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Pseudo-Hermiticity for a class of nondiagonalizable
Hamiltonians

Ali Mostafazadeha)

Department of Mathematics, Koc¸ University,
Rumelifeneri Yolu, 80910 Sariyer, Istanbul, Turkey

~Received 8 July 2002; accepted 12 August 2002!

We give two characterization theorems for pseudo-Hermitian~possibly nondiago-
nalizable! Hamiltonians with a discrete spectrum that admit a block-diagonalization
with finite-dimensional diagonal blocks. In particular, we prove that for such an
operatorH the following statements are equivalent:~1! H is pseudo-Hermitian;~2!
the spectrum ofH consists of real and/or complex-conjugate pairs of eigenvalues
and the geometric multiplicity and the dimension of the diagonal blocks for the
complex-conjugate eigenvalues are identical;~3! H is Hermitian with respect to a
positive-semidefinite inner product. We further discuss the relevance of our findings
for the merging of a complex-conjugate pair of eigenvalues of diagonalizable
pseudo-Hermitian Hamiltonians in general, and the PT-symmetric Hamiltonians
and the effective Hamiltonian for a certain closed FRW minisuperspace quantum
cosmological model in particular. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1514834#

I. INTRODUCTION

In Refs. 1–5 we developed the notion of a pseudo-Hermitian operator and investigated its
various consequences in particular in connection with PT-symmetric quantum systems6 and two-
component formulation of the FRW minisuperspace quantum cosmology.7 Since the announce-
ment of the results of Ref. 1 several authors have explored the implications of
pseudo-Hermiticity.8 The main results reported in Refs. 1–5 were, however, based on the assump-
tion that the Hamiltonian of the system is diagonalizable and has a discrete spectrum. As demon-
strated in Ref. 5, the latter condition can be easily relaxed. Moreover, in Ref. 9 we showed,
without making any assumption about the diagonalizability of the Hamiltonian or discreteness of
its spectrum, that the results of Refs. 1 and 3 generalized to the class of all PT-symmetric standard
Hamiltonians havingR as their configuration space. This suggests that these results may be valid
under more general conditions. Our purpose in the present article is to generalize the results of
Ref. 1 to the class of possibly nondiagonalizable Hamiltonians that admit a block-diagonalization
with finite-dimensional diagonal blocks. This, in particular, includes all the matrix Hamiltonians.
It is also relevant to the accidental loss of diagonalizability due to the pseudo-Hermiticity-
preserving variations of diagonalizable pseudo-Hermitian Hamiltonians that lead to the merging of
complex-conjugate pairs of eigenvalues.

The organization of the article is as follows. In Sec. II, we discuss the basic properties of the
class of the Hamiltonians admitting a block-diagonalization with finite-dimensional diagonal
blocks. In Sec. III, we present two characterization theorems for pseudo-Hermitian Hamiltonians
belonging to this class. In Sec. IV, we study general 232 matrix Hamiltonians. In Sec. V, we
discuss an application of our results in quantum cosmology. Finally, in Sec. VI, we present our
concluding remarks.
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II. BLOCK-DIAGONALIZABLE HAMILTONIANS WITH FINITE-DIMENSIONAL DIAGONAL
BLOCKS

Consider a linear operatorH:H→H acting in a~separable! Hilbert spaceH and having a
discrete spectrum. Suppose that for every eigenvalueEn , there are positive integersgn ,pnPZ1

such that for alll PZ1,

dn,lªdim@ker~H2En1! l #5gn , if and only if l>pn . ~1!

This in particular means that

dn,1<dn,2<¯<dn,pn21<dn,pn
5gn . ~2!

The integerdn,1 is just the degree of degeneracy or the geometric multiplicity ofEn . In what
follows, we shall use the abbreviated notationdn for dn,1 and denote the degeneracy labels
1,2,...,dn by the letters from the beginning of the Latin alphabet.

The integergn is called the algebraic multiplicity ofEn . The condition~1! means that all the
eigenvalues ofH have finite algebraic multiplicity. Throughout this paper we shall assume that
this condition is satisfied and that there is a basis of the Hilbert space in whichH is block-diagonal
with diagonal blocks being finite-dimensional. In this case, we can always find a basis in which the
diagonal blocks have the canonical Jordan form,10 i.e., there is an invertible operatorA:H→H and
an orthonormal basis$un,a,i &% with n being the spectral label,aP$1,2,...,dn%, i
P$1,2,...,pn,a%, andpn,aPZ1, such that

A21HA5Hbª(
n

(
a51

dn S En(
i 51

pn,a

un,a,i &^n,a,i u1 (
i 51

pn,a21

un,a,i &^n,a,i 11u D . ~3!

Alternatively, letting

ucn ,a,i &ªAun,a,i &, ufn ,a,i &ªA21†un,a,i &, ~4!

we have

^cn ,a,i ufm ,b, j &5dmndabd i j , (
i

(
a51

dn

(
i 51

pn,a

ucn ,a,i &^fn ,a,i u51, ~5!

H5AHbA215(
n

(
a51

dn S En(
i 51

pn,a

ucn ,a,i &^fn ,a,i u1 (
i 51

pn,a21

ucn ,a,i &^fn ,a,i 11u D . ~6!

Note that according to Eqs.~5! and~6!, $ucn ,a,i &,ufn ,a,i &% is a complete biorthonormal system
for the Hilbert space and

Hucn ,a,1&5Enucn ,a,1&, ~7!

H†ufn ,a,pn,a&5En* ufn ,a,pn,a&. ~8!

Henceucn ,a,1& are the eigenvectors ofH and ufn ,a,pn,a& are the eigenvectors ofH†.
The numberspn,a represent the dimension of the Jordan block associated with the spectral

label n and the degeneracy labela. We shall refer to them as the Jordan dimensions. For a given
eigenvalueEn , the number of the corresponding Jordan blocks~which is equal to the geometric
multiplicity of En) and the Jordan dimensions are uniquely determined by the integersdn,l of ~1!
up to the permutations of the degeneracy labels.10 Note also that the algebraic multiplicity is the
sum of the Jordan dimensions,gnª(a51

dn pn,a .
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III. CONSEQUENCES OF PSEUDO-HERMITICITY

Theorem 1: Let H:H→H be a linear operator acting in a~separable! Hilbert spaceH.
Suppose that the spectrum ofH is discrete, its eigenvalues have finite algebraic multiplicity, and
that ~6! holds. Then,H is pseudo-Hermitian if and only if the eigenvalues ofH are either real or
come in complex-conjugate pairs and the geometric multiplicity and the Jordan dimensions of the
complex-conjugate eigenvalues coincide.

Proof: Suppose thatH is pseudo-Hermitian. Then, by definition,1 there is a Hermitian auto-
morphism~linear bijection mappingH ontoH! h:H→H such thatH†5hHh21. Now let En be
an arbitrary element of the spectrum ofH. Then, by virtue of Eqs.~7! and ~8!, for eacha
P$1,2,...,dn%, ucn ,a,1& is an eigenvector ofH with eigenvalueEn and ufn ,a,pn,a& is an eigen-
vector of H† with eigenvalueEn* . This in turn impliesHh21ufn ,a,pn,a&5h21H†ufn ,a,pn,a&
5En* h21ufn ,a,pn,a&. As h21 is an invertible operator,h21ufn ,a,pn,a&Þ0. HenceEn* also
belongs to the spectrum ofH. Next, note that because the eigenvalues ofH and consequentlyH†

have finite algebraic multiplicity, for everyl PZ1, kernel(H2En) l , kernel(H2En* ) l , and
kernel(H†2En* ) l are finite-dimensional subspaces ofH. Clearly, as a result of~6!, H andH† have
essentially the same Jordan block-diagonalization. In particular, the geometric multiplicity and the
Jordan dimensions ofEn* as an eigenvalue ofH† is the same as the geometric multiplicity and the
Jordan dimensions ofEn as an eigenvalue ofH. This implies that kernel(H†2En* ) l and
kernel(H2En) l have the same dimension. Thus they are isomorphic. Furthermore, using the fact
that h is an automorphism, kernel(H†2En* ) l is also isomorphic to

kernel@h21~H†2En* ! lh#5kernel~h21H†h2En* ! l5kernel~H2En* ! l .

Therefore, for everyl PZ1, kernel(H2En) l and kernel(H2En* ) l are isomorphic and conse-
quently have the same dimension. This in turns implies that the number of the Jordan blocks
associated withE and their dimensions are identical with those ofEn* , i.e., En andEn* have the
same geometric multiplicity, and up to permutations of the degeneracy labels they have identical
Jordan dimensions as well. Conversely, suppose that the eigenvalues ofH are either real or come
in complex-conjugate pairs and the geometric multiplicitydn and the Jordan dimensionspn,a of
the complex conjugate pairs of eigenvalues are identical. We shall setn5n0 ,n,n2 depending on
whether imaginary part ofEn is zero, positive, or negative. ThenEn25En* , dn25dn , for all a
P$1,2,...,dn%, pn2,a5pn,a , and Eq.~6! takes the form

H5(
n0

(
a51

dn0 S En0 (i 51

pn0 ,a

ucn0
,a,i &^fn0

,a,i u1 (
i 51

pn0 ,a21

ucn0
,a,i &^fn0

,a,i 11u D
1(

n
(
a51

dn F(
i 51

pn,a

~Enucn ,a,i &^fn ,a,i u1En* ucn2 ,a,i &^fn2 ,a,i u!

1 (
i 51

pn,a21

~ ucn ,a,i &^fn ,a,i 11u1ucn2 ,a,i &^fn2 ,a,i 11u!G . ~9!

Next, let

h~x,j!ª(
n0

(
a51

dn0

(
i 51

pn0 ,a

(
j 5pn0 ,a112 i

pn0 ,a

xn0 ,a,i 1 j ufn0
,a,i &^fn0

,a, j u

1(
n

(
a51

dn

(
i 51

pn,a

(
j 5pn,a112 i

pn,a

~jn,a,i 1 j ufn ,a,i &^fn2 ,a, j u1jn,a,i 1 j* ufn2 ,a, j &^fn ,a,i u!,

~10!

wherexn0 ,a,kPR, jn,a,kPC,
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xn0 ,a,pn0 ,a11Þ0Þjn,a,pn,a11 , ~11!

andx andj, respectively, stand for the sequences$xn0 ,a,k% and$jn,a,k%. It is not difficult to check
that, for all n5n0 ,n,n2, m5m0 ,m,m2, and the corresponding degeneracy labelsa,b and
Jordan block labelsi , j ,

^cn0
,a,i uh~x,j!ucm0

,b, j &5H dn0 ,m0
dabxn0 ,a,i 1 j , for i 1 j .pn0 ,a

0, otherwise;

^cn ,a,i uh~x,j!ucm2 ,b, j &5^cm2 ,a,i uh~x,j!ucn ,b, j &*

5H dn,mdabjn,a,i 1 j , for i 1 j .pn,a

0, otherwise;
~13!

and that the other matrix elements ofhªh(x,j), in the basis$ucn ,a, j &%, vanish. In view of Eqs.
~12!, ~13!, and~11!, h is a Hermitian automorphism. Furthermore, using Eqs.~5! and~9!–~11!, one
can check that it satisfieshH5H†h. Hence,H]

ªh21H†h5H, andH is h-pseudo-Hermitian.h

An immediate consequence of this theorem is the following
Corollary 1: Let H be as in Theorem 1. Then the pseudo-Hermiticity ofH is a necessary

condition for the reality of its spectrum.
Note that ~10! is not the most general expression for anh with respect to whichH is

h-pseudo-Hermitian. One can obtain more general expressions by performing appropriate basis
transformations.~These are the transformations that mix the basis vectors with different degen-
eracy labelsa but identical spectral labeln and the Jordan dimensionpn,a ). Similarly to the
diagonalizable case,4 one can also perform a change of basis to setxn0 ,a,k561 andjn,a,k51.
This is, however not the simplest choice forh. It is not difficult to check that the following simpler
choice works as well:

xn0 ,a,k5H 61, for k5pn0 ,a11,

0, otherwise,
jn,a,k5H 1, for k5pn,a11,

0, otherwise.
~14!

In this way one obtains the following set of simple canonical automorphisms with respect to which
H is h-pseudo-Hermitian:

h~s!ª(
n0

(
a51

dn0

sn0 ,aS (
i 51

pn0 ,a

ufn0
,a,i &^fn0

,a,pn0 ,a112 i u D
1(

n
(
a51

dn

(
i 51

pn,a

~ ufn ,a,i &^fn2 ,a,pn,a112 i u1ufn2 ,a,pn,a112 i &^fn ,a,i u!, ~15!

with sª$sn0 ,a% being a sequence of signs. A straightforward calculation shows that

h~s!21
ª(

n0
(
a51

dn0

sn0 ,aS (
i 51

pn0 ,a

ucn0
,a,i &^cn0

,a,pn0 ,a112 i u D
1(

n
(
a51

dn

(
i 51

pn,a

~ ucn ,a,i &^cn2 ,a,pn,a112 i u1ucn2 ,a,pn,a112 i &^cn ,a,i u!.

~16!
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If H is diagonalizable,pn,a51 and ~15! yields the expression for the canonical automor-
phisms given in Ref. 4. Again choosing all the signssn0 ,a to be positive yields a positive-
semidefinite~non-negative! h and a positive-semidefinite inner product,

^̂ c,f&&hª^cuhuf&. ~17!

However, even if the complex eigenvalues are absent this choice does not lead to a positive-
definite inner product on the Hilbert space unlessH is diagonalizable. This is because in general
there are defective~real! eigenvaluesEn0

; at least one of the Jordan dimensionspn0 ,a is greater
than 1; and according to~12! and~13!, ^̂ cn0

,a,1ucn0
,a,1&&h5^cn0

,a,1uhucnu0
,a,1&50. Hence the

corresponding eigenvectorucn0
,a,1& is null, and the inner product~17! is not positive-definite.

Theorem 2: Let H be as in Theorem 1. ThenH is pseudo- Hermitian if and only if it is
Hermitian with respect to a positive-semidefinite inner product^̂ , &&:H 2→C, i.e., for all f,c
PH, ^̂ f,Hc&&5 ^̂ Hf,c&&.

Proof: SupposeH is pseudo-Hermitian, then according to Theorem 1 it has real and/or
complex-conjugate pairs of eigenvalues with identical geometric multiplicity and Jordan dimen-
sions. According to the proof of this theorem, this implies thatH is pseudo-Hermitian with respect
to the automorphism~15! with sn0 ,a51 for all n0 and aP$1,2,...,dn0

%. The latter yields the
positive-semidefinite inner product~17! which satisfies, for allc,fPH,

^̂ f,Hc&&h5^fuhHuc&5^fuH†huc&5^Hfuhuc&5 ^̂ Hf,c&&h .

HenceH is Hermitian with respect to the inner product~17!. Conversely, letH be Hermitian with
respect to a positive-semidefinite inner product^̂ , &&. Let h:H→H be defined in terms of its
matrix elements according to, for allc,fPH,

^cuhuf&ª ^̂ c,f&&.

Then, becausê̂ , && is a sesquilinear, Hermitian, nondegenerate quadratic form,11 h is a linear,
Hermitian, automorphism. Furthermore, becauseH is Hermitian with respect tô̂ , && we have, for
all c,fPH,

^fuhHc&5 ^̂ f,Hc&&5 ^̂ Hf,c&&5^Hfuhuc&5^fuH†hc&.

Therefore,hH5H†h or H]
ªh21H†h5H, i.e., H is pseudo-Hermitian. h

IV. 2Ã2 MATRIX HAMILTONIANS

In Ref. 3, we showed that the pseudo-Hermiticity of a diagonalizable Hamiltonian is equiva-
lent to the presence of antilinear symmetries. The PT-symmetry studied in the literature6 is a
primary example. In general, such a Hamiltonian depends on certain continuous parameters whose
variation does not destroy the symmetry but changes the spectrum. In particular, it is possible that
under such variations complex-conjugate pairs of eigenvalues merge and produce real eigenvalues
or a real eigenvalue splits into a complex-conjugate pair of eigenvalues. This is a generic behavior
observed in the numerical studies of PT-symmetric Hamiltonians6 and naturally applies in the case
of general pseudo-Hermitian Hamiltonians. Now consider a diagonalizable pseudo-Hermitian
Hamiltonian with a discrete spectrum that undergoes a continuous pseudo-Hermiticity-preserving
perturbation. In general, such a perturbation may not preserve the diagonalizability of the
Hamiltonian.12 In particular, at the critical values of the perturbation parameter when two nonde-
generate complex-conjugate eigenvalues merge to produce a real eigenvalue, there is no guarantee
that the resulting eigenvalue is doubly degenerate. This observation underlies the importance of
the results of Sec. III in the study of the behavior of diagonalizable pseudo-Hermitian operators
undergoing arbitrary pseudo-Hermiticity-preserving perturbations.
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Consider the case that under such a perturbation a pair of complex-conjugate nondegenerate
eigenvalues cross while no other level-crossing occurs. In the vicinity of this level-crossing, one
can approximate the behavior of the Hamiltonian by a traceless 232 matrix Hamiltonian. In Ref.
4, we have studied the properties of general complex, traceless, diagonalizable, pseudo-Hermitian
232 matrix Hamiltonians. A traceless 232 matrix H with two nondegenerate eigenvalues is
pseudo-Hermitian if its determinant is a nonzero real number.4 As we explain below the converse
of this statement is also true. In particular, det(H),0 or det(H).0 depending on whether the
eigenvalues are real or imaginary. This means that the moduli spaceM of traceless pseudo-
Hermitian 232 matrices with two nondegenerate eigenvalues is a 5-dimensional subspace of the
8-dimensional spaceM (2,C) of all complex 232 matrices. The latter has the manifold structure
of C45R8. If we, respectively, denote the subsets of complex traceless 232 matrices, complex
traceless pseudo-Hermitian 232 matrices, and traceless Hermitian 232 matrices byM0 , M8,
andM0 , we have

M0 , M , M8 , M0 , M ~2,C!

uu uu uu

R3 R6 R8.

We can identifyM with the inverse image ofR2$0%,R25C under the continuous function
det:M(2,C)→C5R2. Noting thatR1 andR2 are disjoint, open, connected subsets ofC and det is
continuous, we infer thatM consists of two open connected components, namely

M 6
ª$HPMudetHPR6%.

This in turn implies that at a critical point of the parameters ofH where a level-crossing happens,
H fails to stay inM. This is also easily seen by realizing that becauseH is traceless, a level-
crossing can occur only if detH vanishes. Therefore, at the level-crossing eitherH50 or it is
nondiagonalizable.

In fact, it is not difficult to see that an elementX6 of M 6 has the general form

X65A61Eg21s3g, ~18!

whereE is a nonzero real number,g is an element of the special linear groupSL(2,C), ands3 is
the diagonal Pauli matrix diag(1,21). The form~18! indicates that the moduli spacesM 1 and
M 2 have the manifold structure ofF3(R2$0%) whereF is the 4-dimensional homogeneous
space:

FªSL~2,C!/UC~1!,

and

UC~1!ª$ezs3uzPC%5H S w 0

0 w21D UwPC2$0%J .

Furthermore, according to~18! the group elementsg that are uniquely parametrized by the points
of F play the same role for bothX1 andX2 . It is the factorA61 E in ~18! that differentiatesX1

andX2 . This suggests that we can identifyM 6 by F3L6, where

L1
ª$zPC2$0%uRe~z!50%5 imaginary axis in the complex plane with 0 removed,

L2
ª$zPC2$0%uIm~z!50%5real axis in the complex plane with 0 removed,

and ‘‘Re’’ and ‘‘Im’’ stand for the ‘‘real’’ and the ‘‘imaginary’’ part of the corresponding complex
variable, respectively.
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The above picture ofM confirms our earlier remark that at a level-crossing a traceless
pseudo-Hermitian 232 matrix,

H5S a b

c 2aD , ~19!

either vanishes identically:

a5b5c50, ~20!

or becomes nondiagonalizable:

a56 iAbc, uau21ubu21ucu2Þ0, ~21!

where iªA21. In the latter case, according to~6!, H has the formH5uc1&^f2u where
$uca&,ufa&% with a5$1,2% is a complete biorthonormal system inC2. In particular, we have the
following.

Proposition 1:Every traceless nondiagonalizable 232 matrix H is pseudo-Hermitian.
Proof: BecauseH is both traceless and nondiagonalizable, zero is the only eigenvalue ofH.

Hence according to Theorem 1, it must be pseudo-Hermitian. h

Theorem 3: A traceless 232 matrix H is pseudo-Hermitian if and only if it has a real
determinant, i.e.,

M85$HPM0udetHPR%.

Proof: If H is not diagonalizable, then according to Proposition 1 it is pseudo-Hermitian, and
the statement of Theorem 3 is trivially satisfied. IfH is diagonalizable, it is either identically zero,
in which case it is pseudo-Hermitian and has a real~zero! determinant, or it has two nondegenerate
eigenvalues. In the latter case, in view of a proposition proven in Ref. 4, the reality of the
determinant ofH implies its pseudo-Hermiticity. The converse is also true. For ifH is pseudo-
Hermitian, then its eigenvalues are either both real or they are complex-conjugate of one another.
BecauseH has a vanishing trace, in the latter case the eigenvalues must be imaginary. This in turn
implies that in both cases the determinant ofH is real. h

In light of Theorem 3, the possibility~20! that at a level-crossing a traceless pseudo-Hermitian
232 matrix Hamiltonian remains diagonalizable corresponds to a single point in the uncountably
infinite set of traceless nondiagonalizable pseudo-Hermitian 232 matricesM82M. To make
this observation more transparent, consider the pseudo-Hermitian matrix Hamiltonians~19! cor-
responding to the choicec50. Then detH52a2, aPL6, andHPM 6. Now suppose thata and
b are analytic functions of a real perturbation parameterl and that a level-crossing occurs atl
50. Then at the vicinity of the level-crossing, i.e., forulu,e for some sufficiently smalle
PR1,

a~l!'H arl, for 2e,l<0

ia il, for 0<l,e
, b~l!'b01b1l,

wherear and ai are nonzero real constants, andb0 and b1 are complex constants. Atl50, H
vanishes identically provided thatb05b(0)50. This is the only way in whichH can maintain its
diagonalizability. Clearly, forb0Þ0, H becomes nondiagonalizable atl50. In both casesa(0)
50PR is the only eigenvalue~alternatively detH50). Hence, according to Corollary 1~respec-
tively, Theorem 3!, H remains pseudo-Hermitian atl50. This example clearly shows that the loss
of diagonalizability at the crossing of the complex-conjugate eigenvalues is a generic behavior.
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V. APPLICATION

Consider the Wheeler–DeWitt equation for the closed FRW minisuperspace model with a real
massive scalar field,

F2
]2

]a2 1
]2

]w2 1e4a2m2e6aw2G c~a,w!50, ~22!

whereaª ln a, ‘‘ a’’ is the scale factor,w is a real scalar field of massm, and we have chosen a
particularly simple factor ordering and the natural units.13,14 The Wheeler–DeWitt equation~22!

can be written in the Schro¨dinger formi Ċ5HC whereC is the two-component wave function,7

Cª

1

&
S c1 i ċ

c2 i ċ
D ,

H is the effective Hamiltonian,

Hª

1

2 S 11D 211D

12D 212D D , ~23!

a dot means a derivative with respect toa, and

Dª2
]2

]w2 1m2e6aw22e4a. ~24!

The eigenvalue problem for the Hamiltonian~23! may be easily solved.7 The eigenvectors
Cn6 and the corresponding eigenvaluesEn6 have the form

Cn65
1

&
S 11En6

12En6
Dfn , En656Ame3a~2n11!2e4a56aAa@m~2n11!2a#, ~25!

where n50,1,2,..., fnªNnHn(m1/2e3a/2w)e2me3aw2/2, Hn are Hermite polynomials, andNn

ª@me3a/(p22nn! 2)#1/4 are normalization constants.
As seen from~25!, for a<m the spectrum ofH is real, and for a.m it consists of real and

complex-conjugate pairs of eigenvalues. In generalH is pseudo-Hermitian, becauseH†

5s3Hs3 . For aÞ(2n11)m, it is also diagonalizable. But at the critical valuesa5(2n11)m
where a real~namely the zero! eigenvalue splits into a complex-conjugate pair of eigenvalues or
the converse happens,H fails to be diagonalizable. The situation is precisely like the one dis-
cussed in Sec. IV. Here the perturbation parameter has the formlªa2(2n11)m. At the vicinity
of a level-crossing wherel→0, the operatorD and its eigenvectors do not undergo any discon-
tinuous changes. Therefore, one can approximate the span of the eigenvectorsCn2 andCn1 for
lÞ0 with the span of the vectors,

u1&5S fn

0 D , u2&5S 0
fn

D ,

where fn is evaluated ata5 ln a5ln@(2n11)m#, i.e., l50. Clearly, we can study the
level-crossing by confining our attention to this subspace. The above approximation becomes
exact in the limitl→0. In the subspace spanned byu1& andu2& the operatorD is identically zero.
Therefore, we can approximateD by a constant that tends to zero asl→0. Therefore, the
Hamiltonian ~23! takes the form of the matrix Hamiltonian~19! with a5(11D)/2,b5(21
1D)/2, andc5(12D)/2. In the limit l→0, D approaches zero, and the conditions~21! hold.
Hence, as expected,H becomes nondiagonalizable at the level-crossing.
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The above argument implies that in generalH is diagonalizable for all values of the scale
factor except the critical valuesa5(2n11)m. At these valuesH becomes nondiagonalizable as
one of its eigenvalues, namely the zero eigenvalue, becomes defective. The algebraic multiplicity
of this eigenvalue is two. In fact, the effective Hamiltonian~23! belongs to the class of block-
diagonalizable Hamiltonians discussed in Secs. II and III. Its canonical Jordan form consists of a
232 Jordan block corresponding to the zero eigenvalue and an infinite number of trivial (1
31) blocks corresponding to nonzero eigenvalues. The fact that this Hamiltonian is pseudo-
Hermitian for all values of the scale factor, its spectrum consists of real and complex- conjugate
eigenvalues, and its complex eigenvalues are not defective is consistent with the general results of
Sec. III.

VI. SUMMARY AND CONCLUSION

In this article we generalized our earlier results on diagonalizable pseudo-Hermitian Hamil-
tonians to a broad class of nondiagonalizable Hamiltonians. We showed that if a pseudo-Hermitian
Hamiltonian may be mapped to a block-diagonal operator with finite-dimensional blocks via a
similarity transformation, then the characterization theorems of Ref. 1 apply provided that the
number and size of the Jordan blocks for the complex-conjugate pairs of eigenvalues are identical.

We also discussed the implications of our findings for the phenomenon of the loss of diago-
nalizability at the crossing of the complex-conjugate pairs of eigenvalues of diagonalizable
pseudo-Hermitian Hamiltonians. For the latter, pseudo-Hermiticity is known to be equivalent
to the presence of an antilinear symmetry.3 This in particular means that our results are relevant
in the description of the PT-symmetric systems that are diagonalizable except in the case of
level-crossings of the complex-conjugate eigenvalues due to perturbations of the Hamiltonian. If
at the critical values of the perturbation parameter each level-crossing involves a finite number of
levels, then our results apply generally. This seems to be the case for various PT-symmetric
models studied in the literature. Specifically, at the critical values of the parameters of the PT-
symmetric systems that undergo a spontaneous PT-symmetry breaking, a pair of real eigenvalues
merge and a loss of diagonalizability similar to the one discussed in Sec. V occurs.

As a final note, we wish to emphasize that the results of this paper rely on the basic assump-
tion that the quantum system has a genuine separable Hilbert space in which the Hamiltonian acts.
For many PT-symmetric Hamiltonians the~inner product! structure of the function space in which
one solves for the eigenfunctions is not clear. In this context, the assumption of considering
non-Hermitian Hamiltonians acting in a separable Hilbert space may seem too restrictive. Never-
theless, we believe that this assumption provides a framework for exploring some of the intriguing
properties of a class of non-Hermitian Hamiltonians. This class includes many PT-symmetric
Hamiltonians as well as all the matrix Hamiltonians and the non-Hermitian Hamiltonians appear-
ing in the two-component formulation of the Klein–Gordon and Wheeler–DeWitt equations.
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