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Many algorithms have been proposed for fitting network models with
communities, but most of them do not scale well to large networks, and of-
ten fail on sparse networks. Here we propose a new fast pseudo-likelihood
method for fitting the stochastic block model for networks, as well as a vari-
ant that allows for an arbitrary degree distribution by conditioning on degrees.
We show that the algorithms perform well under a range of settings, including
on very sparse networks, and illustrate on the example of a network of polit-
ical blogs. We also propose spectral clustering with perturbations, a method
of independent interest, which works well on sparse networks where regular
spectral clustering fails, and use it to provide an initial value for pseudo-
likelihood. We prove that pseudo-likelihood provides consistent estimates of
the communities under a mild condition on the starting value, for the case of
a block model with two communities.

1. Introduction. Analysis of network data is important in a range of disci-
plines and applications, appearing in such diverse areas as sociology, epidemiol-
ogy, computer science, and national security, to name a few. Network data here
refers to observed edges between nodes, possibly accompanied by additional in-
formation on the nodes and/or the edges, for example, edge weights. One of the
fundamental questions in analysis of such data is detecting and modeling commu-
nity structure within the network. A lot of algorithmic approaches to community
detection have been proposed, particularly in the physics literature; see [15, 27] for
reviews. These include various greedy methods such as hierarchical clustering (see
[25] for a review) and algorithms based on optimizing a global criterion over all
possible partitions, such as normalized cuts [33] and modularity [28]. The statistics
literature has been more focused on model-based methods, which postulate and fit
a probabilistic model for a network with communities. These include the popular
stochastic block model [20], its extensions to include varying degree distributions
within communities [22] and overlapping communities [2, 4], and various latent
variable models [17, 19].
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The stochastic block model is perhaps the most commonly used and best stud-
ied model for community detection. For a network with n nodes defined by
its n × n adjacency matrix A, this model postulates that the true node labels
c = (c1, . . . , cn) ∈ {1, . . . ,K}n are drawn independently from the multinomial dis-
tribution with parameter π = (π1, . . . , πK), where πi > 0 for all i, and K is the
number of communities, assumed known. Conditional on the labels, the edge vari-
ables Aij for i < j are independent Bernoulli variables with

E[Aij |c] = Pcicj
,(1)

where P = [Pab] is a K × K symmetric matrix. The network is undirected, so
Aji = Aij , and Aii = 0 (no self-loops). The problem of community detection is
then to infer the node labels c from A, which typically also involves estimating π

and P .
There are many extensions of the block model, notably to mixed membership

models [2], but we will only focus on one extension here that we use later in the
paper. The block model implies the same expected degree for all nodes within a
community, which excludes networks with “hub” nodes commonly encountered in
practice. The degree-corrected block model [22] removes this constraint by replac-
ing (1) with E[Aij |c] = θiθjPcicj

, where θi’s are node degree parameters which
satisfy an identifiability constraint. If the degree parameters only take on a discrete
number of values, one can think of the degree-corrected block model as a regular
block model with a larger number of blocks, but that loses the original interpre-
tation of communities. In [22] the Bernoulli distribution for Aij was replaced by
the Poisson, primarily for ease of technical derivations, and in fact this is a good
approximation for a range of networks [31].

Fitting block models is nontrivial, especially for large networks, since in princi-
ple the problem of optimizing over all possible label assignments is NP-hard. In the
Bayesian framework, Markov Chain Monte Carlo methods have been developed
[30, 34], but they only work for networks with a few hundred nodes. Variational
methods have also been developed and studied (see, e.g., [2, 8, 10, 23]), and are
generally substantially faster than the Gibbs sampling involved in MCMC, but still
do not scale to the order of a million nodes. Another Bayesian approach based on
a belief propagation algorithm was proposed recently by Decelle et al. [14], and is
comparable to ours in theoretical complexity, but slower in practice; see more on
this in Section 4.

In the non-Bayesian framework, a profile likelihood approach was proposed in
[6]: since for a given label assignment parameters can be estimated trivially by
plug-in, they can be profiled out and the resulting criterion can be maximized over
all label assignments by greedy search. The same method is used in [22] to fit
the degree-corrected block model. The speed of the profile likelihood algorithms
depends on exactly what search method is used and the number of iterations it
is run for, but again these generally work well for thousands but not millions of
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nodes. A method of moments approach was proposed in [7], for a large class of
network models that includes the block model as a special case. The generality of
this method is an advantage, but it involves counting all occurrences of specific
patterns in the graph, which is computationally challenging beyond simple special
cases. Some faster approximations for block model fitting based on spectral rep-
resentations are also available [26, 32], but the properties of these approximations
are only partially known.

Profile likelihood methods have been proven to give consistent estimates of the
labels when the degree of the graph grows with the number of nodes, under both
the stochastic block models [6] and the degree-corrected version [38]. To obtain
“strong consistency” of the labels, that is, the probability of the estimated label
vector being equal to the truth converging to 1, the average graph degree λn has
to grow faster than logn, where n is the number of nodes. To obtain “weak con-
sistency,” that is, the fraction of misclassified nodes converging to 0, one only
needs λn → ∞. Asymptotic behavior of variational methods is studied in [10]
and [8], and in [14] this belief propagation method is analyzed for both the sparse
[λn = O(1)] and the dense (λn → ∞) regimes, by nonrigorous cavity methods
from physics, and a phase transition threshold, below which the labels cannot be
recovered, is established. In fact, it is easy to see that consistency is impossible to
achieve unless λn → ∞, since otherwise the expected fraction of isolated nodes
does not go to 0. The results one can get for the sparse case, such as [14], can
only claim that the estimated labels are correlated with the truth better than ran-
dom guessing, but not that they are consistent. In this paper, for the purposes of
theory we focus on consistency and thus necessarily assume that the degree grows
with n. However, in practice we find that our methods are very well suited for
sparse networks and work well on graphs with quite small degrees.

Our main contribution here is a new fast pseudo-likelihood algorithm for fitting
the block model, as well as its variation conditional on node degrees that allows for
fitting networks with highly variable node degrees within communities. The idea
of pseudo-likelihood dates back to [5], and in general amounts to ignoring some of
the dependency structure of the data in order to simplify the likelihood and make it
more tractable. The main feature of the adjacency matrix we ignore here is its sym-
metry; we also apply block compression, that is, divide the nodes into blocks and
only look at the likelihood of the row sums within blocks. This leads to an accurate
and fast approximation to the block model likelihood, which allows us to easily fit
block models to networks with tens of millions of nodes. Another major contribu-
tion of the paper is the consistency proof of one step of the algorithm. The proof
requires new and somewhat delicate arguments not previously used in consistency
proofs for networks; in particular, we use the device of assuming an initial value
that has a certain overlap with the truth, and then show the amount of overlap can
be arbitrarily close to purely random. Finally, we propose spectral clustering with
perturbations, a new clustering method of independent interest which we use to
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initialize pseudo-likelihood in practice. For sparse networks, regular spectral clus-
tering often performs very poorly, likely due to the presence of many disconnected
components. We perturb the network by adding additional weak edges to connect
these components, resulting in regularized spectral clustering which performs well
under a wide range of settings.

The rest of the paper is organized as follows. We present the algorithms in Sec-
tion 2, and prove asymptotic consistency of pseudo-likelihood in Section 3. The
numerical performance of the methods is demonstrated on a range of simulated
networks in Section 4 and on a network of political blogs in Section 5. Section 7
concludes with discussion, and the Appendix contains some additional technical
results.

2. Algorithms.

2.1. Pseudo-likelihood. The joint likelihood of A and c could in principle be
maximized via the expectation–maximization (EM) algorithm, but the E-step in-
volves optimizing over all possible label assignments, which is NP-hard. Instead,
we introduce an initial labeling vector e = (e1, . . . , en), ei ∈ {1, . . . ,K}, which
partitions the nodes into K groups. Note that for convenience we partition into the
same number of groups as we assume to exist in the true model, but in principle
the same idea can be applied with a different number of groups; in fact dividing the
nodes into n groups with a single node in each group instead gives an algorithm
equivalent to that of [29].

The main quantity we work with are the block sums along the columns,

bik =
∑

j

Aij 1(ej = k)(2)

for i = 1, . . . , n, k = 1, . . . ,K . Let bi = (bi1, . . . , biK). Further, let R be the K×K

matrix with entries {Rka} given by

Rka =
1

n

n∑

i=1

1(ei = k, ci = a).(3)

Let Rk·
be the kth row of R, and let P

·l be the lth column of P . Let λlk = nRk·
P

·l

and � = {λlk}.
Our approach is based on the following key observations: for each node i, con-

ditional on labels c = (c1, . . . , cn) with ci = l:

(A) {bi1, . . . , biK} are mutually independent;
(B) bik , a sum of independent Bernoulli variables, is approximately Poisson

with mean λlk .

With true labels {ci} unknown, each bi can be viewed as a mixture of Poisson
vectors, identifiable as long as � has no identical rows.
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By ignoring the dependence among {bi, i = 1, . . . , n}, using the Poisson as-
sumption, treating {ci} as latent variables, and setting λl =

∑
k λlk , we can write

the pseudo log-likelihood as follows (up to a constant):

ℓPL
(
π,�; {bi}

)
=

n∑

i=1

log

(
K∑

l=1

πle
−λl

K∏

k=1

λ
bik

lk

)
.(4)

A pseudo-likelihood estimate of (π,�) can then be obtained by maximizing
ℓPL(π,�; {bi}). This can be done via the standard EM algorithm for mixture mod-
els, which alternates updating parameter values with updating probabilities of node
labels. Once the EM converges, we update the initial block partition vector e to the
most likely label for each node as indicated by EM, and repeat this process for a
fixed number of iterations T .

For any labeling e, let nk(e) =
∑

i 1(ei = k), nkl(e) = nk(e)nl(e) if k �= l,
nkk(e) = nk(e)(nk(e) − 1) and Okl(e) =

∑
i,j Aij 1(ei = k, ej = l). We suppress

the dependence on e whenever there is no ambiguity. The details of the algorith-
mic steps can be summarized as follows.

The pseudo-likelihood algorithm. Initialize labels e, and let π̂l = nl/n, R̂ =
diag(π̂1, . . . , π̂K), P̂lk = Olk/nlk , λ̂lk = nR̂k·

P̂
·l , P̂ = {P̂lk} and �̂ = {λ̂lk}. Then

repeat T times:

(1) Compute the block sums {bil} according to (2).
(2) Using current parameter estimates π̂ and �̂, estimate probabilities for node

labels by

π̂il = PPL(ci = l|bi) =
π̂l

∏K
m=1 exp(bim log λ̂lm − λ̂lm)

∑K
k=1 π̂k

∏K
m=1 exp(bim log λ̂km − λ̂km)

.

(3) Given label probabilities, update parameter values as follows:

π̂l =
1

n

n∑

i=1

π̂il, λ̂lk =

∑
i π̂ilbik∑

i π̂il

.

(4) Return to step 2 unless the parameter estimates have converged.
(5) Update labels by ei = arg maxl π̂il and return to step 1.
(6) Update P̂ as follows: P̂lk = (

∑
i,j Aij π̂ilπ̂jk)/nlk(e).

In practice, in step 6 we only include the terms corresponding to π̂il greater than
some small threshold. The EM method fits a valid mixture model as long as the
identifiability condition holds, and is thus guaranteed to converge to a stationary
point of the objective function [36]. Another option is to update labels after every
parameter update (i.e., skip step 4). We have found empirically that the algorithm
above is more stable, and converges faster. In general, we only need a few label
updates until convergence, and even using T = 1 (one-step label update) gives
reasonable results with a good initial value. The choice of the initial value of e, on
the other hand, can be important; see more on this in Section 2.3.
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2.2. Pseudo-likelihood conditional on node degrees. For networks with hub
nodes or those with substantial degree variability within communities, the block
model can provide a poor fit, essentially dividing the nodes into low-degree and
high-degree groups. This has been both observed empirically [22] and supported
by theory [38]. The extension of the block model designed to cope with this situ-
ation, the degree-corrected block model [22], has an extra degree parameter to be
estimated for every node, and writing out a pseudo-likelihood that lends itself to an
EM-type optimization is more complicated. However, there is a simple alternative:
consider the pseudo-likelihood conditional on the observed node degrees. Whether
these degrees are similar or not will not then matter, and the fitted parameters will
reflect the underlying block structure rather than the similarities in degrees.

The conditional pseudo-likelihood is again based on a simple observation:

(C) If random variables Xk are independent Poisson with means μk , their dis-
tribution conditional on

∑
k Xk is multinomial.

Applying this observation to the variables (bi1, . . . , biK), we have that their dis-
tribution, conditional on labels c with ci = l and the node degree di =

∑
k bik , is

multinomial with parameters (di; θl1, . . . , θlK), where θlk = λlk

λl
. The conditional

log pseudo-likelihood (up to a constant) is then given by

ℓCPL
(
π,�; {bi}

)
=

n∑

i=1

log

(
K∑

l=1

πl

K∏

k=1

θ
bik

lk

)
,(5)

and the parameters can be obtained by maximizing this function via the EM algo-
rithm for mixture models, as before. We again repeat the EM for a fixed number
of iterations, updating the initial partition vector after the EM has converged. The
algorithm is then the same as that for unconditional pseudo-likelihood, with steps
2 and 3 replaced by:

(2′) Based on current estimates π̂ and {θ̂lk}, let

π̂il = PCPL(ci = l|bi) =
π̂l

∏K
m=1 θ̂

bim

lm∑K
k=1 π̂k

∏K
m=1 θ̂

bim

km

.

(3) Given label probabilities, update parameter values as follows:

π̂l =
1

n

n∑

i=1

π̂il, θ̂lk =

∑
i π̂ilbik∑
i π̂ildi

.

2.3. Initializing the partition vector. We now turn to the question of how to
initialize the partition vector e. Note that the full likelihood, pseudo-likelihoods
ℓPL and ℓCPL, and other standard objective functions used for community detection
such as modularity [28] can all be multi-modal. The numerical results in Section 4
suggest that the initial value cannot be entirely arbitrary, but the results are not
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too sensitive to it. We will quantify this further in Section 4; here we describe the
two options we use as initial values, both of which are of independent interest as
clustering algorithms for networks.

2.3.1. Clustering based on 1- and 2-degrees. One of the simplest possible
ways to group nodes in a network is to separate them by degree, say by one-
dimensional K-means clustering applied to the degrees as in [11]. This only works
for certain types of block models, identifiable from their degree distributions, and
in general K-means does not deal well with data with many ties, which is the case
with degrees. Instead, we consider two-dimensional K-means clustering on the
pairs (di, d

(2)
i ), where d

(2)
i is the number of paths of length 2 from node i, which

can be obtained by summing the rows of A2.

2.3.2. Spectral clustering with perturbations. A more sophisticated cluster-
ing scheme is based on spectral properties of the adjacency matrix A = {Aij } or its
graph Laplacian. Let D = diag(d1, . . . , dn) be diagonal matrix collecting node de-
grees. A common approach is to look at the eigenvectors of the normalized graph
Laplacian L = D−1/2AD−1/2, choosing a small number, say r = K − 1, corre-
sponding to r largest (in absolute value) eigenvalues, with the largest eigenvalue
omitted; see, for example, [33]. These vectors provide an r-dimensional represen-
tation for nodes of the graph, on which we can apply K-means to find clusters; this
is one of the versions of spectral clustering, which was analyzed in the context of
the block model in [32].

We found that this version of spectral clustering tends to do poorly at commu-
nity detection when applied to sparse graphs, say, with expected degree λ < 5.
The r-dimensional representation seems to collapse to a few points, likely due to
the presence of many disconnected components. We have found, however, that a
simple modification performs surprisingly well, even for values of λ close to 1.
The idea is to connect all disconnected components which belong to the same
community by adding artificial “weak” links. To be precise, we “regularize” the
adjacency matrix A by adding α/p × λ/n multiplied by the adjacency matrix of
an Erdos–Renyi graph on n nodes with edge probability p, where α is a constant.
We found that, empirically, α/p = 0.25 works well for the range of n considered
in our simulations, and that the results are essentially the same for all p > 0.1
Thus we make the simplest and computationally cheapest choice of p = 1, adding
a constant matrix of small values, namely, 0.25(λ/n)1n1T

n where 1n is the all-ones
n-vector, to the original adjacency matrix. The rest of the steps, that is, forming
the Laplacian, obtaining the spectral representation and applying K-means, are
performed on this regularized version of A. We note that to obtain the spectral rep-
resentation, one only needs to know how the matrix acts on a given vector; since
(A + 0.25(λ/n)1n1T

n )x = Ax + 0.25(λ/n)(
∑

i xi)1n, the addition of the constant
perturbation does not increase computational complexity. We will refer to this al-
gorithm as spectral clustering with perturbations (SCP), since we perturb the net-
work by adding new, low-weight “edges.”
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3. Consistency results. By consistency we mean consistency of node labels
(to be defined precisely below) under a block model as the size of the graph n

grows. For the theoretical analysis, we only consider the case of K = 2 communi-
ties. We condition on the community labels {ci}, that is, we treat them as determin-
istic unknown parameters. For simplicity, here we consider the case of balanced
communities, each having m = n/2 nodes. An extension to the unbalanced case is
provided in the supplementary material [3]. The assumption of balanced commu-
nities naturally leads us to use the class prior estimates π̂1 = π̂2 = 1/2 in (10). We
call this assumption (E) (for equal class sizes):

(E) Assume each class contains m = n/2 nodes, and set π̂1 = π̂2 = 1/2.

Without loss of generality, we can take ci = 1 for i ∈ {1,2, . . . ,m}.
As an intermediate step in proving consistency for the block model introduced

in Section 1, we first prove the result for a directed block model. Recall that for
the (undirected) block model introduced earlier, one has

(undirected) Aij ∼ Ber(Pcicj
) and Aji = Aij for i ≤ j.(6)

In the directed case, we assume that all the entries in the adjacency matrix are
drawn independently, that is,

(directed) Ãij ∼ Ber(P̃cicj
) for all i, j .(7)

We will use different symbols for the adjacency and edge-probability matrices in
the two cases. This is to avoid confusion when we need to introduce a coupling
between the two models. In both cases, we have assumed that diagonal entries
of the adjacency matrices are also drawn randomly (i.e., we allow for self-loops
as valid within-community edges). This is convenient in the analysis with minor
effect on the results.

The directed model is a natural extension of the block model when one con-
siders the pseudo-likelihood approach; in particular, it is the model for which the
pseudo-likelihood assumption of independence holds. It is also a useful model of
independent interest in many practical situations, in which there is a natural direc-
tion to the link between nodes, for example, in email, web, routing and some social
networks. The model can be traced back to the work of Holland and Leinhardt [21]
and Wang and Wong [35] in which it has been implicitly studied in the context of
more general exponential families of distributions for directed random graphs.

Our approach is to prove a consistency result for the directed model, with an
edge-probability matrix of the form

P̃ =
1

m

(
a b

b a

)
.(8)

Note that the only additional restriction we are imposing is that P̃ has the same
diagonal entries. Both a and b depend on n and can in principle change with n at
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different rates. This is a slightly different parametrization from the more conven-
tional Pn = ρnS [6], where S (and π ) do not depend on n, and λn = ρnπ

T Sπ . We
use this particular parametrization here because we only consider the case K = 2,
and it makes our results more directly comparable to those obtained in the physics
literature, for example, [14].

A coupling between the directed and the undirected model that we will intro-
duce allows us to carry the consistency result over to the undirected model, with
the edge-probability matrix

P =
2

m

(
a b

b a

)
−

1

m2

(
a2 b2

b2 a2

)
.(9)

Asymptotically, the two edge-probability matrices have comparable (to first order)
expected degree and out-in-ratio (as defined by [14]), under mild assumptions. The
average degrees for P̃ and P are a + b and 2(a + b) − 1

m
(a2 + b2), respectively.

The latter is ∼ 2(a + b) as long as 1
2m

a2+b2

a+b
≤ a+b

n
→ 0. The condition is satisfied

as soon as the average degree of the directed model has sublinear growth: a + b =

o(n). The same holds for out-in-ratios.
For our analysis, we consider an E-step of the CPL algorithm. It starts from

some initial estimates â, b̂ and π̂ = (π̂1, π̂2) of parameters a, b and π , together
with an initial labeling e, and outputs the label estimates

ĉi(e) = arg max
k∈{1,2}

{
log π̂k +

2∑

ℓ=1

biℓ(e) log θ̂kℓ(e)

}
, i ∈ [n],(10)

where θ̂kℓ are the elements of the matrix obtained by row normalization of �̂ =

[nR(e)P̂ ]T . Here R = R(e) is the confusion matrix as defined in (3), and P̂ is
given by either (8) or (9), depending on the model, with a and b replaced with
their estimates â and b̂.

The key assumption of our analysis is that the initial labeling has a certain over-
lap with the truth (we will show later that the amount of overlap is not important).
One situation where this might naturally arise is survey data, when some small
fraction of nodes has been surveyed about their community membership. Another
possibility is to run some other crude algorithm first to obtain a preliminary result.
More formally, we consider an initial labeling e = (ei) ∈ {1,2}n, which is balanced
(i.e., assigns equal number of nodes to each label) and matches exactly γm labels

in community 1, for some γ ∈ (0,1). We do not assume that we know which labels
are matched, or the value of γ . It is easy to see that this is equivalent to e matching
exactly γm labels in each of the two communities. Assuming γm to be an integer,
let E γ = E

γ
n denote the collection of such labelings,

E
γ = E

γ
n =

{
e ∈ {1,2}n :

m∑

i=1

1{ei=1} = γm =
n∑

i=m+1

1{ei=2}

}
.(11)
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Our goal is to obtain a uniform result guaranteeing the consistency of CPL iter-
ation (10) for any initial labeling in E γ . In particular, this guarantees consistency
for any initial labeling of strength at least γ , even if it is obtained by an algorithm
operating on the same adjacency matrix used by CPL. As will become clear in the
course of the proof of Theorem 1, although {θ̂kℓ} depend on R(e) (which in turn
depends on γ ) and P̂ , under the stated (idealized) assumptions, we do not need
to know their exact values in order to implement rule (10). In particular, we do
not need to know γ . We can plug in any number in (0,1) \ {1

2} for γ and get the
same estimates. Note that the value of γ = 1/2 corresponds to “no correlation” be-
tween the true and the initial labeling, whereas γ = 0 and γ = 1 both correspond
to perfect correlation (the labels are either all true or all flipped).

Let us consider the directed case first. As our measure of performance (i.e., the
loss function), we take the following (directed-case) mismatch ratio

M̃n(e) := min
φ∈{(1 2),(2 1)}

1

n

n∑

i=1

1
{
ĉi(e) �= φ(ci)

}
,(12)

where ĉi(e) are computed based on the directed adjacency matrix Ã, and
{(1 2), (2 1)} is the set of permutations of {1,2}, with φ accounting for the fact
that the labels assigned to the communities are only determined up to a permuta-
tion. The counterpart for the undirected case is denoted by Mn(e). Note that the
notion of consistency based on convergence of this quantity matches the “weak”
consistency discussed in [38], rather than the “strong” consistency used by [6].
Define

τ 2
n =

(a − b)2

a + b
(13)

and let h(p) = −p logp − (1 − p) log(1 − p), p ∈ [0,1] be the binary entropy
function. Let us also consider the collection of estimates (â, b̂) which have the
same ordering as true parameters (a, b),

Pa,b =
{
(â, b̂) : (â − b̂)(a − b) > 0

}
.

Then, we have the following result.

THEOREM 1 (Directed case). Assume (E), and let γ ∈ (0,1) \ {1
2 }. Let the

adjacency matrix Ã be generated according to the directed model (7) with edge-

probability matrix (8), and assume a �= b. Then, there exists a sequence {un} ⊂ R+

such that

logun + log logun ≥ log
(

4

e
h(γ )

)
+

1

4
(1 − 2γ )2τ 2

n(14)

and

P

[
sup

(â,b̂)∈Pa,b

sup
e∈E

γ
n

M̃n(e) ≥
4h(γ )

logun

]
≤ exp

(
−n

[
h(γ ) − κγ (n)

])
,(15)
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where κγ (n) := 1
n
[log( n

4πγ (1−γ )
) + 1

3n
] = o(1).

In particular, if τ 2
n → ∞, we have un → ∞ and the CPL estimate is uniformly

consistent.

REMARK 1. We think of γ as fixed, but it is possible to let γ = γn → 1
2 ,

making the problem harder as n grows. We still get consistency as long as (1 −
2γn)

2τ 2
n → ∞.

REMARK 2. In the balanced case, the CPL iteration has a simple intuitive
interpretation, as will become clear during the proof of Theorem 1. One starts
with an initial assignment of labels to nodes. Then, each node updates its label by
taking a majority vote among its neighbors. In the case where b = 0, it is intuitively
clear that for a large enough, this procedure increases the number of correct labels
relative to the initial assignment. Figure 1 illustrates these ideas. In the general
case where b �= 0, Theorem 1 states that τ 2

n is the key parameter that needs to grow
for the procedure to succeed.

REMARK 3. While the labels are of primary interest in community detec-
tion, one may also be interested in consistency of the estimated parameters. Under
strong consistency in the sense of [6], consistency of the natural plug-in estimates
of the block model parameters follows easily, but here we only show weak consis-
tency of the labels. However, in the directed model the pseudo-likelihood function
we defined is in fact exactly the likelihood of bi’s. Parameter estimates (say â

and b̂) obtained by the EM algorithm converge to a local maximum of this func-
tion. As a consequence of Theorem 1, these estimates are also consistent (for a

and b). Since the likelihood is smooth with bounded derivatives, one may be able
to use standard arguments to show that the estimated parameters are a unique local
maximum in a neighborhood of the truth, and even derive their asymptotic normal-
ity along; see, for example, Theorem 6.2.1, page 384 of [9]. We do not pursue this
direction here.

FIG. 1. The plots illustrate the interpretation of CPL iteration as neighborhood majority voting,
in the balanced case. Here b = 0 and only one community is shown. From left to right, we have the

initial labeling for a sparse graph G1, the new labeling for G1 after one CPL iteration, the initial

labeling for a dense graph G2, and the new labeling for G2 after CPL iteration. Nodes with red

labels are “infected,” that is, their community label is incorrect. For the sparse case, CPL iteration

spreads the infection, while for the dense case, it has the opposite effect.
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We now turn to the undirected case. Let

aγ = γ a + (1 − γ )b.(16)

THEOREM 2 (Undirected case). Assume (E), and let γ ∈ (0,1) \ {1
2}. Let the

adjacency matrix A be generated according to the undirected model (6) with edge-

probability matrix (9), and assume a �= b. In addition, assume

2(1 + ε)aγ ≤ ε(1 − 2γ )(a − b)(17)

for some ε ∈ (0,1). Then, there exist sequences {un}, {vn} ⊂ R+ such that {un}

satisfies (14), with 1 − 2γ replaced with (1 − ε)(1 − 2γ ) and {vn} satisfies

logvn + log logvn ≥ log
(

4

e
h(γ )

)
+

ε2

1 + ε/3
aγ

and

P

[
sup

(â,b̂)∈Pa,b

sup
e∈E

γ
n

Mn(e) ≥ 4h(γ )

(
1

logun

+
2

logvn

)]

(18)
≤ 3 exp

(
−n

[
h(γ ) − κγ (n)

])
,

where κγ (n) = o(1) is as defined in Theorem 1.
In particular, if τ 2

n , aγ → ∞, we have un, vn → ∞, and the CPL estimate is

uniformly consistent.

The proofs of both theorems can be found in Section 6.

REMARK 4. Condition (17) can be met for a fixed ε ∈ (0,1) by choosing γ

sufficiently small and an upper bound on b/a in terms of γ . For example, for ε = 1
2

and γ < 1
8 , we have (17) if

b

a
≤

1 − 8γ

7 − 8γ
.

REMARK 5. The parameter τ 2
n controlling consistency is the same as the one

reported in [14] and [24]. There the concern is with recovering a labeling which
is positively correlated with the truth, and the threshold of success is observed to
be τ 2

n ≥ 2. A similar lower bound was given in [13] for spectral clustering. Here,
we are concerned with moving from a positively correlated labeling to one with an
asymptotically vanishing mismatch ratio [i.e., M̃n(e) = op(1)], which is why we
need τ 2

n → ∞.
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REMARK 6. These results can be extended to the case of unbalanced commu-
nities. Such an extension is provided for the directed block model in the supple-
mentary material [3]. There we consider the model with two communities of sizes
n1 and n2 (not necessarily equal) and an edge-probability matrix

P̃ =
1

n

(
a1 b

b a2

)
,

which relaxes our earlier assumption a1 = a2 in (8). The class of initial labelings
is also enlarged to include those that have γk-overlap with community k, that is,
E γ1,γ2 := {e :

∑
i 1{ei=k,ci=k} = γknk, k = 1,2}, with γ1 �= γ2. In this situation, one

needs more assumptions on the initial estimate P̂ used in the CPL iteration than
in the balanced case. Supplementary material [3] gives the details. While we do
not discuss the undirected case in this general setting, ideas used in the proof of
Theorem 2 can be used to carry the results from the directed to the undirected case.

4. Numerical results. Here we investigate the performance of both the un-
conditional and conditional pseudo-likelihood algorithms on simulated networks,
as well as that of spectral clustering with perturbations. We simulate two scenar-
ios, one from the regular stochastic block model and one from the degree-corrected
block model, to assess the performance in the presence of hub nodes. Throughout
this section, we fix K = 3 and π = (1/3,1/3,1/3). Conditional on the labels, the
edges are generated as independent Bernoulli variables with probabilities propor-
tional to θiθjPij . The parameters θj are drawn independently from the distribution
of � with P(� = 0.2) = ρ, P(� = 1) = 1 − ρ. We do not enforce the identifia-
bility scaling constraint on θ at this point as it is absorbed into the scaling of the
matrix P in (19) below. We consider two values of ρ: ρ = 0, which corresponds to
the regular block model, and ρ = 0.9, which corresponds to a network where 10%
of the nodes can be viewed as hubs.

The matrix P is constructed as follows. It is controlled by two parameters: the
“out-in-ratio” β [14], which we will vary from 0 to 0.2, and the weight vector w,
which determines the relative degrees within communities. We consider two val-
ues of w: w = (1,1,1) (no information about communities is contained in node
degrees) and w = (1,5,10) (degrees themselves provide relevant information for
clustering). If β = 0, we set P (0) = diag(w), a diagonal matrix. Otherwise, we set
the diagonal of P (0) to β−1w and set all off-diagonal elements to 1. We then fix the
overall expected network degree λ, which is the natural parameter to control [6]
and which we will vary from 1 to 15. Then we rescale P (0) to obtain this expected
degree, giving the final P

P =
λ

(n − 1)(πT P (0)π)(E�)2
P (0).(19)

To compare our results to the true labels, we will use normalized mutual
information (NMI). One can think of the confusion matrix R as a bivariate
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probability distribution, and of its row and column sums Ri+ and R+j as the
corresponding marginals. Then the NMI is defined by [37] as NMI(c, e) =

−
∑

i,j Rij log
Rij

Ri+R+j
(
∑

i,j Rij logRij )
−1, and is always a number between 0

and 1 (perfect match). It is useful to have a few benchmark values of NMI for
reference: for example, for large n, matching 50%, 70% and 90% of the labels
correspond to values of NMI of approximately 0.12, 0.26 and 0.58, respectively.

All figures show the performance of the following methods: K-means clustering
on 1- and 2-degrees (DC), spectral clustering (SC), spectral clustering with pertur-
bations (SCP), unconditional pseudo-likelihood (UPL) initialized with either DC
or SCP, and conditional pseudo-likelihood (CPL), with the same two initial values
for labelings. The number of outer iterations for UPL and CPL is set to T = 20; n,
λ, ρ and the number of replications N are specified in the figures.

Figures 2 and 3 show results on estimating the node labels with varying β

and λ, respectively. Generally, smaller β and larger λ make the problem easier,
as we expect. In principle, degree-based clustering gives no information about the
labels with uniform weights w, and only a moderate amount of information with
nonuniform weights, so it serves as an example of a poor starting value for pseudo-
likelihood. Regular spectral clustering performs well with uniform weights, but
very poorly with nonuniform weights; we conjecture that this is due to a limitation

FIG. 2. The NMI between true and estimated labels as a function of “out-in-ratio” β .
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FIG. 3. The NMI between true and estimated labels as a function of average expected degree λ.

of K-means. Spectral clustering with perturbation, on the other hand, performs
very well in all scenarios. Apart from being a useful general method on its own, it
also serves as an example of a good starting value for pseudo-likelihood.

Figures 2 and 3 show that pseudo-likelihood achieves large gains over a poor
starting value, giving surprisingly good results even when starting from the un-
informative degree clustering in the case of w = (1,1,1). One exception is un-
conditional pseudo-likelihood with ρ = 0.9 and w = (1,1,1), which shows that
conditioning is necessary to accommodate variation in degrees when the starting
value is not very good. When spectral clustering with perturbation is used as a
starting value, which is already very good, UPL and CPL do not have much room
to do better, although UPL still provides a noticeable improvement, being overall
the best method when initialized with SCP. It appears that a good starting value
overcomes the limitations of the regular block model for networks with hubs, ef-
fectively ruling out the competing solution which divides nodes by degree.

Finally, Figure 4 shows run times for all the methods for the case of the reg-
ular block model (ρ = 0) with different community weights [w = (1,1,1) and
w = (1,5,10)]. The times shown for UPL and CPL do not include the time to
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FIG. 4. The runtime in seconds as a function of the number of nodes (log–log scale).

compute the initial value, which is shown separately. For the case w = (1,1,1),
all methods take roughly the same amount of time. For the case w = (1,5,10),
spectral clustering (SC) takes considerably more time than the rest. On the other
hand, SCP takes nearly the same time as it takes for w = (1,1,1), and it slightly
outperforms DC for larger values of n. This might be explained, in part, by the
sparse matrix multiplication required for DC, which is both time and memory-
consuming for large n. Generally, SCP provides an excellent starting value, with
low computational complexity in a variety of situations.

We have also done some brief comparisons with the belief propagation (BP)
method of [14]. Direct fair comparison is difficult because of the different platform
for the belief propagation code and the different way in which it handles initial
values; generally, we found that while the computing time of belief propagation
scales with n at the same rate as ours, BP is slower by a constant factor of about
10. In terms of accuracy of community detection, in the examples we tried BP was
either similar to or a little worse than pseudo-likelihood.

5. Example: A political blogs network. This dataset on political blogs was
compiled by Adamic and Glance [1] soon after the 2004 U.S. presidential election.
The nodes are blogs focused on US politics, and the edges are hyperlinks between
these blogs. Each blog was manually labeled as liberal or conservative in [1], and
we treat these as true community labels. Following [22], we ignore directions of
the hyperlinks and analyze the largest connected component of this network, which
has 1222 nodes and the average degree of 27. The distribution of degrees is highly
skewed to the right (the median degree is 13, and the maximum is 351).

The results in Figure 5 show that the conditional pseudo-likelihood produces a
result closest to the truth, as one would expect in view of highly variable degrees.
Its result is also very close to those obtained by profile maximum likelihood for
the degree-corrected block model and by two different modularities [22, 38]. Un-
conditional pseudo-likelihood, on the other hand, puts high-degree nodes in one
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FIG. 5. Political blogs data: true labels and unconditional and conditional pseudo-likelihoods

(UPL and CPL) initialized with spectral clustering with perturbations (SCP). Node size is propor-

tional to log degree.

group and low-degree nodes in the other. This is very close to the block model so-
lution [22]. This example confirms that the unconditional and conditional pseudo-
likelihood methods are correctly fitting the block model and the degree-corrected
block model, respectively.

6. Proofs of consistency results. Due to symmetry, we can assume without
loss of generality that γ ∈ (0, 1

2). Similarly, we can assume a > b. Then, for any

(â, b̂) ∈ Pa,b we have â > b̂. These will be our standing assumptions through-
out the proofs. To see that the assumptions are not restrictive, one can check that
the proof goes through, without change, if γ ∈ (1

2 ,1) and b > a. For the other
two cases, namely, γ ∈ (0, 1

2) and b > a, or γ ∈ (1
2 ,1) and a > b, the proof goes

through by switching the estimated labels when matching them with the true la-
bels. That is, we compare estimated community 1 to true community 2 and vice
versa. These can seen by examining (21) and the discussion that follows.

6.1. Proof of Theorem 1 (directed case). Let us introduce the following nota-
tion:

Cℓ = {i : ci = ℓ},

Sk = Sk(e) = {i : ei = k},

Skℓ = Skℓ(e) = Sk ∩ Cℓ

for k, ℓ = 1,2. As long as e ∈ E γ , we have |Cℓ| = |Sk| = m for all k, ℓ = 1,2 and

|S11| = |S22| = γm, |S12| = |S21| = (1 − γ )m.(20)

Under the equal priors assumption (E), the CPL estimate (10) simplifies to

ĉi(e) = arg max
k∈{1,2}

{ 2∑

m=1

b̃im(e) log θ̂km(e)

}
,
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where {b̃im} are obtained by block compression of the directed adjacency matrix Ã.
Let us focus on i ∈ C1 from now on. Then ĉi(e) = 1 if

b̃i1(e) log
θ̂11(e)

θ̂21(e)
+ b̃i2(e) log

θ̂12(e)

θ̂22(e)
> 0.(21)

For e ∈ E γ , we have rkℓ(e) = n−1|Skℓ|, implying that

R(e) =
1

2

(
γ 1 − γ

1 − γ γ

)
,

where R(e) is defined in (3). It is then not hard to see that after row normalization

of �̂ = [nR(e)P̂ ]T , we obtain θ̂11(e) = θ̂22(e) = γ â

â+b̂
+(1−γ ) b̂

â+b̂
, and θ̂12(e) =

θ̂21(e) = γ b̂

â+b̂
+ (1 − γ ) â

â+b̂
.

Since by assumption â > b̂ and γ ∈ (0, 1
2), it follows that θ̂11 < θ̂21. Then, (21)

is equivalent to b̃i1(e) − b̃i2(e) < 0. Recalling that b̃ik(e) =
∑m

j=1 Ãij 1{ei = k} =∑
j∈Sk

Ãij , we can write the condition as

ξ̃i

(
σ(e)

)
=

n∑

j=1

Ãijσj (e) < 0 where σj (e) =

{
1, ej = 1,
−1, ej = 2,

and σ(e) = (σ1(e), . . . , σn(e)). Let �γ = �
γ
n be the set of all σ(e) with e ∈ E γ ,

that is,

�γ = �γ
n =

{
σ ∈ {−1,1}n :

m∑

j=1

1{σj = 1} = γm

}
.

For ℓ = 1,2, let M̃n,ℓ(e) = 1
m

∑
i∈Cℓ

1{ĉi(e) �= ci} be the fraction of mismatches
over community ℓ. Note that the overall mismatch is

M̃n(e) = 1
2

[
M̃n,1(e) + M̃n,2(e)

]
.(22)

Since we are focusing on i ∈ C1, we are concerned with M̃n,1(e). In a slight abuse
of notation, M̃n(e) in (22) is in fact an upper bound on the mismatch ratio as
defined in (12), since here we are using a particular permutation—the identity.

Let us define, for σ ∈ {−1,+1}n and r ≥ 0,

Ñn,1(σ ; r) =
m∑

i=1

1
{̃
ξi(σ ) ≥ −r

}
.

Then we have

sup
e∈E γ

M̃n,1(e) ≤ sup
σ∈�γ

Ñn,1(σ ;0)

m
,

where the inequality is due to treating the ambiguous case ξ̃i(σ ) = 0 as error. We
now set out to bound this in probability. Let us start with a tail bound on ξ̃i(σ ) for
fixed σ and i.
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LEMMA 1. For any σ ∈ �γ and t ∈ (0,3(a + b)], we have

P
[̃
ξi(σ ) ≥ −(1 − 2γ )(a − b) + t)

]
≤ exp

(
−

t2

4(a + b)

)
.(23)

PROOF. We apply the classical Bernstein inequality for sums of independent
bounded random variables. Let αij = E[Ãij ]. Note that |Ãijσj − E[Ãijσj ]| ≤

max(αij ,1 − αij ) ≤ 1. For i ∈ C1, we have

Eξ̃i(σ ) =
n∑

j=1

αijσj =
∑

j∈S11

a

m
(1) +

∑

j∈S22

b

m
(−1) +

∑

j∈S21

a

m
(−1) +

∑

j∈S12

b

m
(1)

= (a − b)γ + (−a + b)(1 − γ ) = −(1 − 2γ )(a − b),

where Skℓ is defined based on labeling e which correspond to σ . In addition, since
var(Ãij ) ≤ αij , we have

v =
n∑

j=1

var(Ãijσj ) ≤
∑

j∈C1

αij +
∑

j∈C2

αij = m
a

m
+ m

b

m
= a + b.

Bernstein inequality implies

P
[̃
ξi(σ ) ≥ Eξ̃i(σ ) + t

]
≤ exp

(
−

t2

2(v + t/3)

)
.

Noting that for t/3 ≤ (a + b), we have 2(v + t/3) ≤ 4(a + b) completes the proof.
�

We also need a tail bound on Ñn,1(σ ; r). Let us define

pi(r) = P
[̃
ξi(σ ) ≥ −r

]
, p̄1(r) =

1

m

m∑

i=1

pi(r).(24)

Note that these probabilities do not depend on the particular value of σ ∈ �γ , due
to symmetry. We have the following lemma.

LEMMA 2. For u > 1/e,

P

[
1

m
Ñn,1(σ ; r) ≥ eup̄1(r)

]
≤ exp

(
−emp̄1(r)u logu

)
.(25)

PROOF. Follows from Lemma 5 in the Appendix, by noting that {1{̃ξi(σ ) ≥

−r}}mi=1 are independent Bernoulli random variables. �

Now we apply Lemma 1 with t = (1 − 2γ )(a − b) ≤ 3(a + b). Note that a−b
a+b

≤

1 ≤ 3
1−2γ

, for γ ∈ (0, 1
2). Noting that the RHS of (23) does not depend on i, and
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using (24), we get

p̄1(0) ≤ exp
{
−

1

4
(1 − 2γ )2 (a − b)2

a + b

}
.

The cardinality of the set �γ is
( m
γm

)2
≤ (em[h(γ )+κγ (2m)])2 where h(·) is the

binary entropy function, and κγ (2m) = κγ (n) is as defined in the statement of the
theorem. (See Lemma 6 in the supplementary material [3] for a proof.) Applying
Lemma 2 with u = un and the union bound, we obtain

P

[
sup

σ∈�γ

1

m
Ñn,1(σ ;0) ≥ eunp̄1(0)

]

≤ exp
{
m

[
2h(γ ) − ep̄1(0)un logun + 2κγ (n)

]}
.

Pick un such that

un logun =
4h(γ )

ep̄1(0)
.

It follows, using m = n/2, that

P

[
sup

σ∈�γ

1

m
Ñn,1(σ ;0) ≥

4h(γ )

logun

]
≤ exp

{
−

[
h(γ ) − κγ (n)

]
n
}
.

By symmetry the same bound holds for supσ
1
m

Ñn,2(σ ;0). It follows from (22)
that the same holds for supe Mn(e). This completes the proof of Theorem 1.

6.2. Proof of Theorem 2 (undirected case). Recall that A and Ã are the ad-
jacency matrices of the undirected and directed cases, respectively. Let us define
ξi(σ ), Mn,ℓ(e), Nn,ℓ(σ, r) as we did in the directed case, but based on A instead
of Ã. For example, ξi(σ ) =

∑n
j=1 Aijσj .

Our approach is to introduce a deterministic coupling between A and Ã, which
allows us to carry over the results of the directed case. Let

A = T (Ã),
[
T (Ã)

]
ij =

{
0, Ãij = Ãji = 0,
1, otherwise.

(26)

In other words, the graph of A is obtained from that of Ã by removing directions.
Note that

Pkl = P(Aij = 1) = 1 − P(Ãij = 0)P(Ãji = 0) = 2P̃kl − P̃ 2
kl,

which matches the relation between (8) and (9). From (26), we also note that

Aij ≥ Ãij for all i, j .(27)
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Let us now upper-bound ξi(σ ) in terms of ξ̃i(σ ). Based on (27), only those
σj that are equal to 1 contribute to the upper bound. More precisely, let Dij =
Aij − Ãij ≥ 0, and take i ∈ C1 from now on. Then

ξi(σ ) − ξ̃i(σ ) =
∑

j∈S1

Dijσj +
∑

j∈S2

Dijσj

=
∑

j∈S1

Dij −
∑

j∈S2

Dij(28)

≤
∑

j∈S1

Dij .

We further notice that Dij ≤ Ãij + Ãji . To simplify notation, let us define

Ãi∗(σ ) =
∑

j∈S1

Ãij , Ã∗i(σ ) =
∑

j∈S1

Ãji,(29)

where the dependence on σ is due to S1 being derived from σ [recall that S1 =
S1(σ ) = {j :σj = 1}]. Thus we have shown

ξi(σ ) ≤ ξ̃i(σ ) + Ãi∗(σ ) + Ã∗i(σ ).(30)

Recall from definition (16) that aγ = γ a + (1 − γ )b.

LEMMA 3. Fix ε > 0. For i ∈ C1, we have

P
[
Ãi∗(σ ) > (1 + ε)aγ

]
= P

[
Ã∗i(σ ) > (1 + ε)aγ

]
≤ exp

{
−

ε2

1 + ε/3
aγ

}
.

PROOF. The equality of the two probabilities follows by symmetry. Let us
prove the bound for Ãi∗(σ ). We apply Bernstein inequality. Note that

μ = E

[ ∑

j∈S1

Ãij

]
=

∑

j∈S11

E[Ãij ] +
∑

j∈S12

E[Ãij ]

=
∑

j∈S11

a

m
+

∑

j∈S12

b

m
= aγ + b(1 − γ ) = aγ .

Since
∑

j∈S1
var(Ãij ) ≤ μ, we obtain

P

[ ∑

j∈S1

Ãij ≥ μ + t

]
≤ exp

(
−

t2

2(μ + t/3)

)
.

Setting t = εμ completes the proof. �

From (30), it follows that

ξi(σ ) ≥ 0 ⇒
(̃
ξi(σ ) ≥ −r

)
∨

(
Ãi∗(σ ) ≥ r/2

)
∨

(
Ã∗i(σ ) ≥ r/2

)
,
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which ∨ is the logical OR. This can be seen (as usual) by noting that if the RHS
does not hold, then ξ̃i(σ )+ Ãi∗(σ )+ Ã∗i(σ ) < 0, implying ξi(σ ) < 0. Translating
to indicator functions,

1
{
ξi(σ ) ≥ 0

}
≤ 1

{̃
ξi(σ ) ≥ −r

}
+ 1

{
Ãi∗(σ ) ≥ r/2

}
+ 1

{
Ã∗i(σ ) ≥ r/2

}
.

Averaging over i ∈ C1 (i.e., applying m−1 ∑m
i=1), we get

1

m
Nn,1(σ ;0) ≤

1

m
Ñn,1(σ ; r) +

1

m
Q̃n,1∗(σ ; r/2) +

1

m
Q̃n,∗1(σ ; r/2),(31)

where Q̃n,1∗(σ ; t) =
∑m

i=1 1{Ãi∗(σ ) ≥ t}, and similarly for Q̃n,∗1(σ ; t). Note that
Q̃n,1∗(σ ; t) and Q̃n,∗1(σ ; t), while not independent, have the same distribution by
symmetry, so we can focus on bounding one of them. The key is that each one is a
sum of i.i.d. terms, for example, {Ãi∗}

m
i=1.

We have a bound on m−1Ñn,1(σ ; r) from Lemma 2. We can get similar bounds
on the Q̃-terms. To start, let

qi(r) = P
[
Ãi∗(σ ) ≥ r/2

]
, q̄1(r) =

1

m

m∑

i=1

qi(r),(32)

similar to (24), and note that these quantities too are independent of the particular
choice of σ ∈ �γ .

LEMMA 4. For u > 1/e,

P

[
1

m
Q̃n,1∗(σ ; r/2) ≥ euq̄1(r)

]
≤ exp

(
−emq̄1(r)u logu

)
.(33)

PROOF. Follows from Lemma 5 in the Appendix, by noting that {1{Ãi∗(σ ) ≥

r/2}}mi=1 is an independent sequence of Bernoulli variables. �

The same bound holds for 1
m

Q̃n,∗1(σ ; r/2). Recall the definition of p̄1(r)

from (24). Using (31) and Lemmas 2 and 4, we get

P

[
sup

σ∈�γ

1

m
Nn,1(σ ;0) ≥ e

[
unp̄1(r) + 2vnq1(r)

]]

≤ P

[
sup

σ∈�γ

1

m
Ñn,1(σ ; r) ≥ eunp̄1(r)

]

+ 2P

[
sup

σ∈�γ

1

m
Q̃n,1∗(σ ; r/2) ≥ evnq̄1(r)

]

≤ exp
{
m

[
2h(γ ) − ep̄1(r)un logun + 2κγ (n)

]}

+ 2 exp
{
m

[
2h(γ ) − eq̄1(r)vn logvn + 2κγ (n)

]}
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as long as un, vn > 1/e. Now, take r/2 = (1 + ε)aγ , so that Lemma 3 implies

q̄1(r) ≤ exp
{
−

ε2

1 + ε/3
aγ

}
.

Now, in Lemma 1, take t = (1−2γ )(a−b)−2(1+ε)aγ . Note that the assumption

2(1 + ε)aγ ≤ ε(1 − 2γ )(a − b)

implies t ≥ (1−ε)(1−2γ )(a−b) > 0. In addition t ≤ (1−2γ )(a−b) ≤ 3(a+b)

as before. Thus, the chosen t is valid for Lemma 1. Furthermore, −(1 − 2γ )(a −

b) + t = −r . Hence, the lemma implies

p̄1(r) ≤ exp
{
−

1

4

[
(1 − ε)(1 − 2γ )

]2 (a − b)2

a + b

}
.

Pick un and vn such that

un logun =
4h(γ )

ep̄1(r)
, vn logvn =

4h(γ )

eq̄1(r)
.

The rest of the argument follows as in the directed case. This completes the proof
of Theorem 2.

7. Discussion. The proposed pseudo-likelihood algorithms provide fast and
accurate community detection for a range of settings, including large and sparse
networks, contributing to the long history of empirical success of pseudo-
likelihood approximations in statistics. For the theoretical analysis, we did not
focus on the convergence properties of the algorithms, since standard EM theory
guarantees convergence to a local maximum as long as the underlying Poisson or
multinomial mixture is identifiable. The consistency of a single iteration of the
algorithm was established for an initial value that is better than purely arbitrary,
as long as, roughly speaking, the graph degree grows, and there are two balanced
communities with equal expected degrees. The theory shows that this local max-
imum is consistent, and unique in a neighborhood of the truth, so in fact there is
no need to assume that EM has converged to the global maximum, an assumption
which is usually made in analyzing EM-based estimates. The theoretical analysis
can be extended to the general two-community model with possibly unbalanced
communities, as detailed in the supplementary material [3]. Extending our argu-
ment to more than two communities also seems possible, but that would require
extremely meticulous tracking of a large number of terms which we did not pursue.

We conjecture that additional results may be obtained under weaker assump-
tions if one focuses simply on estimating the parameters of the block model rather
than consistency of the labels, just like one can obtain results for a labeling cor-
related with the truth (instead of consistent) under weaker assumptions discussed
in Remark 5. For example, in a very recent paper [12], results are obtained under
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very weak assumptions for the mean squared error of estimating the block model
parameter matrix P (which in itself does not guarantee consistency of the labels).
While the primary interest in community detection is estimating the labels rather
than the parameters, we plan to investigate this further to see if and how our con-
ditions can be relaxed.

While in theory any “reasonable” initial value guarantees convergence, in prac-
tice the choice of initial value is still important, and we have investigated a number
of options empirically. Spectral clustering with perturbations, which we introduced
primarily as a method to initialize pseudo-likelihood, deserves more study, both
empirically (e.g., investigating the optimal choice of the tuning parameter), and
theoretically. This is also a topic for future work.

APPENDIX: POISSON-TYPE TAIL BOUND

Here is a lemma which we used quite often in proving consistency results in
Section 6.

LEMMA 5. Consider X1,X2, . . . ,Xm to be independent Bernoulli variables

with E[Xi] = pi . Let Sm =
∑m

i=1 Xi , μ = E[Sm] =
∑m

i=1 pi and μ̄ = m−1μ. Then,
for any u > 1/e, we have

P

(
1

m
Sm > euμ̄

)
≤ exp(−emμ̄u logu).

PROOF. We apply a direct Chernoff bound. Let S∗
m ∼ Bin(m, μ̄). Then, by a

result of Hoeffding [18] (also see [16]), Eg(Sm) ≤ Eg(S∗
m) for any convex function

g : R → R. Letting g(x) = eβx , we obtain for β > 0,

P(Sm > t) ≤ e−βt
E

(
eβS∗

m
)
= e−βt (1 + μ̄

(
et − 1

))m

≤ e−βt exp
{
mμ̄

(
et − 1

)}
,

where we have used (1 + x)m ≤ exp(mx). The RHS is the Chernoff bound for a
Poisson random variable with mean μ =

∑
i pi , and can be optimized to yield

P(Sm > t) ≤
e−μ(eμ)t

t t
for t > μ.

Letting t = euμ for u > 1/e and noting that e−μ ≤ 1, we get P(Sm > euμ) ≤
(1/u)euμ which is the desired bound. �
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SUPPLEMENTARY MATERIAL

Extension to unbalanced communities (DOI: 10.1214/13-AOS1138SUPP;
.pdf). This supplement contains an extension of Theorem 1 to the case of unbal-
anced communities.

http://dx.doi.org/10.1214/13-AOS1138SUPP
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