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PSEUDO-MATCHINGS OF A BIPARTITE GRAPH

ALAN BRACE AND D. E.  DAYKIN

Abstract. Let G be a graph whose edges (x, y) have x e X,

ye Y, | X\ = | Y\ < oo. A (t,u) cover of G is a set of / edges which

cover >u vertices in both X and Y. We give conditions on the

valency (minimum local degree) and the number of edges which

ensure a (/, «) cover or that a Hamiltonian circuit exists.

1. Introduction. Let X, Y be two finite sets each with s elements.

Also let £ be a set of ordered pairs (x,y) with x e X, y e Y. Thus we

have a bipartite graph G whose vertices are lu Y and edges are E. By

a (t, u) cover C of G we mean a set of t edges of E which between them

contain at least u elements of X and of Y, so

t = ICI   and   u < U   *
(z.»)eC

and   u < U y
(x.v)eC

The term pseudo-matching in the title of this note refers to a (i, w) cover

and was chosen because a (r, u) cover is a matching when s=t=u.

Throughout this note we will assume, for obvious reasons, that

(1) 1 ^ u ^ s,       u ^ t ^ |£| ^ s2,       0 ^ t; ^ s,

where u denotes the valency of G, that is, the minimum local degree.

Our object is to find the best possible conditions on the valency v and the

number \E\ of edges of G which ensure that G has a (r, u) cover or a

Hamiltonian circuit. We now describe our results.

Theorem 1.    There is a (t, u) cover ifv^. 1 and v^.u—\t.

Theorem 2.   If there is no (/, u) cover then either

(i) \E\<s(u-l) andv=0, or

(ii) \E\^(s-v)(2u-t-l)+v2 and2<^2v<u^t<2(u-v).

By putting s=t=u in Theorem 2 we obtain the following new criterion

for the existence of a matching
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Theorem 2'. If v~^\s or if \E\>(s-v)(s-l)+v2 and 0<v<$s then

G has a matching.

We illustrate possible applications of Theorems 1 and 2 by an example.

Each of the spanners in a tool bag has one end to fit a British size nut in

the range Bu • • •, B10 and the other end to fit a Continental size nut

in the range Clt • • • , C10. If there are at least 2 spanners for each size

nut, then an engineer can choose 6 which will between them fit at least

half of both the Bt and the C¿ sizes. Also he can choose 4 having no size

in common. Moreover if there are 37 spanners in the bag he can choose

51 which will between them fit all the nut sizes.

Theorem 3.   If2^v^\s then G has a circuit of length at least 2v.

Theorem 4. If v>$s or if \E\>(s—v)s+v2 and 2^v^%s then G is

Hamiltonian.

To compare these results with those for general graphs see [3]. We

will use the following classical result of Hall, König and Ore [2, p. 98].

Theorem 5.    There is a (u, u) cover if \A\ ̂ s—u+1TA| for all AQ X.

Here IM denotes the set {y\3x e A, (x, y) e E}.

In [1] generalised graphs were considered. Instead of the edges being

ordered pairs (x, y) they are ordered «-tuples (xu x2, • • • , xr) with

r^.2 and jc, e X. The simplest result proved in [1] is the following. If

|£| > (s— l)^-1 then there are s edges in E such that for every x e X and i

in l^i'^r the element x is the ¿th component of one of the s edges.

2. The valency problem. Assume we have a (r, u) cover. Then if

f^|£|—1 there is trivially a (t+l,u) cover, while if t^\E\—2 and

u^s—l and l^v there is a (/-|-2,m+1) cover. We will use these ideas

repeatedly, and they immediately give us part (i) of our first Lemma.

There and elsewhere m denotes the maximum integer u for which G

has a (m, m) cover.

Lemma 1. (i) Ifl^v and u<u'^s and there is a (t, u) cover then there

is a (w, u) cover where w=min(|£|, t+2(u'—u)).

(ii) If there is a (t, u) cover then m^2u—t.

(iii) If l^v the least integer t for which there is a (t, u) cover is t=

max(M, 2m—m).

Proof. Part (ii). Imagine G consists of the (t, u) cover alone and

s=u. If A<=X then the (/, u) cover must have an edge for each xeA

and j> e Y\I\4. Hence \A\+u—|I\4|^f and the result follows by Theorem

5.
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Part (iii). If there is to be a (t, u) cover we must have t^u. Also by

part (ii) we must have t^.2u—m. It is easy to get a (/, u) cover from the

(m, m) cover, so the proof is complete.

Lemma 2.    (i) If\-^v<\s then G has a (2v, 2v) cover.

(ii) If v^.\s then G has an (s, s) cover (and hence a (u, u) cover for

l^u^s). ~

Proof. By Theorem 5, if (i) is false, there is a set A çJ with \A\>

s-2»+|r^|. Then 5^|yi|>|r^|">0 so A is nonempty, \TA\^v, and

there is a y e Y\TA. The valency v(y) of this element y satisfies v?£v(y)?£

\X\A\=s—\A\<2v—\TA\^v. This contradiction proves (i). If (ii) is

false, then as before there is a set A sXwith U|>|r.4|. So ̂ s^v<\TA\<

\A\^s and there is ay e Y\T(A) with v^v(y)^\X\A\<is£v. This second

contradiction completes the proof.

Proof of Theorem 1. If v^s the result comes from Lemma 2(ii),

so we assume l^v<$s. Then there is a (2v, 2d) cover by Lemma 2(i).

If 2v^u we are through, so we assume 2v<u. Then by Lemma l(i) we

get a (2(w—v), u) cover, and this yields our desired (t, u) cover because

2(m—v)^t by hypothesis.

An example which shows that Theorem 1 and Lemma 2(i) are the best

possible is the following. Let X'^X, Y'sY, \X'\ = \Y'\=s-v with
l=t"<£.y, and let G contain all possible edges except those of the form

(x', y') with x' e X', y' e Y'. Hence m=2v and Lemma l(iii) applies.

3. The number of edges problem.

Lemma 3.   If G has no (u, u) cover then 2v<uand \E\ ̂  (s—v)(u— l)+t>2.

Proof. We must have 2v<u by Lemma 2(i). By Theorem 5 there is a

set A^X with s^\A\>s—u+\rA\^s—u^Q. So A is not empty and

v<í\TA\<u<¡s. Taking ye Y\FA we get v^v(y)<^\X\A\=s-\A\ and
hence

(2) v<i\rA\£u-v-l.

Now

|£| *g s2 - M| (s - \TA\) ^ s2 - (s - u + \TA\ + l)(s - \TA\)

which is quadratic in |I\4|, with the coefficient of \TA\ positive, and hence

takes its maximum value at one or other of the bounds in (2). In fact

both bounds give the value in the statement of the lemma, and so the

lemma is proved.

Proof of Theorem 2. We must have 2v<u, for otherwise by Lemma

3 there is a (u, u) cover, and hence a (t, u) cover. If v=0 and \E\>s(u— 1)

then again by Lemma 3 there is a (u, u) cover. In a moment we will give
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an example with v=0, |£|=j(m— 1) and no (/, u) cover, so that we cannot

say more in the v=0 case. Suppose now that 2^2t;<« and i<2(«—v).

Another example will show that we cannot say anything unless |£|>

(s—v)(2u—t—l)+v2. When this holds there is a (2u—t, 2u—t) cover by

Lemma 3, and hence a (r, u) cover by Lemma l(i). Our last case is 2^

2v<u and t^2(u—v). Here 1 ̂ v<%s because u^s and so we get a (2v, 2v)

cover from Lemma 2(i), this gives a (2(u—v), u) cover and hence the

desired (t, u) cover.

Consider now examples with X'çX, F'ç Y, \X'\=s—v, \Y'\=s—w

and G having all edges except those of the form (*',/). First take t>=0

and w=u— 1, then |£|=s2—(s—v)(s—w)=s(u— 1) and G has no (t, u)

cover. This shows that Theorem 2(i) is best possible. Now with general

v let w=2u—t— 1—v. We make 0<v<s—w so w<s—v. We make

t<2(u—v) because we need v^w to keep the valency right. Also we make

2t)<Mtokeepw^i. Thusm=v+w=2u—t—l and \E\=s2—(s—v)(s—w)=

(s—v)(2u—t—l)+vz. There is no (t, u) cover by Lemma l(iii) so Theorem

2(ii) is best possible. Finally to see Lemma 3 is best possible put t=u.

4. The circuit problem.

Proof of Theorem 3. By suitably numbering the vertices of X and

Y, let Xx, y-i, x2, y2, • ■ ■ be a path of maximum possible length in G. This

path must contain at least v vertices yt which are adjacent to xlt for other-

wise we could make it longer. If y¡ is the last such y¿ then x%, yly x2,

y%, ' ' ' > xi> y h *i is a circuit of length at least 2v. The example where G

consists of two separate complete bipartite graphs, each having v vertices

in one part and s—v vertices in the other part, shows the result is best

possible.

Proof of Theorem 4. We know by Theorem 2' that G has at least

one matching. We will in fact show that any matching (x^yj, (x2,y2), • • •,

(xs, ys) of G is "half" of a Hamiltonian circuit. Assume this is not the case.

Adjoin as many edges as possible to G without forming a Hamiltonian

circuit containing the matching. This cannot make G complete, so some

vertex ys is not adjacent to xly say. If we adjoined (xx, ys) we would get a

Hamiltonian circuit containing the matching, so we may assume we have

the path x1,y1,x2,y2, • • ■ ,xs,ys. For l<i'<s we cannot have both of

the edges {x^y^ and 0c¿,}>s) in G for otherwise we have the circuit

xi> ^i» x2> y*    ' > xú y$> xs> j's-ij xs-i> ' ' ' » .Vt+i» xi+i> y%' xi-

Therefore the sum of the local degrees of x^ and ys is at most s, and so

v ̂ s. The same is true for any vertex y( not adjacent to xx. If i?' = | Tjcx|,

there are s—v' such yt and each has local degree ^s—v'. Hence |£|^

(s—v')2+sv' and this implies \E\^(s—v)s+v2 because v^v'. The proof is
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now complete. The example where G consists of all edges (xit y,) except

those with l^i^v^s and v<j^s shows the theorem is best possible.
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