
Pseudo-Hermiticity versus  symmetry: The necessary condition for the reality of the

spectrum of a non-Hermitian Hamiltonian

Ali Mostafazadeh

Citation: Journal of Mathematical Physics 43, 205 (2002); doi: 10.1063/1.1418246

View online: http://dx.doi.org/10.1063/1.1418246

View Table of Contents: http://aip.scitation.org/toc/jmp/43/1

Published by the American Institute of Physics

Articles you may be interested in

Pseudo-Hermiticity versus -symmetry. II. A complete characterization of non-Hermitian Hamiltonians with a
real spectrum
Journal of Mathematical Physics 43, 2814 (2016); 10.1063/1.1461427

Pseudo-Hermiticity versus -symmetry III: Equivalence of pseudo-Hermiticity and the presence of antilinear
symmetries
Journal of Mathematical Physics 43, 3944 (2002); 10.1063/1.1489072

PT-symmetric quantum mechanics
Journal of Mathematical Physics 40, 2201 (1999); 10.1063/1.532860

Must a Hamiltonian be Hermitian?
American Journal of Physics 71, 1095 (2003); 10.1119/1.1574043

Observation of  phase transition in a simple mechanical system
American Journal of Physics 81, 173 (2013); 10.1119/1.4789549

Pseudo-Hermiticity and generalized PT- and CPT-symmetries
Journal of Mathematical Physics 44, 974 (2003); 10.1063/1.1539304

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/659683075/x01/AIP-PT/JMP_ArticleDL_0117/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Mostafazadeh%2C+Ali
/loi/jmp
http://dx.doi.org/10.1063/1.1418246
http://aip.scitation.org/toc/jmp/43/1
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.1461427
http://aip.scitation.org/doi/abs/10.1063/1.1461427
http://aip.scitation.org/doi/abs/10.1063/1.1489072
http://aip.scitation.org/doi/abs/10.1063/1.1489072
http://aip.scitation.org/doi/abs/10.1063/1.532860
http://aip.scitation.org/doi/abs/10.1119/1.1574043
http://aip.scitation.org/doi/abs/10.1119/1.4789549
http://aip.scitation.org/doi/abs/10.1063/1.1539304


Pseudo-Hermiticity versus PT symmetry: The necessary

condition for the reality of the spectrum
of a non-Hermitian Hamiltonian
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~Received 9 July 2001; accepted for publication 25 September 2001!

We introduce the notion of pseudo-Hermiticity and show that every Hamiltonian

with a real spectrum is pseudo-Hermitian. We point out that all the PT-symmetric

non-Hermitian Hamiltonians studied in the literature belong to the class of pseudo-

Hermitian Hamiltonians, and argue that the basic structure responsible for the par-

ticular spectral properties of these Hamiltonians is their pseudo-Hermiticity. We

explore the basic properties of general pseudo-Hermitian Hamiltonians, develop

pseudosupersymmetric quantum mechanics, and study some concrete examples,

namely the Hamiltonian of the two-component Wheeler–DeWitt equation for the

FRW-models coupled to a real massive scalar field and a class of pseudo-Hermitian

Hamiltonians with a real spectrum. © 2002 American Institute of Physics.

@DOI: 10.1063/1.1418246#

I. INTRODUCTION

The past three years have witnessed a growing interest in non-Hermitian Hamiltonians with

real spectra.1–23 Based on the results of various numerical studies, Bender and collaborators1,4

found certain examples of one-dimensional non-Hermitian Hamiltonians that possessed real spec-

tra. Because these Hamiltonians were invariant under PT transformation, their spectral properties

were linked with their PT symmetry. The purpose of this article is to explore the basic structure

responsible for the reality of the spectrum of a non-Hermitian Hamiltonian.

By definition, a PT-symmetric Hamiltonian H satisfies

PTH~PT !21
5PTHPT5H , ~1!

where P and T are, respectively, the operators of parity and time-reversal transformations. These

are defined according to

P x P52x , P p P5T p T52p , T i1 T52i1, ~2!

where x , p , and 1 are, respectively, the position, momentum, and identity operators acting on the

Hilbert space H5L2(R) and iªA21. Note that Eq. ~2! applies only for the systems whose

classical position x and momentum p are real. In this article we shall only be concerned with these

systems.

As we mentioned previously, the only reason for relating the concept of PT-symmetry and

non-Hermitian Hamiltonians with a real spectrum is that most of the known examples of the latter

satisfy Eq. ~1!. Certainly there are Hermitian Hamiltonians with a real spectrum that are not

PT-symmetric and there are PT-symmetric Hamiltonians that do not have a real spectrum. There-

fore, PT-symmetry is neither a necessary nor a sufficient condition for a Hamiltonian to have a

real spectrum. This raises the possibility that the PT-symmetry of a Hamiltonian may have
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nothing to do with the reality of its spectrum. The interest in PT-symmetry seems to be mostly

because of the lack of an alternative framework replacing the Hermiticity of the Hamiltonian in

ordinary ~unitary! quantum mechanics. Much of the published work on the subject concerns the

study of various examples and the extension of the concepts developed for Hermitian Hamilto-

nians to the PT-symmetric ones.1–20 Recently, Znojil,21 Japaridze,22 and Kretschmer and

Szymanowski23 have addressed some of the more fundamental issues regarding the mathematical

structure and the interpretation of the PT-symmetric quantum mechanics.

Among the common properties of all the PT-symmetric Hamiltonians that have so far been

studied are the following.

~1! Either the spectrum of the Hamiltonian is real ~PT-symmetry is exact! or there are

complex-conjugate pairs of complex eigenvalues ~PT-symmetry is broken!.1,4,10,12

~2! The indefinite inner-product ^̂ u&& defined by

^̂ c1uc2&&ª^c1uPuc2&, ;uc1&,uc2&PH, ~3!

is invariant under the time-translation generated by the Hamiltonian.21,22

The main motivation for the present investigation is the remarkable fact that there is no evidence

that PT-symmetry is the basic structure responsible for these properties. For example, in Ref. 3,

the authors construct a class of non-PT-symmetric Hamiltonians with a real spectrum. Another

example of a non-Hermitian Hamiltonian with similar properties is the Hamiltonian describing the

evolution of the solutions of the two-component Wheeler–DeWitt equation for FRW-models

coupled with a real massive scalar field.24 This Hamiltonian is explicitly ‘‘time dependent,’’

‘‘parity-invariant,’’ and non-Hermitian ~with respect to the relevant L2-norm on the space of

two-component wave functions!, but the corresponding invariant indefinite inner-product does not

involve P .

The organization of the article is as follows. In Sec. II, we introduce the concept of a pseudo-

Hermitian operator and derive the basic spectral properties of pseudo-Hermitian Hamiltonians.

These coincide with Properties 1 and 2 ~with P replaced with a Hermitian invertible linear

operator h!. In Sec. III, we consider the class of pseudo-Hermitian Hamiltonians that have a

complete biorthonormal eigenbasis and show that the pseudo-Hermiticity is a necessary condition

for having a real spectrum. In Sec. IV, we explore the pseudo-Hermitian Hamiltonian of the

two-component Wheeler–DeWitt equation for FRW-models coupled with a real massive scalar

field. In Sec. V, we develop pseudosupersymmetric quantum mechanics. In Sec. VI, we use

pseudosupersymmetry to construct a large class of pseudo-Hermitian Hamiltonians with a real

spectrum. In Sec. VII, we present our concluding remarks.

II. PSEUDO-HERMITIAN HAMILTONIANS

We first give a few definitions. Throughout this paper we will assume that all the inner product

spaces are complex. The generalization to real inner product spaces is straightforward.

Definition 1: Let V6 be two inner product spaces endowed with Hermitian linear automor-

phisms h6 ~invertible operators mapping V6 to itself and satisfying!

;v6 ,w6PV6 , ~v6 ,h6w6!65~h6v6 ,w6!6 ,

where (,)6 stands for the inner product of V6! and O:V1→V2 be a linear operator. Then the

h6-pseudo-Hermitian adjoint O♯:V2→V1 of O is defined by O♯
ªh

1

21O†h2. In particular, for

V65V and h65h , the operator O is said to be h-pseudo-Hermitian if O♯
5O .

Definition 2: Let V be an inner product space. Then a linear operator O:V→V is said to be

pseudo-Hermitian, if there is a Hermitian linear automorphism h such that O is h-pseudo-

Hermitian.
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Now, consider a quantum system with a possibly non-Hermitian and time-dependent

Hamiltonian H5H(t) and a Hilbert space H which is endowed with a Hermitian linear auto-

morphism h.

Proposition 1: The Hermitian indefinite inner product ^̂ u&&h defined by h, i.e.,

^̂ c1uc2&&hª^c1uhuc2&, ;uc1&,uc2&PH, ~4!

is invariant under the time-translation generated by the Hamiltonian H if and only if H is

h-pseudo-Hermitian.

Proof: First note that the h-pseudo-Hermiticity of H is equivalent to the condition

H†
5h H h21. ~5!

Now, using the Schrödinger equation

i
d

dt
uc~ t !&5Huc~ t !& , ~6!

its adjoint, and Eq. ~4!, one has for any two evolving state vectors uc1(t)& and uc2(t)&:

i
d

dt
^̂ c1~ t !uc2~ t !&&h5^c1~ t !u~hH2H†h !uc2~ t !&.

Therefore, ^̂ c1(t)uc2(t)&&h is a constant if and only if ~5! holds. h

Note that choosing h51 reduces Eq. ~5! to the condition of the Hermiticity of the Hamil-

tonian. Hence pseudo-Hermiticity is a generalization of Hermiticity. Furthermore, observe that a

typical PT-symmetric Hamiltonian defined on a real phase space ((x ,p)PR
2) has the form H

5p2/(2m)1V(x) where the potential V(x)5V1(x)1iV2(x) has an even real part V1(x) and an

odd imaginary part V2(x), i.e., V6(6x)56V6(x). It is not difficult to see that such a

PT-symmetric Hamiltonian satisfies

H†
5

p2

2m
1V1~x !2iV2~x !5

p2

2m
1V1~2x !1iV2~2x !5P H P5P H P21.

Hence it is P-pseudo-Hermitian. In contrast, consider the non-Hermitian Hamiltonians

H1ªp2
1x2p , H2ªp2

1i~x2p1p x2!.

Clearly, H1 is PT symmetric, but not P-pseudo-Hermitian, whereas H2 is P-pseudo-Hermitian

and not PT symmetric. Therefore, PT symmetry and P-pseudo-Hermiticity are distinct properties.

Note, however, that H1 may be pseudo-Hermitian with respect to another Hermitian automor-

phism h. We shall explore the relationship between PT-symmetry and pseudo-Hermiticity in Sec.

III.

The defining condition ~5! may also be expressed as the intertwining relation

h H5H† h . ~7!

Using this equation together with the eigenvalue equation for the Hamiltonian, namely HuE i&
5E iuE i&, and its adjoint, we can easily show that any two eigenvectors uE i& and uE j& of H satisfy

~E i
*2E j! ^̂ E iuE j&&h50. ~8!

A direct implication of this equation is the following Proposition.

Proposition 2: An h-pseudo-Hermitian Hamiltonian has the following properties.

~a! The eigenvectors with a nonreal eigenvalue have vanishing h-semi-norm, i.e.,

E i¹R implies i uE i&ih
2
ª ^̂ E iuE i&&h50. ~9!

~b! Any two eigenvectors are h-orthogonal unless their eigenvalues are complex conjugates,

i.e.,
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E iÞE j
* implies ^̂ E iuE j&&h50. ~10!

In particular, the eigenvectors with distinct real eigenvalues are h-orthogonal.

In the remainder of this section, we list a number of simple but remarkable consequences of

pseudo-Hermiticity.

Proposition 3: Let V be an inner product space endowed with a Hermitian linear automor-

phism h, 1:V→V denote the identity operator, O1 ,O2 :V→V be linear operators, and z1 ,z2PC.

Then,

~a! 1♯
51;

~b! (O1
♯)♯

5O1 ;

~c! (z1O11z2O2)♯
5z1

*O1
♯
1z2

*O2
♯ ,

where z i
* stands for the complex conjugate of z i .

Proof: ~a! and ~b! are trivial consequences of the definition of ♯ and the Hermiticity of h. ~c!
follows from this definition and the linearity of h and h21:

~z1O11z2O2!♯
5h21~z1O11z2O2!†h5z1

*h21O1
†h1z2

*h21O2
†h5z1

*O1
♯
1z2

*O2
♯ .

h

Proposition 4: Let V l , with l P$1,2,3%, be inner product spaces endowed with Hermitian

linear automorphisms h l and O1 :V1→V2 and O2 :V2→V3 be linear operators. Then (O2O1)♯

5O1
♯O2

♯ .

Proof: This relation follows from the following simple calculation:

~O2O1!♯
5h1

21~O2O1!†h35h1
21O1

†h2h2
21O2

†h35O1
♯O2

♯ .

h

Corollary: Pseudo-Hermitian conjugation (O→O♯) is a *-operation.

Proof: According to Propositions 3 and 4, ♯ has all the properties of a *-operation. h

Proposition 5: Let V be an inner product space endowed with a Hermitian linear automor-

phism h, U:V→V be a unitary operator, and O:V→V be a linear operator. Then hUªU†hU is a

Hermitian linear automorphism, and O is h-pseudo-Hermitian if and only if OUªU†OU is

hU-pseudo-Hermitian. In other words, the notion of pseudo-Hermiticity is unitary-invariant.

Proof: First we recall that because U is unitary, hU is both Hermitian and invertible. Further-

more, we have

hU
21OU

† hU5U†h21UU†O†UU†hU5U†~h21O†h !U .

h

Proposition 6: Let V be an inner product space, h1 and h2 be Hermitian linear automor-

phisms, and O:V→V be a linear operator. Then the h1-pseudo-Hermitian adjoint of O coincides

with its h2-pseudo-Hermitian adjoint if and only if h2
21h1 commutes with O .

Proof: This statement holds because h1
21O†h15h2

21O†h2 implies O†h1h2
21

5h1h2
21O†.

Taking the Hermitian adjoint of this relation yields @O ,h2
21h1#50. h

Corollary: If the Hamiltonian H of a quantum system is pseudo-Hermitian with respect to two

different Hermitian linear automorphisms h1 and h2 of the Hilbert space, then h2
21h1 is a sym-

metry of the system. Conversely, let h be a Hermitian linear automorphism of the Hilbert space,

G be a symmetry group of the system whose elements g are represented by invertible linear

operators. Then hg is a Hermitian linear automorphism and H is hg-pseudo-Hermitian provided

that g†hg5h .

Proof: This is a direct implication of Proposition 6 and the definition of the symmetry, namely

@g ,H#50 or equivalently g21Hg5H .25
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III. PSEUDO-HERMITIAN HAMILTONIANS WITH A COMPLETE BIORTHONORNAL
EIGENBASIS

Let H be an h-pseudo-Hermitian Hamiltonian with a complete biorthonormal eigenbasis

$ucn ,a&,ufn ,a&% and a discrete spectrum.26 Then, by definition,

Hucn ,a&5Enucn ,a&, H†ufn ,a&5En
*ufn ,a& , ~11!

^fm ,bucn ,a&5dmndab , ~12!

(
n

(
a51

dn

ufn ,a&^cn ,au5(
n

(
a51

dn

ucn ,a&^fn ,au51, ~13!

where dn is the multiplicity ~degree of degeneracy! of the eigenvalue En , and a and b are

degeneracy labels.

Proposition 7: Let H be a pseudo-Hermitian Hamiltonian with these properties. Then the

nonreal eigenvalues of H come in complex conjugate pairs with the same multiplicity.

Proof: According to Eqs. ~5! and ~11!,

H~h21ufn ,a&)5h21H†ufn ,a&5En
*~h21ufn ,a&). ~14!

Because h21 is invertible, h21ufn ,a&Þ0 is an eigenvector of H with eigenvalue En
* . More

generally, h21 maps the eigensubspace associated with En to that associated with En
* . Again,

because h21 is invertible, En and En
* have the same multiplicity. h

Next, we use the subscript ‘‘0’’ to denote real eigenvalues and the corresponding basis eigen-

vectors and the subscript ‘‘6’’ to denote the complex eigenvalues with 6 imaginary part and the

corresponding basis eigenvectors. Then in view of Eqs. ~11!–~14!, we have

15(
n0

(
a51

dn0

ucn0
,a&^fn0

,au1(
n1

(
a51

dn
1

~ ucn
1

,a&^fn
1

,au1ucn
2

,a&^fn
2

,au!, ~15!

H5(
n0

(
a51

dn0

En0
ucn0

,a&^fn0
,au1(

n1

(
a51

dn
1

~En
1
ucn

1
,a&^fn

1
,au1En

1

* ucn
2

,a&^fn
2

,au!.

~16!

Repeating the calculation leading to Eq. ~14!, we find

h21ufn0
,a&5 (

b51

dn0

c
ba

(n0)
ucn0

,b& , c
ab

(n0)
ª^fn0

,auh21ufn0
,b&, ~17!

h21ufn
1

,a&5 (
b51

dn
1

c
ba

(n1)
ucn

2
,b& , c

ab

(n1)
ª^fn

2
,auh21ufn

1
,b& , ~18!

h21ufn
2

,a&5 (
b51

dn
1

c
ba

(n2)
ucn

1
,b& , c

ab

(n2)
ª^fn

1
,auh21ufn

2
,b& , ~19!

where c
ab

(n0)
and c

ab

(n6)
are complex coefficients. The latter may be viewed as entries of complex

matrices c (n0) and c (n6), respectively. Because h and consequently h21 are Hermitian operators,

so are the matrices c (n0) and c (n6). In particular, we can make a unitary transformation of the

Hilbert space to map the biorthonormal system of eigenbasis vectors of the Hamiltonian to a new

system in which these matrices are diagonal. We can further rescale the basis vectors so that c (n0)
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and c (n6) become identity matrices. In the following we shall assume, without loss of generality,

that such a transformation has been performed. Then, Eqs. ~17!–~19! take the form

ufn0
,a&5hucn0

,a&, ufn
6

,a&5hucn
7

,a&. ~20!

In particular, combining this result with Eq. ~12!, we have the following h-orthonormalization of

the eigenvectors of H

^̂ cn0
,aucm0

,b&&h5dn0 ,m0
dab , ^̂ cn

6
,aucm

7
,b&&h5dn

6
,m

7
dab . ~21!

Next, we solve Eq. ~20! for ucn0
& and ucn

6
& and substitute the result in Eq. ~15!. This leads to

an explicit expression for h that can be easily inverted to yield h21. The result is

h5(
n0

(
a51

dn0

ufn0
,a&^fn0

,au1(
n1

(
a51

dn
1

~ ufn
2

,a&^fn
1

,au1ufn
1

,a&^fn
2

,au!, ~22!

h21
5(

n0

(
a51

dn0

ucn0
,a&^cn0

,au1(
n1

(
a51

dn
1

~ ucn
2

,a&^cn
1

,au1ucn
1

,a&^cn
2

,au!. ~23!

One can easily check that the Hamiltonian H and the operators h and h21 as given by Eqs. ~16!,
~22!, and ~23! satisfy the h-pseudo-Hermiticity condition ~5!.

The above-mentioned analysis provides the following necessary and sufficient condition for

pseudo-Hermiticity.

Theorem: Let H be a non-Hermitian Hamiltonian with a discrete spectrum and a complete

biorthonormal system of eigenbasis vectors $ucn ,a&,ufn ,a&%. Then H is pseudo-Hermitian if and

only if one of the following conditions hold

~1! The spectrum of H is real.

~2! The complex eigenvalues come in complex conjugate pairs and the multiplicity of complex

conjugate eigenvalues are the same.

Proof: We have already shown in Proposition 7 that pseudo-Hermiticity of H implies at least

one of these conditions. To prove that these conditions are sufficient for the pseudo-Hermiticity of

H , we use $ucn ,a&,ufn ,a&% to express H in the form ~16! and construct h according to Eq. ~22!.
Then, by construction, H and h satisfy ~5!. h

This theorem reveals the relevance of the concept of pseudo-Hermiticity to the spectral prop-

erties of the PT-symmetric Hamiltonians considered in the literature. To the best of our knowl-

edge, an analogue of this theorem that would apply to arbitrary PT-symmetric Hamiltonians does

not exist. A direct implication of this theorem is the following corollary.

Corollary 1: Every non-Hermitian Hamiltonian with a discrete real spectrum and a complete

biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Note that, in general, a non-Hermitian Hamiltonian may not admit a complete biorthonormal

system of eigenvectors. The preceding Theorem and Corollary 1 may not apply for these non-

Hermitian Hamiltonians.

Corollary 2: Every PT-symmetric Hamiltonian with a discrete spectrum and a complete

biorthonormal system of eigenbasis vectors is pseudo-Hermitian.

Proof: This statement follows from the above-presented Theorem and fact that the eigenvalues

of every PT-symmetric Hamiltonian with a complete biorthonormal system of eigenbasis vectors

come in complex conjugate pairs. To see this, let uE& be an eigenvector of H with eigenvalue E ,

i.e., HuE&5EuE&, and uE&8ªPTuE&. Then
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HuE&85H~PT !uE&5~PT !HuE&5~PT !EuE&5E*~PT !uE&5E*uE&8,

where we have made use of the linearlity of P and the antilinearlity of T . h

IV. PSEUDO-HERMITICITY IN MINISUPERSPACE QUANTUM COSMOLOGY

The Wheeler–DeWitt equation ~with a particularly simple factor ordering prescription! for a

Freedman–Robertson–Walker ~FRW! model coupled to a massive real scalar field has the form

F2
]2

]a2 1
]2

]f2 1k e4a
2m2e6af2Gc~a ,f !50, ~24!

where a5ln a, a is the scale factor, f is the scalar field, m is the mass of f, and k521,0, or 1

depending on whether the universe is open, flat, or closed.27 In the two-component representation

developed in Ref. 24, this equation takes the form of the Schrödinger equation: iĊ5H(a)C
where a dot stands for a derivative with respect to a and

C5
1

&
S c1iċ

c2iċ
D , H5

1

2
S 11D 211D

12D 212D
D , ~25!

Dª2
]2

]f2 1V~f ,a !, V~f ,a !ªm2e6af2
2k e4a. ~26!

As seen from these equations D/2, up to an unimportant additive scalar, is the Hamiltonian of a

‘‘time-dependent’’ simple harmonic oscillator with unit ‘‘mass’’ and ‘‘frequency’’ v5m e3a,

where a and f play the roles of time t and position x , respectively.

It is not difficult to check that the two-component Hamiltonian H is not Hermitian with

respect to the L2-inner product on the space of two-component state vectors C. However, its

eigenvalue problem can be solved exactly.24 For an open or flat FRW universe (k521,0) the

eigenvalues of H are real. For a closed FRW model, there is a range of values of a for which all

the eigenvalues are real. Outside this range they come in complex conjugate imaginary pairs. This

suggests that H is a pseudo-Hermitian Hamiltonian. In fact, we can easily check that H is an

h-pseudo Hermitian Hamiltonian for

h5S 1 0

0 21
D . ~27!

The indefinite inner product corresponding to ~27! is nothing but the Klein–Gordon inner product

that is invariant under the ‘‘time-translation’’ generated by H .

V. PSEUDOSUPERSYMMETRIC QUANTUM MECHANICS

The application of the ideas of supersymmetric quantum mechanics28 in constructing non-

Hermitian PT-symmetric Hamiltonians has been considered in Refs. 3, 7, 13, 17, and 19 and a

formulation of PT-symmetric supersymmetry has been outlined in Refs. 14 and 20. In this section,

we develop a straightforward generalization of supersymmetric quantum mechanics that applies

for pseudo-Hermitian Hamiltonians.

Definition 3: Consider a Z2-graded quantum system29 with the Hilbert space H1 % H2 and the

involution or grading operator t satisfying

t5t†
5t21 and ;uc6&PH6 , tuc6&56uc6&. ~28!
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Let h be an even Hermitian linear automorphism ~i.e., @h ,t#50) and suppose that the Hamil-

tonian H of the system is h-pseudo-Hermitian. Then H ~alternatively the system! is said to have

a pseudo-supersymmetry generated by an odd linear operator Q (i .e . ,$Q,t%50) if H and Q

satisfy the pseudosuperalgebra

Q 2
5Q ♯2

50, $Q,Q ♯%52H . ~29!

A simple realization of pseudosupersymmetry is obtained using the two-component represen-

tation of the Hilbert space where the state vectors uc& are identified by the column vector ( uc
2

uc1&)

of their components uc6& belonging to H6 . In this representation, one can satisfy the h-pseudo-

Hermiticity of the Hamiltonian H , @i.e., Eq. ~5!# and the pseudosuperalgebra ~29! by setting

t5S 1 0

0 21
D , h5S h1 0

0 h2

D , ~30!

Q5S 0 0

D 0
D , H5S H1 0

0 H2

D , ~31!

where h6 is a Hermitian linear automorphism of H6 , D:H1→H2 is a linear operator, and

H1ª
1
2 D♯D , H2ª

1
2 D D♯. ~32!

Note that, by definition, Q ♯
5h21Q†h ,

D♯
5h

1

21D†h2 , ~33!

and that H6 :H6→H6 are h6-pseudo-Hermitian Hamiltonians satisfying the intertwining rela-

tions

D H15H2D , D♯H25H1D♯. ~34!

As a consequence, H1 and H2 are isospectral, D maps the eigenvectors of H1 to those of H2 ,

and D♯ does the converse, except for those eigenvectors that are eliminated by these operators.

More specifically, suppose that H6 has a complete biorthonormal eigenbasis $ucn
6 ,a&,ufn

6 ,a&%
satisfying

H6ucn
6 ,a&5En

6ucn
6 ,a&, H

6

† ufn
6 ,a&5En

6*ufn
6 ,a& .

Then, Ducn
1 ,a& is either zero in which case En

1
50, or it is an eigenvector of H2 with eigenvalue

En
1 ; D♯ucn

2 ,a& is either zero in which case En
2

50, or it is an eigenvector of H1 with eigenvalue

En
2 . Similarly D† and D♯† relate the eigenvectors ufn

6 ,a& of H
6

† .

An interesting situation arises when one of the automorphisms h6 is trivial, e.g., h151. In

this case, H1 is a Hermitian Hamiltonian with a real spectrum, and pseudosupersymmetry implies

that the pseudo-Hermitian Hamiltonian H2—which is generally non-Hermitian—must have a real

spectrum as well. This is not the only way to generate non-Hermitian Hamiltonians with a real

spectrum. In the next section we shall use pseudo-supersymmetry to construct a class of non-

Hermitian Hamiltonians that have a real spectrum.

VI. A CLASS OF NON-HERMITIAN HAMILTONIANS WITH A REAL SPECTRUM

Consider the class of pseudosupersymmetric systems corresponding to the choices:

H65H5L2~R!, h656P , ~35!

D5p1 f ~x !1ig~x !, ~36!
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where f and g are real-valued functions. We can express these functions in the form

f ~x !5 f 1~x !1 f 2~x !, g~x !5g2~x !1g1~x !, ~37!

where f 1 and g1 are even functions of x , and f 2 and g2 are odd functions. In view of Eqs.

~35!–~37!, ~33!, and ~32!, we have

D♯
5p2 f 1~x !1 f 2~x !1i@g1~x !2g2~x !# , ~38!

H65
1
2 ~@p1 f 2~x !#2

1g
2
8 ~x !6g

2

2
2 f

1

2
2i@2g2~x ! f 1~x !6 f

1
8 ~x !#1K !, ~39!

Kªi$g1~x !,p%1g1~x !@2i f 2~x !2g1~x !# , ~40!

where a prime means a derivative and $,% stands for the anticommutator.

Next, we demand that H1 is a Hermitian Hamiltonian. The necessary and sufficient condition

for the Hermiticity of H1 and non-Hermiticity of H2 is

g1~x !50, g2~x !52
f

1
8 ~x !

2 f 1~x !
. ~41!

Introducing the even function j(x)ªlnuf1(x)/lu for some lPR2$0%, and using Eqs. ~39!–~41!,
we have

H15
1
2 ~@p1 f 2~x !#2

1
1
4 j8~x !2

2
1
2 j9~x !2l2 e2j(x)!, ~42!

H25
1
2 ~@p1 f 2~x !#2

2
1
4 j8~x !2

2
1
2 j9~x !2l2 e2j(x)

12il ej(x)j8~x !!. ~43!

By construction, H6 are pseudo-Hermitian pseudo-supersymmetric partners. In particular, they are

isospectral. H1 happens to be a Hermitian operator. This implies that the eigenvalues of both H1

and H2 are real. Furthermore, for f 2(x)Þ0, H2 is not PT-invariant. This is a concrete example

of a non-Hermitian Hamiltonian with a real spectrum that fails to be PT-symmetric.

Equation ~43! provides a large class of non-Hermitian Hamiltonians with a real spectrum

whose members are determined by the choice of functions f 2 and j. This class includes Hamil-

tonians with a discrete spectrum. For example let j(x)52(x/l )2n, where n is a positive integer

and l is a positive real parameter with the dimension of length. Then

H65
1
2 @p1 f 2~x !#2

1V6~x !,

V15
1
2 ~n2

l
24nx4n22

1n~2n21 !l
22nx2n22

2l2e22l
22nx2n

!,

V25
1
2 ~2n2

l
24nx4n22

1n~2n21 !l
22nx2n22

2l2e22l
22nx2n

24ilnl
22nx2n21e2l

22nx2n

!.

It is not difficult to see that H1 is a Hermitian Hamiltonian with a discrete spectrum. Therefore,

H2 has a real discrete spectrum as well.

VII. CONCLUSION

In this article, we have introduced the concept of a pseudo-Hermitian operator and showed

that the desirable spectral properties attributed to PT-symmetry are in fact consequences of

pseudo-Hermiticity of the corresponding Hamiltonians. We have derived various properties of

pseudo-Hermitian conjugation and pseudo-Hermitian operators. In particular, we showed how the

defining automorphism h is linked to the eigenvectors of an h-pseudo Hermitian Hamiltonian H

with a complete biorthonormal eigenbasis. As the corresponding eigenbasis is subject to gauge

transformations, the automorphism with respect to which H is pseudo-Hermitian is not unique.

This raises the question of the classification of the equivalence classes of automorphisms that lead
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to the same notion of pseudo-Hermiticity for a given Hamiltonian. We have given a brief discus-

sion of this problem and showed its connection with symmetries of the Hamiltonian. We have also

developed a generalization of supersymmetry that would apply for general pseudo-Hermitian

Hamiltonians, and used it to construct a class of pseudo-Hermitian Hamiltonians with a real

spectrum.

A particularly interesting result of our investigations is that all the PT-symmetric Hamilto-

nians that admit a complete biorthonormal eigenbasis are pseudo-Hermitian. In this sense, pseudo-

Hermiticity is a generalization of PT-symmetry.

For a PT-symmetric Hamiltonian, the exactness of PT-symmetry implies the reality of the

spectrum. More specifically, if an eigenvector uE& is PT-invariant, PTuE&5uE&, then the corre-

sponding eigenvalue E is real. A similar condition for a general pseudo-Hermitian Hamiltonian is

not known. Pseudo-Hermiticity is only a necessary condition for the reality of the spectrum, not a

sufficient condition. In contrast, PT-symmetry is neither necessary nor sufficient. The exact

PT-symmetry is a sufficient condition. But for a given PT-symmetric Hamiltonian it is not easy

to determine the exactness of PT-symmetry without actually solving the corresponding eigenvalue

problem.

We hope that the concepts developed in this article provide the material for a more rigorous

study of the foundation of pseudounitary quantum mechanics.
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