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Pseudo-Hermiticity versus PT symmetry: The necessary
condition for the reality of the spectrum
of a non-Hermitian Hamiltonian
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We introduce the notion ofpseudo-Hermiticityand show that every Hamiltonian
with a real spectrum is pseudo-Hermitian. We point out that all thePT-symmetric
non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-
Hermitian Hamiltonians, and argue that the basic structure responsible for the par-
ticular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We
explore the basic properties of general pseudo-Hermitian Hamiltonians, develop
pseudosupersymmetric quantum mechanics, and study some concrete examples,
namely the Hamiltonian of the two-component Wheeler–DeWitt equation for the
FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian
Hamiltonians with a real spectrum. ©2002 American Institute of Physics.
@DOI: 10.1063/1.1418246#

I. INTRODUCTION

The past three years have witnessed a growing interest in non-Hermitian Hamiltonians with
real spectra.1–23 Based on the results of various numerical studies, Bender and collaborators1,4

found certain examples of one-dimensional non-Hermitian Hamiltonians that possessed real spec-
tra. Because these Hamiltonians were invariant underPT transformation, their spectral properties
were linked with theirPT symmetry. The purpose of this article is to explore the basic structure
responsible for the reality of the spectrum of a non-Hermitian Hamiltonian.

By definition, aPT-symmetric HamiltonianH satisfies

PTH~PT!215PTHPT5H, ~1!

whereP andT are, respectively, the operators of parity and time-reversal transformations. These
are defined according to

P x P52x, P p P5T p T52p, T i1 T52 i1, ~2!

wherex, p, and 1 are, respectively, the position, momentum, and identity operators acting on the
Hilbert spaceH5L2(R) and iªA21. Note that Eq.~2! applies only for the systems whose
classical positionx and momentump are real. In this article we shall only be concerned with these
systems.

As we mentioned previously, the only reason for relating the concept ofPT-symmetry and
non-Hermitian Hamiltonians with a real spectrum is that most of the known examples of the latter
satisfy Eq.~1!. Certainly there are Hermitian Hamiltonians with a real spectrum that are not
PT-symmetric and there arePT-symmetric Hamiltonians that do not have a real spectrum. There-
fore, PT-symmetry is neither a necessary nor a sufficient condition for a Hamiltonian to have a
real spectrum. This raises the possibility that thePT-symmetry of a Hamiltonian may have

a!Electronic mail: amostafazadeh@ku.edu.tr

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 43, NUMBER 1 JANUARY 2002

2050022-2488/2002/43(1)/205/10/$19.00 © 2002 American Institute of Physics



nothing to do with the reality of its spectrum. The interest inPT-symmetry seems to be mostly
because of the lack of an alternative framework replacing the Hermiticity of the Hamiltonian in
ordinary ~unitary! quantum mechanics. Much of the published work on the subject concerns the
study of various examples and the extension of the concepts developed for Hermitian Hamilto-
nians to the PT-symmetric ones.1–20 Recently, Znojil,21 Japaridze,22 and Kretschmer and
Szymanowski23 have addressed some of the more fundamental issues regarding the mathematical
structure and the interpretation of thePT-symmetric quantum mechanics.

Among the common properties of all thePT-symmetric Hamiltonians that have so far been
studied are the following.

~1! Either the spectrum of the Hamiltonian is real~PT-symmetry is exact! or there are
complex-conjugate pairs of complex eigenvalues~PT-symmetry is broken!.1,4,10,12

~2! The indefinite inner-product̂̂u&& defined by

^̂ c1uc2&&ª^c1uPuc2&, ;uc1&,uc2&PH, ~3!

is invariant under the time-translation generated by the Hamiltonian.21,22

The main motivation for the present investigation is the remarkable fact that there is no evidence
that PT-symmetry is the basic structure responsible for these properties. For example, in Ref. 3,
the authors construct a class of non-PT-symmetric Hamiltonians with a real spectrum. Another
example of a non-Hermitian Hamiltonian with similar properties is the Hamiltonian describing the
evolution of the solutions of the two-component Wheeler–DeWitt equation for FRW-models
coupled with a real massive scalar field.24 This Hamiltonian is explicitly ‘‘time dependent,’’
‘‘parity-invariant,’’ and non-Hermitian~with respect to the relevantL2-norm on the space of
two-component wave functions!, but the corresponding invariant indefinite inner-product does not
involve P.

The organization of the article is as follows. In Sec. II, we introduce the concept of apseudo-
Hermitian operator and derive the basic spectral properties of pseudo-Hermitian Hamiltonians.
These coincide with Properties 1 and 2~with P replaced with a Hermitian invertible linear
operatorh!. In Sec. III, we consider the class of pseudo-Hermitian Hamiltonians that have a
complete biorthonormal eigenbasis and show that the pseudo-Hermiticity is a necessary condition
for having a real spectrum. In Sec. IV, we explore the pseudo-Hermitian Hamiltonian of the
two-component Wheeler–DeWitt equation for FRW-models coupled with a real massive scalar
field. In Sec. V, we develop pseudosupersymmetric quantum mechanics. In Sec. VI, we use
pseudosupersymmetry to construct a large class of pseudo-Hermitian Hamiltonians with a real
spectrum. In Sec. VII, we present our concluding remarks.

II. PSEUDO-HERMITIAN HAMILTONIANS

We first give a few definitions. Throughout this paper we will assume that all the inner product
spaces are complex. The generalization to real inner product spaces is straightforward.

Definition 1: Let V6 be two inner product spaces endowed with Hermitian linear automor-
phismsh6 ~invertible operators mappingV6 to itself and satisfying!

;v6 ,w6PV6 , ~v6 ,h6w6!65~h6v6 ,w6!6 ,

where (,)6 stands for the inner product ofV6! and O:V1→V2 be a linear operator. Then the
h6-pseudo-Hermitian adjointO]:V2→V1 of O is defined byO]

ªh1
21O†h2. In particular, for

V65V andh65h, the operatorO is said to beh-pseudo-Hermitian ifO]5O.
Definition 2: Let V be an inner product space. Then a linear operatorO:V→V is said to be

pseudo-Hermitian, if there is a Hermitian linear automorphismh such thatO is h-pseudo-
Hermitian.
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Now, consider a quantum system with a possibly non-Hermitian and time-dependent
HamiltonianH5H(t) and a Hilbert spaceH which is endowed with a Hermitian linear auto-
morphismh.

Proposition 1:The Hermitian indefinite inner product^̂ u&&h defined byh, i.e.,

^̂ c1uc2&&hª^c1uhuc2&, ;uc1&,uc2&PH, ~4!

is invariant under the time-translation generated by the HamiltonianH if and only if H is
h-pseudo-Hermitian.

Proof: First note that theh-pseudo-Hermiticity ofH is equivalent to the condition

H†5h H h21. ~5!

Now, using the Schro¨dinger equation

i
d

dt
uc~ t !&5Huc~ t !&, ~6!

its adjoint, and Eq.~4!, one has for any two evolving state vectorsuc1(t)& and uc2(t)&:

i
d

dt
^̂ c1~ t !uc2~ t !&&h5^c1~ t !u~hH2H†h!uc2~ t !&.

Therefore,̂ ^c1(t)uc2(t)&&h is a constant if and only if~5! holds. h

Note that choosingh51 reduces Eq.~5! to the condition of the Hermiticity of the Hamil-
tonian. Hencepseudo-Hermiticity is a generalization of Hermiticity. Furthermore, observe that a
typical PT-symmetric Hamiltonian defined on a real phase space ((x,p)PR2) has the formH
5p2/(2m)1V(x) where the potentialV(x)5V1(x)1 iV2(x) has an even real partV1(x) and an
odd imaginary partV2(x), i.e., V6(6x)56V6(x). It is not difficult to see that such a
PT-symmetric Hamiltonian satisfies

H†5
p2

2m
1V1~x!2 iV2~x!5

p2

2m
1V1~2x!1 iV2~2x!5P H P5P H P21.

Hence it isP-pseudo-Hermitian. In contrast, consider the non-Hermitian Hamiltonians

H1ªp21x2p, H2ªp21 i ~x2p1p x2!.

Clearly, H1 is PT symmetric, but notP-pseudo-Hermitian, whereasH2 is P-pseudo-Hermitian
and notPT symmetric. Therefore,PT symmetry andP-pseudo-Hermiticity are distinct properties.
Note, however, thatH1 may be pseudo-Hermitian with respect to another Hermitian automor-
phismh. We shall explore the relationship betweenPT-symmetry and pseudo-Hermiticity in Sec.
III.

The defining condition~5! may also be expressed as the intertwining relation

h H5H† h. ~7!

Using this equation together with the eigenvalue equation for the Hamiltonian, namelyHuEi&
5Ei uEi&, and its adjoint, we can easily show that any two eigenvectorsuEi& anduEj& of H satisfy

~Ei* 2Ej !^̂ Ei uEj&&h50. ~8!

A direct implication of this equation is the following Proposition.
Proposition 2:An h-pseudo-Hermitian Hamiltonian has the following properties.
~a! The eigenvectors with a nonreal eigenvalue have vanishingh-semi-norm, i.e.,

Ei¹R implies i uEi&ih
2
ª ^̂ Ei uEi&&h50. ~9!

~b! Any two eigenvectors areh-orthogonal unless their eigenvalues are complex conjugates,
i.e.,
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EiÞEj* implies ^̂ Ei uEj&&h50. ~10!

In particular, the eigenvectors with distinct real eigenvalues areh-orthogonal.
In the remainder of this section, we list a number of simple but remarkable consequences of

pseudo-Hermiticity.
Proposition 3:Let V be an inner product space endowed with a Hermitian linear automor-

phismh, 1:V→V denote the identity operator,O1 ,O2 :V→V be linear operators, andz1 ,z2PC.
Then,

~a! 1]51;
~b! (O1

])]5O1 ;
~c! (z1O11z2O2)]5z1* O1

]1z2* O2
] ,

wherezi* stands for the complex conjugate ofzi .
Proof: ~a! and~b! are trivial consequences of the definition of] and the Hermiticity ofh. ~c!

follows from this definition and the linearity ofh andh21:

~z1O11z2O2!]5h21~z1O11z2O2!†h5z1* h21O1
†h1z2* h21O2

†h5z1* O1
]1z2* O2

] .
h

Proposition 4:Let Vl , with l P$1,2,3%, be inner product spaces endowed with Hermitian
linear automorphismsh l and O1 :V1→V2 and O2 :V2→V3 be linear operators. Then (O2O1)]

5O1
]O2

] .
Proof: This relation follows from the following simple calculation:

~O2O1!]5h1
21~O2O1!†h35h1

21O1
†h2h2

21O2
†h35O1

]O2
] .

h

Corollary: Pseudo-Hermitian conjugation (O→O]) is a * -operation.
Proof: According to Propositions 3 and 4,] has all the properties of a* -operation. h

Proposition 5:Let V be an inner product space endowed with a Hermitian linear automor-
phismh, U:V→V be a unitary operator, andO:V→V be a linear operator. ThenhUªU†hU is a
Hermitian linear automorphism, andO is h-pseudo-Hermitian if and only ifOUªU†OU is
hU-pseudo-Hermitian. In other words, the notion of pseudo-Hermiticity is unitary-invariant.

Proof: First we recall that becauseU is unitary,hU is both Hermitian and invertible. Further-
more, we have

hU
21OU

† hU5U†h21UU†O†UU†hU5U†~h21O†h!U.
h

Proposition 6: Let V be an inner product space,h1 and h2 be Hermitian linear automor-
phisms, andO:V→V be a linear operator. Then theh1-pseudo-Hermitian adjoint ofO coincides
with its h2-pseudo-Hermitian adjoint if and only ifh2

21h1 commutes withO.
Proof: This statement holds becauseh1

21O†h15h2
21O†h2 implies O†h1h2

215h1h2
21O†.

Taking the Hermitian adjoint of this relation yields@O,h2
21h1#50. h

Corollary: If the HamiltonianH of a quantum system is pseudo-Hermitian with respect to two
different Hermitian linear automorphismsh1 andh2 of the Hilbert space, thenh2

21h1 is a sym-
metry of the system. Conversely, leth be a Hermitian linear automorphism of the Hilbert space,
G be a symmetry group of the system whose elementsg are represented by invertible linear
operators. Thenhg is a Hermitian linear automorphism andH is hg-pseudo-Hermitian provided
that g†hg5h.

Proof: This is a direct implication of Proposition 6 and the definition of the symmetry, namely
@g,H#50 or equivalentlyg21Hg5H.25
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III. PSEUDO-HERMITIAN HAMILTONIANS WITH A COMPLETE BIORTHONORNAL
EIGENBASIS

Let H be an h-pseudo-Hermitian Hamiltonian with a complete biorthonormal eigenbasis
$ucn ,a&,ufn ,a&% and a discrete spectrum.26 Then, by definition,

Hucn ,a&5Enucn ,a&, H†ufn ,a&5En* ufn ,a&, ~11!

^fm ,bucn ,a&5dmndab , ~12!

(
n

(
a51

dn

ufn ,a&^cn ,au5(
n

(
a51

dn

ucn ,a&^fn ,au51, ~13!

where dn is the multiplicity ~degree of degeneracy! of the eigenvalueEn , and a and b are
degeneracy labels.

Proposition 7: Let H be a pseudo-Hermitian Hamiltonian with these properties. Then the
nonreal eigenvalues ofH come in complex conjugate pairs with the same multiplicity.

Proof: According to Eqs.~5! and ~11!,

H~h21ufn ,a&)5h21H†ufn ,a&5En* ~h21ufn ,a&). ~14!

Becauseh21 is invertible,h21ufn ,a&Þ0 is an eigenvector ofH with eigenvalueEn* . More
generally,h21 maps the eigensubspace associated withEn to that associated withEn* . Again,
becauseh21 is invertible,En andEn* have the same multiplicity. h

Next, we use the subscript ‘‘0’’ to denote real eigenvalues and the corresponding basis eigen-
vectors and the subscript ‘‘6’’ to denote the complex eigenvalues with6 imaginary part and the
corresponding basis eigenvectors. Then in view of Eqs.~11!–~14!, we have

15(
n0

(
a51

dn0

ucn0
,a&^fn0

,au1(
n1

(
a51

dn1

~ ucn1
,a&^fn1

,au1ucn2
,a&^fn2

,au!, ~15!

H5(
n0

(
a51

dn0

En0
ucn0

,a&^fn0
,au1(

n1

(
a51

dn1

~En1
ucn1

,a&^fn1
,au1En1

* ucn2
,a&^fn2

,au!.

~16!

Repeating the calculation leading to Eq.~14!, we find

h21ufn0
,a&5 (

b51

dn0

cba
(n0)ucn0

,b&, cab
(n0)

ª^fn0
,auh21ufn0

,b&, ~17!

h21ufn1
,a&5 (

b51

dn1

cba
(n1)ucn2

,b&, cab
(n1)

ª^fn2
,auh21ufn1

,b&, ~18!

h21ufn2
,a&5 (

b51

dn1

cba
(n2)ucn1

,b&, cab
(n2)

ª^fn1
,auh21ufn2

,b&, ~19!

wherecab
(n0) andcab

(n6) are complex coefficients. The latter may be viewed as entries of complex
matricesc(n0) andc(n6), respectively. Becauseh and consequentlyh21 are Hermitian operators,
so are the matricesc(n0) and c(n6). In particular, we can make a unitary transformation of the
Hilbert space to map the biorthonormal system of eigenbasis vectors of the Hamiltonian to a new
system in which these matrices are diagonal. We can further rescale the basis vectors so thatc(n0)
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andc(n6) become identity matrices. In the following we shall assume, without loss of generality,
that such a transformation has been performed. Then, Eqs.~17!–~19! take the form

ufn0
,a&5hucn0

,a&, ufn6
,a&5hucn7

,a&. ~20!

In particular, combining this result with Eq.~12!, we have the followingh-orthonormalization of
the eigenvectors ofH

^̂ cn0
,aucm0

,b&&h5dn0 ,m0
dab , ^̂ cn6

,aucm7
,b&&h5dn6 ,m7

dab . ~21!

Next, we solve Eq.~20! for ucn0
& anducn6

& and substitute the result in Eq.~15!. This leads to
an explicit expression forh that can be easily inverted to yieldh21. The result is

h5(
n0

(
a51

dn0

ufn0
,a&^fn0

,au1(
n1

(
a51

dn1

~ ufn2
,a&^fn1

,au1ufn1
,a&^fn2

,au!, ~22!

h215(
n0

(
a51

dn0

ucn0
,a&^cn0

,au1(
n1

(
a51

dn1

~ ucn2
,a&^cn1

,au1ucn1
,a&^cn2

,au!. ~23!

One can easily check that the HamiltonianH and the operatorsh andh21 as given by Eqs.~16!,
~22!, and~23! satisfy theh-pseudo-Hermiticity condition~5!.

The above-mentioned analysis provides the following necessary and sufficient condition for
pseudo-Hermiticity.

Theorem: Let H be a non-Hermitian Hamiltonian with a discrete spectrum and a complete
biorthonormal system of eigenbasis vectors$ucn ,a&,ufn ,a&%. ThenH is pseudo-Hermitian if and
only if one of the following conditions hold

~1! The spectrum ofH is real.
~2! The complex eigenvalues come in complex conjugate pairs and the multiplicity of complex

conjugate eigenvalues are the same.

Proof: We have already shown in Proposition 7 that pseudo-Hermiticity ofH implies at least
one of these conditions. To prove that these conditions are sufficient for the pseudo-Hermiticity of
H, we use$ucn ,a&,ufn ,a&% to expressH in the form~16! and constructh according to Eq.~22!.
Then, by construction,H andh satisfy ~5!. h

This theorem reveals the relevance of the concept of pseudo-Hermiticity to the spectral prop-
erties of thePT-symmetric Hamiltonians considered in the literature. To the best of our knowl-
edge, an analogue of this theorem that would apply to arbitraryPT-symmetric Hamiltonians does
not exist. A direct implication of this theorem is the following corollary.

Corollary 1: Every non-Hermitian Hamiltonian with a discrete real spectrum and a complete
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.
Note that, in general, a non-Hermitian Hamiltonian may not admit a complete biorthonormal
system of eigenvectors. The preceding Theorem and Corollary 1 may not apply for these non-
Hermitian Hamiltonians.

Corollary 2: Every PT-symmetric Hamiltonian with a discrete spectrum and a complete
biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Proof: This statement follows from the above-presented Theorem and fact that the eigenvalues
of everyPT-symmetric Hamiltonian with a complete biorthonormal system of eigenbasis vectors
come in complex conjugate pairs. To see this, letuE& be an eigenvector ofH with eigenvalueE,
i.e., HuE&5EuE&, anduE&8ªPTuE&. Then
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HuE&85H~PT!uE&5~PT!HuE&5~PT!EuE&5E* ~PT!uE&5E* uE&8,

where we have made use of the linearlity ofP and the antilinearlity ofT. h

IV. PSEUDO-HERMITICITY IN MINISUPERSPACE QUANTUM COSMOLOGY

The Wheeler–DeWitt equation~with a particularly simple factor ordering prescription! for a
Freedman–Robertson–Walker~FRW! model coupled to a massive real scalar field has the form

F2
]2

]a2 1
]2

]f2 1k e4a2m2e6af2Gc~a,f!50, ~24!

wherea5 ln a, a is the scale factor,f is the scalar field,m is the mass off, andk521,0, or 1
depending on whether the universe is open, flat, or closed.27 In the two-component representation
developed in Ref. 24, this equation takes the form of the Schro¨dinger equation:i Ċ5H(a)C
where a dot stands for a derivative with respect toa and

C5
1

&
S c1 i ċ

c2 i ċ
D , H5

1

2 S 11D 211D
12D 212DD , ~25!

Dª2
]2

]f2 1V~f,a!, V~f,a!ªm2e6af22k e4a. ~26!

As seen from these equationsD/2, up to an unimportant additive scalar, is the Hamiltonian of a
‘‘time-dependent’’ simple harmonic oscillator with unit ‘‘mass’’ and ‘‘frequency’’v5m e3a,
wherea andf play the roles of timet and positionx, respectively.

It is not difficult to check that the two-component HamiltonianH is not Hermitian with
respect to theL2-inner product on the space of two-component state vectorsC. However, its
eigenvalue problem can be solved exactly.24 For an open or flat FRW universe (k521,0) the
eigenvalues ofH are real. For a closed FRW model, there is a range of values ofa for which all
the eigenvalues are real. Outside this range they come in complex conjugate imaginary pairs. This
suggests thatH is a pseudo-Hermitian Hamiltonian. In fact, we can easily check thatH is an
h-pseudo Hermitian Hamiltonian for

h5S 1 0

0 21D . ~27!

The indefinite inner product corresponding to~27! is nothing but the Klein–Gordon inner product
that is invariant under the ‘‘time-translation’’ generated byH.

V. PSEUDOSUPERSYMMETRIC QUANTUM MECHANICS

The application of the ideas of supersymmetric quantum mechanics28 in constructing non-
Hermitian PT-symmetric Hamiltonians has been considered in Refs. 3, 7, 13, 17, and 19 and a
formulation ofPT-symmetric supersymmetry has been outlined in Refs. 14 and 20. In this section,
we develop a straightforward generalization of supersymmetric quantum mechanics that applies
for pseudo-Hermitian Hamiltonians.

Definition 3:Consider aZ2-graded quantum system29 with the Hilbert spaceH1 % H2 and the
involution or grading operatort satisfying

t5t†5t21 and ;uc6&PH6 , tuc6&56uc6&. ~28!
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Let h be an even Hermitian linear automorphism~i.e., @h,t#50) and suppose that the Hamil-
tonianH of the system ish-pseudo-Hermitian. ThenH ~alternatively the system! is said to have
a pseudo-supersymmetry generated by an odd linear operatorQ ( i .e.,$Q,t%50) if H and Q
satisfy the pseudosuperalgebra

Q 25Q ]250, $Q,Q ]%52H. ~29!

A simple realization of pseudosupersymmetry is obtained using the two-component represen-
tation of the Hilbert space where the state vectorsuc& are identified by the column vector (uc2

uc1&)

of their componentsuc6& belonging toH6 . In this representation, one can satisfy theh-pseudo-
Hermiticity of the HamiltonianH, @i.e., Eq.~5!# and the pseudosuperalgebra~29! by setting

t5S 1 0

0 21D , h5S h1 0

0 h2
D , ~30!

Q5S 0 0

D 0D , H5S H1 0

0 H2
D , ~31!

whereh6 is a Hermitian linear automorphism ofH6 , D:H1→H2 is a linear operator, and

H1ª
1
2 D]D, H2ª

1
2 D D]. ~32!

Note that, by definition,Q ]5h21Q†h,

D]5h1
21D†h2 , ~33!

and thatH6 :H6→H6 are h6-pseudo-Hermitian Hamiltonians satisfying the intertwining rela-
tions

D H15H2D, D]H25H1D]. ~34!

As a consequence,H1 andH2 are isospectral,D maps the eigenvectors ofH1 to those ofH2 ,
andD] does the converse, except for those eigenvectors that are eliminated by these operators.
More specifically, suppose thatH6 has a complete biorthonormal eigenbasis$ucn

6 ,a&,ufn
6 ,a&%

satisfying

H6ucn
6 ,a&5En

6ucn
6 ,a&, H6

† ufn
6 ,a&5En

6* ufn
6 ,a&.

Then,Ducn
1 ,a& is either zero in which caseEn

150, or it is an eigenvector ofH2 with eigenvalue
En

1 ; D]ucn
2 ,a& is either zero in which caseEn

250, or it is an eigenvector ofH1 with eigenvalue
En

2 . Similarly D† andD]† relate the eigenvectorsufn
6 ,a& of H6

† .
An interesting situation arises when one of the automorphismsh6 is trivial, e.g.,h151. In

this case,H1 is a Hermitian Hamiltonian with a real spectrum, and pseudosupersymmetry implies
that the pseudo-Hermitian HamiltonianH2—which is generally non-Hermitian—must have a real
spectrum as well. This is not the only way to generate non-Hermitian Hamiltonians with a real
spectrum. In the next section we shall use pseudo-supersymmetry to construct a class of non-
Hermitian Hamiltonians that have a real spectrum.

VI. A CLASS OF NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

Consider the class of pseudosupersymmetric systems corresponding to the choices:

H65H5L2~R!, h656P, ~35!

D5p1 f ~x!1 ig~x!, ~36!
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where f andg are real-valued functions. We can express these functions in the form

f ~x!5 f 1~x!1 f 2~x!, g~x!5g2~x!1g1~x!, ~37!

where f 1 and g1 are even functions ofx, and f 2 and g2 are odd functions. In view of Eqs.
~35!–~37!, ~33!, and~32!, we have

D]5p2 f 1~x!1 f 2~x!1 i @g1~x!2g2~x!#, ~38!

H65 1
2 ~@p1 f 2~x!#21g28 ~x!6g2

2 2 f 1
2 2 i @2g2~x! f 1~x!6 f 18 ~x!#1K !, ~39!

Kª i $g1~x!,p%1g1~x!@2i f 2~x!2g1~x!#, ~40!

where a prime means a derivative and$,% stands for the anticommutator.
Next, we demand thatH1 is a Hermitian Hamiltonian. The necessary and sufficient condition

for the Hermiticity ofH1 and non-Hermiticity ofH2 is

g1~x!50, g2~x!52
f 18 ~x!

2 f 1~x!
. ~41!

Introducing the even functionj(x)ª lnuf1(x)/lu for somelPR2$0%, and using Eqs.~39!–~41!,
we have

H15 1
2 ~@p1 f 2~x!#21 1

4 j8~x!22 1
2 j9~x!2l2 e2j(x)!, ~42!

H25 1
2 ~@p1 f 2~x!#22 1

4 j8~x!22 1
2 j9~x!2l2 e2j(x)12il ej(x)j8~x!!. ~43!

By construction,H6 are pseudo-Hermitian pseudo-supersymmetric partners. In particular, they are
isospectral.H1 happens to be a Hermitian operator. This implies that the eigenvalues of bothH1

andH2 are real. Furthermore, forf 2(x)Þ0, H2 is not PT-invariant. This is a concrete example
of a non-Hermitian Hamiltonian with a real spectrum that fails to bePT-symmetric.

Equation ~43! provides a large class of non-Hermitian Hamiltonians with a real spectrum
whose members are determined by the choice of functionsf 2 andj. This class includes Hamil-
tonians with a discrete spectrum. For example letj(x)52(x/l )2n, wheren is a positive integer
and l is a positive real parameter with the dimension of length. Then

H65 1
2 @p1 f 2~x!#21V6~x!,

V15 1
2 ~n2l 24nx4n221n~2n21!l 22nx2n222l2e22l 22nx2n

!,

V25 1
2 ~2n2l 24nx4n221n~2n21!l 22nx2n222l2e22l 22nx2n

24ilnl 22nx2n21e2l 22nx2n
!.

It is not difficult to see thatH1 is a Hermitian Hamiltonian with a discrete spectrum. Therefore,
H2 has a real discrete spectrum as well.

VII. CONCLUSION

In this article, we have introduced the concept of a pseudo-Hermitian operator and showed
that the desirable spectral properties attributed toPT-symmetry are in fact consequences of
pseudo-Hermiticity of the corresponding Hamiltonians. We have derived various properties of
pseudo-Hermitian conjugation and pseudo-Hermitian operators. In particular, we showed how the
defining automorphismh is linked to the eigenvectors of anh-pseudo Hermitian HamiltonianH
with a complete biorthonormal eigenbasis. As the corresponding eigenbasis is subject to gauge
transformations, the automorphism with respect to whichH is pseudo-Hermitian is not unique.
This raises the question of the classification of the equivalence classes of automorphisms that lead
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to the same notion of pseudo-Hermiticity for a given Hamiltonian. We have given a brief discus-
sion of this problem and showed its connection with symmetries of the Hamiltonian. We have also
developed a generalization of supersymmetry that would apply for general pseudo-Hermitian
Hamiltonians, and used it to construct a class of pseudo-Hermitian Hamiltonians with a real
spectrum.

A particularly interesting result of our investigations is that all thePT-symmetric Hamilto-
nians that admit a complete biorthonormal eigenbasis are pseudo-Hermitian. In this sense, pseudo-
Hermiticity is a generalization ofPT-symmetry.

For a PT-symmetric Hamiltonian, the exactness ofPT-symmetry implies the reality of the
spectrum. More specifically, if an eigenvectoruE& is PT-invariant,PTuE&5uE&, then the corre-
sponding eigenvalueE is real. A similar condition for a general pseudo-Hermitian Hamiltonian is
not known. Pseudo-Hermiticity is only a necessary condition for the reality of the spectrum, not a
sufficient condition. In contrast,PT-symmetry is neither necessary nor sufficient. The exact
PT-symmetry is a sufficient condition. But for a givenPT-symmetric Hamiltonian it is not easy
to determine the exactness ofPT-symmetry without actually solving the corresponding eigenvalue
problem.

We hope that the concepts developed in this article provide the material for a more rigorous
study of the foundation of pseudounitary quantum mechanics.
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