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Abstract 

Frequency is essential in signal transmission, especially in convolutional neural networks. It is vital to maintain the 
signal frequency in the neural network to maintain the performance of a convolutional neural network. Due to 
destructive signal transmission in convolutional neural network, signal frequency downconversion in channels results 
into incomplete spatial information. In communication theory, the number of Fourier series coefficients determines 
the integrity of the information transmitted in channels. Consequently, the number of Fourier series coefficients of the 
signals can be replenished to reduce the information transmission loss. To achieve this, the ArsenicNetPlus neural net-
work was proposed for signal transmission modulation in detecting cassava diseases. First, multiattention was used to 
maintain the long-term dependency of the features of cassava diseases. Afterward, depthwise convolution was imple-
mented to remove aliasing signals and downconvert before the sampling operation. Instance batch normalization 
algorithm was utilized to keep features in an appropriate form in the convolutional neural network channels. Finally, 
the ArsenicPlus block was implemented to generate pseudo high-frequency in the residual structure. The proposed 
method was tested on the Cassava Datasets and compared with the V2-ResNet-101, EfficientNet-B5, RepVGG-B3g4 
and AlexNet. The results showed that the proposed method performed 95.93% in terms of accuracy, 1.2440 in terms 
of loss, and 95.94% in terms of the F1-score, outperforming the comparison algorithms.
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Introduction
Cassava (Manihot esculenta Crantz) is one of the most 
common crops widely grown throughout the world and 
is a major staple food crop, feeding approximately 800 
million people worldwide in Africa (55.5%) , Asia (30.2%) , 
Americas (14.3%) and Oceania (0.1%) [1, 2]. Cassava is 
used as fodder and starch to develop ethanol fuel and as 
an industrial raw material. During food crises, research 
and exploration of cassava disease diagnosis using vision 
algorithms have helped people manage the crises and 
ensure that no unnecessary losses to crops occur.

There are more than 30 known cassava leaf diseases [3], 
of which four diseases, named cassava bacterial blight 
(CBB), cassava brown streak (CBSD), cassava mosaic 
(CMD) and cassava green mottle (CGM) are extremely 
damaging to cassava and are the main ones which will 
cause cassava yield reduction.

Growing cassava on small, and large scales across 
Southeast Asia and Africa has been challenging. The pri-
mary challenge is that cassava plants are vulnerable to 
a broad range of diseases as well as lesser-known viral 
strains. The incidence of epidemics of cassava mosaic 
virus has increased for decades in East Africa, especially 
the brown streak virus (CBSD), leading to losses of 47% of 
production and US$ 60 million per annum (in lost yield) 
and causing local famine. This has resulted in significant 
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investments in plant breeding programs to overcome 
this issue [4]. Cassava bacterial blight disease (CBB) is a 
major constraint on cassava cultivation worldwide, and 
losses have exceeded 50–75% in regions where highly 
susceptible cultivars are grown [5]. To recognize disease 
rapidly, researchers have been exploring effective means 
of detecting diseases in cassava using visual algorithms.

Plant disease detection is a branch of fine-grained 
problems that can be expressed using the t-SNE  (t-Dis-
tributed Stochastic Neighbor Embedding) algorithm [6] 

to indicate the class separability and compactness in 
features extracted from a convolutional neural network 
[7]. The t-SNE visualization result is illustrated in Fig. 1. 
However, different from the clear background of images 
in the common fine-grained dataset, the cassava disease 
images in paper were captured in a real scenario with 
significant disorder texture, similar colour distribution, 
and irregular gradient disturbance. With the rapid devel-
opment of the technology, the fine-grained research has 
been considered a high-performance feature descriptor 
for the encoder of the neural network, such as the Effi-
cientNets algorithm [8]. Cassava diseases are shown in 
Fig. 2.

Ai et al. [9] utilized the Inception-ResNet-V2 model to 
recognize diseases in an efficient approach. The research-
ers used the competition disease leaf dataset to find 
the most efficient model by  using an image dataset of 
47,363 images for 27 disease-related 10 crop varieties. 
The based-inception algorithm structures exhibit excel-
lent performance for fine-grained tasks based on trans-
fer learning [10]. Fu et al. [11] proposed an algorithm to 
introduce the attention proposal sub-network  (APN) as 
the local attention mechanism for convolutional neu-
ral networks for fine-grained tasks. The APN algorithm 
eliminates useless information and pays more attention 
to local responses. Fine-grained technology is essential 
for the development of neural networks, especially in 
person re-identification technology [12, 13].

Using deep neural networks, significant applications 
can be implemented in plant disease detection tasks. Var-
ious technologies have been utilized in neural networks 
to pursue high-performance results. These technolo-
gies include transfer learning, multi-task learning, meta 
learning [14], fine-tuning methods [14], ensemble learn-
ing [15], knowledge distillation [16], and loss function 

Fig. 1  The t-SNE visualization result [7]

Fig. 2  Cassava disease illustration
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fusion [17]. Several applications have been used in the lit-
erature. For instance, Tetila et al. [18] proposed a neural 
network algorithm to automatically recognize soybean 
leaf diseases based on unmanned aerial vehicle  (UAV) 
images. The result of this automatic algorithm had 99.04% 
in terms of its accuracy based on the fine-tuning method. 
However, the number of images was too low to provide 
many features of disease detection in real scenarios. The 
performance of this neural network was based on trans-
fer learning to fine-tune the neural network weight. 
MobileNet [19], a lightweight-class CNN-based algo-
rithm [20], achieved an accuracy of 94% in cassava disease 
diagnosis. This algorithm was pretrained on the COCO 
dataset. Singh et al. [21] proposed a preprocessing algo-
rithm to process images of mango leaf datasets and pro-
posed a customized algorithm to detect the anthracnose 
disease in mango leaves with the dropout algorithms. 
As stated in a study by Li et al. [22], the variance shift in 
dropout was different from batch normalization, which 
illuminated an applicable case for plant disease detection. 
Many studies have been conducted to find an appropri-
ate expression for features to make up for the limitations 
of Batch Normalization. Nonetheless, more research is 
needed [23–27]. For example, background images in the 
research of Singh et al. [21] were not clearly captured in 
a field the fields scenario. This may make neural networks 
unsuitable for detecting leaf diseases. Yuan et  al. [28] 
proposed a spatial pyramid-oriented encoder-decoder 
method cascade with a convolutional neural network for 
crop disease segmentation to locate the infected regions 
of leaves. This disease segmentation algorithm was 90% 
accurate based on K-fold cross-validation. The number 
of parameters and the inference time may not be consid-
ered in many research explorations but can be considered 
in the deployment stage. Zhang et al. [29] proposed the 
global pooling dilated convolutional neural network to 
detect cucumber leaf disease. The researchers used the 
inception block to develop high-level feature maps based 
on the AlexNet structure and replaced the fully con-
nected layer with a global pooling layer to reduce the net-
work parameters. The results showed that the AlexNet 
neural network was a classical algorithm. However, the 
spatial dimension decreases, as each convolutional layer 
or block is followed by a sub-sampling layer [30]. There-
fore, Han et al. [31] argued that in deep CNNs, a drastic 
increase in the feature-map depth and, at the same time, 
the loss of spatial information limits the learning abil-
ity of CNNs. Reyes et al. [32] used a pre-trained convo-
lutional neural network using 1.8 million images and a 
fine-tuning strategy to transfer the learned recognition 
ability from the general domain to the specific challenge 
of the plant recognition task. Lee et  al. [33] proposed a 
deep learning approach to quantify discriminatory leaf. 

Thai et al. [34] proposed a vision transformer (ViT) [35] 
to detect the early leaf disease. It was a expensive method 
for plant disease detection, however, its a powerful solu-
tion for early leaf disease detection. De et  al. [36] apply 
Faster Region-based Convolutional Neural Network 
(F-RCNN) to detect and recognize tomato plant leaf 
disease. Zhang et  al. [37] improve F-RCNN by replac-
ing VGG16 with a depth residual network resulting in 
2.71% higher recognition accuracy compared with pre-
vious work. RepVGGs may be an excellent solution in 
F-RCNN. The reparametrization method can be utilized 
to boost the generalization of VGG neural networks. 
Sun et  al. [38] used data enhancement and image seg-
mentation for tea images and achieved higher accuracy 
through frequently adjusting iteration times and learn-
ing rates. Zhou et al. [39] proposed a deep residual dense 
networks to obtain higher accuracy in classifying tomato 
leaf diseases using fewer parameters. Oyewola et al. [40] 
proposed the detection of cassava mosaic disease using 
deep residual convolutional neural networks with differ-
ent computation block.

In a third generation neural network [41], variation 
of light in an image has an essential property in feature 
description. The texture information expresses the high-
frequency component in the images [42]. In the study of 
Wang et al. [43], a high-frequency component is known 
to boost the generalization performance in a convolu-
tional neural network. As mentioned above, the pro-
posed multi-attention mechanism proposed maintained 
the long-term dependency of the feature maps in neural 
network channels. To comply with the constraints of the 
Nyquist–Shannon sampling theorem, the Arsenic Block 
was proposed to downconvert the signal frequency in 
channels of the neural network. The pseudo high-fre-
quency component was utilized to maintain the number 
of Fourier series coefficients of signals in neural network 
channels.

The field images are utilized in this paper to overcome 
implicit obstacles in the field [44].

The proposed method
A large dataset may cause a lower angular frequency of 
the kernel function. Consequently, based on the property 
of the convolution, the high-frequency of the convolu-
tion kernel function is maintained, and more information 
can be maintained in the neural network channels. Thus, 
more effective information can be saved in the filter oper-
ations. The effective information can be expressed as an 
objective function of the input signal in the mathematical 
expression.

Angular frequency is essential for maintaining feature 
long-term dependency to keep the objective function 
with arbitrary small loss in a convolutional neural 
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network. When the angular frequency of the convolution 
kernel function refers to ωkernel → 0 , and ωkernel  = 0 , the 
objective function of the input signal refers to S, and the 
frequency of ωS = ρ , the most ideal case is 
ωS

ωkernel
= C ,C ∈ N+ . When the angular frequency of the 

Fourier series coefficients of the convolution kernel func-
tion refer to ωkernel → 0 and the action scope of the Fou-
rier series was ∞ = lim

ω→0

2π
ω

 , all objective functions of the 
input signals will be maintained in this convolution oper-
ation. Kernel functions uniform convergence to a good 
kernel function is stated in Appendix.

Considering the indicators of GFLOPs and Parameters 
in the neural network, v2-ResNet-101 was utilized as 
the baseline. The pipeline is illustrated in Fig. 3. Figure 4 
shows the head block utilized to capture contour infor-
mation at the beginning of the network. The depth-wise 

convolution block of the essential component of the 
Arsenic basic block is illustrated in Fig.  5. The Arsenic 
block is illustrated in Fig. 6.

ArsenicNet is composed of a multi-attention ResBlock 
and Arsenic block. The multi-attention ResBlock was 
modified with a pseudo high-frequency component to 
give the ArsenicPlus block. The ArsenicPlus block was 
the basic component in stage 4 [45] of ArsenicNetPlus. 
The other stages in ArsenicNetPlus were maintained in 
the architecture of ArsenicNet without being modified. 
The architecture of the ArsenicPlus block is illustrated in 
Fig. 7.

Keeping long‑term dependency based on multi‑attention 
component
In the communication theorem, the greater the numbers 
of Fourier series coefficients, the clearer the information 
transmitted in channels. This idea can be transferred 
from communication theory to neural networks. More 
numbers of Fourier series coefficients of the signals help 
boost the generalization of the neural networks.

Subsequently, the multi-attention component was 
proposed to maintain long-term dependency in feature 
maps. The SE-block [46] and FCA-block [47] were uti-
lized as the multi-attention structure. The multi-attention 
is a product of two linear transformation coefficients, and 
the architecture is shown in Fig. 8.

Fig. 3  Architecture for implementing our approach

Fig. 4  Architecture of the head block

Fig. 5  Architecture of the depth-wise convolution block

Fig. 6  Architecture of basic Arsenic block

Fig. 7  Architecture of ArsenicPlus block
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Boosting the generalization using instance batch 
normalization
The instance batch normalization (IBN) [48] is a special 
algorithm that can be applied to convolutional neural 
networks. It is a combination of the instance normaliza-
tion and batch normalization [49]. The architecture of 
the IBN is illustrated in Fig. 9.

Complying with the restrictions in down‑sampling 
limitation
In the Noisy-channel coding theorem, which demon-
strates that if the transmission rate R ≤  capacity C, there 
exists an encode mode to transmit information with min-
imum error probability. The correlation in bandwidth B, 
capacity C, and white Gaussian noise is stated as follows:

where C refers to the capacity of channels, B refers to the 
bandwidth, S refers to the signal power, and N refers to 
the noise power. The Noisy-channel coding theorem is 
applicable to digital signals and analogue signals. If the 
noise in the convolutional neural network can be con-
trolled and it approaches to zero, then Cǫ → 0 ; thus 
S
T → ∞ . The Noisy-channel coding theorem can be 
rewritten as follows:

Based the curve of log2∞ , the asymptotic value C can be 
calcuated based on bandwidth B, where C is the actual 
coding capacity. The coding capacity is an unknown 
parameter in a convolutional neural network.

In a convolutional neural network, the sampling 
frequency did not comply with the definition of the 

(1)C = B log2

(

1+
S

N

)

,

(2)C = B log2(1+∞).

Nyquist–Shannon sampling theorem. To comply with 
the restrictions of the down-sampling limitation, the 
Arsenic block plays two roles in the proposed neural 
network. First, it cleans the aliasing signals in feature 
maps. Second,it down-converts the frequency to comply 
with the down-sampling frequency. However, the fea-
ture descriptor was not an arbitrarily small loss coding 
operator, when the neural network did not use transfer 
learning.

Based on the abovementioned information, the signal 
frequency in the neural network channels will eventu-
ally meet the down-sampling frequency limitation. A 
weaker signal frequency was proven to exist in the stage 
4 of the convolutional neural network, which is illus-
trated in Table 1. Thus, to repair the weakness signals, the 
ArsenicPlus block  (Fig.  7) was utilized in stage 4 of the 
proposed method. The results in Table 1 were evaluated 
using 7-fold cross-validation.

The Nyquist–Shannon sampling theorem was found to 
be applicable to convolutional neural networks and was 
named ArsenicNet. To evaluation the generalization 
of ArsenicNet, the Fine-Grained Visual Classification 
of Aircraft  (FGVC-Aircraft) dataset was utilised in this 
paper. The FGVC-Aircraft dataset was cited in over 1000 
papers, and was utilised as a benchmark dataset in over 
200 papers [50].

As statistic in Table  6, the ArsenicNet-3  (based 
ResNet50) has achieved 84.70% in terms of accuracy, 
that is 5.9% higher than the experimental consequence of 
ResNet-50 method in the study of Lee et al. [51] in terms 
accuracy. Therefore, ArsenicNet is mentioned in this 
paper as the basic neural network of the ArsenicNetPlus 
neural network.

Fig. 8  Architecture of the Multi-Attention Block

Fig. 9  IBN architecture

Table 1  Results of ArsenicNet method (based on V2-ResNet-101)

 The suffix number of ArsenicNet is the number of Arsenic blocks in the neural 
network which are only conducted before down-sampling

Method Accuracy (%) Recall (%) Precision (%) F1-Score (%)

ArsenicNet-3 95.55 95.52 95.59 95.56

ArsenicNet-1 95.03 94.97 95.06 95.01

ArsenicNet-2 95.43 95.40 95.47 95.44

ArsenicNet-4 95.36 95.34 94.95 94.91
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Building pseudo high‑frequency residual structure
As stated in the studies of Wang et  al. [43], high-fre-
quency plays an important role in convolutional neu-
ral networks. Unfortunately, a signal with destructive 
transmission in a convolutional neural network causes 
a high-frequency loss, and the signals fall to an extreme 
weakness state.

The extremely weakness signals can not provide an 
accurate representation of the objective function in the 
source signal. We put forwarded a new concept: pseudo-
high frequencies, and invented a method by adding 
pseudo-high frequencies to extreme weakness signals to 
maintain the integrity of the signal as much as possible, 
which can be used to solve such questions. Consequently, 
it is difficult to reconstruct the extreme weakness sig-
nals to the original signals. The pseudo high-frequency 
approximates the original signals rather than restoring 
the original signals. The equations of the pseudo high-
frequency component are as follows: 

1.	 Initialize an offset template. Set Matrix 
M ∈ Cm×n,Cm×n

init = 1.0 , and update the value of 
Matrix M via backpropagation. 

2.	 Matrix M is used as the exponent of the input tensor: 

 where i refers to the width index of feature map x, j 
refers to the height index of feature map x, and refers 
to the index of feature map channels. 

 This is a stretching operation in the frequency 
domain; nevertheless, the nonlinear phase spectra 
change causes distortion of the signal distribution. 
Hence, this pseudo high-frequency  residual  opera-
tion was utilised only  once in the ArsenicPlus 
block (Fig. 7) of stage 4 of the proposed neural net-
work to replenish the pseudo high-frequency in the 
weak signals.

Experiments
Cassava datasets
There are 21,393 images maintained in the original cas-
sava leaf disease dataset. The origin dataset was not kept 
balanced for data distribution to categories, and the most 
imbalance categories of CMD disease and CBB disease 
had 13,158 images and 1086 images, respectively. The 
imbalanced data distribution was an obstacle for plant 

(3)Minit = 1.0, trainable = True.

(4)Ti,j, = x
Mi,j

i,j, , ∈ [0, 1, · · · , channel],

(5)
f (x) =

∫ ∞

−∞

F(jnω)ejnωxdn → f (x)Mi,j =

∫ ∞

−∞

[F(njω)Mi,j ]e(jnωx×Mi,j ) dn .

disease detection training. The imbalanced distribution 
may cause the the primary performance to tilt to the 
most images of the categories.

This network dataset has a significant number of 
imprecise images. To avoid the problem of image pollu-
tion, downstream projects cause downstream of models 
such as costly iterations, discard, and harm to commu-
nities [52]. Three main problems images were removed 
[53]. The three problems are shown as follows: 

(1)	 Unmaintained attributes: The unclear and low-
quality images of cassava leaf disease. It is difficult 
to clearly distinguish regions of disease in these 
images.

(2)	 Typing error: Labeling errors were present. The ori-
gin cassava leaf disease dataset includes not only 
cassava leaves but also cassava fruits, magazine cov-
ers and other unrelated material.

(3)	 Inaccurate data: Losing focus. Losing focus will 
cause high-frequency component loss in images. 
The high-frequency component of the images was 
an essential component to boost the generalization 
in a convolutional neural network. Thus, the inac-
curate data will destroy the downstream project.

Based on the abovementioned items, there were found 
more than 1000 healthy category images with niduses, 
which is an unacceptable rate of disease diagnosis errors 
in medical image diagnosis. To maintain balance among 
categories, the Gaussian noise, horizontal flipping, 
cutting-out, and vertical flipping were used to conduct 
augmentation. The 20,000 colour images were randomly 
combined into five balanced categories, and the CMD 
category in this paper was selected from 13,158 images 
from raw data with random. The preprocessed images 
with a resolution of 448× 448 × 3 pixels, and the details 
are presented in Table 2.

There are approximately 3400 bad lighting and back-
light cassava images, accounting for 17% of the image 
dataset in this paper, and partially obstructed in approxi-
mately 2000 images, accounting for 10% of the dataset.

Experimental parameters and methods
Experimental parameters and methods for performance 
comparison
The proposed method was trained on the cassava data-
set using the following settings: an stochastic gradient 
descent  (SGD) optimizer [54] was used with an initial 
learning rate of 0.2, decay of 0.96 in every epoch, momen-
tum of 0.9, weight decay of 1e−5, and batch normalization 
momentum of 0.9. The coefficient of L2 regularization in 
descriptor is set to 1e-5. The Hard-Sigmoid function in SE-
Block reduces the computing cost of the neural network. 
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Categorical cross-entropy was utilized as the loss function 
in this paper. This experiment utilized 7-fold cross-valida-
tion to obtain the representativeness result.

The proposed network was compared with Efficient-
Net-B5 [8], RepVGG-B3g4 [55], V2-Resnet-101 [45], and 
AlexNet [56]. As stated in the study of Ferentions [57], 
the VGG nuclear network and AlexNet accuracy have 
been ranked as first and second over other neural net-
works. The classical neural network VGG was modified 
to a new structure named RepVGG.

Experimental parameters and methods for ArsenicNet
The parameters and methods used in the experiment are 
consistent with those mentioned above. The proposed 
network was compared with the ArsenicNet neural net-
work to verify the effectiveness of the pseudo high-fre-
quency component.

Results and discussion
Classic algorithm comparison results
In this section, several classical algorithms including 
V2-ResNet-101, EfficientNet-B5, AlexNet, and RepVGG-
B3g4 were compared with ArsenicNetPlus. Notably, this 
comparison did not use transfer learning and ensem-
ble learning. The comparison results are illustrated in 
Table  3. The experimental software platform is Tensor-
Flow framework 2.4.1, and the hardware is AMD Ryzen 
7 3800XT @3.89GHz with a NVIDIA GeForce RTX 3090.

The above-mentioned classical methods were not 
have an indicator for the the extreme weakness signals, 
and not have the ability to repair the extreme weakness 
signals. The Arsenic block can be utilized as an indica-
tor to check the extreme weakness signals, and Arsenic-
NetPlus block can be utilised in the extreme weakness 
stage to boost performance.

The Accuracy (Fig. 10), Recall (Fig. 11), Precision (Fig. 12), 
and F1-Score (Fig. 13) curves of ArsenicNetPlus are similar. 
The formulas for accuracy, recall, precision, and F1-score are 
as follows: accuracy = TP+TN

TP+TN+FP+FN , recall = TP
TP+FN

 , 

precision =
TP

TP+FP
 , and F1− score = 2∗precision∗recall

precision+recall
 , respec-

tively. The fluctuations of the aforementioned indicators had 
a narrow interval and were smoother than those of the other 
comparison algorithms used. The validation loss function 
(Fig.  14) of the ArsenicNetPlus neural network had a fast 
gradient descent rate similar to curves of 
y = x−

1
t ,− 1

t = C , x ∈ [0,∞] . The accumulative confusion 
matrix of ArsenicNetPlus is shown in Table 4.

Table 2  Dataset analysis

Category Base Noise Horizontal Vertical Coutout Total

CBB 986 985 986 986 57 4000

CBSD 1772 – 1772 456 0 4000

CGM 1861 28 1861 250 0 4000

CMD 4000 – – – 0 4000

Healthy 1054 838 1054 1054 0 4000

Table 3  ArsenicNetPlus method versus other methods on cassava dataset using 7-fold cross-validation

Method Accuracy (%) Recall (%) Precision (%) Loss F1-score (%)

ArsenicNetPlus 95.93 95.91 95.98 1.244 95.94

V2-Resnet-101 86.90 86.80 87.02 0.779 86.92

EfficientNet-B5 92.43 92.37 92.46 1.469 92.42

AlexNet 62.46 61.98 62.94 2.718 62.46

RepVGG-B3g4 93.08 93.07 93.14 0.347 93.11

Table 4  Accumulative confusion matrix of ArsenicNetPlus in 
7-fold

CLASS CBB CBSD CGM CMD Healthy

CBB 3820 173 0 7 0

CBSD 221 3730 0 49 0

CGM 2 0 3751 0 247

CMD 9 69 0 3922 0

Healthy 0 0 105 0 3895
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Ablation experiment with pseudo high‑frequency 
component
The best performance of ArsenicNetPlus and the 
ArsenicNet neural network on the cassava dataset 
using 7-fold cross-validation is shown in Table 5.

The comparison loss curves of ArsenicNet-3 and 
ArsenicNetPlus are shown in Fig. 15, and the accuracy 

curves is shown in Fig.  16. The comparison curves of 
Recall, Precision, and F1-Score were similar to the 
Accuracy comparison curve (Fig. 16).

The results of ArsenicNet and ArsenicNetPlus 
were carried out in the same software environment, 
with the same training strategy and the same training 
hyperparameters.

Fig. 10  Accuracy of algorithms on cassava dataset using 7-fold cross-validation

Fig. 11  Recall of algorithms on cassava dataset using 7-fold cross-validation
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Benchmark dataset performance
In the fine-grained research field, the Fine-Grained Vis-
ual Classification of Aircraft (FGVC-Aircraft) dataset 
[58] was a classical fine-grained categorization dataset. 
We used the FGVC-Aircraft dataset to evaluate the per-
formance of our proposed algorithm and prove the effec-
tiveness of our proposed fine-grained algorithm.

This evaluation was executed based on the manufac-
turer data format. To keep the image distribution bal-
anced, a series of augmentation methods, including 
horizontal flipping, vertical flipping, horizontal verti-
cal flipping, image offsetting, shift scaling and rotation, 
and Gaussian noise addition, were used to enlarge the 
number of images. As a result, the dataset contained 30 

Fig. 12  Precision of algorithms on cassava dataset using 7-fold cross-validation

Fig. 13  F1-Score of algorithms on cassava dataset using 7-fold cross-validation
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categories, and each category contained 1467 images for 
training. The benchmark results are shown in Table 6.

The ArsenicNetPlus  (based ResNet50) has achieved 
86.59% in terms of accuracy, that is 7.79% higher than the 
experimental consequence of [51] in terms accuracy, and 
improve 1.89% in terms of accuracy than ArsenicNet-3.

Comparison of existing methods for cassava disease 
detection
ArsenicNetPlus was an end to end neural network algo-
rithm. In comparison to other cassava leaf disease detec-
tion methods  (Table 7), ArsenicNetPlus has not utilised 
transfer learning, ensemble learning or fine-tuning meth-
ods. The comparison of existing approaches for cassava 
disease detection was shown in Table 7.

Discussion
To verify the performance of the algorithm proposed in this 
paper, the other four algorithms are compared in Table 8. The 

proposed algorithm achieved the highest accuracy among 
the comparison algorithms used [20, 59]. As a comparison 
algorithm, the traditional machine learning methods used 
by Emuoyibofarhe et al. [66] had a weaker encoding perfor-
mance in complex contexts than ArsenicNetPlus.

Conclusion
A signal frequency was continued to down-convert the 
convolutional neural network, and the objective function 
in signals was lost in extreme weakness. Thus, the pseudo 
high-frequency component can be utilized to approxi-
mate the destination function to boost the generalization 
performance.

A clear difference can be found in the loss curves in 
Fig.  15, where the loss values for ArsenicNetPlus are 
lower than that for ArsenicNet. Correspondingly, the 
accuracy of the ArsenicNetPlus was higher than Arsenic-
Net in Fig.  16. The performance of ArsenicNetPlus on 
the FGVC-Aircraft dataset demonstrates (Table  6) that 
pseudo high-frequency can improve the generalisation 
ability of the neural network.

Consequently, the pseudo high-frequency component 
is useful in two ways: 

(1)	 The ability to maintain high frequency in feature 
maps is an important factor that impacts the gener-
alization performance of the neural network.

Fig. 14  Loss of algorithms on cassava dataset using 7-fold cross-validation

Table 5  Comparison results for cassava dataset using 7-fold 
cross-validation

Indicator ArsenicNet ArsenicNetPlus

Accuracy 95.82% 96.27%

Recall 95.80% 96.25%

Precision 95.87% 96.30%

Loss 1.721 1.360

F1-score 95.83% 96.27%
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(2)	 The pseudo high-frequency is an approximate 
approach to replenish the high-frequency in a 
weaker state of a convolutional neural network.

In contrast, the proposed method has a higher initial 
loss value and its loss function converges more slowly 

than that of RepVGG-B3g5. Thus, our next work will 
be devoted to modifying the loss function to make it 
converge faster, to boost the performance of the pro-
posed neural network [67].

Fig. 15  Loss curves comparison using 7-fold cross-validation

Fig. 16  Accuracy curves comparison using 7-fold cross-validation



Page 12 of 14Zhang et al. Plant Methods          (2022) 18:136 

Appendix
A good kernel function can be calculated via Cesàro 
summation. The derivation is:

where the g function refers to {gn}∞n=1 , a series of kernel 
functions; f refers to a function of period 2π ; n refers to 
the number of kernel functions in the series; and σnf (x) 
refers to the convolution result. In the complex field, the 
addition of the two functions can be expressed as follows:

(6)

σnf (x) =
1
2π �

π
−π f (y)g1(x − y)+ · · · + 1

2π �
π
−π f (y)gn(x − y)

N

=

1
2π �

π
−π {f (y)× [g1(x − y)+ · · · + gn(x − y)]}

N

=
1

2π
�π

−π

{

f (y)×
[g1(x − y)+ · · · + gn(x − y)]

N

}

,

The function F(jnω) was a result of replenishing the Fou-
rier series coefficients.

The Cesàro sum operation was a special method to 
convert the non-good kernel functions to the good ker-
nel functions. The good kernel function was a property 
in mathematics and physics, a manifestation of a form of 
function. However, the Cesàro sum operation is still an 
idea in convolutional neural networks.
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