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PSEUDO-INJECTIVE MODULES WHICH

ARE NOT QUASI-INJECTIVE

MARK L. TEPLY1

ABSTRACT.  For certain rings with infinitely many nonisomorphic simple

left modules, a method is given for constructing pseudo-injective modules

which are not quasi-injective.   This method is used to produce examples of

such modules over a commutative ring.

Let R  be a ring with unity.   All modules considered here will be unital

left R-modules.   A module M  is called quasi-injective (pseudo-injective) if,

for every submodule A/  of M,   every R-homomorphism (R-monomorphism) from

N to M  can be extended to an R-endomorphism of M [5] ([6]).   Every quasi-

injective module is pseudo-injective.   In previous papers (e.g. [4], [6], [7]),

most of the results on pseudo-injective modules are of the form, "if R  satis-

fies a suitable hypothesis, then certain pseudo-injective modules are quasi-

injective."   The intent of most of the work, then, was to show that pseudo-

injectives were generally always quasi-injective (e.g. see the comment at

the end of the Introduction to [7]).   Indeed, the only two examples of pseudo-

injective modules which are not quasi-injective have recently appeared in the

literature (see [2] and [4]).   Both of these modules have precisely five sub-

modules and have Loewy length 2.

In this note, we give a construction for forming pseudo-injective modules

which are not quasi-injective.   This construction yields examples which an-

swer in the negative the following two questions of S. K. Jain [3] (see also

[4]):   (i) Is every pseudo-injective module over a commutative ring quasi-

injective?   (ii) Ts every nonsingular pseudo-injective module quasi-injective?

Using an example of Fuchs ll], we can also apply our construction to show

that a pseudo-injective module which is not quasi-injective may have arbi-

trarily large Loewy length.
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We now introduce some notation which we will use throughout this note.

Let / be an index set, and let \M .\.e[ be a set of modules. For each i £ I,

let m. £ M.. By (m.) we mean the element of IÏ.,,M. whose z'th coordinate

is m. lot each i e/. By (m ■)* we mean the element of H.£{M. with m. as

its /'th coordinate and 0 for all other coordinates.

Now we can state the result which is a construction for pseudo-injective

modules which are not quasi-injective.

Proposition.    Let I be an infinite set, and let \M.\€.  be a set of pseudo-

injective R-modules each of which has nonzero socle.    For each  i £ I,   assume

that there exists  r. £ R  such that
i

(a) r .m = m for all m £ M -,   and

(b) r.m = 0 for all m £ M. with j £ I - \i\.

For each  i £ I,   let m. £ Soc M. such that (0 : m .)   is a maximal left ideal,
i i i '

Define M to be the R-submodule of Y\.eM. generated by ©£.£.M. and (m.).

If H = \r £ R\r £ (0 : m .) for all but finitely many i £ l\ is a maximal left ide-

al of R,   then the following statements are valid.

(1) M  is not quasi-injective.

(2) M  is pseudo-injective if and only if the set S = \i £ l\   there exists

a monomorphism j:   Rm. —' M. such that f(m.) /= m-\ has finite cardinality.

Belote proving the proposition, we need two technical lemmas which use

the notation of the proposition.

Lemma 1.    //  (y .) £ M - (©S.^.M.),  then y. = 0 for at most finitely many

i £ I.

Proof.   Since H is a maximal left ideal of R, A1/©£e;M. is a simple

left R-module.   Hence there exist r £ R  and  (d.) e©S.,.M.  such that
x     Z lel      I

{ryi + d.) = r(y¿) + (d. ) = (m^.   It follows from the choice of the  m.  that

only finitely many of the y .  can be  0.

Lemma 2.    Let f.:   Rm . —> M. for each  i £ I.   If f:   M —-M   is an exten-

sion of ®fej£lf.,   then f((m. )) = (/.(».)).

Proof.   Let   n¿:   M — M- be the projection map (z £ I).   Set f((m.)) =

(k.).   Then

ki = »,<*,) = ni(k.)*= n/.r.ik.)) = n.(r.f((m.)))

= rTif(ri(m.))=TT.f((m.)*) = f.(m.),

Proof of the proposition.   (1)  Partition / into two disjoint infinite sets,

/ and  K.   For each   i £ I,  define f.:   Rm¿ — AL  to be the inclusion map ifLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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i £ ] and the zero map if  i £ K.   Il M were quasi-injective, then ©£. £¡f.

would extend to a homomorphism /:   M — Al.   By Lemma 2, f((m.)) = (f.(m))

£M.   Since f.(m.) = m . / 0  for  i £ J  and f.{m.) = 0 it  i £ K,  this contradicts
' z     z z ' J ' z     z '

Lemma 1.   Hence  Al  is not quasi-injective.

(2)   Let   M be pseudo-injective.   Suppose that the set  S has infinite

cardinality.   Partition  S into two disjoint infinite sets   T and S — T.   For

each   i £ T,  let  /.:   Rztz   — M. be a monomorphism such that f .(m ) / m..   For
' ' z z z r 'ill

each  i £ I - T,  define /.  to be the inclusion map /.:   Rztz . —> Al..   Since  M is

pseudo-injective, ©X . £.f.   extends to /:   M —-M.   By Lemma 2,  f((m)) =

</.(«.))  eM.   Hence

(m.-/.U.)) = (m.)-(/.(m.)>  eM.

By our choice of /. (z e /),  this contradicts the result of Lemma 1.

Conversely, suppose that S has finite cardinality.   Let

M0 = ker(.Z  »<)•

where   77.:   M —• M. is the canonical projection.   Then M = AL© (©£. ,rM.).
i i r     ' 0 z €S    i

By (a) and (b) any submodule of M  isa direct sum of submodules of the Al.

(z eSuiOS),  and no nonzero submodule of AI.  is a homomorphic image of a sub-

module of Al. for i /■ j (i, j eSuiOl).   Hence any monomorphism from a submod-

ule of Al  to  M must be a direct sum of monomorphisms from submodules of

Al.  to Al. (z eSujOJ).    Since Al    is pseudo-injective for each  z 6 S,  then Al

will be pseudo-injective provided that  AL  is.   But it is easy to see that show-

ing AL  is pseudo-injective is equivalent to showing  Al  is pseudo-injective

whenever S is the empty set.   Therefore, we assume S is the empty set and

prove that  Al  is pseudo-injective.

Let N C Al, and let g: N —> Al be a monomorphism. Let W = \ i' £ l\(m.)*

4N\. If 0¿ (x.) £l.£WR(m.)*r\N, then for some ; e W, 0 4 r.(x.) £ R(m.)* <* N.

Since Rztz . is a simple module, there exists r £ R such that (777.)*= rr (x .)

£ N, which is a contradiction to our choice of W. Hence S. £U/R (í7z.)*n/V =

0. Similarly, if 0 4 (y.) e 2.eWR(m.)* n g(N), then for some ; £ W, (m.)* £ g(N).

From (a) and (b) it follows that g~ 1((m .)*) = ( k .)* £ N for some  k. £ Al..

But this allows us to define a monomorphism  g.:   Rm . —• Al.:   rm. —> rk .r ö7 ; ; 1 1

Since / £ W,  this forces a contradiction to the assumption that S  is the

empty set.   Hence

X   R<m.)*ng(/V) = 0.
ieW

Therefore we can define a monomorphismLicense or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



308 M. L. TEPLY

b:( ¿2  R(m.)*®!i\ -* M:^s.{m.)* + « -^J^s^m.f + gU),
\ieW /

where s . £ R  and  n £ N.   For each   i £ I, h induces a monomorphism

h. : Rm. + rr.N — AI. : rm. + 77.(77.) —> 77.h{(rm.)    + (n.) ),
1 1        1 1        z        zN;' z z x   z '

where  r £ R  and   (72.) £ N.   Since each Al. (z £ Í)  is pseudo-injective, each

h . extends to a homomorphism /.:   Al    —>A1..

It remains to show that

/ : Al — Al : {a.) -<//«,))

defines an extension of g.   Clearly

/ e HomR fV  J] «A,       and       / (© £ Mz) £ M"

Since 5 is the empty set, we also have  f.(m) = him) = m.;  hence f((m .))

= (m.) £M.   Thus / eHomR(Al, Al).   Finally, if (n.)   £N and g««.)) = (y{),

then

yy = 77;.«y¿» = nf{y.f) = 77y(r.(y.)) = nfr.^n.)))

= tfArfa)) = rr^r.U.)) = h.„.((n.f) = h.(n.) = f.(n.).

Thus g((n.)) = (y. )= (/.(«.)) = f((n.)), and hence / extends g.

We now use the proposition to construct examples of R-modules  M which

are pseudo-injective, but not quasi-injective.   In our first example,  Al  is a

torsion module over a commutative integral domain.   The reader may wish to

compare Example 1 with [4, Theorem 6] and [7, Theorem 2].

Example 1.   Let Z2  be the field with two elements, and let R =

Z Ax., x  , • • • ]  be the commutative polynomial ring in countably many ind e-

terminants.   For each positive integer i, let

P. = (xl, x2, • ■ • , x._x, 1 - x{, x. + 1, • • •),

let M. = R/P.,  let  ttz. = x. + P.,  and let r. = x..   Then H = (x,, x  , ■ ■ ■) is
1 1' 111' 1 1 12

a maximal ideal of R; so this situation satisfies the hypothesis of the prop-

osition. Since the additive group of each Al. is Z_, it follows that the mod-

ule Al  constructed in the proposition is pseudo-injective in this case.

In our second example, we see that  Al can be a nonsingular module over

a Boolean ring R; indeed,  R  itself is a pseudo-injective module (i.e.  R  is

a self-pseudo-injective ring).

Example 2.   Let F be a finite field, and let F*-"' — F tot each positive

integer n.   Let R  be the subring of   ITf.F*1'   generated by ©Xe* ,Ftz'   and

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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(l),  where  1. is the identity element of F(l).   For each positive integer i,

let Al. = R(l.}* and  r. = 777. = (1.)*.   Then H =0£°°1F(O   is a maximal
z x   z ' z I        ^   1 >"z=l

left ideal of R.   Hence the proposition implies that Al  is a pseudo-injective

module if and only if F = Z2,  the field with two elements.   We also note

that Al =„ R is a nonsingular module (as  R  is a von Neumann regular ring).

The modules constructed in the first two examples have Loewy length 2

(see [l, p. 174] for the definition).   Our last example shows that  Al  can be

a (nonsingular) module with arbitrarily large Loewy length.

Example 3.   Let y > 2 be an ordinal, and let  K be the field of two ele-

ments.   In the first part of the proof of [l, Theorem 6], Fuchs constructs a

commutative K-algebra L (Fuchs calls it R) such that the Loewy length of

L  is À= y + 1.   Moreover, every ideal of  L  contains an idempotent element;

so no two distinct modules in the socle of  L  ate isomorphic.

For each positive integer n,  let  L ^ L'"'.   Define  R  to be the subring

of n^=1L("' generated by ©S°°=1L(n)  and   (l   ),  where  1     is the identity

element of L^.   Define AL = L   (F(R (U)*)),  where F(R(L)*) is the injective

hull of R(l)* and Ly  denotes the yth  step in the ascending Loewy series

(see ll, p. 174] for definition).   Then  Al.  is an invariant submodule of

E((l.)*),  and hence AL  is quasi-injective.   Let r. = {1 .)*,  and let m    be

defined such that  Rttz.  is a simple submodule of AL.   By the structure of  L,

any R-monomorphism Rm. —. Al.  is the inclusion map.   Since H = ©2°°= V-n'

is a maximal ideal of R,   the proposition implies  Al  is pseudo-injective.

Since any minimal ideal of L  is projective, then any minimal ideal of R   is

also projective and hence nonsingular.   Since Al  is isomorphic to an essential

extension of the socle of R,  Al  is nonsingular.   Since each Al. has Loewy

length y and since  R(m.) has Loewy length 2, it follows that Al  has Loewy

length y.

Remark,   (i)  In Example 3, the module Al of Loewy length y > 2 can be

made singular by taking

Al.= Ly(F(R(l.>7SocR(l¿>*))

and using facts developed by Fuchs [l] to show that any monomorphism  Rttz.

—> Al.  is the inclusion map.

(ii)  Using [l, Examples 3 and 4], the reader may also construct interest-

ing examples of pseudo-injective modules  Al  over a noncommutative ring in

a manner somewhat similar to Example 3.
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