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1 • INTRODUCTION 

In this paper we are interested in the properties of the 

estimators obtained by maximizing a likelihood function associated with 

a family of probability distributions, which does not necesseraly contains 
\ 

the true distribution this kind of method will be called pseudo maximum 

likelihood method. 

More precisely, we determine the families of pseudo likelihood 

function providing consistent and asymptotically normal estimators of 

parameters involved in the true distribution. 

After some preliminaries in section 2, we define in section 3 

the exponential families of type I and we show in section 4 that this 

kind of family gives consistent and asymptotically normal estimators of 

the parameters appearing in the first order moment of the true distribution 

moreover it is shown that, conversely, any family with this property is 

necessarily exponential of type I. 

In section 5, we propose a generalization of the previous 

method adapted to the case in which it is possible to estimate consistently 

the second order moments of the true distribution. Finally, in section 6, 

we define the exponential families of type II and we show that these families 

are the only ones providing consistent estimators of the parameters appearing 

in the first and the second moments. Sorne technical proofs are gathered in 

four appendices and the application of the method of scori ng is di scussed 

in another one. 
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2. PREMILINARIES 

The approach used in this paper rest upon previous results by 

JENNRICH (1969), MALINV~UD (1970), GALLANT-HOLLY (1980) and BURGUETE-GALLANT 
(1980) ; these results establish the asymptotic properties of estimators 

obtained by maximizing a function. 

Let us consider G-variate vectors Yt , t=1, ... ,T generated 

by the mode l : 

k m G G where e
0 

E 0 c: IR , xt E IR , Yt E IR , et E IR 

We shall assume that the conditional distribution of e1, •.. ,eT given 

x1, .•• ,xT is equal to the product of the conditional distributions 

L(etlxt) , where L(etlxt=x) = L(eTlxT=x) for t ~ T 

The true conditional distribution of Ytlxt , which is unknown, will be 

denoted by À
0

(xt,e
0

) ; it will be assumed that the expectation of 

À
0

(xt,e
0

) is f(xt,e
0

) and that the covariance matrix r
0

(xt) exists 

for any xt b will denote the mathematical expectation with respect 
to this distribution. We want to extimate e

0 
by considering the solutions 

of the prob lem : 

Max 
6E0 

Under classical assumptions (denoted by a) such as : f and 'f 
are continuous with respect to all the variables and twice continuously 
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differentiable with respect to 8 e is a compact set, 0
0 

is in the 

interior of e , almost every realization of (et,xt) generates Cesaro 

summable sequences .•. (see GALLANT-HOLLY and BURGUETE-GALLANT) it can be 

shown : 

T T 1 T a) 'fr(Y ,x ,0) = T t1
1 

'f(yt,xt,0) converges almost surely, uniformly 

on e , to "f> (0) ·= E E 'f(y,x,0) where E is the expectation with 00 

X O X 
respect to a probability measure µ not depending on 'f , 8 and f • 

b) 'f (0) is twice differentiable with respect to 8 and the partial 
00 

derivatives of '-P
00 

may be obtained by inverting the expectation and 

derivation operators. 

c) If 'f
00 

has a unique maximum in e
0 

, then the estimators 0T obtained 

by maximizing 'PT(yî,xî,8) exist almost surely and converge a.s. 

to 0
0 

; moreover lf(~T-e
0

) converges in distribution to N(O,J- 1IJ- 1) 

where 

J E E 
ël 2 'f ( y , X , 0 O ) 

= 
X 0 ae ae • 

and I = E E [:f (y,x,a0 ) ¾t(y,x,a0 )"] 
X 0 

These results can.be extended to the case where '-P also 

depends on a nuisance parameter n If the "nuisance parameter 11 n is 

replaced by nî converging a.s. to some value n1 , then the estimators 
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eT obtained by maximising 

properties as before if n 

(See BURGUETE-GALLANT) 

have exactly the same 

i s c..f , J and I 
00 

3. EXPONENTIAL FAMILIES OF TYPE I 

In this section we shall use classical results on FISHER infor

mation, kullback information, identification and exponential family; these 

results may be found in MONFORT (1981). 

Définition 1 A fami ly of probabil i ty measures on IR.6 , i ndexed by a 
pa rame ter m E M c IRG i s ca 11 ed exponent i al of type I , if 
a) every element of the family has a density function with 

respect to a given measure v(du) ; this density func
tion may be written as : 
t(u,m) = exp {A(m) + B(u) + C(m) u } , u E IR.6 , 

where A(m) and B(u) are scalar and C(m) is a row 
vector of size G . 

b) m is the mean of the distribution, whose density is 
equal to t(u,m), and this parameter is identifiable. 

Note that a) implies that all the moments exist. 
We also assume that conditions CX.,, are satisfied for f such that 
f(x,e) E M V x , Ve and for '-P defined by : "P(y,x,e) = Log t1.y,f(x,e)J 
This implies in particular, that the functions A and C are twice 

0 

continuously differentiable on M , the interior of M . 

Property.1: If (i(u,m),mE M) is an exponential family of type I, we 
have . 

aA(m) 
am + 

aC(m) 
am m = 0 

e 
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Differentiating the equality : 

f 1(u,m) v(du) = , we obtain 

f [ aA(m) + aC(m) u] i(u,m) v(du) = 0 
am am 

or aA(m) \ 
am 

+ aC(m) 
am_ 

a2 C 

m = 0 

Property 2 am am' 
__ g_ m + aC(m) = 0 am am' g am 

g=1 
where Cg and 

C and m . 

mg are respectively the 

Q.E.D. 

gth component of 

Proof This property is obtained by differentiating the equality of 

property 1. Q.E.D. 

Property 3 
ac -1 

= I am , where I is the covariance matrix associated 

with 1(u,m). 

Proof From part b) of definition 1, we have 

. f u 1(u,m) v(du) = m 

Differentiating this equality, we obtain 

. f u [a:m· + u' a;~) 1(u,m)v(du) = IG 

where IG is the identity matrix. 

Using property 1, we deduce that 

f u(u-m)' ~C~ 1(u,m)v(du) = IG 

<i >~~= 1· 

<i > 

,., am G 

ac 
am 

-1 
= I Q.E.D. 

Remark that I is invertible, since in exponential families the identi

fiability of m is equivalent to the non singularity of the information 

matrix. 
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Property 4 V m , m e: M , we have : 
0 

Proof 

A(m) + C(m) m
0 

:,; A(m
0

) + C(m
0

) m
0 

The equality holds, if and only if m = m
0 

Kullback 1 s inequality implies : 

1 'f . f Log .e,(u,m) .e,(u,m
0

),v(du) :,; Log .e.(u,m
0

) 

Or: A(m) + C(m) m
0 

:,; A(m
0

) + C(m
0

) m
0 

The equality is 'possible if and only if : .e.(u,m) = .e.(u,m
0

) v a.s., 

or, since m is identifiable, if and only if m = m
0 

• Q.E.D. 

Many classical families of probability measures are exponential 

of type I. Sorne examples of such families are given in table 1. 
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TABLE 1 EXAMPLE OF EXPONENTIAL FAMILY OF TYPE I 

Family M density function C(m) 

Binomial JO ,n[ r{n+1) [mJ u [ mJ1-u m 
(n given) r(u+1)r(n-u+TT n 1- - Log n-m n 

+* -m u e m Poisson 1R u!. Log m 

Negative +* r ( a.+u) [i)u [1+ i)-{a.+u) m binomial IR r {a. )r (u+1) Log a.+m {a. given) 

Gamma a.-1 - ·- a. 
m+* u e m a. 

{a. given) 
r{a.)(iJa 

- -m 

Normal 
1R 1 [ 1 (y-m) 2 

] m 
(0 given) exp - '2' (J~ ~ 0/ZII 

Mult i nomi al Im =n n! [f]"g m ·· m 
g g II 

1 ····. --9. 
(n given) rr(ug) ! Log n' ... ,Log n 

mg> 0 g g 

Normal 
IRG 

exp - } (u-m)'n- 1(u-m) 
m'n-1 multivariate 

(n given) (2rr)G/2 lciefü 

The multivariate generalizatio~of Poisson, Negative, Binomial 

distributions (JOHNSON-KOTZ, Chap. 11) are also exponential ~amilies of 

type I. 
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4. PSEUDO-MAXIMUM LIKELIHOOD ESTIMATOR OF TYPE I 

Let us now turn to the problem of estimating e
0 

in model (1) 

Yt = f(xt,e
0

) + et , defined in section 2, assuming furthermore the 

first order identification of e 

We are interested in psJudo maximum likelihood estimator of e
0

, obtained 
T 

by maximizing I Log t[Yt,f(xt,e)J , where i(u,m) is a family of 
t=1 

p.d.f. indexed by the mean m E M , satisfying assumptions a_, and 

where f(x,e) E M , Y x Y e 

THEOREM 1 Under the previous assumptions and if (i(u,m), m E M) is 

an exponential family of type I, the pseudo-maximum likelihood 

estimator (P.M.L.E.) of e
0 

is strongly consistent. 

Proof Using the results mentioned in preliminaries, the strong consistency 

will be established, if it is shown, that limit function : 

lf
00 

(e) = E E Log i[y,f(x,e)J has a unique maximum at e
0

• 

X 0 
It is the case, since ~ (e) may be written : 

ro 

'e,(e) = E {E B(y) + A[f(x,e)J + C[f(x,e)J f(x,e
0

)} 

X 0 
and the result directly follows from property 4 and from the first 

order identifiability of e • Q.E.D. 

T 
Note that it is equivalent to maximize I Log i(yt,f(xt,e)) 

t=1 T 
or to maximize. I {A[f(xt,e)J + C[f(xt,e)Jyt} 

t=1 
. Therefore it is not 

necessary to impose on Yt ·the constraints, which may be implied by the 

definition of B . For instance, the pseudo-maximum likelihood method 

with Poisson family may be applied even if Yt is any real number, 

however, in that case, f(xt,e) must be positive, for any t • 
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The objective function which is maximized in the P.M.L. approach 

depends on the retained family, and it may be interesting to exhibit the 

objective functions associated with the classical families. 

TABLE 2 OBJECTIVE FUNCTIONS 

Fami ly 

Binomial 
(n given, n E IN) 

Poisson 

Negative Binomial 
(a given) 

Gamma 
(a given) 

Normal 
(cr given) 

Multinomial 
(n given, n E IN) 

Normal multivariate 
(n given) 

Objective function 

I {Log [1 - f(x~,e)] 
t=1 

I [ -a Log (1 + f(x!,e)) + Yt Log ( f(xt,e) )J 
t=1 o:-+f(xt,e, 

I [ -a Log f(xt,e) 
t=1 

T. G 
l l Ygt Log fg(xt,e) where If (xt,è) = n 

t=1 g=1 g g 

T 
l 

t=1 

For the univariate and multivariate normal families, the P.M.L.E. 

are respectively the nonlinear least squares estimator and a minimum 

distance estimator (MALINVAUD, E. (1979)). 
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THEOREM 2 A necessary condition for the P.M.L.E. associated with a 

family i(u,m) m E M (the closure of an open connex set) to 

be strongly consistent for any 0 , f , Ào satisfying ~ 

is that i(u,m) is an exponential family of type I. 

Proof See Appendix 1 

THEOREM 3 If (t(u,m), m E M) is an exponential family of type I 

· v1 ( ~ - e
0

) d N(O,J-1 I J-1) 

where : 

J = E [af ~ af' ] = E [af r1 ~J 
X 

ae am ae 
X 

ae ae 

I E laf ~ · ~~ af') = ae am lo am ae 
X 

= E [:: r1 lo r1 
a:e·) 

X 

lo being the covariance matrix of Ào and 

evaluated at e = e
0 

• 

af 
ae ' l being 

Proof The asymptotic normality is a consequence of the results mentioned 

in the preliminaries. The expressions of J and I ar~ derived 

in Appendix 3. 

5. gUASI-GENERALIZED PSEUDO-MAXIMUM LIKELIHOOD (Q.G.P.M.L.) 

Property 5 The set of asymptotic covariance matrices of eT has a lower 

bound: 

Y t(u;m) 

where >> 

: J-1IJ-1>> J = [E raf t-1 af']]-
1 

x ae Lo ae 

is the usual order relation on symnetric matrices. 
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Proof 

>> 0 

Q.E.D. 

As it is shown hereafter the lower bound can be achieved by 

a two step estimation procedure. 

As shown in table 2, some classical exponential families of 

type I (negative binomial, gamma, normal) also depend on an additional 

parameter n This parameter is a function of m and l 
n = f(m,I) , where f defines, for any given m , a one to one 

relationship between n and I Therefore it is interesting to consider 

the more general class of distributions : 

t*(u,m,n) = exp{A(m,n) + B(n,u) + C(m,n)u} 

THEOREM 4 Let ~T(x) be a strongly consistent estimator of f[f(x,e
0
),I

0
(x)J 

the QGPML estimator of e , obtained by maximizing : 
T 

Max I Log t*[yt,f(xt,e),~T(x)J , is under Q,strongly 
e t=1 

consistent and is asymptotically normal 

If (êT - e
0

) -L N(o;J) 

Proof Theorem 4 is a consequence of Burguete-Gallant 1 s results, when a 

nuisance parameter is replaced by a strongly consistent estimator nT 

The asymptotic covariance matrix of this estimator is the same as 
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the asymptotic covariance matrix of the PML estimator associated 

with t(u,m) = t*(u,m,î[f(x,e
0

)~I
0

(x)J) . In this case the 

matrix I , evaluated at m
0 

= f(x,e
0
), is equal to: 

~ {f(x,e
0
),,lf(x,e ),I J} = Io and the asymptotic matrix is : 

am o o 1 -1 
J-1IJ-1 = [E(lf r1 Ë)J- E[af r1I r1 Ë) [E[af r1 Ë)] = J . 

x ~e o ae x ae o o o ae x ae o ae 

.Q.E.D. 

As an example let us consider the following model 

with 

In a first step, e
0 

may be consistently estimated by the ·nonlinear least 

squares es~imator ~T and a consistent estimate of n
0 

is 

1 T 
~T = T I 

t=1 

'v 2 
[Yt - f(xt, e1 )J 

g2(xt,~T) 

In a second step, it is possible to adopt the QGPML approach using for 

instance either the normal family or the gamma family. In the first case, 

the QGPML of e is obtained by minimizing 

T 
I , which is simply the quasi generalized nonlinear 

t=1 

least squares method. In the second case, the QGPML of e is obtained by 

maximizing 

Î -~1(xt) [109 f(xt,e) + Yt ] 
t=1 f(xt,e) 

T 

= t~1 

These two estimators are asymptotically equivalent and reached the lower 

bound. 
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In the particular case g(xt,e) = 1 the QGPML estimator based on the 

normal family is equal to the PML estimator. Similarly if g(xt,e) = f(xt,e) 

the QGPML estimator and the PML estimator based on the gamma family are 

identical. 

An other illustration of theorem 4 can be found in dichotomous 

qualitative response model, with repeated observations. The observed 

dependent variables yhi (h=1, .•. ,H ; i=1, ••. ,nh) are independent and are 

such that: P(yhi=1) = F(xh e) P(yhi=O) = 1 F(xh e) . The 

properties of the estimators are discussed, when nh = Àhn , n+ 00 

The ML estimator of e , which is a PML estimator based on the 

BERNOULLI distribution has an asymptotic covariance matrix equal to J . 

In effect, since it is a PML estimator, its covariance matrix is greater 

than J , and it is equal to J , since this estimator is asymptotically 

efficient. The minimum chi-square estimator obtained by minimizing : 

H nh 
l l 

h=1 i =1 

[Yhi - F(xh e)J2 

Yh ( 1-Yn) 
, where yh = is a QGPLM estimator 

based on the normal distribution. Therefore this estimator is asymptotically 

efficient. 
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A last property of the QGPML estimators is the asymptotic effi

ciency, when the 11 true density function 11 belongs to the family: 

À*(yt,xt,0,a) = exp {A*[m(xttn(xt)J + B*[n(xt)'ytJ + C*[m(xt),n(xt)Jyt} 

with m(xt) = f(xt,e) , n(xt) = g(xt,a) and e,a functionnally 

* independent. This true density function Ào is obtained for e = e
0 

and a= a
0 

• 

THEOREM 5 : The QGPML estimator of 0
0 

is asymptotically equivalent to 

the maximum likelihood estimator of 0
0 

obtained by maximizing 
T * 

(with respect to 6 and a ) : I log À (yt,xt,e,a) 
t=1 

[:TT**] Proof Since the ML estimator ~ of the parameters are consistent and 

asymptotically normal, we only have to compare J with the asymptotic 

* covariance matrix of 0T • 

This matrix is given by: 

= [ E E 
X 0 

* * Let us now show that 6T and aT are asymptotically independent ; 

we have 

E E 
X 0 

= 

= 

E 
X 

E 
X 

[ . * af ( aA , ac ) ae Eolaman' + y aman' J 

* * 
[ af ( aA + ac J a0 aman I mo aman I 

1L l aa 

~] aa 
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where all the expressions are evaluated at the true values e , ~ . 
* * 0 0 

It · d d d f t 1 th t aA ac = o and the 1s e uce rom proper y a aman' + m0 aman' 

asymptotic independence follows. 

* Therefore Vas clf(eT - e
0

)J = [
E E [- a2 

log /(y,x,e0 ,a0 ) J]-1 

ae ae• 
X 0 

-· [E E ( a 
X 0 

* * 
1 l 1 Log À a Log À ) -

ae ae 

* *' ·i-1 ~c • ac af' E [- (y-m)(y-m) -) -J 
0 

am am ae = [; t:: 
= [! r:: I~1 ~ (y-m)(y-m'l I~1 ;t]t 1 

= [E [af 1-1 afJ]-
1 

= 1 x Lae o ~ 

6. EXPONENTIAL FAMILIES OF TYPE II 

Q.E.D. 

The approach of sections 3 and 4 may be generalized to take 

into account the second order moments. 

The model, which is now considered, is the following: 

The parameter e is assumed to be second order identifiable : 

µ a.e. > 
g(x,e 1) = g(x,e

0
) 

The other assumptions of section 2 are satisfied. 
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A family of probability measures on IRG indexed by 

m E M c IRG and E E E , where E i s a subset of the 

positive definite matrices, is called exponential of type II, 

if : 

a) every element·of the family has a density function with 

respect ta a given measure v(du) , which may be 

written as : 

t(u,m,E) = exp {A(m,E) + B(u) + C(m,E)u+u• D(m,E)u} 

A(m,E) , B(u) are scalar, C(m,E) is a row vector 

of size G and D(m,E) is a square matrix (G,G) 

b) m is the mean and E is the covariance matrix of the 

distribution t(u,m,r). These parameters are identifiable. 

We also assume that conditions O.., are satisfied for f, g 

such that f(x,e) E M V x , Ve 

and for \.I' def i ned by 

g(x,e) E E V x , Ve 

'l(y,x,e) = Log t[y,f(x,e),g(x,e)J 

Examples of such families are for instance the normal distribution 

N(m,E) or the discrete distribution on {-1,0,1} , with probabilities 

p1,p2,p3 ; in the latter case t(u,m,cr2) = p
1 

u(~+u) p~-u
2 

p
3 

u(-~+u) 

wi th p 1 + P2 + P3 = 1 ' p 1 - P3 = m ' p 1 + P3 = cr2 + m2 

Property 6 V m,m
0 

E M V E,E 0 E E 

A(m,E) + C(m,E)m + Tr D(m,E)(E +m m1
) 

0 0 0 0 

~· A(m
0

,E
0

) + C(m
0

,E
0

)m
0 

+ Tr D(m
0

,E
0

)(E
0

+m
0

m~) 

The equality is possible, if and only if m = m
0 

E = E 
0 
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Proof This result is, as for property 4, a direct consequence of 

KULLBACK's inequality. 

From this property and the second order identifiability 

condition, we deduce, as. for theorem 1 and 2, the strong consistency 

Q.E.D. 

and the asymptotic normality of the PML estimator of e based on t(u,m,E) 

THEOREM 6 If (t(u,m,E) m E M , E E E ) is an exponential family 

of type II, the estimator of e obtained by maximizing: 
T 

Max I Logt [yt,f(xt,e),g(xt,e)J is strongly consistent 
0 t=1 

and asymptotically normal. 

The proof is similar to that of theorem 1. 

However the expression of the asymptotic covariance matrix is 

rather complicated (see appendix 4). 

It is also possible to obtain the reciprocal of the previous 

theorem, in the case G = 1 

THEOREME 7 A necessary condition for the PML estimator associated with 

a family t(u,m,,cr2 ) m E M , cr2 E E ( M and E are 

closures of open connex sets) to be strongly consistent for 

any e , f , g , Ào satisfying a,....is that t(u,m,cr2 ) is 

an exponential family of type II. 
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Proof See Appendix 2 

7. CONCLUSION 

The results obtained in this paper are clearly related to the 

general problem of robustness and could be used in many contexts. This 

is the reason of the high level of generality kept throughout the paper. 

A companion paper (GOURIEROUX, MONFORT, TROGNON (1981)) describes the 

application of these estimation methods to econometric models for 

discrete data. 

--==ooOoo==--
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A P P E N D I X 1 

Proof of theorem 2 : 

We ·are going to show_ that the condition is already necessary, 

if we consider the special case, in which the Yt are i.i.d , with mean 

G 
8E0 =Mc!R 

0 

First step: 

The PMLE exists since 0 is compact and lfî is continuous on 0 

If this estimator 8T is strongly consistent of 0
0 

, we deduce from 

the strong uniform convergence of 'fT(yî,xT,8) to \f
00

(0) , that 0
0 

0 

provides the maximum of '-f 
00 

Since 0
0 

E 0 and since ~
00 

is diffe-

rentiable, we have 

d't a Log R,(y,0
0

) a Log R,(y,0
0

) 

a:<00) = E E = E = 0 
X 0 a0 0 a0 

Second step : 

Let us first consider the case G = 1 
a Log t(y,0

0
) 

For any distribution Ào such that E y= 0
0 

we have E ------ = 0 
o o a0 

In particular, this is true if the support of Ào consists in two points 

y1 and y2 , with y1 < 0
0 

< y2 ; therefore : 

P1 + P2 = 1 
a Log t(y1,0

0
) a Log t(y2,0

0
) 

} P1 -----+ P2 ------ = 0 
a0 a0 

p 1 y 1 + P2Y 2 = 8 o 

This implies that for any y1,y2 such that Y1 < 8
0 

< Y2 
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a Log i(y1,e
0

) a Log i(y2,e
0

) 

(y2 - eo) ----- + (eo - Y1) ----- = o 
ae . ae 

= 

Considering y2 as a variable and y1 as fixed and then allowing y1 
to vary, it is seen that there exists a scalar À(0

0
) such that 

a Log t(y,e
0

) 
= À(e

0
) ·(y - e

0
) • The result follows by integrating 

ae o o 

bath sides with respect to e in M = e and extending to e by 

cont i nui ty arguments ( see a, ) . 

In the general G-dimensional case; the same kind of proof can be 

developed by considering distributions whose supports consists in G+1 

independent points admitting e
0 

as a barycenter. 



- 21 -

APPENDIX . II 

Proof of theorem 7 (case G=1 ) 
1 

We shall see that the condition of theorem 7 is already necessary if we 

restrict ourselves to the case in which the Yt are ;. i.d. 

with mean f(x,e
0

) = mo and variance g(xt,eo) = CY2 
0 

The same arguments as those given in the first step of appendix I imply 

that 

E a Log !l(y,m,cr2) 0 = 
0 

am 

and E a Log !l(y,m,cr2) 0 acr2 = 
0 

In particular, this is true if the support of Ào consists in three 

points y1 < y2 = m
0 

< y3 ; therefore 

P1 + P2 + P3 = 1 

P1Y1 + P2mo + P3Y3 = mo 

P1Y1 + P2m~ + P3Y3 = m2 + CY2 
0 0 

P1 
aLog!l(y1 ,m0

,~) 

+ P2 
aLog(m

0 
,m

0
, a~) 

+ P3 
aLog (y 3 ,m0

, a~) 

am am am 
(2) 

P1 
aLog!l(y1 ,m0

,cr~) 
+ P2 

aLog(m
0

,m
0
,~) aLog (y 3 ,m0

, a~) 
+ P3 

élcr2 acr2 élcr2 

y. - m * Denoting J 0 by y. system ( 1) becomes a:, J ' 

P1 + P2 + P3 = 1 
* * * * 

P1Y1 + P3Y3 = 0 with Y1 < 0 < Y3 
*2 + p y*2 1 P1Y1 = 3 3 

= 0 

= 0 
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Solving this system, we obtain 

- 1 
= 

* * Y1Y3 + 1 

P2 = * * 
Y1 Y3 

- 1 

= * * * Y3(Y1 - Y3) 

* * This solution is a probability distribution if, and only if, y1y3 ~ - 1 

For such a probability d.istribution we have 

* P3Y3 = 0 
*2 

- 1) - P2 + p3(y3 - 1) = 0 

= 0 

* aLogt ( * ) _ aLogt ( ) with am yi,m0 ,cr~ - am yi,m0 ,cr~ 

Since this homogeneous system has a non-zero solution p1,p2 ,p3 , this 

implies 

0 

- 1 

* * aLogt (y1,m0 ,cr~) * aLogt (O,m
0

,cr~) * * aLogt (y3 ,m
0

,cr~) 

am am am 

* * Q\ This also implies that, for any (y1,y3) belonging to o<J, 
* * 

the functions ~L~~t (y~,m
0

,cr~) and aL~~t (y;,m
0

,a~) can be written 

as : 
* * aLogt (y3 ,m

0
,cr~) 

am 

* * * * *2 
= a(y1) + B(y1)Y3 - a(y1)Y3 

* * aLogt (y1,m
0

,cr~) 

am 
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* * * Considering successively y1 as a variable and y3 fixed and then y3 
* ~ ~ as a variable and y1 fixed, it is seen that the functions a,8, a,8 

are constant; therefore we have 

* aLogr *' * *2 * ( 2) - a + BY - aY V Y3 > 0 am .Y3,mo'0o 3 3 

* * alogr (y1,m
0

,o~) 
~ ~ * ~ *2 * 

= a + SY1 - o.Y1 V Y1 < 0 am 

* * * Replacing in the equation 6(y1,y3) 
* 

= 0 aLogr 
am and 

aL~~i (y~,mo,o~) by the previous expressions we obtain : 

* alogr (O,m
0

,o~) 
~ 

= a -· a. 
am 

and 8 = i 
It follows that 

* * alogr (y ,m,o2) * *2 
= a(m,02) + B(m,02)y - a(m,02)y 

am 

alogr(y,m,02) = a(m,02) + c(m,02)y + d(m,02)y2 
am 

Integrating with respect to m , we get: 

* V m,02 ,y 

V m,a2,y 

(3) Logi(y,m,o2) = A(m,o2) + B(o2 ,y) + C(m,02 )y + D(m,02 )y2 

The same argument applied to o2 instead of m gives 

(4) Log!l(y ,"m,o2) * * * * 2 
= A (m,02) + B (m,y) + C (m,o2)y + D (m,02)y 

The previous equation shows that the terms depending simultaneously on y 

and o2 are quadratic in y and from (3) we obtain 

Logr(y,m,02) = A(m,02) + B(y) + C(m,02)y + D(m,o2)y2 
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A P P E N D I X 3 

COMPUTATION OF THE ASYMPTOTIC COVARIANCE MATRIX OF THE PSEUDO-MAXIMUM 

LIKELIHOOD ESTIMATOR IN THE CASE OF EXPONENTIAL FAMILY OF TYPE I • 

As it is proved by BURGUETE-GALLANT, the asymptotic variance-covariance 

matrix of the PMLE is given by: 

V= J-1 IJ-1 

I = E E [ a Log,Q, { ( ) ) a Log,Q, ( ( ) ) '] ae y,f x,eo ae y,f x,eo 
X 0 

If i is an element of an exponential family of type I, we have 

(A2-1) ~Liegi (y,x,e) = aae [A(f(x,e)) + B(y) + C(f(x,e))y J 

and 

= af(x,e) [ aA (f(x e)) + ~me (f(x,e))y) 
ae am ' a 

= Ê..f [ aA +~y J ae am am 

= Ê.i ~ (y-m) ae am (property 1) 



- 2 6 -

(A2.2) ~:L~~7 {y,f(x,e)) a [" ~ [ .aA ac J] • = aë ~ ae am
9 

+ am
9 

Y 

a2 f g ac• 
= I ae ae' am (y-m) + 

g g 

From (A2-1) we deduce : 

I = E [af~ E[{y-m)(y-m)'] x ae am 
0 

From (A2.2) it follows 

= + E [~ ~ af'l ae am ae J 
X 

af where aë ac . af ) , am stand for. aë(x,e0 
, ~~{f(x,e

0
)) respectively. 



- 27 -

A P P E N D I X 4 

COMPUTATION OF THE ASYMPTOTIC COVARIANCE MATRIX OF THE PSEUDO-MAXIMUM 

LIKELIHOOD ESTIMATOR IN THE CASE OF EXPONENTIAL FAMILIES OF TYPE II . (G=1) 

Consider the following exponential family of type II : 

.du,m,02) = exp[A(m) + B(u) + C(m,o2)u + D(m,02)u2J (u E lR) 

t is a density function, then : f J1,(u,m,02) v(du) = 1 . Deriving 

this last equality with respect to a' = (m,02) leads to 

(A4.1) 

Since the mean and the variance of JI, are m and o2 , it follows 

(A4.2) 

(A4.3) 

f u J1,(u,m,02) v(du) = m 

f u2 J1,(u,m,02) v(du) = m2 + o2 

The derivation of (A4.2) which respect to a' = (m,o2) implies 

(A4.4) 

The derivation of (A4.3) with respect to a yields to 

(A4.5) aA ·(m2+02) + ~ E u3 + ~ E u4 = [21m] 
aa . aa aa 

the computation of the asymptotic covariance matrix of the PMLE is 

based on 



J = E E 
X 0 
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a2Logi ( ( ) ( )) - ae ae• g,f x,eo ,g x,eo and 

I = E E a\~gt (y,f(x,e
0

),g(x,e
0

)) aLogi (y,f(x,e
0

),g(x,e
0
))' 

x o ae 

the first and second derivatives of Logi are in that case : 

aLogi = ~ raA + iÇ_ y+~ y2j with h = (f,g) 
ae. ae aa aa aa ; 

a2Log ah ( a2A a2c a20 J ah' 
ae ae• = as· aaaa'+aaaa' y+ aaaa' Y

2 
ae 

Let us consider first the conputation of J 

J = _ E E a2Logi = [af ~ 2A a2c f( ) a2
D (f( )2 ( )iJ 

I - XE -;:;-e aNaa + aaaa' x,eo + aaaa' x,eo + g x,eo X O ae ae a ....., 

For expository purpose we will denote f(x,e
0

) by m
0 

and 

by cr2 . With these notations (A4.1) impl ies 
0 

ac ao 
~ ( 1 : 0) + ~ ( 2m

0
: 1) 

Finally J is defined by 

ac ao where aa , ~ are computed at m
0 

= f(x,e
0

) and cr~= g(x,e
0

) and 

ah at e 
aë 0 

Let us now consider the computation of I which is defined by: 

I = E E {a~~gi (y,f(x,e
0

),g(x,e
0

)) a~~gt (y,f(x,e
0
),g(x,e

0
))'} 

X 0 

Let m~ = E y3 and mâ = E y 4 be the third and fourth product-moments 
0 0 

of Ào the true distribution of the observations and m3 and m4 the 

similar moments for the family considered, evaluated at m = m
0 cr2 = ~ • 
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+ if. mO + ~ mo} 
1

) ~ } aa 3 aa 4 ae 

From (A4.4) and (A4.5) it follows 



- 3'î -

A P P E N D ( X 5 

APPLICATION OF THE METHOO OF SCORING TO EXPONENTIAL FAMILIES OF TYPE I. 

Let us examine the PML estimation problem with the following 

pseudo-likelihood function of type I 
T T 
I Logi(yt,f(xtb)) = I {A(f(xtb)) + B(yt) + C(f(xtb)) Yt} 

t=1 t=1 
where A(.), B(.) and C(.) are scalar functions. 

The pseudo maximum likelihood estimate may be obtained by the method of 

scoring ; the (h+1) th iteration is 

aLogt] 
ab J b-~ - h 

= Î> + [ I x x' [af)2 aCl-1 [I x' if~ (y -f(x f> )] 
h t t t am amj t t am am t th 

where :: and :~ are the derivatives of f(m) and c(m) 
,;\, 

at m = xtl5h 

evaluated 

No further computation program is needed to apply this 

method of scoring since it can easily be achieved by iterative GLS. In 

effect let us consider the nonlinear heterœcedastjc pseudo-mode, defined 

by : 

[~ ( f ( X b ))J - 1 
am t ~ 

(Vut is the variance assoctated with the pseudo distribution function) 

f(xtb) mey be expanded in a neighbourhood of Î,h 

Yt # f(xtÎ,h) + :~ (xtf>h) . xt(b-Îlh) + ut 

t;:: 1 , ••• , T 
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This expression can also be written as : 

Yt - f(xtth) + !~ (xt~h) xtth # :~ (xtth) xtb + ut 

t = 1, .•• ,T 

If we denote by bh+1 the GLS estimate of b obtained 

from this linear model with covariance matrix ~iag{(:~ (xt~h)J-1} , 
,;\, 

it is straightforward to show that: oh+1 = bh+1 
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