely

tsª(
n

(
a51

dn

sn
aufn ,a&!^fn ,au, ~24!

where agains5$sn
a% is a sequence of signssn

a56. This is simply done by settingaab
n

5(Asn
a)* dab in ~20!.

Combining Eqs.~6! and ~19!, we see thatH commutes with

Xªh21t, ~25!

whereh andt are linear and antilinear Hermitian, invertible, operators such thatH is h-pseudo-
Hermitian andt-anti-pseudo-Hermitian; they have the general form~13! and~20!, respectively. In
particular if we seth5hs and t5t1 in ~25!, we find a set ofcanonical antilinear symmetry
generators:

Xsªhs
21t15h1

21ts . ~26!
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In view of Eqs.~8! and ~24! and the identity3

hs
215(

n
(
a51

dn

sn
aucn ,a&^cn ,au, ~27!

we can easily calculate

Xs5(
n

(
a51

dn

sn
aucn ,a&!^fn ,au. ~28!

It is not difficult to show that in view of~10!, ~8!, and~28!,

@Xs ,H#50, ~29!

Xsucn ,a&5sn
aucn ,a&. ~30!

In particular,

X1ªh1
21t15hs

21ts ~31!

satisfies

@X1 ,H#50, ~32!

X1ucn ,a&5ucn ,a&. ~33!

Hence the antilinear symmetry generated byXs is an exact symmetry. The converse of this
statement is also valid. That is, if a diagonalizable Hamiltonian with a discrete spectrum admits an
exact symmetry generated by an invertible antilinear operator, then its spectrum is real;4 it is
quasi-Hermitian. A direct consequence of this statement is that if a diagonalizable pseudo-
Hermitian Hamiltonian with a discrete spectrum has nonreal eigenvalues, then it cannot support
exact antilinear symmetries. Such a Hamiltonian always admits antilinear symmetries,5 but these
symmetries are necessarily broken.

We can repeat the above analysis of quasi-Hermitian Hamiltonians for the more general
diagonalizable pseudo-Hermitian Hamiltonians with a discrete spectrum.3,5 For the latter Hamil-
tonians nonreal eigenvalues come in complex-conjugate pairs with identical multiplicity, so we
identify the spectral labeln with n0 , n1 , or n2 depending on whether the imaginary part ofEn

is zero, positive, or negative, respectively. In this case, Eqs.~8!–~10!, with n5n0 ,n6 and m
5m0 ,m6 , are still valid,dn1

5dn2
, and the analog of the positive operator~11! is the operator

h15(
n0

(
a51

dn0

ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!. ~34!

Here we usen to denote the common value ofn6 .
It is not difficult to see that the proof of Proposition 1 extends to the class of diagonalizable

pseudo-Hermitian Hamiltonians with a discrete spectrum; it yields the following generalization of
Proposition 1, see also Ref. 5.

Proposition 3:For a given diagonalizable pseudo-Hermitian HamiltonianH with a complete
biorthonormal system$ucn ,a&,ufn ,a&%, the most general Hermitian invertible linear operatorh
satisfying ~6! is given by ~13! where A is an invertible linear operator commuting with the
Hamiltonian,
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hsª(
n0

(
a51

dn0

sn0

a ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!, ~35!

ands5$sn0

a % is a sequence of signssn0

a 56.

Similarly, one can show that every diagonalizable pseudo-Hermitian HamiltonianH with a
discrete spectrum admits antilinear symmetries generated by~25!. For instance, we have the
canonical antilinear symmetry generators~26! where nowh1 is given by~34! and

tsª(
n0

(
a51

dn0

sn0

a ufn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&!^fn1

,au1ufn2
,a&!^fn2

,au!. ~36!

We can express these symmetry generators according to

Xs5(
n0

(
a51

dn0

sn0

a ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!, ~37!

where we have used Eqs.~26!, ~34!, ~36!, and~8! and the identity3

hs
215(

n0
(
a51

dn0

sn0

a ucn0
,a&^cn0

,au1(
n

(
a51

dn

~ ucn1
,a&^cn2

,au1ucn2
,a&^cn1

,au!. ~38!

Next, we observe that in light of Eqs.~10!, ~8!, and~37!,

@Xs ,H#50, ~39!

Xsucn ,a&5Hsn0

a ucn0
, a& if n5n0 ,

ucn7
, a& if n5n6 .

~40!

In particular, the operator~31! satisfies

@X1 ,H#50, ~41!

X1ucn ,a&5H ucn0
, a&, if n5n0 ,

ucn7
, a&, if n5n6 .

~42!

Therefore,Xs generate symmetries ofH which are, however, broken.

III. INVOLUTION OPERATORS ASSOCIATED WITH A PSEUDO-HERMITIAN
HAMILTONIAN

Among the basic properties of theP, T, andPT operators~within the scalar/bosonic quantum
mechanics! is that they are involutions of the Hilbert space, i.e., their square is the identity
operator. In this section we study the problem of the existence and characterization of certain
involutions of the Hilbert space which are associated with a given pseudo-Hermitian Hamiltonian.

Proposition 4:The operatorsSsªh1
21hs andXsªh1

21ts are involutions.
Proof: according to Eqs.~11!, ~12!, and~8!, we have

Ss5(
n0

(
a51

dn0

sn0

a ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn2

,au1ucn2
,a&^fn1

,au!. ~43!

Squaring this expression and using~8!, we findSs
251. Similarly, we haveX s

251. h
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Corollary 1: Every diagonalizable pseudo-Hermitian HamiltonianH with a discrete spectrum
admits a symmetry generated by a linear involutionS and a symmetry generated by an antilinear
involution S, i.e., @H,S#5@H,S#50 andS25S251.

Proof: Again we recall that becauseh1 and hs satisfy ~6!, the linear operatorS5Ss

ªh1
21hs commutes with the Hamiltonian.3 Therefore, in view of Proposition 4,S andS5Xs are

involutions generating symmetries ofH. Clearly,S is linear whereasS is antilinear. h

Corollary 2: Let H be a diagonalizable Hamiltonian with a discrete spectrum. ThenH is
pseudo-Hermitian if and only if it admits an antilinear symmetry generated by an involution.

Proof: If H is pseudo-Hermitian, then according to Proposition 4 it admits such a symmetry.
Conversely, suppose thatH admits such a symmetry. Then because this is an antilinear symmetry,
H must be pseudo-Hermitian.5 h

Proposition 5: A diagonalizable HamiltonianH with a discrete spectrum is anti-pseudo-
Hermitian with respect to a Hermitian antilinear involution if and only if there is a complete
biorthonormal system$ucn ,a&,ufn ,a&% satisfying

^fn ,aufm ,b&5^cm ,bucn ,a&. ~44!

Proof: SupposeH is anti-pseudo-Hermitian with respect to a Hermitian antilinear involution
t. Then there is a complete biorthonormal system$ucn ,a&,ufn ,a&% for which t5t1 . Now,
imposing the condition thatt251 and using Eq.~8!, one finds~44!. Conversely, one can check
that if a complete biorthonormal system$ucn ,a&,ufn ,a&% satisfies this equation, the Hermitian
antilinear operatort1 given by~18! is an involution. As we mentioned above and shown in Ref.
5, H is anti-pseudo-Hermitian with respect to this operator. h

Corollary 3: A pseudo-Hermitian HamiltonianH is anti-pseudo-Hermitian with respect to a
Hermitian antilinear involution if and only if for every complete biorthonormal system
$ucn ,a&,ufn ,a&% there is an invertible linear symmetry generatorA satisfying

(
n

(
a51

dn

^ck ,cu~AA†!21ucn ,a&^cm ,bu~AA†!21ucn ,a&5dkmdbc . ~45!

Proof: According to Proposition 5, anti-pseudo-Hermiticity ofH with respect to a Hermitian
antilinear involution is equivalent to the existence of a complete biorthonormal system

$uc̃n ,a&,uf̃n ,a&% satisfying

^f̃n ,auf̃m ,b&5^c̃m ,buc̃n ,a&. ~46!

Now, let $ucn ,a&,ufn ,a&% be an arbitrary complete biorthonormal system. Then there is a linear
invertible symmetry generatorA satisfyinguc̃n ,a&5A21ucn ,a& and uf̃n ,a&5A†ufn ,a&. Substi-
tuting these relations in~46!, we find

^fn ,auAA†ufm ,b&5^cm ,bu~AA†!21ucn ,a&. ~47!

Next, we multiply^ck ,cu(AA†)21ucn ,a& by both sides of~47! and sum overn anda. This yields
~45!. Conversely, assuming the existence of an invertible symmetry generatorA satisfying~45!,
one can easily check that the complete biorthonormal system defined byuc̃n ,a&ªA21ucn ,a& and
uf̃n ,a&ªA†ucn ,a& satisfies~46!. h

Equation~47! is particularly useful as it gives the necessary and sufficient conditions for a
given invertible Hermitian antilinear operatort satisfying~19! to be an involution. For example, in
order to find the necessary and sufficient conditions under whichts of Eq. ~36! is an involution,
we write ts5A†t1A, where

A5(
n0

(
a51

dn0

~Asn0

a !* ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn1

,au1ucn2
,a&^fn2

,au!,
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and substitute this equation in~47!. This yields the following conditions:

^fn0
,aufm0

,b&5sn0

a sm0

b ^cm0
,bucn0

,a&, ~48!

^fn0
,aufm6

,b&5sn0

a ^cm6
,bucn0

,a&, ~49!

^fn6
,aufm6

,b&5^cm6
,bucn6

,a&. ~50!

Proposition 6:A diagonalizable HamiltonianH with a discrete spectrum is pseudo-Hermitian
with respect to a Hermitian linear involutionh if and only if there is a complete biorthonormal
system$ucn ,a&,ufn ,a&%, with n5n0 ,n6 as above, and a sequence of signss5$sn0

a % such that

^fn0
,aufm0

,b&5sn0

a sm0

b ^cn0
,aucm0

,b&, ~51!

^fn0
,aufm6

,b&5sn0

a ^cn0
,aucm7

,b&, ~52!

^fn6
,aufm6

,b&5^cn7
,aucm7

,b&. ~53!

Proof: This follows from a similar argument as the one used in the proof of Proposition 5. It
is based on the observation thath takes the canonical form~35! in some complete biorthonormal
system$ucn ,a&,ufn ,a&% and that in this system the conditionh251 is equivalent to Eqs.~51!–
~53!. h

Corollary 4: Let H be a diagonalizable pseudo-Hermitian HamiltonianH with a discrete
spectrum and a complete biorthonormal system$ucn ,a&,ufn ,a&%. Then the operatorsts of ~36!
andhs of ~35! are involutions if and only if Eqs.~48!–~50! and ~51!–~53! are satisfied. Further-
more, in this case

@ts ,hs#50. ~54!

Proof: The equivalence of Eqs.~48!–~50! and~51!–~53! with the condition thatts andhs are
involutions follows from Corollary 4 and Proposition 6. Finally, in view of the identities:ts

5ts
21 , hs5hs

21 ,

t1
215(

n
(
a51

dn

ucn ,a&!^cn ,au, ~55!

and Eqs.~36!, ~35!, ~38!, and~8!, we have

tshs5tshs
215t1h1

215h1t1
215hsts .

h

IV. APPLICATION TO HAMILTONIANS „1… WITH gÄR

Consider the class ofPT-symmetric HamiltoniansHn of Eq. ~1! with nP@0,2), g5R, and
H5L2(R). Then, following Ref. 1, we may choose a set of eigenvectorsucn& of Hn satisfying

PTucn&5ucn&. ~56!

Because the eigenvalues ofHn are nondegenerate, we have dropped the degeneracy labela51.
~Note that what we denote byufn& are eigenvectors ofH†. This is the notation used in Refs. 3–7
which differs from that of Ref. 1.! Also as usual thePT operator is defined byPTc(x)ª@c
(2x)#* whereuc& is an arbitrary state vector represented by the wave functionc(x). Moreover,
relying on the numerical evidence2 that is also used in Ref. 1, we assume the validity of the
completeness relation
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(
n

~21!ncn~x!cn~y!5d~x2y!, ~57!

and the orthogonality condition

~cm ,cn!5~21!ndmn , ~58!

where the indefinite inner product~ , ! is defined by

~f,c!ªE
R
dx@PTf~x!#c~x!. ~59!

Introducing the functions

fn~x!ª~21!ncn~x!* , ~60!

which also belong toH5L2(R), and using Eqs.~58! and ~59! we can show that

^fmucn&ªE
R
dxfm~x!* cn~x!5~21!m~cm ,cn!5dmn .

This coincides with the biorthonormality relation~8!. Furthermore, we write Eq.~57! in the form

d~x2y!5(
n

fn~x!cn~y!* 5(
n

^xufn&^cnuy&,

which is equivalent to the completeness relation~9!. Therefore,$ucn&,ufn&% forms a complete
biorthonormal system, and thePT-symmetric Hamiltonians~1! are diagonalizable.5 Moreover,
because their spectrum is real and discrete, these Hamiltonians are examples of quasi-Hermitian
Hamiltonians having a discrete spectrum.

Next, we calculate

~f,c!5E
R
dx f~2x!* c~x!

5E
R
dx f~x!* c~2x!

5E
R
dx f~x!* Pc~x!5^fuPuc&5 ^̂ fuc&&P , ~61!

where

^fuc&ªE
R
dx f~x!* c~x!. ~62!

According to Eq.~61!, the inner product~59! is nothing but̂^ u &&P . This observation together with
Eqs.~58! and ~60! implies

P5(
n

~21!nufn&^fnu. ~63!

Comparing this equation with~12!, we see thatP is an example of the canonical operatorshs of
Eq. ~12! with
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sn5~21!n. ~64!

This is another verification of the fact that the Hamiltonians~1! areP-pseudo-Hermitian.3

Note that as a result of Eq.~56!, cn(2x)* 5cn(x). This equation together with~60! implies

fn~x!5~21!ncn~2x!, ~65!

^cmucn&5E
R
dxcm~x!* cn~x!5E

R
dxcm~2x!cn~2x!* 5E

R
dxcm~x!cn~x!* 5^cnucm&,

~66!

^fmufn&5E
R
dxfm~x!* fn

5~21!m1nE
R
dxcm~2x!* cn~2x!

5~21!m1nE
R
dxcm~x!* cn~x!5~21!m1n^cmucn&. ~67!

In view of Eqs.~64! and ~67!, the condition~51! of Propositions 6 holds. Therefore, Eq.~63! is
consistent with the fact thatP is an involution.

Next, we use Eqs.~56! and ~8! to calculate

PT5(
n

ucn& ! ^fnu. ~68!

Then, multiplying both sides of this equation byP and using Eqs.~63! and ~8!, we find

T5(
n

~21!nufn& ! ^fnu. ~69!

This shows that the time-reversal operatorT is nothing but the canonical antilinear operator~24!
with sn given by ~64!. @This is consistent with the known fact5 that thePT-symmetric standard
Hamiltonians of the formH5p21V(x;t) which haveR as their configuration space, in general,
and the Hamiltonians~1! with nP@0,2) andg5R, in particular, areT-anti-pseudo-Hermitian. See
also Ref. 11.# Again, in view of ~66! and ~67!, we see that the condition~48! of Corollary 4 is
satisfied and the expression~69! is consistent withT251.

Next, we consider the positive operatorh1 for the Hamiltonians~1! with nP@0,2) andg
5R. Because these Hamiltonians are pseudo-Hermitian with respect to bothh1 and P, they
admit a symmetry generated byh1

21P. This is a particular example of the symmetry generatorsS
of Proposition 4, wheren05n, sn0

5(21)n05(21)n, andn6 are absent. We can computeh1
21P

using Eq.~43!. Alternatively, we may use the identity3

h1
215(

n
ucn&^cnu ~70!

together with Eqs.~63! and ~8!. This yields

h1
21P5(

n
~21!nucn&^fnu. ~71!

The symmetry generatorh1
21P has the following form in the position representation:
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^xuh1
21Puy&5(

n
~21!ncn~x!* fn~y!5(

n
cn~x!cn~y!. ~72!

Comparing this equation with Eq.~3!, we see thath1
21P coincides with the charge-conjugation

operatorC of Ref. 1,

C5h1
21P. ~73!

Next, we use Eqs.~70!, ~69!, ~8!, ~67!, ~66!, and~9! to compute

Th15(
nm

~21!nufn& ! ^fnufm&^fmu

5(
nm

~21!mufn& ! ^cnucm&^fmu

5(
nm

~21!mufn& ! ^cmucn&^fmu

5(
nm

~21!mufn&^cnucm& ! ^fmu

5(
m

~21!mucm& ! ^fmu

5(
nm

~21!mucm&^cmufn& ! ^fnu5h1
21T5h1

21P2T5CPT. ~74!

Hence,

^fuc&CPT5E
R
dx @CPTf~x!#c~x!

5E
R
dx @Th1f~x!#c~x!

5E
R
dx @h1f~x!#* c~x!5E

R
dx f~x!* @h1c~x!#5^fuh1c&5 ^̂ fuc&&h1

, ~75!

where we have used the fact thath1 is Hermitian. Equations~75! show that theCPT-inner
product~4! advocated in Ref. 1 is nothing but the positive-definite inner product^̂ u &&h1

that was
extensively used in Ref. 9. Moreover, the orthonormality relation~5! is a simple consequence of
Eqs.~12! and ~8!.

Comparing the expressions given in~68! and ~74! for the PT and CPT operators with Eq.
~28!, we see that thePT and CPT operators are specific examples of the canonical antilinear
symmetry generators~28!.

V. GENERALIZED P, T, AND C OPERATORS FOR QUASI-HERMITIAN OPERATORS

In the preceding section we explored the mathematical basis of the charge conjugation opera-
tor ~3! for the Hamiltonians~1! with the choiceg5R which is allowed fornP@0,2). In this
section we will demonstrate that indeed the approach based on the theory of pseudo-Hermitian
operators applies to quasi-Hermitian Hamiltonians with a discrete spectrum in general and the
PT-symmetric Hamiltonians~1! with nP@0,̀ ) in particular.
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As we discussed in Sec. III, every quasi-Hermitian HamiltonianH with a discrete spectrum is
h1-pseudo-Hermitian for a positive operatorh1 , and thatH is Hermitian with respect to the
inner product^̂ u &&h1

. This in turn implies the existence of a complete set of eigenvectors
ucn ,a& of H such thatucn& are orthonormal with respect tô̂ u &&h1

.
Lemma 1:Let H, h1 , anducn ,a& be as in the preceding paragraph, and

ufn ,a&ªh1ucn ,a&, ~76!

Pª(
n

(
a51

dn

~21!nufn &^fn u, ~77!

Tª(
n

(
a51

dn

~21!nufn &!^fn u, ~78!

Cª(
n

(
a51

dn

~21!nucn &^fn u. ~79!

Then we have the following.
~1! $ucn ,a&,ufn ,a&% forms a complete biorthonormal system.
~2! h1 satisfies~11! and

h1
215Th1T. ~80!

~3! H is P-pseudo-Hermitian andT-anti-pseudo-Hermitian.
~4! PT andCPT, which have the form

PT5(
n

(
a51

dn

ucn ,a&!^fn ,au, ~81!

CPT5(
n

(
a51

dn

~21!nucn ,a&!^fn ,au, ~82!

are antilinear symmetry generators andC is a linear symmetry generator forH; the corresponding
symmetries are exact, in particularucn ,a& satisfy

PT ucn ,a&5ucn ,a&, ~83!

CPT ucn ,a&5Cucn ,a&5~21!nucn ,a&. ~84!

~5! P, T, andC satisfy

~PT !25C 251, ~85!

C5h1
21P5Th1TP. ~86!

~6! The operatorsP andT are involutions if and only if

~21!m1n^fn ,aufm ,b&5^cn ,aucm ,b&5^cm ,bucn ,a&. ~87!

~7! If H is a Hermitian Hamiltonian,C 21P is a Hermitian invertible linear operator commut-
ing with H. In particular, if for alln anda, ufn ,a&5ucn ,a&, thenC5P.
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Proof: Statement 1 may be established by checking Eqs.~8! and~9! directly. Statements 2–4
follow from these equations and~77!–~79!. PT andCPT are respectively examples of the antilin-
ear symmetry generatorsX1 andXs . Statement 5 is a result of Proposition 4; Eq.~86! may be
checked by direct computation. Statement 6 is a consequence of Corollary 4. In order to prove
statement 7, we introduce

Lª(
n

(
a51

dn

ucn ,a&^cn ,au, ~88!

which is clearly a Hermitian invertible linear operator commuting withH. Now it suffices to use
~8! to establishLP5C. Finally, for the case thatufn ,a&5ucn ,a&, Eq. ~9! implies L51. h

In view of the analogy with the systems studied in Sec. IV, we shall respectively call the
operatorsP, T, andC thegeneralized parity, time-reversal, andcharge conjugationoperators. The
following theorem follows as a direct consequence of Lemma 1.

Theorem 1: Every diagonalizable Hamiltonian with a real discrete spectrum is invariant
under the action of the generalized charge-conjugation operatorC and the combined action of the
generalized parity and time-reversal symmetry~PT !. In particular, every such Hamiltonian has
exactPT- andCPT-symmetry.

Clearly for the Hamiltonians~1! with nP@0,2), the operatorsP, T, andC coincide withP,T,
and C. For nP@2,̀ ), we define the vectorsufn& according to~60! so that in the position
representation

h1~x,y!5(
n

fn~x!fn~y!* 5(
n

cn~x!* cn~y!, ;x,yPR. ~89!

Next, we note that Eqs.~56!, ~60!, and consequently~65! also hold fornP@2,̀ ). Using ~65! and
~57!, we can show that in the position representation

P~x,y!5(
n

~21!nfn~x!fn~y!*

5(
n

~21!ncn~2x!cn~2y!*

5(
n

~21!ncn~2x!cn~y!

5d~x1y!5P~x,y! ;x,yPR, ~90!

i.e., P andP have the same position representations. Furthermore, we can easily see that in view
of ~81! and~56!, PT5PT, so thatT andT also have the same position representations. Finally, we
can employ~79! and ~3! to infer thatC andC have the same position representations as well.

VI. GENERALIZED P, T, AND C OPERATORS FOR PSEUDO-HERMITIAN
HAMILTONIANS

The construction of the operatorsP, T, andC may be easily generalized to the class of all
diagonalized pseudo-Hermitian operators with a discrete spectrum. Comparing the operatorshs

andXs for the quasi- and pseudo-Hermitian Hamiltonians discussed in Sec. III, and noting that
according to Eqs.~77!, ~81!, and~82!, P is an example ofhs andPT andCPT are examples of
Xs , we introduce

Pª(
n0

(
a51

dn0

~21!n0ufn0
,a&^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&^fn2

,au1ufn2
,a&^fn1

,au!, ~91!
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Tª(
n0

~21!n0(
a51

dn0

ufn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ufn1
,a&!^fn2

,au1ufn2
,a&!^fn1

,au!,

~92!

Cª(
n0

~21!n0(
a51

dn0

ucn0
,a&^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&^fn2

,au1ucn2
,a&^fn1

,au!, ~93!

where we have used the conventions of Secs. III and IV.
Again we can check that Eqs.~85! and ~86! hold. Furthermore,

PT5(
n0

(
a51

dn0

ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!, ~94!

CPT5(
n0

~21!n0(
a51

dn0

ucn0
,a&!^fn0

,au1(
n

(
a51

dn

~ ucn1
,a&!^fn2

,au1ucn2
,a&!^fn1

,au!.

~95!

In view of Eqs.~93!–~95!, Proposition 4, and the construction given in the proof of Corollary 1,
we can check that the operatorsC, PT, andCPT are involutions of the Hilbert space commuting
with the HamiltonianH. Therefore, we have the following generalization of Theorem 1.

Theorem 2: Every diagonalizable pseudo-Hermitian HamiltonianH with a discrete spectrum
is invariant under the action ofC, PT, and CPT. These operators which are involutions of the
Hilbert space generate broken symmetries ofH.

We wish to conclude this section by pointing out that the operatorsP, T, andC are determined
by a complete biorthonormal system associated with the HamiltonianH. As the latter is unique
only up to invertible symmetries ofH, so are these operators.

VII. CONCLUSION

In this article, we discussed certain properties of pseudo-Hermitian operators and demon-
strated their application in understanding the mathematical origin and exploring generalizations of
the findings of Bender, Brody, and Jones.1 In particular, for arbitrary diagonalizable pseudo-
Hermitian Hamiltonians with a discrete spectrum, we introduced generalized parity, time-reversal,
and charge-conjugation operators that coincide with the ordinary parity, time-reversal, and charge-
conjugation for thePT-symmetric Hamiltonians~1!. The generalized parity-time-reversal and
charge conjugation operators are examples of generators of a set of generic symmetries of every
diagonalizable pseudo-Hermitian Hamiltonians having a discrete spectrum. A common property of
these symmetries is that they are generated by involutions. The generalized parity and time-
reversal operators are, however, involutions only under certain conditions.
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