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Abstract: For longitudinal binary data with non-monotone non-ignorable
missing outcomes over time, a full likelihood approach is complicated alge-
braically, and maximum likelihood estimation can be computationally pro-
hibitive with many times of follow-up. We propose pseudo-likelihoods to
estimate the covariate effects on the marginal probabilities of the outcomes,
in addition to the association parameters and missingness parameters. The
pseudo-likelihood requires specification of the distribution for the data at
all pairs of times on the same subject, but makes no assumptions about
the joint distribution of the data at three or more times on the same sub-
ject, so the method can be considered semi-parametric. If using maximum
likelihood, the full likelihood must be correctly specified in order to obtain
consistent estimates. We show in simulations that our proposed pseudo-
likelihood produces a more efficient estimate of the regression parameters
than the pseudo-likelihood for non-ignorable missingness proposed by Troxel
et al. (1998). Application to data from the Six Cities study (Ware, et.al,
1984), a longitudinal study of the health effects of air pollution, is discussed.
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1. Introduction

Longitudinal studies in which each subject is to be observed at a fixed number
of time points have become very popular in social science and medical applica-
tions. For example, longitudinal data are often collected in cardiovascular, cancer
and aids clinical trials and also in observational studies of chronic conditions such
as arthritis and respiratory disease. We focus on the case where the response vari-
able over time is binary (e.g. success or failure) and we are interested in modeling
the marginal means or success probabilities; also, the time dependence or asso-
ciation between pairs of responses is commonly modeled in terms of pairwise
correlations or odds ratios. In this paper we consider statistical methods for the
analysis of such data when the outcome is not observed at all times. We also
focus on non-ignorable missing data mechanisms (Little and Rubin, 1987), in
which the probability that an outcome is missing at a given time can depend on
the possibly missing value of the outcome at that time. The missing outcome
data must be properly accounted for in the analysis. In general, an individual’s
response can be missing at one follow-up time, and be measured at the next
follow-up time, resulting in a large class of distinct missingness patterns, often
called “non-monotone” missingness.

To formulate a full likelihood for non-ignorable non-monotone missing out-
comes over time, one must specify a model for the repeated binary outcomes of
interest, and a model for the missingness mechanism. To estimate the param-
eters, a full likelihood approach has many nuisance parameters, is complicated
algebraically, and maximum likelihood estimation can be computationally pro-
hibitive, especially when the number of times is large. We propose a ‘pseudo-
likelihood’ (Gong and Samaniego, 1981; Liang and Self, 1996) to estimate the
covariate effects on the marginal probabilities of the outcomes, in addition to
the association parameters and missingness parameters. The pseudo-likelihood
requires only partial specification of the distribution of observations and missing-
ness indicators at pairs of times, and can be much less computationally prohibitive
than maximum likelihood.

In section 5, the methods proposed are applied to the Six Cities study (Ware,
et.al, 1984), a longitudinal study of the health effects of air pollution. The re-
peated binary response is the wheezing status (0=no wheeze, 1=wheeze) of a
child at ages 9, 10, 11, and 12. The covariates of interest include the child’s age,
maternal smoking at baseline (just before the wheeze measurement at age 9) in
cigarettes per day, and the city where the child resides (Kingston-Harriman or
Portage, two of the participating cities). Table 1 shows data from 25 of the 3331
subjects on file. We see from Table 1 that there is much missing data. The co-
variates maternal smoking and city were observed for all children. While children
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were to come for a doctor visit once a year to have the respiratory status checked
(including wheeze), their compliance was not compulsory; they did sometimes
miss an appointment. Even after missing an appointment, however, the children
often came back the following year for a doctor’s visit, leading to non-monotone
missing data. The percentage missing wheeze at a given time was between 30%
and 40%. At age 9, 38.2% of the children have wheeze missing; at age 10, 30.5%
of the children have wheeze missing; at age 11, 32.4% of the children have wheeze
missing; and at age 12, 39.7% of the children have wheeze missing. In the case
of wheeze, it is quite plausible that a child might miss a visit because he or she
is not wheezing, and did not come in for a doctor’s visit; we would expect that
the parent of a child who is wheezing would be more likely to keep the doctor’s
appointment, and thus have wheeze measured at that time point. This implies
that missingness in this study may depend on the unobserved outcome of interest
and thus may be “nonignorable.”

Fitzmaurice, Molenberghs, and Lipsitz (1995) have discussed longitudinal bi-
nary data with non-ignorable dropout, summarizing likelihood approaches. Baker
(1995) has also discussed likelihood approaches for repeated binary measure-
ments with nonignorable non-response, proposing models for marginal probabil-
ities and the missingness mechanism. Diggle and Kenward (1994) and Ibrahim
et al. (2001) have proposed likelihood based methods for longitudinal Gaussian
data with nonignorable dropout. These likelihoods are formed by summing over
the possible values for the unobserved responses. In contrast, Troxel et al. (1998)
proposed a pseudo-likelihood that is formed by naively assuming that the longitu-
dinal binary measurements are independent over time. Specifically, their pseudo-
likelihood assumes a marginal logistic regression model for the outcome at each
time point, and also that the missingness probability at a given time depends only
on the possibly missing response at that time and the covariates (the covariates
are assumed to be fully observed). The chief attraction of this pseudo-likelihood
approach is that it significantly eases the numerical complexities of the full likeli-
hood approach by reducing high-dimensional sums to sums of a single dimension.
Further, it alleviates the need to specify and estimate many nuisance parame-
ters that are needed in a full likelihood approach. In addition, asymptotically
unbiased estimators of the regression parameters and missingness parameters
can be obtained. However, by naively assuming independence of repeated mea-
sures across measurement occasions, their method can be highly inefficient for
estimating the regression parameters, the usual target of inference. For exam-
ple, results from table 1 of the paper by Troxel et al (1998) indicate that their
pseudo-likelihood method can be very inefficient compared to the MLE. Thus, in
this paper, we propose an alternative pseudo-likelihood for non-ignorably miss-
ing data that yields more efficient estimates than the pseudo-likelihood proposed
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by Troxel at al (1998). In particular, we propose a pseudo-likelihood approach,
based on specifying the distribution of the data at all pairs of times on the same
subject; our pseudo-likelihood makes no assumptions about the joint distribution
of the data at three or more times on the same subject, so the method can be con-
sidered semi-parametric in this sense. Compared to maximum likelihood, which
requires the full likelihood to be correctly specified in order to obtain consistent
estimates, the pseudo- likelihood estimates are consistent as long as the bivariate
distributions are correctly specified.

We show in simulations in Section 6 that our proposed pseudo-likelihood
produces a more efficient estimate of the regression parameters than the pseudo-
likelihood of Troxel et al. (1998). The issues of estimability and non-identifiability
arises often in nonignorable non-response models as pointed out by Baker and
Laird (1988). Our method also produces estimates of the association parameters,
which are not available with the method of Troxel et al. (1998). In Section 3,
we review the pseudo-likelihood of Troxel at al., and in Section 4, we outline our
pseudo-likelihood. Section 5 illustrates the methods with the Six Cities example.
In Section 6, we present results from our simulation study.

2. Underlying Data Model

We assume that n independent subjects are to be observed at T occasions.
For the ith individual (i = 1, ..., n), we can form a T×1 vector, Yi = [Yi1, ..., YiT ]′,
where the binary random variable Yit equals 1 if the ith individual has response
1 (say “success”) at time t, and 0 otherwise. Each individual also has a J × 1
covariate vector xi. We assume that all covariates are time-stationary and are
fully observed. With a binary response measured at each occasion, there are
2T possible response sequences over time, and Yi has a multinomial distribution
with 2T joint cell probabilities (2T − 1 of which are non-redundant),

piy1...yT
(xi,θ) = fy(yi|xi,θ) = pr{Yi1 = y1, ..., YiT = yT |xi,θ}, (2.1)

parameterized by θ. The models we consider are often referred to as marginal
regression models and they describe the expected value of an individual’s binary
response at time t, or, equivalently, the probability of success at time t. If we
denote the regression parameters relating the probability of success to xi by β,
then we can partition the parameter vector θ as θ′ = (β′,α′), where α contains
the association parameters between pairs of variables Yis and Yit. Finally, let pit

be the marginal probability of success at occasion t for the ith individual, obtained
by summing the cell probabilities over all but the tth subscript, which is set equal
to 1,

pit = pr(Yit = 1|xi,β,α) = E(Yit|xi,β,α) = pi+...+1+...+(xi,β,α). (2.2)
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We consider models for the distribution of Yi such that pit in (2.2) follows a
logistic regression model with parameter vector β,

log
(

pit

1 − pit

)
= x′

itβ , (2.3)

where xit contains xi in addition to time trends. The marginal distribution of
Yit given xi follows a Bernoulli distribution,

f(yit|xi,β) = pyit
it (1 − pit)(1−yit) . (2.4)

There are many different multinomial models for the distribution of Yi such
that (2.3) holds, including multinomial models where the association parameters
are correlations (Bahadur, 1961) or odds ratios (Molenberghs and Lesaffre, 1994).

In many longitudinal studies, individuals are often not observed at all T
occasions on account of some stochastic missing data mechanism. Then, it is
convenient to introduce a T × 1 random vector for the ith individual, Ri, whose
tth component, Rit, equals 1 if Yit is observed, and 0 if Yit is missing. The full
data for the ith individual are given by Yi and Ri, with joint distribution

fy,r(yi, ri|xi,θ,γ) = fr(ri|yi,xi,γ)fy(yi|xi,θ);

fr(ri|yi,xi,γ) is referred to as the “missing data mechanism”, and is indexed by
the parameter vector γ.

Next, we briefly describe some possible missing data mechanisms. First, we
partition Yi into the observed components, Yo

i , and the unobserved components
Yu

i . If the data are missing completely at random (MCAR), then

fr(ri|yi,xi,γ) = fr(ri|xi,γ)

which does not depend on any observed or unobserved components of Yi. If the
data are missing at random (MAR), then

fr(ri|yi,xi,γ) = fr(ri|yo
i ,xi,γ),

can depend on any observed components of Yi. Both missing at random and miss-
ing completely at random fall within the class of ignorable missing data mecha-
nisms (with the added provision that θ and γ are disjoint, in the sense that their
parameter spaces are separable). If the missing data are non-ignorable, then

fr(ri|yi,xi,γ) = fr(ri|yo
i ,y

u
i ,xi,γ),

can depend on any observed or unobserved components of Yi. Finally, we assume
missingness is not necessarily monotone, e.g., responses of patients can be missing
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at one study visit, and then can be obtained at future visits. The observed data
are Ri and Yo

i , with distribution

fyo,r(yo
i , ri|xi,θ,γ) =

∑
yu

i

fr(ri|yi,xi,γ)fy(yi|xi,θ), (2.5)

where the summation is over all possible values of the unobserved data, Yu
i . The

observed data likelihood is determined by fyo,r(yo
i , ri|xi,θ,γ). The full specifica-

tion of (2.5) involves complex multinomial distributions for both fr(ri|yi,xi,γ)
and fy(yi|xi,θ). With T large, in order to estimate β one has to specify a like-
lihood with many nuisance parameters. To alleviate the need to specify the
full likelihood, we propose a pseudo-likelihood approach. In the next section,
we briefly discuss the pseudo-likelihood of Troxel et al.; then, in the following
section, we discuss our proposed pseudo-likelihood.

3. Pseudo-Likelihood under Naive Assumption of Independence

In this section we review the pseudo-likelihood approach proposed by Troxel et
al (1998) that naively assumes independence across measurement occasions. The
resulting pseudo-likelihood is a product of simple marginal terms and can be used
to estimate the marginal regression parameters β and the marginal missingness
parameters γ, but not the association parameters α. To describe this pseudo-
likelihood, suppose we let f(yit, rit|xi,β,γ) denote the marginal distribution of
(Yit, Rit) at time t. We can write this distribution as

f(yit, rit|xi,β,γ) = f(yit|xi,β)f(rit|yit,xi,γ),

where f(yit|xi,β) is given in (2.4), and f(rit|yit,xi,γ) is Bernoulli, in which the
probability of being observed is assumed to follow a logistic regression,

πit = πit(Yit,xi,γ) = pr(Rit = 1|yit,xi,γ) =
exp(γ0 + γ1tyit + γ′

2txi)
1 + exp(γ0 + γ1tyit + γ′

2txi)
.

(3.1)
If we only consider the data at time t, then our observed data likelihood would

be
f(yit, rit|xi,β,γ)

if Yit was observed, and would be

1∑
yit=0

f(yit, rit|xi,β,γ)

if Yit was missing.
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Then, the pseudo-likelihood of Troxel et al. (1998), which naively treats the
observations at different times as independent, is

L(β,γ) =
N∏

i=1

T∏
t=1

[f(yit, rit|xi,β,γ)]rit

 1∑
yit=0

f(yit, rit|xi,β,γ)

(1−rit)

=
N∏

i=1

T∏
t=1

[f(yit|xi,β)f(rit|yit,xi,γ)]rit

×
 1∑

yit=0

f(yit|xi,β)f(rit|yit,xi,γ)

(1−rit)

=
N∏

i=1

T∏
t=1

[f(yit|xi,β)πit]
rit

 1∑
yit=0

f(yit|xi,β)(1 − πit)

(1−rit)

.(3.2)

This pseudo-likelihood is simply a product of terms at each measurement occa-
sion: when an observation is present, the Bernoulli probability function f(yit|xi,β)
is multiplied by the probability of being observed (πit), and when the observation
is missing, the product of f(yit|xi,β) and the missingness probability (1− πit) is
summed over the range of the missing measurement Yit. Note that these marginal
distributions are not a function of the association parameter α.

The maximum pseudo-likelihood estimate, (β̂, γ̂), maximizes the log pseudo-
likelihood. This estimate can be obtained by setting the first derivative of the
log pseudo-likelihood, i.e., the pseudo-score vector,

S(β,γ) =
∂

∂(β,γ)
logL(β,γ),

to 0, and solving for (β̂, γ̂). Note that although the vector of observations on an
individual are naively (and usually incorrectly) assumed to be independent, the
resulting estimator of (β,γ) is consistent. Heuristically, using method of moment
ideas, (β̂, γ̂) is consistent since it can be shown that E[S(β,γ)] = 0 at the true
(β,γ) if f(yit, rit|xi,β,γ) is correctly specified, and (β̂, γ̂) is obtained as the so-
lution to S(β̂, γ̂) = 0. The maximum pseudo-likelihood estimate can be obtained
using a Newton-Raphson algorithm, or the same EM-algorithm (Dempster et al.,
1977) that would be used if the (Yit, Rit)’s are truly independent.

Thus, the naive pseudo-likelihood estimator (β̂, γ̂) can be shown to be con-
sistent and asymptotically normal. In this naive pseudo-likelihood approach,
(Yit, Rit) is modeled without dependence on other measurement occasions. How-
ever, this ‘marginal’ model does not restrict the missingness at a given time to de-
pend only upon the current, possibly unobserved response; rather, this marginal
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approach requires only that the models for f(yit|xi,β) and pr(Rit = 1|yit,xi,γ)
be correctly specified. As a result, the estimate (β̂, γ̂) could be biased if, for ex-
ample, the logistic model for pr(Rit = 1|yit,xi,γ) in (3.1) is misspecified. Finally,
we note that the negative second derivative of the log pseudo-likelihood will not
provide a consistent estimator of the asymptotic variance; instead, the so-called
“robust” or “sandwich” variance estimator can be used (White, 1982).

Overall, the naive pseudo-likelihood method is very appealing since only the
marginal distributions of Yit and Rit need to be correctly specified in order to
obtain a consistent estimate of β. That is, it is not necessary to specify the
full joint distribution of (Yi,Ri) in order to obtain a consistent estimate of β.
The pseudo-likelihood approach is particularly attractive in this setting since
the full likelihood can be far more complicated algebraically. In addition, ML
estimation is computationally very demanding. Note, however, that an estimate
of the association parameters α cannot be obtained using this particular pseudo-
likelihood approach. Furthermore, because the repeated measures over time are
expected to be (positively) correlated, the maximum pseudo-likelihood estimate
may in fact be very inefficient, as we have found in simulations in Section 6.
In the following section, we describe a more efficient estimator of β based on a
pseudo-likelihood approach that takes the correlation among repeated measures
into account. The proposed pseudo-likelihood approach, based on all possible
bivariate distributions, can provide more efficient estimators while still retaining
much of the computational simplicity of the pseudo-likelihood approach of Troxel
et al. (1998).

4. Pseudo-Likelihood Methods with Non-Ignorable Non-Monotone
Missing Outcomes

In this section we propose a pseudo-likelihood approach, based on distri-
butions at all pairs of times, for obtaining a more efficient estimate of β, in
addition to an estimate of the association parameter, α. We specify the joint
distribution of (Yis, Yit, Ris, Rit|xi) for each pair of times, but make no assump-
tion about the joint distribution at three or more times. The pseudo-likelihood
is based on the working assumption that (Yis, Yit, Ris, Rit|xi) is independent of
(Yiu, Yiv, Riu, Riv |xi) for (s, t) �= (u, v).

First, we discuss the specification of the distribution of (Yis, Yit, Ris, Rit|xi),
which can be written as

f(yis, yit, ris, rit|xi,β,α,γ) = f(yis, yit|xi,β,α)f(ris, rit|yis, yit,xi,γ). (4.1)

For ease of exposition, here, we assume that the pair (Yis, Yit) follow the
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bivariate binary distribution due to Bahadur (1961),

f(yis, yit|xi,β,α) = pyis
is (1 − pis)(1−yis)pyit

it (1 − pit)(1−yit)

×
{

1 + ρist
(yis − pis)(yit − pit)√
pis(1 − pis)pit(1 − pit)

}
, (4.2)

where ρist = ρist(α) = Corr(Yis, Yit|xi). If one is interested in estimating the
pairwise odds ratio instead of the correlation, then the bivariate Plackett (1965)
distribution can be used. Other alternatives to (4.2), include the bivariate distri-
butions proposed by Meester and MacKay (1994) and Heagerty (1999). However,
for ease of exposition, we focus only on the bivariate Bahadur distribution here.

Note that similar assumptions can be made to specify f(ris, rit|yis, yit,xi,γ).
In particular, one can use the bivariate binary distribution

f(ris, rit|yis, yit,xi,γ) = πris
is (1 − πis)(1−ris)πrit

it (1 − πit)(1−rit)

×
{

1 + Γist
(ris − πis)(rit − πit)√
πis(1 − πis)πit(1 − πit)

}
, (4.3)

where Γist = Corr(Ris, Rit|yis, yit,xi) and πit = pr(Rit = 1|yit,xi,γ) is given in
(3.1).

In the bivariate binary distribution in (4.3), the probability of being observed
(Rit = 1) at the current time can depend on the current (Yit) and previous (Yi,t−1)
observations. However, this conditional probability does not have a logistic form,
such as the model proposed by Diggle and Kenward (1994),

ηit = pr(Rit = 1|ri,t−1, yi,t−1, yit,xi,γ)

=
exp(γ0 + γ1ri,t−1 + γ2yit + γ3yi,t−1 + γ′

4xi)
1 + exp(γ0 + γ1ri,t−1 + γ2yit + γ3yi,t−1 + γ ′

4xi)
. (4.4)

In particular, using (4.3), the conditional probability from the bivariate binary
distribution is

P (Rit = 1|ri,t−1, yi,t−1, yit,xi)

= πit

{
1 + Γi,t−1,t

(ri,t−1 − πi,t−1)(1 − πit)√
πi,t−1(1 − πi,t−1)πit(1 − πit)

}
. (4.5)

In fact, the conditional probability that Rit = 1, given any Ris has form given
by (4.5). Both (4.4) and (4.5) have simple forms.

Now, we discuss the proposed pseudo-likelihood, which is based on specifying
the distribution of the data at all pairs of times on the same subject. First,
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suppose there were only T = 2 time points. In this case, the pseudo-likelihood
would equal the likelihood, which equals

L12(Θ) = L1 × L2 × L3 × L4 (4.6)

where

L1 =
N∏

i=1

f(yi1, yi2, ri1, ri2|xi,β,α,γ)ri1ri2

L2 =

[∑
yi1

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

](1−ri1)ri2

L3 =

[∑
yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

]ri1(1−ri2)

L4 =

[ ∑
yi1,yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

](1−ri1)(1−ri2)

.

To be more explicit about (4.6), if a subject is observed at both times 1 and
2, i.e., (ri1 = 1, ri2 = 1), then that subject’s contribution to the likelihood is

f(yi1, yi2, ri1, ri2|xi,β,α,γ) = f(yi1, yi2, ri1, ri2|xi,β,α,γ)ri1ri2 ;

if a subject is missing at time 1 and observed at time 2, i.e., (ri1 = 0, ri2 = 1),
then that subject contributes the following marginal distribution (summed over
possible values of yi1) to the likelihood

∑
yi1

f(yi1, yi2, ri1, ri2|xi,β,α,γ) =

[∑
yi1

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

](1−ri1)ri2

;

if a subject is missing at time 2 and observed at time 1, i.e., (ri1 = 1, ri2 = 0),
then that subject contributes the following marginal distribution (summed over
possible values of yi2) to the likelihood

∑
yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ) =

[∑
yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

]ri1(1−ri2)

;

finally, if a subject is missing at both times 1 and 2, i.e., (ri1 = 0, ri2 = 0),
then that subject contributes the following marginal distribution (summed over
possible values of both yi1 and yi2) to the likelihood

∑
yi1,yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ) =

[ ∑
yi1,yi2

f(yi1, yi2, ri1, ri2|xi,β,α,γ)

](1−ri1)(1−ri2)

.
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In the general pseudo-likelihood (T > 2), we naively assume that (Yij, Yik, Rij ,
Rik) and (Yi�, Yim, Ri�, Rim) are independent. With T time points, there are
T (T − 1)/2 pairs of times, and the pseudo-likelihood will be a product of T (T −
1)/2 terms, with the term corresponding to times s and t being identical to
(4.6), after replacing times 1 and 2 in (4.6) with times s and t. In particular,
naively assuming that (Yij, Yik, Rij , Rik) and (Yi�, Yim, Ri�, Rim) are independent,
the proposed pseudo-likelihood for Θ = (β,α,γ)′ is given by the product of the
likelihood in (4.6) over all pairs of times,

L2(Θ) = L5 × L6 × L7 × L8 =
N∏

i=1

∏
s<t

List(Θ), (4.7)

where

L5 =
N∏

i=1

∏
s<t

f(yis, yit, ris, rit|xi,β,α,γ)risrit

L6 =

[∑
yis

f(yis, yit, ris, rit|xi,β,α,γ)

](1−ris)rit

L7 =

[∑
yit

f(yis, yit, ris, rit|xi,β,α,γ)

]ris(1−rit)

L8 =

[ ∑
yis,yit

f(yis, yit, ris, rit|xi,β,α,γ)

](1−ris)(1−rit)

and List is the contribution from (Yis, Yit, Ris, Rit). The pseudo-score is

S2(Θ) =
N∑

i=1

S2i(Θ) =
N∑

i=1

∑
s<t

∂

∂Θ
log[List(Θ)], (4.8)

and the maximum pseudo-likelihood estimate, Θ̂, is the solution to S2(Θ̂) = 0.
Heuristically, using method of moment ideas, assuming that f(yis, yit, ris, rit|xi,β,
α,γ) is correctly specified, Θ̂ is consistent since E[S2(Θ)] = 0 at the true Θ
if the bivariate distributions are correctly specified, and Θ̂ is obtained as the
solution to S2(Θ̂) = 0. The maximum pseudo-likelihood estimate can be obtained
using a Newton-Raphson algorithm, or the same EM-algorithm (Dempster et
al., 1977) that would be used if (Yij , Yik, Rij , Rik) and (Yi�, Yim, Ri�, Rim) are
truly independent. The estimate Θ̂ is also asymptotically multivariate normal.
However, a robust estimator of variance is required, since (Yij, Yik, Rij , Rik) and
(Yi�, Yim, Ri�, Rim) will, in general, be correlated. The appropriate adjustment
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takes the form of a sandwich estimator commonly used in statistical practice. In
particular,

n
1
2 (Θ̂ − Θ) L−→ N (0,Σ),

where

Σ =
[

1
n
E

{
∂S2(Θ)
∂Θ

}]−1 1
n

n∑
i=1

E
{
S2i(Θ)S′

2i(Θ)
}[

1
n
E

{
∂S2(Θ)
∂ψ

}]−1

.(4.9)

The variance estimate is obtained by replacing Θ with Θ̂ in (4.9) to get Σ̂.
We note that the pseudo-likelihood in (4.7) can be considered an extension

to non-ignorable missingness of the pseudo-likelihood proposed by Le Cessie and
Van Houwelingen (1994). Le Cessie and Van Houwelingen (1994) proposed a
pseudo-likelihood for repeated binary data in which missing observations must
be missing completely at random. Briefly, Le Cessie and Van Houwelingen’s
pseudo-likelihood is similar to (4.7), except without the part that contains the
missing data mechanism, i.e., Le Cessie and Van Houwelingen’s pseudo-likelihood
is

N∏
i=1

∏
s<t

f(yis, yit|xi,β,α)risrit
[∑

yis

f(yis,yit|xi,β,α)

](1−ris)rit

×
[∑

yit

f(yis, yit|xi,β,α)

]ris(1−rit)

.

We also note that, if one specifies f(yis, yit|xi,β,α) as in (4.2), but specifies
the missingness model as in (4.4), to determine the bivariate density f(yis, yit, ris,
rit|xi, β,α,γ) would first require specification of the full density fy,r(yi, ri|xi,θ,γ);
then, one needs to sum over the appropriate times to get the bivariate density.
Unfortunately, since one needs to specify the full density over all times in this
case, the bivariate pseudo-likelihood (4.7) will not have the robust property that
only the bivariate distributions need to be correctly specified. Further, one could
consider forming trivariate or multivariate pseudo-likelihoods; however, the com-
putational complexity increases, and we also loose the robustness property that
only the first two moments need to be correctly specified. Finally, even though the
pseudo-likelihood is less computationally intensive than maximum likelihood, it
could be much more computationally intensive than Troxel et al.’s (1998) pseudo-
likelihood that is formed by naively assuming that the longitudinal binary mea-
surements are independent over time. In Troxel et al.’s (1998) pseudo-likelihood,
we need to form T ’observations’ for each subject; for ours, we need to form
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T (T − 1)/2. For most of the studies we consider, in which T is small, say less
than 20, the difference in computing is negligible. However, when T is large, such
as in a diary study in which the outcome is to be measured every day for a year,
then the difference in computational time could be substantial.

5. Six Cities Example

We now present an analysis of the Six Cities Study described in the intro-
duction. The Six Cities study is a longitudinal study of the health effects of air
pollution (Ware et al., 1984). The dataset contains records on n = 3331 chil-
dren who resided in Kingston-Harriman, Tennessee or Portage, Wisconsin (two
of the participating cities). The response of interest at time t (t = 1, 2, 3, 4) is
the wheezing of the child, Yit = 1 if wheeze, 0 if no wheeze. As discussed in the
introduction, wheeze is missing between 30% and 40% at each of the four times,
and the missing data patterns are non-monotone. Data is also collected on the
covariates maternal smoking (measured in cigarettes per day) at baseline (age
9), denoted by smokei, and city, denoted by cityi, which equals 1 if Kingston-
Harriman or 0 if Portage. Children of mothers who smoke at baseline and who
reside in the more polluted city (Kingston-Harriman) are expected to have higher
rates of wheeze.

Thus, we model the probability of wheeze at a given age as a function of the
Child’s age, maternal smoking at baseline and the city of residence,

ln
[

pit

1 − pit

]
= β0+β1cityi+β2smokei+β3I(t = 2)+β4I(t = 3)+β5I(t = 4), (5.1)

for t = 1, 2, 3, 4 and where I(·) are indicator variables. Finally, when using our
proposed pseudo-likelihood, we assumed an unstructured correlation between the
responses at times s and t, so that Corr(Yis, Yit|xi) = ρst.

It is reasonable to conjecture that wheezing is nonignorably missing since a
child may not come in for a doctor’s visit if he or she is not wheezing, so that
there is no need to make the visit. Thus, it is plausible to propose a nonignorable
missing data mechanism for wheezing. Thus, we fit the following missingness
model that included the current outcome,

ln
[

πit

1 − πit

]
= γ0+γ1yit+γ2cityi+γ3smokei+γ4I(t = 2)+γ5I(t = 3)+γ6I(t = 4) .

(5.2)
Finally, when using our proposed pseudo-likelihood, we assumed an unstructured
correlation between the missingness indicators at times s and t, so that

Corr(Ris, Rit|yis, yit,xi) = Γst . (5.3)
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We also fit our pseudo-likelihood assuming Γst = 0.

Table 2 gives estimates and standard errors for the parameters (β,α) for all
the methods fit, and Table 3 gives the estimates of the missingness parameters,
γ. The methods include Troxel et al. (1998), denoted by PSL1; our pseudo-
likelihood in which we estimated the missingness correlations Γst, which we denote
by PSL2CORR; and our pseudo-likelihood in which we set Γst = 0, which we
denote by PSL2. Further, we fit Troxel et al.’s (1998) pseudo-likelihood under
the assumption of missing completely at random; in this case, Troxel et al.’s
estimate reduces to the independence generalized estimating equations of Liang
and Zeger (1986). We denote this estimate IGEE. Finally, we also fit our pseudo-
likelihood under the assumption of missing completely at random, which, as
discussed earlier, is equivalent to the pseudo-likelihood proposed by Le Cessie
and Van Houwelingen (1994); we denote this estimate by PSL2MCAR.

From Table 2, we see that the parameter estimates of β and estimated stan-
dard errors from Troxel et al.’s PSL1 are very different from the estimates from
the other approaches. In particular, the city by smoking interaction is at least
three time larger for PSL1 than the estimate obtained by any other method, and
the estimate is significant using PSL1, whereas it is not significant using any
other approach. Further, the time 4 estimate is about 1/3 the magnitude us-
ing PSL1 compared to any other method, and is non-significant. The reason for
these differences lies in the estimate of the missingness model in Table 3, in which
PSL1 estimates a significant non-ignorable effect of wheeze at the current time,
whereas the other approaches do not. In particular, using PSL1, subjects who
wheeze are estimated to have exp(−4.120) = 0.016 the odds of being observed
compared to subjects who do not wheeze. Further, we also see that there are dif-
ferences between PSL2CORR, in which we estimate the missingness correlations,
and PSL2, in which we assume these correlations are 0. In particular, the times
2 and 3 effects in the model for pit are significant using PSL2CORR, but not
using PSL2. The estimates of β are not much different using PSL2CORR and
PSL2, but the estimated standard errors appear much larger using PSL2. The
estimated standard errors for the missingness parameters are also much larger
for PSL2 compared to PSL2CORR. Thus, taking the possible correlation of the
missingness indicators into account appears to reduce the variance of the esti-
mated parameters. Looking at the estimated correlations Γ̂st from PSL2CORR,
we see from table 4 that the missingness indicators 1 year apart in time are
highly correlated (correlation greater than .4), the missingness indicators 2 years
apart in time are mildly correlated (correlation about .16), and missingness indi-
cators 3 years apart in time have correlation close to 0. The estimates assuming
MCAR from IGEE and PSL2MCAR were similar to each other, and similar to
PSL2CORR.
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We also performed sensitivity analyses for PSL1, PSL2CORR, and PSL2.
In particular, we fit various non-ignorable missingness mechanisms by dropping
different combinations of city, smoking, and time from the missingness model.
We note that, regardless of what combination of city, smoking, and time we have
in the missingness model, if we drop the outcome wheeze Yit from the missingness
model, we get the IGEE estimates using PSL1 and the PSL2MCAR estimates
using either PSL2CORR or PSL2. In the sensitivity analysis, we found that the
estimates of β changed very little from that given in Table 2 for any non-ignorable
model for PSL2CORR and PSL2. However, for PSL1, the estimate of β changed a
lot depending on the non-ignorable missingness model. For example, if, for PSL1,
we let the non-ignorable missingness model only depend on wheeze, but not city,
smoking, or time, we found that both the Newton-Raphson algorithm and the
EM-algorithm did not converge (the Newton-Raphson algorithm stopped when
the estimated coefficient of wheeze in the missingness model equaled -13). This
example illustrates that different non-ignorable models and different methods to
estimate the parameters can lead to different, and possibly conflicting estimates.
To look at the properties of these approaches further, we performed simulations
in the following section.

6. Simulation Study

In this section we present simulations to study the finite sample performance
of the estimators discussed in the previous section: PSL1 (Troxel et al., 1998);
PSL2CORR (our pseudo-likelihood in which we estimate the missingness cor-
relations Γst); PSL2 (our pseudo-likelihood with Γst = 0); IGEE (independence
generalized estimating equations); and PSL2MCAR (our pseudo-likelihood under
MCAR, Le Cessie and Van Houwelingen, 1994). In the simulations, we let T = 3,
so that the full likelihood is tractable, and we can also compute the MLE for the
simulations.

Thus, for simplicity, in the simulation study, we consider the case of a trivari-
ate binary response and a simple two group configuration, e.g. active treatment
versus placebo. Subjects are assumed to belong to either group with equal prob-
ability. We denote this dichotomous covariate indicating group membership by
xi, which equals 1 if group 1, 0 if group 0. To specify the true underlying joint
distribution of the binary responses, (Yi1, Yi2, Yi3), we choose the model for cor-
related binary data first described by Bahadur (1961), and later by Cox (1972).
In general, with binary responses at each of T times, the joint distribution of an
individual’s responses at the T times is multinomial with 2T probabilities cor-
responding to the 2T possible response profiles. Thus, in Bahadur’s correlated
binary model, the joint distribution of an individual’s responses at the three times
is multinomial with 23 = 8 cell probabilities, pr(Yi1 = yi1, Yi2 = yi2, Yi3 = yi3|xi),
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where yit = 0, 1. If we define the standardized variable Zit to be

Zit =
Yit − pit√
pit(1 − pit)

,

then the Bahadur model of the 23 multinomial probabilities is

pr(Yi1 = yi1, Yi2 = yi2, Yi3 = yi3|xi,β,α) =

{
3∏

t=1

pyit
it (1 − pit)(1−yit)

}
× {1 + ρ12zi1zi2 + ρ13zi1zi3 + ρ23zi2zi3 + ρ123zi1zi2zi3} , (6.1)

where
ρst = Corr(Yis, Yit) =

E[(Yis − pis)(Yit − pit)|xi]√
pis(1 − pis)pit(1 − pit)

;

ρ123 =
E[(Yi1 − pi1)(Yi2 − pi2)(Yi3 − pi3)|xi]√
pi1(1 − pi1)pi2(1 − pi2)pi3(1 − pi3)

;

and

pit =
exp[β0 + βxxi + βt(t− 1)]

1 + exp[β0 + βxxi + βt(t− 1)]

for t=1,2,3. The parameter ρ123 can be thought of as a “three-way” association
parameter, and α = [ρ12, ρ13, ρ23, ρ123]′.

For the simulation study, the parameters of the true model are as follows.
The marginal regression parameters are [β0, βx, βt] = [−0.25, 0.5, 0.20]. A variety
of different correlation structures were examined and the same overall pattern of
results were obtained. For simplicity, we present the results from an unstructured
correlation, [ρ12, ρ13, ρ23] = [.4, .3, .5]. The three-way correlation, ρ123, is held
fixed at zero.

We performed separate simulations with three true non-ignorable missingness
mechanisms. First, we let the missingness indicators be independent at the three
times, with

πit = pr(Rit = 1|yit, xi,γ) =
exp[γ0 + γ1xi + γ2(t− 1) + γ3yit]

1 + exp[γ0 + γ1xi + γ2(t− 1) + γ3yit]
. (6.2)

For the simulation study, the parameters of the true model in (6.2) are

γ0 = −.5; γ1 = 1; γ2 = .2; γ3 = 1 . (6.3)

Here, missingness at a given time depends upon group membership, time, and
the possibly missing outcome at that time. In this mechanism, non-monotone
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missingness can occur in that an outcome can be missing at time s (Ris = 0), but
observed at a future time t (Rit = 1 for t > s). Given the parameters in (6.3),
the percentage missing at a given time is between 30% and 40%. Then, the full
distribution fr(ri|yi,xi,γ) is

pr[Ri1 = ri1, Ri2 = ri2, Ri3 = ri3|yi1, yi2, yi3, xi,γ] =
3∏

t=1

πrit
it (1 − πit)(1−rit). (6.4)

For the second non-ignorable missingness mechanism, we let fr(ri|yi,xi,γ)
follow a Bahadur distribution, similar to that of Yi. If define the standardized
variable Uit to be

Uit =
Rit − πit√
πit(1 − πit)

,

then the Bahadur distribution is

pr{Ri1 = ri1, Ri2 = ri2, Ri3 = ri3|yi1, yi2, yi3, xi,γ} =

{
3∏

t=1

πrit
it (1 − πit)(1−rit)

}
× {1 + Γ12ui1zi2 + Γ13ui1ui3 + Γ23ui2ui3 + Γ123ui1ui2ui3} , (6.5)

where
Γst = Corr(Ris, Rit|yi1, yi2, yi3, xi)

Γ123 =
E[(Ri1 − πi1)(Ri2 − πi2)(Ri3 − πi3)|yi1, yi2, yi3, xi]√

πi1(1 − πi1)πi2(1 − πi2)πi3(1 − πi3)
;

and πit is given in (6.2). In the simulations, we set the true parameters for the
model for πit equal to those given in (6.3), and we set (Γ12,Γ13,Γ23,Γ123) =
(.2, .1, .3, 0). Note, the missingness model in (6.4) is a special case of (6.5) in
which we set (Γ12,Γ13,Γ23,Γ123) = (0, 0, 0, 0).

The third missingness mechanism will allow the probability Rit = 1 to depend
on the values of xi, Yit, Yi,t−1, and Ri,t−1, through a logistic regression,

ηit = pr(Rit = 1|ri,t−1,yi,xi,γ)]

=
exp{γ0 + γ1xi + γ2t+ γ3yit + I[t > 1](γ4yi,t−1 + γ5ri,t−1)}

1 + exp{[γ0 + γ1xi + γ2t+ γ3yit + I[t > 1](γ4yi,t−1 + γ5ri,t−1)} .(6.6)

We see in (6.6), for time 1, (γ4yi,t−1 +γ5ri,t−1) is dropped from the model. Then,
the full distribution fr(ri|yi,xi,γ) is

pr[Ri1 = ri1, Ri2 = ri2, Ri3 = ri3|yi1, yi2, yi3, xi,γ] =
3∏

t=1

ηrit
it (1 − ηit)(1−rit). (6.7)
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The missingness model in (6.2) can be considered a special case of (6.6) when
γ4 = γ5 = 0. If (6.7) is the correct missingness mechanism, then all of the
pseudo-likelihoods proposed (both Troxel et. al.’s and ours) will be misspecified.
We performed simulations with the missingness mechanism in (6.7) to see how
much bias arises in the pseudo-likelihoods when the missingness mechanism is
misspecified. We performed 1000 simulations for each configuration, with a sam-
ple size of n = 500. We chose a sample size of 500 because of the number of
parameters (β,α,γ) to estimate.

In the simulation in Table 4, the missingness mechanism is given by (6.4), cor-
responding to independent missingness indicators at the three times. For PSL1,
PSL2CORR, PSL2, and maximum likelihood estimation (MLE), the missingness
mechanism is correctly specified. We see that, despite the correct specification,
PSL1 is slightly negatively biased for βx and βt, and the coverage probability for
PSL1 is poor, due to the slight bias in the estimate, and the poor performance
of the sandwich variance estimate. In simulations not shown, for a sample size
of n = 1000, this slight bias goes away, and the bias in the sandwich variance
estimate decreased. PSL2CORR, PSL2, and MLE are all approximately unbi-
ased. We see that our proposed pseudo-likelihood estimates, PSL2CORR and
PSL2, are both slightly more efficient than the asymptotically efficient MLE.
Further, the coverage probability of both PSL2CORR and PSL2 are at the nom-
inal level of 95%. Looking at the simulation variance, and neglecting the small
bias for PSL1 (or, equivalently, using the simulation mean square error), we see
that PSL2CORR and PSL2 are much more efficient than PSL1. The estimates
assuming MCAR, IGEE and PSL2MCAR, are highly biased.

In the simulation in Table 5, the missingness mechanism is given by (6.5),
corresponding to correlated missingness indicators at the three times. For PSL1,
PSL2CORR, and maximum likelihood estimation (MLE), the missingness mech-
anism is correctly specified. For PSL2, the missingness mechanism is incorrectly
specified. We see that again, despite the correct specification, PSL1 is slightly
negatively biased for βx and βt, and the coverage probability for PSL1 is poor,
due again to the slight bias in the estimate, and the poor performance of the
sandwich variance estimate. PSL2 also give biased estimates, due to the fact
that the missingness mechanism is incorrectly specified. PSL2CORR and MLE
are both approximately unbiased. Looking at the simulation variance, we see
that our proposed pseudo-likelihood estimate PSL2CORR is slightly less effi-
cient than the asymptotically efficient MLE. Further, the coverage probability
of PSL2CORR is at the nominal level of 95%. The estimates assuming MCAR,
IGEE and PSL2MCAR, are again highly biased.

In the simulation in Table 6, the missingness mechanism is given by (6.7), cor-
responding to logistic missingness models given current and previous outcomes.
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We did not fit maximum likelihood for this approach since we were not interested
in efficiency because we know that the pseudo-likelihood estimates will be biased.
PSL1 and PSL2CORR have the least bias, whereas all others, including PSL2,
have high bias. This simulation, as well as the simulation in Table 5, suggest that
PSL2 is not very robust to mis-specification of the missingness model, whereas
PSL2CORR, due to estimation of correlations between the missingness indica-
tors, is more robust. These simulations suggest that, in general, PSL2CORR is
the method of choice.

7. Discussion

We have proposed pseudo-likelihoods for the estimation of marginal models
for longitudinal binary data with non-monotone non-ignorable missing outcomes.
Unlike the full likelihood, the pseudo-likelihoods require specification of the dis-
tribution for the data at all pairs of times on the same subject. Further, compared
to maximum likelihood, which requires the full likelihood to be correctly specified
in order to obtain consistent estimates, the pseudo- likelihood estimates are con-
sistent as long as the bivariate distributions are correctly specified. Because of the
broad range of possible missing data configurations and underlying probability
distributions generating the data, it is difficult to draw definitive conclusions from
simulation studies. We can only make general suggestions. Based on our simu-
lation studies, we have examined the efficiency and bias of our proposed pseudo-
likelihood estimates, and found that our pseudo-likelihood approach PSL2CORR,
in which we estimate the missingness correlations Γst, has the best properties. In
particular, when the missingness mechanism is correctly specified, PSL2CORR
is either more efficient, or almost as efficient, as the asymptotic efficient MLE.
Further, when the missingness mechanism is misspecified, PSL2CORR appears
to have small bias. Further, PSL2CORR is much more efficient than the pseudo-
likelihood proposed by Troxel et al. (1998).

For non-ignorable missingness models, one can encounter multimodal likeli-
hood or pseudo-likelihood surfaces: the likelihood consists of gentle peaks and
valleys near the solution. With both actual and simulated data, for our pseudo-
likelihood PSL2CORR, using different starting points, the Newton-Raphson al-
gorithm always converged to the same maximum. This was not true for Troxel
et al.’s PSL1, although we were always able to find a unique maximum. Appar-
ently, specifying and estimating correlations for the repeated binary outcomes
and the missingness mechanism, led to more ‘information’, and a more concave
pseudo-likelihood using PSL2CORR. Further, in general, it is well- known that
estimates from non-ignorable models are quite sensitive to modelling assump-
tions. We view the pseudo-likelihood estimators proposed here as another tool
for conducting sensitivity analysis for non-ignorable models, which can be used
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to explore departures from ignorable missingness models.
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