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We give two characterization theorems for pseudo-Hermifossibly nondiago-
nalizable Hamiltonians with a discrete spectrum that admit a block-diagonalization
with finite-dimensional diagonal blocks. In particular, we prove that for such an
operatorH the following statements are equivalefit) H is pseudo-Hermitian(2)

the spectrum of consists of real and/or complex-conjugate pairs of eigenvalues
and the geometric multiplicity and the dimension of the diagonal blocks for the
complex-conjugate eigenvalues are identi¢d);H is Hermitian with respect to a
positive-semidefinite inner product. We further discuss the relevance of our findings
for the merging of a complex-conjugate pair of eigenvalues of diagonalizable
pseudo-Hermitian Hamiltonians in general, and the PT-symmetric Hamiltonians
and the effective Hamiltonian for a certain closed FRW minisuperspace quantum
cosmological model in particular. @002 American Institute of Physics.

[DOI: 10.1063/1.1514834

I. INTRODUCTION

In Refs. 1-5 we developed the notion of a pseudo-Hermitian operator and investigated its
various consequences in particular in connection with PT-symmetric quantum sYsieansvo-
component formulation of the FRW minisuperspace quantum cosmbl8gye the announce-
ment of the results of Ref. 1 several authors have explored the implications of
pseudo-Hermiticity. The main results reported in Refs. 1-5 were, however, based on the assump-
tion that the Hamiltonian of the system is diagonalizable and has a discrete spectrum. As demon-
strated in Ref. 5, the latter condition can be easily relaxed. Moreover, in Ref. 9 we showed,
without making any assumption about the diagonalizability of the Hamiltonian or discreteness of
its spectrum, that the results of Refs. 1 and 3 generalized to the class of all PT-symmetric standard
Hamiltonians havind? as their configuration space. This suggests that these results may be valid
under more general conditions. Our purpose in the present article is to generalize the results of
Ref. 1 to the class of possibly nondiagonalizable Hamiltonians that admit a block-diagonalization
with finite-dimensional diagonal blocks. This, in particular, includes all the matrix Hamiltonians.

It is also relevant to the accidental loss of diagonalizability due to the pseudo-Hermiticity-
preserving variations of diagonalizable pseudo-Hermitian Hamiltonians that lead to the merging of
complex-conjugate pairs of eigenvalues.

The organization of the article is as follows. In Sec. Il, we discuss the basic properties of the
class of the Hamiltonians admitting a block-diagonalization with finite-dimensional diagonal
blocks. In Sec. Ill, we present two characterization theorems for pseudo-Hermitian Hamiltonians
belonging to this class. In Sec. IV, we study general2 matrix Hamiltonians. In Sec. V, we
discuss an application of our results in quantum cosmology. Finally, in Sec. VI, we present our
concluding remarks.

@Electronic mail: amostafazadeh@ku.edu.tr

0022-2488/2002/43(12)/6343/10/$19.00 6343 © 2002 American Institute of Physics



6344 J. Math. Phys., Vol. 43, No. 12, December 2002 Ali Mostafazadeh

II. BLOCK-DIAGONALIZABLE HAMILTONIANS WITH FINITE-DIMENSIONAL DIAGONAL
BLOCKS

Consider a linear operatdi: H—H acting in a(separable Hilbert spaceH and having a
discrete spectrum. Suppose that for every eigenvilyethere are positive integets, ,p,e 2"
such that for all e Z™,

dp:=dimlkefH-E,1)'1=g,, if and only if I=p,. (1)
This in particular means that
dn,lSdn,ZS' "gdn,pn—lgdn,pn:gn . 2

The integerd, ; is just the degree of degeneracy or the geometric multiplicitfof In what
follows, we shall use the abbreviated notatidp for d,,; and denote the degeneracy labels
1,2...,d, by the letters from the beginning of the Latin alphabet.

The integemg, is called the algebraic multiplicity dg,,. The condition(1) means that all the
eigenvalues oH have finite algebraic multiplicity. Throughout this paper we shall assume that
this condition is satisfied and that there is a basis of the Hilbert space in Whigblock-diagonal
with diagonal blocks being finite-dimensional. In this case, we can always find a basis in which the
diagonal blocks have the canonical Jordan féfmoe., there is an invertible operatar H— H and
an orthonormal basis{|n,a,i)} with n being the spectral labelae{1,2,..,d.}, i
e{1,2,..,pna}, andp, 7", such that

AleA:Hb==; :an Enipi: |n,a,i><n,a,i|+pn§;l In,a,iy(n,ai+1||. 3
Alternatively, letting
ln,a,i):=Aln,a,i), |¢n,a,i):=A"1Tna,i), (4)
we have
dn Pna
(il b D)= Sndandy . D D D i) ail=1 )

Pn,a Pna—1

dn
H=AHbA*1=§ a; Engllwn,a,i><¢n,a,i|+ El [, i) dn,ai+1]|. (6

Note that according to Eq¢5) and(6), {|#,,a,i),|¢,,a,i)} is a complete biorthonormal system
for the Hilbert space and

H|'pn’a-1>:En|‘r//n’a’l>v (7)

HT|¢n:a-pn,a>:E:|¢nvavpn,a>- (8)

Hence|y,,a,1) are the eigenvectors &f and|¢,,a,p, .) are the eigenvectors ot

The numbers, , represent the dimension of the Jordan block associated with the spectral
labeln and the degeneracy lab&l We shall refer to them as the Jordan dimensions. For a given
eigenvalueE,,, the number of the corresponding Jordan blogkkich is equal to the geometric
multiplicity of E,) and the Jordan dimensions are uniquely determined by the intégecs (1)
up to the permutations of the degeneracy lab&Note also that the algebraic multiplicity is the
sum of the Jordan dimensior@r,::Eg”:lpn,a.
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[lI. CONSEQUENCES OF PSEUDO-HERMITICITY

Theorem 1: Let H:H—"H be a linear operator acting in @eparablg Hilbert spaceH.
Suppose that the spectrumldfis discrete, its eigenvalues have finite algebraic multiplicity, and
that (6) holds. ThenH is pseudo-Hermitian if and only if the eigenvaluestbfare either real or
come in complex-conjugate pairs and the geometric multiplicity and the Jordan dimensions of the
complex-conjugate eigenvalues coincide.

Proof: Suppose thaH is pseudo-Hermitian. Then, by definitidrihere is a Hermitian auto-
morphism(linear bijection mapping{ onto ) 7: H—H such thatH™= »H 7. Now letE, be
an arbitrary element of the spectrum df. Then, by virtue of Eqs(7) and (8), for eacha
e{1,2,..,d.}, |#,,a,1) is an eigenvector ofi with eigenvalueE, and|#,,a,p, o) is an eigen-
vector of HT with eigenvalueE} . This in turn impliesH 1| ¢, ,a, Pna)= 7 HT ¢, ,a,Pn.a)
=E} % Yén.a,pna)- As n~ 1 is an invertible operatory ¢, ,a,pn a0 #0. HenceE} also
belongs to the spectrum &f. Next, note that because the eigenvaluebl aind consequentlyl "
have finite algebraic multiplicity, for everyeZ", kernelH—E,)', kernelH— E;‘)', and
kernelHT—E})! are finite-dimensional subspacestof Clearly, as a result ), H andH™ have
essentially the same Jordan block-diagonalization. In particular, the geometric multiplicity and the
Jordan dimensions &} as an eigenvalue ¢’ is the same as the geometric multiplicity and the
Jordan dimensions of, as an eigenvalue off. This implies that kerneH'— E:;)I and
kernelH —E,)' have the same dimension. Thus they are isomorphic. Furthermore, using the fact
that  is an automorphism, kerndl('—E})' is also isomorphic to

kernel »  Y(HT—EX)' y]=kemel 7 HTy»—E})'=keme(H—E})".

Therefore, for everyle Z*, kernelH—E,)' and kerneIH—E;ﬁ)' are isomorphic and conse-
quently have the same dimension. This in turns implies that the number of the Jordan blocks
associated witlE and their dimensions are identical with those&ff, i.e., E,, andE} have the

same geometric multiplicity, and up to permutations of the degeneracy labels they have identical
Jordan dimensions as well. Conversely, suppose that the eigenvaldearefeither real or come

in complex-conjugate pairs and the geometric multiplicdfyand the Jordan dimensioms, , of

the complex conjugate pairs of eigenvalues are identical. We shailkse}, v, v— depending on
whether imaginary part o, is zero, positive, or negative. Théh, =E} , d,_=d,, for all a
e{1,2,..,dn}, P,— a=P..a, and Eq.(6) takes the form

d ( pvo,a pVD,a_l

=3 3 | E 2 gaiXdi,ail+ 3, [dngaid(dgai+l
vy a= i= i=

d

v pV,a
+> > [Z (E ¢, .a,i)(¢,.a,i|+E5|y,_ a,i)o, ail)

v a=1|i=1
Pya—1
£ 3 (i) ai+ 1+ aiXs, aiti)| ©
Next, let
dvo pvo,a pVOa
77(Xa§)’: 2 . z ‘XVO,a,i+j|¢V0’a’i><¢vo’a’j|
vg a=1 i=1 l:pvo,a+1_'
v pv,a pv,a
222 2 (EainldeaiXee adlt Eaile ai)éail,
(10)

wherex, axeR, §,akeC,
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XVO,a,pVO’a-qu&O#gv,a,py’aﬁ—l! (11)

andx and¢, respectively, stand for the sequen¢rs , v} and{&, a}. It is not difficult to check

that, for alln=vq,v,v—, m=puq,u,u—, and the corresponding degeneracy lakels and
Jordan block labels, |,

5VO,M05ava0,a,i+ji for i+j>pvo,a

0, otherwise;

<¢V0,a,i|n<x,§>|¢ﬂo,b,j>:{

(., n(%,6)ih,— b)) =(s,— .a,iln(x.&)|i,.bj)*

{ 51},,u.5abgv,a,i+jv for i+j>p1/,a
= , (13
0, otherwise;

and that the other matrix elementsof= 5(x,£), in the basig|,,a,j)}, vanish. In view of Egs.

(12), (13), and(11), »is a Hermitian automorphism. Furthermore, using E§sand(9)—(11), one

can check that it satisfiegH=HT7. Hence H*:=» *H'#=H, andH is 7-pseudo-Hermitiafl

An immediate consequence of this theorem is the following

Corollary 1: Let H be as in Theorem 1. Then the pseudo-Hermiticitytbiis a necessary
condition for the reality of its spectrum.

Note that(10) is not the most general expression for gnwith respect to whichH is
n7-pseudo-Hermitian. One can obtain more general expressions by performing appropriate basis
transformations(These are the transformations that mix the basis vectors with different degen-
eracy labelsa but identical spectral labet and the Jordan dimensiamy, ,). Similarly to the
diagonalizable castpne can also perform a change of basis toxset, k=1 andé, =1
This is, however not the simplest choice farlt is not difficult to check that the following simpler
choice works as well:

+1, for k=p, .+1, 1, for k=p,,+1,
XV ak™— (14)
O! ]

0, otherwise, g”’a’k:{O, otherwise.

In this way one obtains the following set of simple canonical automorphisms with respect to which
H is -pseudo-Hermitian:

duo pvo,a
()= 2 o( > |¢V0,a,i><¢yo,a,pyo,a+1—i|)

vg a=1

dV pv,a

+EV a; gl (I, i) b,—a,p,at1=i|+|d,—.ap,at1-i)s,.ail), (15

with 0'=={(TVOYa} being a sequence of signs. A straightforward calculation shows that

dvo puo,a
(o) =2 > o( 2 Iwyo,a,i><wyo,a,pyo,a+1—i|)
Vo i=1

a=1
d, pPya
+2V = |:21 (|¢v!a!i><¢1}7 vaipv,a+1_i|+|¢vf -a-Pu,a+1_i><%,a-i|)-

(16)
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If H is diagonalizablep, ,=1 and(15) yields the expression for the canonical automor-
phisms given in Ref. 4. Again choosing all the sig«mgoVa to be positive yields a positive-

semidefinite(non-negative » and a positive-semidefinite inner product,

(. dhy=(elml o). 17

However, even if the complex eigenvalues are absent this choice does not lead to a positive-
definite inner product on the Hilbert space unléesss diagonalizable. This is because in general
there are defectivereal) eigenvaluef_yo; at least one of the Jordan dimensiqn%,a is greater

than 1; and according td2) and(13), (¥, ,a,1|¢, ,a,1),= (¥, 2,1 7| ¢,,a,1) = 0. Hence the
corresponding eigenvect(oq{;,,o,a,b is null, and the inner producil7) is not positive-definite.

Theorem 2: Let H be as in Theorem 1. Thed is pseudo- Hermitian if and only if it is
Hermitian with respect to a positive-semidefinite inner prodge}):H2—C, i.e., for all ¢,y
eH, (. H)=(He,4).

Proof: SupposeH is pseudo-Hermitian, then according to Theorem 1 it has real and/or
complex-conjugate pairs of eigenvalues with identical geometric multiplicity and Jordan dimen-
sions. According to the proof of this theorem, this implies tHas pseudo-Hermitian with respect
to the automorphisni15) with o, ,=1 for all vy andae{1,2,...d,}. The latter yields the

positive-semidefinite inner produ¢t?) which satisfies, for ally, ¢ € H,

(. H),= (bl pHI)=(SIH ) =(H | nlp)=(H b, ¥},

HenceH is Hermitian with respect to the inner prodyt¥). Conversely, leH be Hermitian with
respect to a positive-semidefinite inner prod{(ct). Let »:H—H be defined in terms of its
matrix elements according to, for all, ¢ € H,

(Yl ) =(u. o).

Then, becaus€ , )) is a sesquilinear, Hermitian, nondegenerate quadratic formis a linear,
Hermitian, automorphism. Furthermore, becadsis Hermitian with respect t{, ) we have, for
all ,pe™H,

(BlnHy)= (. He)=(H e, u)=(Ho|n|v)=(SIH 7).

Therefore,yH=H"» or H¥:= 5 'HT»=H, i.e.,H is pseudo-Hermitian. O

IV. 2X2 MATRIX HAMILTONIANS

In Ref. 3, we showed that the pseudo-Hermiticity of a diagonalizable Hamiltonian is equiva-
lent to the presence of antilinear symmetries. The PT-symmetry studied in the littratue
primary example. In general, such a Hamiltonian depends on certain continuous parameters whose
variation does not destroy the symmetry but changes the spectrum. In particular, it is possible that
under such variations complex-conjugate pairs of eigenvalues merge and produce real eigenvalues
or a real eigenvalue splits into a complex-conjugate pair of eigenvalues. This is a generic behavior
observed in the numerical studies of PT-symmetric Hamiltofiiand naturally applies in the case
of general pseudo-Hermitian Hamiltonians. Now consider a diagonalizable pseudo-Hermitian
Hamiltonian with a discrete spectrum that undergoes a continuous pseudo-Hermiticity-preserving
perturbation. In general, such a perturbation may not preserve the diagonalizability of the
Hamiltonian!? In particular, at the critical values of the perturbation parameter when two nonde-
generate complex-conjugate eigenvalues merge to produce a real eigenvalue, there is no guarantee
that the resulting eigenvalue is doubly degenerate. This observation underlies the importance of
the results of Sec. Ill in the study of the behavior of diagonalizable pseudo-Hermitian operators
undergoing arbitrary pseudo-Hermiticity-preserving perturbations.
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Consider the case that under such a perturbation a pair of complex-conjugate nondegenerate
eigenvalues cross while no other level-crossing occurs. In the vicinity of this level-crossing, one
can approximate the behavior of the Hamiltonian by a tracelesd thatrix Hamiltonian. In Ref.

4, we have studied the properties of general complex, traceless, diagonalizable, pseudo-Hermitian
2X 2 matrix Hamiltonians. A tracelessX2 matrix H with two nondegenerate eigenvalues is
pseudo-Hermitian if its determinant is a nonzero real nurfilerwe explain below the converse

of this statement is also true. In particular, 480 or detd)>0 depending on whether the
eigenvalues are real or imaginary. This means that the moduli spacef traceless pseudo-
Hermitian 2< 2 matrices with two nondegenerate eigenvalues is a 5-dimensional subspace of the
8-dimensional spachkl (2,C) of all complex 2<2 matrices. The latter has the manifold structure

of C*=R8. If we, respectively, denote the subsets of complex traceles® thatrices, complex
traceless pseudo-Hermitianx2 matrices, and traceless Hermitiaixx 2 matrices byM,, M’,

and M,, we have

Mg € M C M C My C M(20)
| | l

R3 RS IR8.

We can identifyM with the inverse image df —{0} C R2=C under the continuous function
detM(2,C)—C=R2. Noting thatR* andR~ are disjoint, open, connected subsets.@nd det is
continuous, we infer that consists of two open connected components, namely

M *:={H e M|detH e R*}.

This in turn implies that at a critical point of the parametergiofvhere a level-crossing happens,
H fails to stay inM. This is also easily seen by realizing that becadses traceless, a level-
crossing can occur only if dét vanishes. Therefore, at the level-crossing eitHerO or it is
nondiagonalizable.

In fact, it is not difficult to see that an elemeXt. of M ~ has the general form

X.=+V*1Eg o0, (18

whereE is a nonzero real numbeg,is an element of the special linear gro8i(2,C), ando; is
the diagonal Pauli matrix diag,1). The form(18) indicates that the moduli spacéd © and
M~ have the manifold structure d¢f X (R—{0}) whereF is the 4-dimensional homogeneous
space:

F:=SL(2,0)/U1),

and

w
U{;(1)=={ez"3|zEC}=[( WEC—{O}}.

0 wt
Furthermore, according td8) the group elementg that are uniquely parametrized by the points
of F play the same role for bot, andX_ . Itis the factory=1 E in (18) that differentiates ,
andX_ . This suggests that we can identifyt = by FXL™*, where

L*:={ze C—{0}|Re(z)=0}=imaginary axis in the complex plane with 0 removed,

L™ :={ze C—{0}|Im(z)=0}=real axis in the complex plane with 0 removed,

and “Re” and “Im” stand for the “real” and the “imaginary” part of the corresponding complex
variable, respectively.
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The above picture ofM confirms our earlier remark that at a level-crossing a traceless
pseudo-Hermitian X 2 matrix,

a b
H=| _a), (19
either vanishes identically:
a=b=c=0, (20
or becomes nondiagonalizable:
a=+ibc, |al?+|b|2+]|c|2#0, (21)

where i:=\—1. In the latter case, according 1®), H has the formH=|1){$,| where
{|#a),] o)} with a={1,2} is a complete biorthonormal system . In particular, we have the
following.

Proposition 1:Every traceless nondiagonalizable 2 matrix H is pseudo-Hermitian.

Proof: BecauseH is both traceless and nondiagonalizable, zero is the only eigenvalde of
Hence according to Theorem 1, it must be pseudo-Hermitian. O

Theorem 3: A traceless X2 matrix H is pseudo-Hermitian if and only if it has a real
determinant, i.e.,

M’ ={H e My|detH e R}.

Proof: If H is not diagonalizable, then according to Proposition 1 it is pseudo-Hermitian, and
the statement of Theorem 3 is trivially satisfiedHlfis diagonalizable, it is either identically zero,
in which case it is pseudo-Hermitian and has a (eatg determinant, or it has two nondegenerate
eigenvalues. In the latter case, in view of a proposition proven in Ref. 4, the reality of the
determinant oH implies its pseudo-Hermiticity. The converse is also true. Fd iils pseudo-
Hermitian, then its eigenvalues are either both real or they are complex-conjugate of one another.
BecauseH has a vanishing trace, in the latter case the eigenvalues must be imaginary. This in turn
implies that in both cases the determinantbfs real. O

In light of Theorem 3, the possibilit§20) that at a level-crossing a traceless pseudo-Hermitian
2X 2 matrix Hamiltonian remains diagonalizable corresponds to a single point in the uncountably
infinite set of traceless nondiagonalizable pseudo-Hermitiar2 2natricesM’ — M. To make
this observation more transparent, consider the pseudo-Hermitian matrix Hamiltéh@aror-
responding to the choice=0. Then deH=—a?% aeL™, andH e M *. Now suppose tha and
b are analytic functions of a real perturbation paramatand that a level-crossing occursXat
=0. Then at the vicinity of the level-crossing, i.e., fot|<e for some sufficiently smalk
eR™,

aN, for —e<A=<O

a(\)~ b(\)~bg+b;\,

i\, for OsA<e’

wherea, and a; are nonzero real constants, abgl and b, are complex constants. At=0, H
vanishes identically provided thh=b(0)=0. This is the only way in whiclid can maintain its
diagonalizability. Clearly, foby# 0, H becomes nondiagonalizable Jat0. In both cases(0)
=0¢eR is the only eigenvalugalternatively deH=0). Hence, according to Corollary (tespec-
tively, Theorem 3, H remains pseudo-Hermitian &t= 0. This example clearly shows that the loss
of diagonalizability at the crossing of the complex-conjugate eigenvalues is a generic behavior.
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V. APPLICATION

Consider the Wheeler—DeWitt equation for the closed FRW minisuperspace model with a real
massive scalar field,

#? 3P
— 4 —— et —mPeBap?

aaZ 19(,02 l//‘(a,QD):O, (22)

wherea:=Ina, “a” is the scale factorgp is a real scalar field of masa, and we have chosen a
particularly simple factor ordering and the natural ufits! The Wheeler—DeWitt equatiof22)

can be written in the Schdinger formi ¥ =HW¥ whereW is the two-component wave functidn,

1 (yriy
“valy-iy)
H is the effective Hamiltonian,
1/1+D —-1+D -
“2l1-D -1-D)’ @3
a dot means a derivative with respectdp and
(92
D:=— _2+m2e6a¢2_e4a. (24)

de

The eigenvalue problem for the Hamiltoni&®3) may be easily solveiThe eigenvectors
V¥ ,. and the corresponding eigenvalugs. have the form

1 (1+En+

Y=o\ 1-Epe

) ¢, Epr=xyme**(2n+1)—e**==xaya[m(2n+1)—a], (25
where n=0,1,2,.., ¢,:=N,H (mY2e3*20)e"m"¢*2 1  are Hermite polynomials, andl,
:=[me3*/(w2%"n!?)]¥* are normalization constants.

As seen from(25), for a<m the spectrum ofd is real, and for & m it consists of real and
complex-conjugate pairs of eigenvalues. In generhlis pseudo-Hermitian, because’
=o3Ho3;. Fora#(2n+1)m, it is also diagonalizable. But at the critical valugs (2n+1)m
where a realnamely the zerpeigenvalue splits into a complex-conjugate pair of eigenvalues or
the converse happent], fails to be diagonalizable. The situation is precisely like the one dis-
cussed in Sec. IV. Here the perturbation parameter has theNesian— (2n+ 1)m. At the vicinity
of a level-crossing where — 0, the operatoD and its eigenvectors do not undergo any discon-
tinuous changes. Therefore, one can approximate the span of the eigendectoamnd ¥V ,, for
N #0 with the span of the vectors,

(8] 2-(2)

where ¢, is evaluated ata=Ina=In[(2n+1)m], i.e., A=0. Clearly, we can study the
level-crossing by confining our attention to this subspace. The above approximation becomes
exact in the limit\— 0. In the subspace spanned|y and|2) the operatoD is identically zero.
Therefore, we can approximaf@ by a constant that tends to zero ms-0. Therefore, the
Hamiltonian (23) takes the form of the matrix Hamiltonia(l9) with a=(1+D)/2b=(—-1

+D)/2, andc=(1—-D)/2. In the limit A\—0, D approaches zero, and the conditid@4) hold.

Hence, as expecte#li becomes nondiagonalizable at the level-crossing.



J. Math. Phys., Vol. 43, No. 12, December 2002 Pseudo-Hermiticity for a class of Hamiltonians 6351

The above argument implies that in generhlis diagonalizable for all values of the scale
factor except the critical values=(2n+1)m. At these value$d becomes nondiagonalizable as
one of its eigenvalues, namely the zero eigenvalue, becomes defective. The algebraic multiplicity
of this eigenvalue is two. In fact, the effective HamiltoniéB) belongs to the class of block-
diagonalizable Hamiltonians discussed in Secs. Il and Ill. Its canonical Jordan form consists of a
2X2 Jordan block corresponding to the zero eigenvalue and an infinite number of trivial (1
X 1) blocks corresponding to nonzero eigenvalues. The fact that this Hamiltonian is pseudo-
Hermitian for all values of the scale factor, its spectrum consists of real and complex- conjugate
eigenvalues, and its complex eigenvalues are not defective is consistent with the general results of
Sec. lll.

VI. SUMMARY AND CONCLUSION

In this article we generalized our earlier results on diagonalizable pseudo-Hermitian Hamil-
tonians to a broad class of nondiagonalizable Hamiltonians. We showed that if a pseudo-Hermitian
Hamiltonian may be mapped to a block-diagonal operator with finite-dimensional blocks via a
similarity transformation, then the characterization theorems of Ref. 1 apply provided that the
number and size of the Jordan blocks for the complex-conjugate pairs of eigenvalues are identical.

We also discussed the implications of our findings for the phenomenon of the loss of diago-
nalizability at the crossing of the complex-conjugate pairs of eigenvalues of diagonalizable
pseudo-Hermitian Hamiltonians. For the latter, pseudo-Hermiticity is known to be equivalent
to the presence of an antilinear symmétfhis in particular means that our results are relevant
in the description of the PT-symmetric systems that are diagonalizable except in the case of
level-crossings of the complex-conjugate eigenvalues due to perturbations of the Hamiltonian. If
at the critical values of the perturbation parameter each level-crossing involves a finite number of
levels, then our results apply generally. This seems to be the case for various PT-symmetric
models studied in the literature. Specifically, at the critical values of the parameters of the PT-
symmetric systems that undergo a spontaneous PT-symmetry breaking, a pair of real eigenvalues
merge and a loss of diagonalizability similar to the one discussed in Sec. V occurs.

As a final note, we wish to emphasize that the results of this paper rely on the basic assump-
tion that the quantum system has a genuine separable Hilbert space in which the Hamiltonian acts.
For many PT-symmetric Hamiltonians tkiener produck structure of the function space in which
one solves for the eigenfunctions is not clear. In this context, the assumption of considering
non-Hermitian Hamiltonians acting in a separable Hilbert space may seem too restrictive. Never-
theless, we believe that this assumption provides a framework for exploring some of the intriguing
properties of a class of non-Hermitian Hamiltonians. This class includes many PT-symmetric
Hamiltonians as well as all the matrix Hamiltonians and the non-Hermitian Hamiltonians appear-
ing in the two-component formulation of the Klein—Gordon and Wheeler—DeWitt equations.
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