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of pseudo-Hermiticity and the presence
of antilinear symmetries
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We show that a diagonalizable~non-Hermitian! Hamiltonian H is pseudo-
Hermitian if and only if it has an antilinear symmetry, i.e., a symmetry generated by
an invertible antilinear operator. This implies that the eigenvalues ofH are real or
come in complex conjugate pairs if and only ifH possesses such a symmetry. In
particular, the reality of the spectrum ofH implies the presence of an antilinear
symmetry. We further show that the spectrum ofH is real if and only if there is a
positive-definite inner-product on the Hilbert space with respect to whichH is
Hermitian or alternatively there is a pseudo-canonical transformation of the Hilbert
space that mapsH into a Hermitian operator. ©2002 American Institute of Phys-
ics. @DOI: 10.1063/1.1489072#

I. INTRODUCTION

The main reason for the recent interest inPT-symmetry1 is that the eigenvalues of every
PT-symmetric Hamiltonian are real or come in complex conjugate pairs. In particular, if the
PT-symmetry is exact, the spectrum of the Hamiltonian is real. In Ref. 2, we introduced the
concept of a pseudo-Hermitian operator and showed that the remarkable spectral properties of the
PT-symmetric Hamiltonians follow from their pseudo-Hermiticity. Under the assumption of the
diagonalizability~equivalently the existence of a complete biorthonormal set of energy eigenvec-
tors!, we obtained in Ref. 3 a complete characterization of all the~non-Hermitian! Hamiltonians
that have a real spectrum. Here we also pointed out that the spectral properties of the
PT-symmetric Hamiltonians are common to all Hamiltonians possessing an antilinear symmetry
~a symmetry generated by an invertible antilinear operator!. Therefore, at least for the class of
diagonalizable Hamiltonians, presence of an antilinear symmetry implies pseudo-Hermiticity of
the Hamiltonian. The main purpose of the present article is to show that the converse of this
statement holds as well, that is, pseudo-Hermiticity of a Hamiltonian implies the existence of an
antilinear symmetry. A direct consequence of this result is that if the spectrum of the Hamiltonian
is real, then the system has an antilinear symmetry,PT-symmetry being the prime example.

The organization of the article is as follows. Section II includes a brief review of the necessary
results reported in the companion articles.2,3 Section III examines anti-pseudo-Hermiticity
~pseudo-Hermiticity with an antilinear automorphism.! Here we prove that every~non-Hermitian!
diagonalizable Hamiltonian is anti-pseudo-Hermitian and that the pseudo-Hermiticity of the
Hamiltonian implies the presence of an antilinear symmetry. Section IV offers a description of the
Hamiltonians with a real spectrum in terms of certain associated Hermitian operators. Section V
presents a summary of the main results and the concluding remarks.

Throughout this article we shall consider~non-Hermitian! HamiltoniansH that are diagonal-
izable and have a discrete spectrum. As we explain below, this means that these Hamiltonians
admit a complete biorthonormal set of eigenvectors$(ucn ,a&,ufn ,a&)%. The latter satisfy the
following defining relations:4
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Hucn ,a&5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, ~1!

^fm ,bucn ,a&5dmndab , ~2!

(
n

(
a51

dn

ucn ,a&^fn ,au51, ~3!

wheren anda are, respectively, the spectral and degeneracy labels,dn is the multiplicity ~degree
of degeneracy! of En , † and* , respectively, denote the adjoint and complex-conjugate,dmn stands
for the Kronecker delta function, and 1 is the identity operator. In view of Eqs.~1!–~3!, we also
have

H5(
n

(
a51

dn

Enucn ,a&^fn ,au, H†5(
n

(
a51

dn

En* ufn ,a&^cn ,au. ~4!

In order to see the equivalence of the existence of a complete biorthonormal set of eigenvec-
tors of H and its diagonalizability, we note that by definition a diagonalizable HamiltonianH
satisfiesA21HA5H0 for an invertible linear operatorA and a diagonal linear operatorH0 , i.e.,
there is an orthonormal basis$un,a&% in the Hilbert space and complex numbersEn such that
H05(n(aEnun,a&^n,au. Then lettingucn ,a&ªAun,a& andufn ,a&ª(A21)†un,a&, we can eas-
ily check that$ucn ,a&,ucn ,a&% is a complete biorthonormal system forH. The converse is also
true, for if such a system exists we may setAª(n(aucn ,a&^n,au for some orthonormal basis
$un,a&% and check thatA215(n(aun,a&^fn ,au andA21HA5H0 , i.e., H is diagonalizable.

We would like to emphasize that the diagonalizability condition may be viewed as a physical
requirement without which an energy eigenbasis would not exist. To our knowledge all known
non-Hermitian Hamiltonians that are used in physical applications are diagonalizable and there-
fore admit a complete biorthonormal set of eigenvectors. This in particular includes all the Her-
mitian Hamiltonians as well as the non-Hermitian Hamiltonians used in ionization optics,5 the
study of dissipative systems and resonant states,6 two-component formulation of the minisuper-
space quantum cosmology,7 and also thePT-symmetric Hamiltonians whose spectral properties
have been obtained using numerical methods.

II. PSEUDO-HERMITICITY

Let H:H→H be a linear operator acting in a Hilbert spaceH and h:H→H be a linear
Hermitian automorphism~invertible transformation!. Then theh-pseudo-Hermitian adjoint ofH is
defined by2

H]
ªh21H†h. ~5!

H is said to be pseudo-Hermitian with respect toh or simplyh-pseudo-Hermitian ifH]5H. H is
said to be pseudo-Hermitian if it is pseudo-Hermitian with respect to some linear Hermitian
automorphismh.

The basic properties of pseudo-Hermitian operators are discussed in Refs. 2 and 3. Here we
survey the properties that we shall make use of in this article. LetH:H→H be a diagonalizable
linear operator. Then

~i! H is pseudo-Hermitian if and only if its eigenvalues are real or come in complex-conjugate
pairs;2 and

~ii ! if H is pseudo-Hermitian with respect to two linear Hermitian automorphismsh1 andh2 ,
thenh1

21h2 generates a symmetry ofH, i.e., @H,h1
21h2#50.2
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III. ANTI-PSEUDO-HERMITICITY

We first recall that a functiont:H→H acting in a~complex! Hilbert spaceH is said to be an
antilinear operator if for alla,bPC and uj&,uz&PH,

t~auj&1buz&)5a* tuj&1b* tuz&. ~6!

An antilinear operatort:H→H is said to be anti-Hermitian8 if for all uj&,uz&PH,

^zutuj&5^jutuz&. ~7!

Definition 1:A linear operatorH:H→H acting in a Hilbert spaceH is said to be anti-pseudo-
Hermitian if there is an antilinear anti-Hermitian automorphismt:H→H satisfying

H†5tHt21. ~8!

We begin our analysis by giving a characterization of antilinear anti-Hermitian operators with
respect to which a given linear operator is anti-pseudo-Hermitian.

Theorem 1: Let H be a Hilbert space andH:H→H be a diagonalizable linear operator with
a discrete spectrum and a complete biorthonormal set of eigenvectors$(ucn ,a&,ufn ,a&)%. Then
t:H→H is an antilinear anti-Hermitian operator andH is t-anti-pseudo-Hermitian if and only if
there are symmetric invertible matricesc(n) with entriescab

(n) such that for alluz&PH,

tuz&5(
n

(
a,b51

dn

cab
(n)^zufn ,a& ufn ,b&. ~9!

Proof: Suppose thatt:H→H is a given antilinear anti-Hermitian operator andH is t-anti-
pseudo-Hermitian, i.e.,~8! or equivalently

H†t5tH ~10!

holds. Letting both sides of~10! act onucn ,a& and using~1! and ~6!, we have

H†~tucn ,a&)5En* ~tucn ,a&).

Comparing this equation with the second equation in~1!, we find

tucn ,a&5 (
b51

dn

cba
(n)ufn ,b&, ~11!

wherecab
(n) are defined by

cab
(n)
ª^cn,autucn ,a&. ~12!

We can also express~11! in the form

^cm ,butucn ,a&5dmncba
(n) . ~13!

Next note that becauset is an invertible operator, the matrixc(n)5(cab
(n)) formed by cab

(n) is
nonsingular. In fact, applyinĝfn,cut21 to both sides of~11! and using~6! and the fact thatt21

is also antilinear, we have

~c(n)21
!ab5^fn ,aut21ufn ,b&* . ~14!

Furthermore, in view of~12! and ~7!, c(n) is a symmetric matrix. Now letuz& be an arbitrary
element ofH and use~13!, ~3! and ~7! to compute
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(
n

(
a,b51

dn

cab
(n)^zufn ,a& ufn ,b&5(

n,m
(

a,b51

dn

ufm ,b&^zufn ,a&^cn ,autucm ,b&

5(
m

(
b

ufm ,b&^zutucm ,b&

5(
m

(
b

ufm ,b&^cm ,butuz&

5tuz&.

This establishes~9!. Next, suppose thatc(n) are given invertible symmetric matrices andt is
defined by~9!. Then the antilinearity oft follows from the antilinearity of the inner-product in its
first entry. The following simple calculation shows thatt is anti-Hermitian. For alluj&,uz&PH,

^jutuz&5(
n

(
a,b51

dn

cab
(n)^zufn ,a&^jufn ,b&

5(
n

(
a,b51

dn

cab
(n)^zufn ,b&^jufn ,a&

5(
n

(
a,b51

dn

cab
(n)^jufn ,a&^zufn ,b&

5^zutuj&,

where we used~9! and the fact thatc(n) are symmetric. In order to establish thet-anti-pseudo-
Hermiticity of H we first observe that~9! implies

t21uz&5(
n

(
a,b51

dn

~c(n)!ab
21* ^zucn ,a& ucn ,b&. ~15!

This can be easily checked by applyingt to the right-hand side of~15! and using~9!, ~2!, and~3!
to show that the result isuz&. Next, we note that applying both sides of~9! to ucn ,a& we recover
~11!. Finally, we use~9!, ~15!, ~6!, ~1!, ~4!, and~11! to compute, for alluz&PH,

tHt21uz&5t(
n

(
a,b51

dn

c(n)
ab
21* ^zucn ,a& Enucn ,b&

5(
n

(
a,b51

dn

En* c(n)
ab
21^zucn ,a&* tucn ,b&

5(
n

(
a,b,c51

dn

En* ^cn ,auz&cca
(n)c(n)

ab
21ufn ,c&

5(
n

(
b51

dn

En* ufn ,b&^cn ,buz&5H†uz&.

Therefore,tHt215H†. h

We should emphasize that, unlike the case of pseudo-Hermitian Hamiltonians, the anti-
pseudo-Hermiticity does not restrict the energy spectrum. In fact, we can use Theorem 1 to prove
the following.
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Corollary 1: Every diagonalazable linear operatorH:H→H with a discrete spectrum is anti-
pseudo-Hermitian.

Proof: Let $(ucn ,a&,ufn ,a&)% be a complete biorthonormal set of eigenvectors, andt:H
→H be defined by~9! with c(n)51 for all n, i.e., for all uz&PH,

tuz&ª(
n

(
a51

dn

^zufn ,a& ufn ,a&. ~16!

Then according to Theorem 1,t is an antilinear anti-Hermitian operator andH is t-anti-pseudo-
Hermitian. h

Corollary 2: Every diagonalizable pseudo-Hermitian linear operatorH:H→H with a discrete
spectrum has an antilinear symmetry.

Proof: Let H be pseudo-Hermitian. Then according to Corollary 1 it is also anti-pseudo-
Hermitian, i.e., there are a linear Hermitian automorphismh:H→H and an antilinear anti-
Hermitian automorphismt:H→H such that

hHh215H†5tHt21. ~17!

Hence,@H,h21t#50. Clearlyh21t is an antilinear operator. h

Theorem 2:Let H:H→H be a diagonalizable linear operator acting in a Hilbert spaceH with
a discrete spectrum. Then the following are equivalent.

~1! The eigenvalues ofH are real or come in complex-conjugate pairs.
~2! H is pseudo-Hermitian.
~3! H has an antilinear symmetry.

Proof: The equivalence of~1! and ~2! was established in Ref. 2; Corollary 2 shows that~2!
implies ~3!; the fact that~3! implies ~1! follows from a simple calculation given in Ref. 3. h

A class ofPT-symmetric Hamiltonians is given by

H5
p2

2m
1V1~x!1 iV2~x!, ~18!

whereV1 and V2 are, respectively, even and odd real-valued functions and the classical phase
space is assumed to be real, i.e.,x and p are the standard Hermitian operators representing the
position and momentum of a particle of massm. As we point out in Ref. 2, the Hamiltonian~18!
is P-pseudo-Hermitian. It is also easy to check that it isT-anti-pseudo-Hermitian. The
P-pseudo-Hermiticity andT-anti-pseudo-Hermiticity of this Hamiltonian implies itsP21T5PT
symmetry. In general, there arePT-symmetric Hamiltonians H that are neither
P-pseudo-Hermitian norT-anti-pseudo-Hermitian. According to Theorem 2, if we make the physi-
cal assumption thatH is diagonalizable, so that it admits a complete biorthonormal set of energy
eigenvectors, thenH must be pseudo-Hermitian with respect to a linear Hermitian automorphism
h. It turns out that the choice ofh is not unique. But fixing an antilinear anti-Hermitian operator
t with respect to whichH is anti-pseudo-Hermitian@namely,~9!#, we can expressh in terms ofPT
andt according to

h5tPT. ~19!

One can easily check thatPT-symmetry (@PT,H#50) and anti-pseudo-Hermiticity~8! imply
pseudo-Hermiticity ofH with respect to~19!.

Next we consider a general diagonalizable HamiltonianH with a discrete spectrum and a
symmetry generated by a general invertible antilinear operatorX,

@H,X#50. ~20!
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The antilinearity ofX implies h-pseudo-Hermiticity ofH with respect to some linear Hermitian
automorphismh. The anti-pseudo-Hermiticity ofH with respect to an antilinear automorphism of
the form~9! always holds. Hence Eqs.~17! are valid. Taking the adjoint of both sides of~20! and
making use of~17!, we can easily show thatXh

]
ªh21Xh andXt

]
ªt21Xt commute withH, i.e.,

they generate antilinear symmetries of the system as well.

IV. NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

We first recall the following results which we reported in Refs. 2 and 3.
~1! The ~indefinite! inner-product defined by

;uj&,uz&PH, ^̂ juz&&ª^juhuz&, ~21!

is invariant under the evolution generated by anh-pseudo-Hermitian HamiltonianH.2 It is also
easy to check that such a Hamiltonian is Hermitian with respect to the~indefinite! inner-product
~21!. See also Ref. 9.

~2! A diagonalizable~non-Hermitian! Hamiltonian has a real spectrum if and only if it is
pseudo-Hermitian with respect to a linear Hermitian automorphism of the form

h5OO†, ~22!

whereO:H→H is a linear automorphism.3

These statements suggest the following characterization of the~non-Hermitian! Hamiltonians
with a real spectrum. See also Ref. 10.

Theorem 3:A diagonalizable HamiltonianH acting in a Hilbert spaceH has a real spectrum
if and only if there is a positive-definite inner-product onH with respect to whichH is Hermitian.

Proof: SupposeH has a real spectrum so that it isOO†-pseudo-Hermitian for a linear auto-
morphism O:H→H. Then the inner-product~21! with h5OO† is clearly a positive-definite
inner-product with respect to whichH is Hermitian. Conversely, suppose that there is a positive-
definite inner-product ( , ) with respect to whichH is Hermitian. Then treating the spectral
problem forH in the Hilbert spaceH with the inner-product ( , ), we find thatH has a real
spectrum.

Corollary: Suppose thatH has an antilinear symmetryX. If X is an exact symmetry ofH,
then there is a positive-definite inner product onH with respect to whichH is Hermitian. h

Proof: Exactness of an antilinear symmetry implies reality of the spectrum ofH.3 The con-
clusion then follows from Theorem 3. h

Next we give an alternative and in a sense equivalent characterization of the~non-Hermitian!
Hamiltonians with a real spectrum.

Definition 2: Consider a quantum system with the Hilbert spaceH and the Hamiltonian
H:H→H. Then a linear automorphismA:H→H is said to be apseudo-canonical transformation
for the system if for alluz&PH the transformation

uz&→u z̃&ªAuz& ~23!

leaves the Schro¨dinger equation,

i
d

dt
uc~ t !&5Huc~ t !& ~24!

form-invariant. A unitary pseudo-canonical transformation is called a~quantum! canonical
transformation.11

Clearly the defining condition for a pseudo-canonical transformation implies the following
transformation rule for the Hamiltonian:

H→H̃ªAHA211 iȦA21, ~25!
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where a dot denotes a time-derivative. For a time-independent pseudo-canonical transformationA,
the second term on the right-hand side of~25! drops andH transforms as

H→H̃ªAHA21. ~26!

Theorem 4: A diagonalizable time-independent HamiltonianH has a real spectrum if and
only if there is a pseudo-canonical transformation that mapsH into a Hermitian operator.

Proof: Suppose thatH has a real spectrum. Then it isOO†-pseudo-Hermitian for a linear
automorphismO:H→H, i.e., H†5OO†H(OO†)21. Let AªO†. Then, in view of~26! and the
preceding equation, we have

H̃†5~AHA21!†5~A21!†H†A†5~A21!†A†AHA21~A†!21A†5AHA215H̃.

Hence the transformed Hamiltonian is Hermitian. Conversely suppose that there is a pseudo-
canonical transformationA:H→H under whichH transforms to a Hermitian HamiltonianH̃ and
let OªA†. Then using~26! and H̃†5H̃, we have

OO†H~OO†!215A†AA21H̃A~A†A!215A†H̃†~A†!215~A21H̃A!†5H†.

Therefore,H is OO†-pseudo-Hermitian, and its spectrum is real. h

Corollary: Suppose thatH has an antilinear symmetryX. If X is an exact symmetry ofH,
then there is a pseudo-canonical transformation that mapsH into a Hermitian operator.

Proof: Exactness of an antilinear symmetry implies reality of the spectrum ofH.3 The con-
clusion then follows from Theorem 4. h

V. DISCUSSION AND CONCLUSION

In this article we established the equivalence of the notion of pseudo-Hermiticity and presence
of an antilinear symmetry for the class of diagonalizable~non-Hermitian! Hamiltonians. This
required the study of pseudo-Hermiticity with respect to antilinear anti-Hermitian automorphisms.
It turned that the latter does not restrict the choice of the Hamiltonian and such antilinear auto-
morphisms always exist. In fact, we obtained the general form of these automorphisms. For a fixed
complete biorthonormal eigenbasis, they are determined in terms of a sequence of complex sym-
metric matricesc(n). The choice of unity for all these matrices leads to a canonical antilinear
anti-Hermitian automorphism, namely~16!. Under an invertible transformationu of the basis

ucn ,a&→ (
b51

dn

ubaucn ,b&, ufn ,a&→ (
b51

dn

~u21†!baufn ,b&

that preserves its completeness and biorthonormality, the matricesc(n) transform according to

c(n)→u* tc(n)u* 5u†c(n)u†t,

where t denotes the transpose. We can transform to a basis where a generalt has the canonical
form ~16! if we can find invertible matricesv5u21† satisfyingc(n)5vv t. As shown in Ref. 12
this is always possible. Therefore, up to the choice of the biorthonormal eigenbasis,t is actually
unique.

A simple consequence of our findings is that the reality of the spectrum of a Hamiltonian
implies the presence of an antilinear symmetry. In view of the proof of Corollary 2 and Eq.~9! of
this article and Eq.~23! of Ref. 2, we have in fact an explicit expression for the generator of such
a symmetry in terms of the biorthonormal eigenvectors of the Hamiltonian. We also gave two
characterizations of Hamiltonians with real spectrum. These characterizations show how a Hamil-
tonian with a real spectrum may be related to an associated Hermitian Hamiltonian. Another
simple implication of our analysis is that every Hermitian Hamiltonian has an antilinear symmetry.
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