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SUMMARY

We obtain a pseudo-partial likelihood for proportional hazards models with biased-sampling
data by embedding the biased-sampling data into left-truncated data. The log pseudo-partial
likelihood of the biased-sampling data is the expectation of the log partial likelihood of the
left-truncated data conditioned on the observed data. Asymptotic properties of the estimator
that maximize the pseudo-partial likelihood are derived. Applications to length-biased data,
biased samples with right censoring and proportional hazards models with missing covariates are
discussed.
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1. INTRODUCTION

The partial likelihood function of Cox (1975) has been mainly used for proportional hazards
models with censored data (Cox, 1972). For more complicated incomplete data, no unified
method exists to find a partial likelihood for inference on the parameters of the proportional
hazards models. Dempster et al. (1977) developed the EM algorithm to obtain maximum likelihood
estimators for incomplete data. Originally used for fully parametric models, the EM algorithm
was subsequently extended successfully to many nonparametric problems. In survival analysis,
there is substantial literature generalizing the EM algorithm to frailty models (Andersen et al.,
1993, § 9), missing covariates (Paik & Tsai, 1997; Qi et al., 2005) and interval-censored data
(Betensky et al., 1999).

In semiparametric models, one usually obtains, through a conditioning argument, an objective
function with finitely many parameters of interest to which the EM algorithm can be readily
applied. The present paper gives an analogous pseudo-partial likelihood for proportional hazards
models with biased-sampling data that can be used without intensive computation.

Under the proportional hazards models for biased-sampling data, the conditional probability
density function of an observed nonnegative random variable T, given covariates z(t) and x, can
be expressed as

h(t | x, z) = W (t, x) f {t | z(·)}/α(x, z), (1)

where W (t, x) is a completely known nonnegative weight function, z(t) = {z1(t), . . . , z p(t)}T is a
p-dimensional time-dependent covariate, x = (x1, . . . , xq )T is a q-dimensional time-independent
covariate, f (t | z) denotes a population conditional density function given z(s) for s � t and
α(x, z) is a normalization constant making h(· | x, z) a genuine probability density function.
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602 WEI YANN TSAI

Furthermore, we will assume a proportional hazards model with f (t | z)/S(t | z) = λ(t | z) =
λ0(t)eβTz(t), where S(t | z) = ∫ ∞

t f (s | z)ds is the conditional survival function.
Biased-sampling data arise naturally in complex surveys. For example, in large-scale

population-based surveys with multi-stage sampling, the complex design results in a set of
probability weights for each subject. The weight function W (Ti , xi ) represents the probability
that the i th observation (Ti , xi , zi ) was sampled from the population. Binder (1992) and Lin
(2000) have proposed and studied a method for estimating the parameters of proportional haz-
ards models from such survey data. For W (t, x) = t, the data are referred to as length-biased
data. Wang (1996) proposed statistical inference for length-biased data based on Cox’s model.
For W (t, x) = I (x � t), density (1) becomes a conditional probability density for left-truncated
data. This problem has been extensively studied in the literature. Wang et al. (1986) used a
classical approach to study the properties of the nonparametric maximum likelihood estimator.
Keiding & Gill (1990) used counting process techniques to study the properties of the same
estimator.

The following four real datasets illustrate different types of biased-sampling data.

Example 1. Shrub data. Muttlak & McDonald (1990) presented widths of 46 shrubs. Wang
(1996) assumed that the probability of observing a shrub is proportional to the shrub’s width, so
that the sampling is length-biased. Wang (1996) analyzed the data with a proportional hazards
model.

Example 2. Channing House data. Channing House is a retirement centre in Palo Alto,
California. Hyde (1980) reported ages at entry and at death of 462 retirees, 365 females and 97
males, who were in residence between January 1964 and July 1975. The individuals who left
Channing House or were still in the centre at the end of the study were censored. The data can
be viewed as left-truncated with right censoring since the individual’s death age must be greater
than the entry age. The entry age serves as the left-truncation time.

Example 3. Stanford heart transplant data. Crowley & Hu (1977) gave information on 103
potential heart transplant recipients who were enrolled in the Stanford heart transplant programme
from October 1967 to April 1974. The data include age, waiting time to transplantation, survival
or censoring time from acceptance to the programme, and three mismatch scores. Among the 103
potential heart transplant recipients, there were 69 patients who underwent the heart transplant
operation. Later, Miller & Halpern (1982) updated the data by reporting the survival or censoring
times and ages of 184 patients who were enrolled in the same programme and had received
heart transplants from October 1967 to February 1980. If we are only interested in analyzing the
transplant patients, then the data of Crowley & Hu are left-truncated and right-censored data,
with transplant waiting time as a random left-truncation variable. However, because Miller &
Halpern did not report the transplant waiting times, their data can be viewed as biased-sampling
data with right censoring. The weight function is the distribution of the transplant waiting time
random variable.

Example 4. Mouse leukaemia data. Kalbfleisch & Prentice (2002) reported the survival of
204 mice. The mice were followed up for two years for mortality due to thymic or nonthymic
leukaemia. The two covariates of interest were the GPD1 phenotype and the level of endogenous
murine leukaemia virus. There were 175 mice whose levels of endogenous murine leukaemia
virus were recorded. The GPD1 phenotype was determined only on a subgroup of the 100 mice
that survived 400 days; thus, the probability of missing covariates clearly depends on the follow-
up time. The complete-case analysis, which uses only the mice with complete information, is
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clearly biased since the selection probability depends on the survival time outcome variable. In
fact, the complete cases comprise biased-sampling data with the weight function equal to the
probability of selecting complete cases.

2. PARTIAL LIKELIHOOD

2·1. The general approach

Let χ be a sample space, and let x ∈ χ be a realization of the random vector X with density
fX (x ; φ) depending on a vector parameter φ = (β, η), in which β is of interest and η is a nuisance
parameter. In some applications, the dimension of η may increase with the sample size and the
application of maximum likelihood estimation may lead to spurious results. However, suppose
that x = (c1, x1, . . . , cn, xn) and that the full likelihood factorizes into

fX (x ; φ) =
n∏

i=1

fφ(ci | di )
n∏

i=1

fβ(xi | ei ), (2)

where di = (c1, x1, . . . , ci−1, xi−1) and ei = (c1, x1, . . . , ci−1, xi−1, ci ). The second product on
the right-hand side of (2) is the partial likelihood of β based on (x1, . . . , xn) in the sequence
(ci , xi )(i = 1, . . . , n). Cox (1975) argued that inference based only on the partial likelihood would
be acceptable if the information about β, contained in the first factor, was small.

A complication that sometimes occurs is that one observes a function Y (x) = y ∈ Y , instead
of observing x ∈ χ . Therefore, inferences about β must be based on y. The following algorithm
is a simple generalization of the EM algorithm for partial likelihood. The EM algorithm applied to
gamma frailty models discussed in Andersen et al. (1993, § 9) is a special case.

For incomplete data, the EM algorithm finds maximum likelihood estimates for β and η through
the iterative maximization of

n∑
i=1

E
{

log fφ(ci | di ) | β(c), η(c), y
} +

n∑
i=1

E
{

log fβ(xi | ei ) | β(c), η(c), y
}
,

where β(c) and η(c) denote the current estimates. Therefore,

lp(β, η) =
n∑

i=1

E{log fβ(xi | ei ) | β, η, y}, Up(β, η) =
n∑

i=1

E{Ui (β) | β, η, y}

are, respectively, a log pseudo-partial likelihood function and a pseudo-partial score function of
β for the observed data y, where Ui (β) = ∂ log fβ(xi | ei )/∂β is the score function of the partial
likelihood for complete data. Unfortunately, Up still involves the nuisance parameter η in many
applications. For example, in frailty models Up is also a function of the frailty parameters and,
therefore, cannot be used directly. However, Up is a function of β alone in some applications. In
other situations, the maximization of lp(β, η, y) with respect to β and η has a simple solution.
In § 3, we show two pseudo-partial likelihood functions for Cox’s models with biased-sampling
data in these two situations.

2·2. Partial likelihood for left-truncated and right-censored data

Let the lifetime T 0
i have distribution function Fi , and let the truncation time and censoring

time (Vi , Ci ) have joint distribution function Gi and joint probability density function gi . It is
assumed that T 0

i and (Vi , Ci ) are mutually independent. Moreover, we assume that there is a
positive probability that T 0

i � Vi and Ci � Vi . We do not sample from the joint distribution,
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604 WEI YANN TSAI

but from the conditional distribution given the event {T 0 � V, C � V }. Let (Vi , T 0
i , Ci ) (i =

1, . . . , n) be a sample of n independent triples from this conditional distribution. Then, our left-
truncated and right-censored sample is (V1, T1, D1), . . . , (Vn, Tn, Dn), where Ti = min(T 0

i , Ci ),
Di = I (Ti = T 0

i ) and I (·) is an indicator function. Note that Ti � Vi (i = 1, . . . , n). We let
Ni (t) = I (Ti � t, Di = 1) and Y v

i (t) = I (Vi � t)Yi (t) be, respectively, the indicator of whether
or not the i th individual failed before time t and the indicator of whether or not the i th individual
is at risk just before time t , where Yi (t) = I (Ti � t). Furthermore, for given time-dependent
covariates zi (t) = {z1i (t), z2i (t), . . . , z pi (t)}T, we assume that T 0

i follows a proportional hazards
model, i.e.

λ(t | zi ) = λ0(t)eβTzi (t),

where λ(t | zi ) is the conditional hazard function of T 0
i given zi (t), β is a p × 1 vector of unknown

regression coefficients and λ0(t) is the underlying or baseline hazard function. For convenience
of notation, if it is unambiguous, the dependence of zi on t will be suppressed. As shown by
Andersen et al. (1993, §§ 3.3 and 3.4), (N1, . . . , Nn) is a multivariate counting process that has
an intensity process {λ(t | z1)Y v

1 (t), . . . , λ(t | zn)Y v
n (t)} with respect to the filtration F(t), which

is defined in Andersen et al. (1993, p. 153). Let 	0(t) = ∫ t
0 λ0(s)ds be the cumulative underlying

hazard function. The log partial likelihood, which is the conditional likelihood given V , can be
written as

lc1(β, d	0) =
∑

t

n∑
i=1


Ni (t)
[

log{d	0(t)} + βTzi (t)
] −

∫ ∞

0
nS(0)(β,μ)d	0(μ), (3)

see equations (3.3.3) and (7.2.2′) of Andersen et al. (1993), where

S(0)(β, t) = 1

n

n∑
i=1

eβTzi (t)Y v
i (t),

and 
H (t) = H (t+) − H (t−) for any function H (t). The partial derivative of (3) with respect to

	0(t) is {
N (t)/
	0(t)} − nS(0)(β, t), where N (t) = ∑n

i=1 Ni (t) is the number of observed
failures up to time t . Therefore, for a fixed value of β, we would estimate 	0(t) by the Nelson–
Aalen estimator

	̂0(t, β) =
∫ t

0

J v(μ)

nS(0)(β,μ)
d N (μ), (4)

where J v(μ) = I {∑n
i=1 Y v

i (μ) > 0}. Inserting (4) into (3), we obtain the log profile partial
likelihood lc2(β) + ∑

t 
N (t) log{
N (t)} − N (∞). Here,

lc2(β) =
∑

t

n∑
i=1


Ni (t)
[
βTzi (t) − log{nS(0)(β, t)}] (5)

is the generalized log partial likelihood, originally derived by Cox (1972, 1975) for the case
of censored survival data. Thus, the score function of the generalized Cox partial likelihood is∑n

i=1

∫ ∞
0 {zi (t) − S(1)(β, t)/S(0)(β, t)}d Ni (t), where S(1)(β, t) = ∂S(0)(β, t)/∂β.

We will treat equations lc1 and lc2 as our working log partial likelihood for the complete data.
Two log pseudo-partial likelihoods for biased-sampling data will be derived, respectively, based
on lc1 and lc2 in the next section. The notation Ni (t), N (t) and Yi (t) will be used throughout with
obvious adjustments for data with no censoring and/or no truncation. A parameter with subscript
zero will denote the true value.
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Pseudo-partial likelihood with biased sampling 605

3. DATA FROM BIASED SAMPLING

3·1. Embedding the data into the left-truncation model

First we assume that W (·, x) is a distribution function for every fixed x ; this assumption
will be relaxed later. Let V and T 0 be nonnegative random variables with conditional distri-
bution functions pr(V < t | x) = W (t, x) and pr{T 0 < t | z(·)} = 1 − S(t | z), respectively. We
assume that, conditional on x and z, V and T 0 are independent. We observe (V, x, T 0, z) only if
T 0 � V . Therefore, the conditional density of observing (V, T 0) given (x, z) is proportional to
I (t � v)w(v, x) f (t | z), where w(t, x) = ∂W (t, x)/∂t . Hence, the marginal density of observed
T 0, given z and x, is proportional to

∫
I (t � v)w(v, x) f (t | z)dv = W (t, x) f (t | z), which is

proportional to the conditional probability density function given in (1). Consequently, we may
treat (V, x, T 0, z) as the complete data vector and (x, T 0, z) as the incomplete data with the
truncation time V completely missing.

3·2. Pseudo-partial likelihoods

According to the argument in § 2·1 and from the Cox log partial likelihood lc2 of equation (5)
in § 2·2, the following function, which is the conditional expectation of lc2 given the observed
data, can be considered as a log pseudo-partial likelihood for the observed data (xi , T 0

i , zi ) (i =
1, . . . , n):

l̃(β) =
n∑

i=1

βTzi −
n∑

i=1

E

⎧⎨
⎩log

n∑
j=1

Y v
j

(
T 0

i

)
eβTz j

∣∣∣∣ x1, T 0
1 , z1, . . . , xn, T 0

n , zn

⎫⎬
⎭ . (6)

If we condition on T 0 = t, X = x , then the random variable V has conditional dis-
tribution W {min(v, t), x}/W (t, x). Therefore, the second term of (6) is a function of
(T 0

1 , x1, z1, . . . , T 0
n , xn, zn) and β, which does not involve the nuisance parameter λ0(t). We may,

therefore, use the Monte Carlo method to compute it. For example, let Vjk ( j = 1, . . . , n, k =
1, . . . , m) be random samples from the distribution W {min(v, T 0

j ), x j }/W (T 0
j , x j ). Then the

second term of (6) can be approximated by

n∑
i=1

1

m

m∑
k=1

log

⎧⎨
⎩

n∑
j=1

I
(
Vjk � T 0

i

)
Y j

(
T 0

i

)
eβTz j (T 0

i )

⎫⎬
⎭ . (7)

We substitute (7) into the second term of (6) and obtain an approximate loglikelihood

l̃(m)(β) =
n∑

i=1

βTzi −
n∑

i=1

1

m

m∑
k=1

log

⎧⎨
⎩

n∑
j=1

I
(
Vjk � Ti

)
Y j (Ti )e

βTz j (Ti )

⎫⎬
⎭ . (8)

In particular, for length-biased data, i.e. W (t, x) = t , the maximum approximate loglikelihood
estimator based on (8) is asymptotically equivalent to the improved estimator proposed by
Wang (1996). In addition, for m = 1, the approximate loglikelihood l̃(1) is identical to the log-
pseudolikelihood described by Wang (1996).

The disadvantages of using lc2 as the working log partial likelihood for complete data are as
follows: we must assume that W (t, x) is a nondecreasing function in t for every fixed x ; the
underlying cumulative hazard function must be estimated by other methods; it requires intensive
computation to obtain the log pseudo-partial likelihood l̃(β); and the loglikelihood lc2 contains
less information about the parameters than the loglikelihood lc1. Therefore, we may take lc1

as our working log partial likelihood and apply the same procedure to (3). The resulting log
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606 WEI YANN TSAI

pseudo-partial likelihood can be written as
n∑

i=1


N
(
T 0

i

){
log d	0

(
T 0

i

) + βTzi
(
T 0

i

)} −
∫ ∞

0
nS̄(0)(β,μ)d	0(μ), (9)

where

S̄(0)(β, t) = E

{
1

n

n∑
i=1

eβTzi (t)Yi (t)I (Vi � t) | data

}
= 1

n

n∑
i=1

eβTzi (t)Yi (t)
W (t, xi )

W (Ti , xi )
.

For a fixed value of β, maximization of (9) with respect to 
	0(t) leads to 
	0(t, β) =

N (t)/{nS̄(0)(β, t)}. Therefore, for a fixed value of β, we would estimate 	0(t) by the Nelson–
Aalen estimator

	̂0(t, β) =
∫ t

0

J (μ)

nS̄(0)(β,μ)
d N (μ), (10)

where J (μ) = I {∑n
i=1 Yi (μ) > 0}. Inserting (10) into (8), we obtain the following log profile

pseudo-partial likelihood depending only on β:

l(β) =
∑

t

n∑
i=1


Ni (t)
[
βTzi (t) − log{nS̄(0)(β, t)}], (11)

which is also a generalized Cox log partial likelihood. The vector of score statistics is given as

U (β) = ∂l/∂β =
n∑

i=1

∫ ∞

0

{
zi (t) − S̄(1)(β, t)

S̄(0)(β, t)

}
d Ni (t), (12)

where S̄(1)(β, t) = ∂ S̄(0)(β, t)/∂β. We shall base our estimator of β on (12), and the value of β

which maximizes (11) will be denoted by β̂. As pr{W (T 0
i , xi ) = 0} = 0, W (t, xi )/W (T 0

i , xi ) is
well defined.

The log pseudo-partial likelihood (11) is identical to the usual log partial likelihood of the mod-
els λ(t | zi , z∗

i ) = λ0(t) exp{βTzi + z∗
i (t)}, where z∗

i (t) = log{W (t, xi )/W (T 0
i , xi )}. In particular,

when W (t, x) = W (t), z∗
i (t) can be simplified to −log{W (T 0

i )}. Standard statistical software,
such as SAS, can be used to obtain the estimate β̂ of β by setting the regression coefficient of
z∗

i to be 1, using the option offset = z∗ in procedure PHREG. The robust sandwich covariance
matrix estimator from SAS is consistent whereas the model-based covariance matrix is incon-
sistent because the score (12) is not a martingale. For computing estimates of parameters and
variances for general weight functions, readers can use the author’s R subroutine downloadable
from www.columbia.edu/∼wt5/.

3·3. Censoring

We may assume that the data are subject not only to biased sampling, but also to right censoring.
Let Vi , T 0

i and Ci be, respectively, truncation time, survival time and censoring time. Recall that
when we define the left-truncated and right-censored data, we assume that (Vi , Ci ) and T 0

i
are mutually independent. Hence, the joint probability density function of (T 0

i , Vi , Ci ) can be
expressed as fi (t)gi (v, c), where fi is the probability density function of T 0

i and gi is the joint
probability density function of (Vi , Ci ). We only identify two types of censoring mechanism
based on different censoring and truncation mechanisms and assumptions about gi . However,
there are possible applications to other types of censoring.

The first type of censoring assumes that the given covariates (xi , zi ), original truncated time, sur-
vival time and censoring time are mutually independent. However, we observe the data (Vi , Ti , Di )
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only if Vi � Ti , where Ti = min(T 0
i , Ci ) and Di = I (T 0

i � Ci ). The biased censored data (Ti , Di )
are obtained by applying the censoring mechanism to the data before the data are sampled with
bias. In the embedding, we first apply the censoring mechanism to the survival time and then apply
the truncation mechanism to the observed censored data. This type of censoring is equivalent to
assuming that

gi (v, c) = wi (v)g2i (c)I (v � c)
/∫ ∞

0

∫ c

0
wi (v)g2i (c)dv dc,

where g2i (t) is the probability density function of the censoring time Ci . We may also say that
Vi and Ci are quasi-independent in the region {(v, c) | v � c}. The observed data (Vi , Ti , Di )
comprise a special case of the standard left-truncated and right-censored data as defined in § 2·2.
Hence, in the first type of censoring, the conditional probability density function of the observed
data (Vi , Ti , Di ), given (xi , zi ) = (x, z), is

h2(v, t, d | x, z) = w(v, x){ f (t | z)G2i (t)}d{S(t | z)g2i (t)}1−d∫ ∞
0 w(v, z)G2i (v)S(v | z)dv

,

where G2i (t) = ∫ ∞
t g2i (s)ds is the survival function of the censoring time. Therefore, E{I (Vi � t)

I (Ti � t)|Ti , Di , xi , zi } = W (t, xi )I (Ti � t)/W (Ti , xi ). The procedures proposed in §§ 3·2 and
3·3 are still valid because E{I (Vi � t)Yi (t) | Ti , Di , xi , zi } still equals Yi (t)W (t, xi )/W (Ti , xi ).
The formulae of the log pseudo-partial likelihood will be the same for this type of censoring with
T 0

i replaced by Ti and Ni (t) defined by Ni (t) = I (Ti � t, Di = 1).
The second type of censoring comprises the censoring of residual lifetime after the data are

sampled with bias. Let R0
i = T 0

i − Vi and Rci = Ci − Vi be, respectively, the residual lifetime
and the residual censoring time of the i th individual. Given covariates (xi , zi ) and Ci � Vi , we
assume that Rci and (R0

i , Vi ) are independent. We observe (Vi , Ti , Di ) only if Vi � Ti , where
Ti = Vi + Ri , Ri = min(R0

i , Rci ) and Di = I (R0
i � Rci ). The censoring time Ci and truncation

time Vi are not independent in this type of censoring. Let g3i (t) be the probability density function
of the residual censoring time Rci . The second type of censoring is equivalent to assuming that

gi (v, c) = wi (v)g3i (c − v)I (c � v),

where g3i (t) is the probability density function of the residual censoring time Rci . The conditional
density function of the observed data (Vi , Ti , Di ) given (xi , zi ) = (x, z) is

h3(v, t, d | x, z) = w(v, x){ f (t | z)G3i (t − v)}d{S(t | z)g3i (t − v)}1−d∫ ∞
0 w(v, x)S(v | z)dv

,

where G3i (t) = ∫ ∞
t g3i (s)ds is the survival function of the residual censoring time. Hence,

E{I (Vi � t)I (Ti � t) | Ti , Di , xi , zi } =
∫ t

0 h3(v, Ti , Di | xi , zi )dv∫ Ti
0 h3(v, Ti , Di | xi , zi )dv

=
{∫ t

0 w(v, xi )g3i (Ti − v)dv∫ Ti
0 w(v, xi )g3i (Ti − v)

}Di
{ ∫ t

0 w(v, xi )G3i (Ti − v)dv∫ Ti
0 w(v, xi )G3i (Ti − v)dv

}1−Di

Yi (t).

Unfortunately, under the second type of censoring, the conditional expectation E{I (Vi � t)Yi (t) |
data} is a function of the censoring distribution. If the truncation time V is observable, then
we may use a Kaplan–Meier-type estimator of G3i (t). Consider the one-sample problem such
that β = 0 and w(v, x) = w(v). The nonparametric maximum likelihood estimator of G3 is the
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Kaplan–Meier estimator based on the censored residual lifetime (Ri , Di ); that is

Ĝ3(t) =
∏
Ri �t

⎧⎨
⎩1 − (1 − Di )

/ n∑
j=1

I (R j � Ri )

⎫⎬
⎭ .

Hence, the maximum pseudo-partial likelihood estimator of S is

Ŝ3(t) =
∏
Ti �t

{1 − Di/Ŷ (Ti )},

where

Ŷ (t) =
n∑

i=1

{ ∫ t
0 w(v)dvĜ3(Ti − v)∫ Ti

0 w(v)dvĜ3(Ti − v)

}Di
{ ∫ t

0 w(v)Ĝ3(Ti − v)dv∫ Ti
0 w(v)Ĝ3(Ti − v)dv

}1−Di

Yi (t).

The estimator Ŝ3 is not the nonparametric maximum conditional likelihood estimator proposed
and studied by Tsai et al. (1987), nor is it the nonparametric maximum likelihood estimator.
However, if there is no censoring, Ŝ3 is the nonparametric maximum likelihood estimator. It is
straightforward to prove that Ŷ (t)/n will converge to

∫ t
0 w(v)G(t − v)dvS(t)/

∫ ∞
0 w(v)S(v)dv

and
∑n

i=0 Di I (Ti � t)/n will converge to
∫ t

0

∫ s
0 w(v)G(s − v)dv f (s)ds/

∫ ∞
0 w(v)S(v)dv. As a

result, under some regularity conditions, Ŝ3(t) will converge to the survival function S(t) of the
survival time.

If the censoring time depends on the covariates, we need to use a smooth type of Kaplan–
Meier estimator of Gi . If the truncation time Vi cannot be observed, we may use the nonparametric
maximum likelihood estimator ofGi . More research is needed in order to understand the properties
of the proposed method.

The Stanford heart transplant dataset of Miller & Halpern (1982) is a prospective cohort study.
The event time of interest is the survival time after entry. The censoring time is the duration
between calendar entry date of the patients and February 1980. If we assume that there is no loss
of follow-up, then C = February 1980 −E ; and V = transplant calendar date −E = transplant
waiting time, where C , V and E , respectively, are the censoring time, truncation time and calendar
entry date of the patient. If V , the transplant waiting time, is independent of E, the calendar entry
date, then C and V are independent for all patients in the cohort: the transplant waiting times
of the patients who died or were censored before transplantation cannot be observed. Therefore,
the censoring time C is quasi-independent of the truncation time V for the transplant patients in
the Stanford heart transplant data. Consequently, the censoring is of the first type. The Channing
House dataset is a retrospective cohort study. The event time of interest is the death age. The
censoring time C for patients who did not leave the centre before July 1975 is the time between
the birth date B and July 1975. The truncation time, i.e. entry age, V is E − B, where E is the
calendar entry date. The residual censoring time Rc is C − V = July 1975 −E . If entry age is
independent of calendar entry date, i.e. V and E are independent, then the residual censoring
time Rc is independent of the truncation time V . This censoring is of the second type.

Most applications can be classified as either the first or second type of censoring. For example,
the censoring mechanism of the proportional hazards model with missing covariates, see § 4·3,
and the Stanford heart transplant data are of the first type; the censoring mechanisms of the
renewal process (Vardi, 1989), cross-sectional survival data (Wang, 1991) and the Channing
House data are of the second type.
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Pseudo-partial likelihood with biased sampling 609

Table 1. Monte Carlo simulation for length-biased data. One hundred length-biased obser-
vations were generated from Group 0 with population density f0(t) = t exp(−t)I (t > 0)
and 100 length-biased observations were generated from Group 1 with population density
f1(t) = t exp(β − eβ t)I (t > 0) for β = 0, 1, 2. Here β̂ maximizes the loglikelihood l(β), β̃

maximizes the loglikelihood l̃(1) and β̂IPW was proposed by Binder (1992) and Lin (2000).
Estimates are based on 1000 replications

Bias Sample variance Mean of estimated variance

β β̂ β̃ β̂IPW β̂ β̃ β̂IPW β̂ β̃ β̂IPW

0 0·002 0·003 −0·001 0·010 0·020 0·049 0·010 0·020 0·036
1 0·009 0·012 0·014 0·018 0·030 0·070 0·017 0·030 0·050
2 0·032 0·033 0·060 0·058 0·080 0·139 0·053 0·075 0·103

The asymptotic properties of the maximum pseudo-partial likelihood estimators β̂ and 	̂

for censored biased-sampling data of general nonnegative weight functions are established and
discussed in the Appendix. We assume that the censoring is of the first type for the rest of the
paper.

4. APPLICATIONS

4·1. Length-biased data

The techniques developed in the previous sections can be applied to length-biased data by using
W (t) = t . We illustrate the method with a simulation study and an analysis of the shrub dataset.
Consider a two-sample proportional hazards model with covariate z = 0 representing Group 0
and z = 1 representing Group 1. We generate 100 length-biased samples from Group 0 with
population density f0(t) = t exp(−t)I (t > 0) and 100 length-biased samples from Group 1 with
population density f1(t) = t exp(β − eβ t)I (t > 0) for β = 0, 1, 2 in three different scenarios.
The relative hazard between Group 0 and Group 1 is equal to eβ and, thus, the log hazard
ratio is β = 0, 1, 2. We also calculate the estimator β̃ obtained by maximizing the approximate
likelihood l̃(1), which was also proposed by Wang (1996). The variance estimator proposed by
Wang (1996) is identical to the estimator from SAS. We use equation (A1) in Theorem A2
provided in the Appendix to obtain the variance estimator for the estimator β̂. For comparison we
also include the inverse probability weighted estimator β̂IPW of Binder (1992) and Lin (2000); see
also Horvitz & Thompson (1952) and Qi et al. (2005). For the definition of the inverse probability
weighted estimator, see equation (13) in § 4·3. Table 1, based on 1000 replicates, which shows
that β̂ is more efficient than β̃ and β̂IPW and that the variance estimator of β̂IPW underestimates
the true sample variance of β̂IPW.

We denote the width of an observed shrub from the shrub dataset by Ti . Wang (1996) assumed
that the probability of including Ti in the dataset is proportional to Ti itself. We use the proportional
hazards model,

λ(t | z1, z2) = λ0(t) exp(β1z1 + β2z2),

where z1 = I (T belongs to transect I) and z2 = I (T belongs to transect II) are two indica-
tor covariates. Use of SAS with offset −log(Ti ) provides β̂ = (β̂1, β̂2) = (0·84, 0·075) with
model-based standard error estimates {SE(β̂1), SE(β̂2)} = (0·49, 0·47) and corr(β̂1, β̂2) = 0·74.
The estimates are very similar to the results of Wang (1996), but the model-based standard errors
overestimate the true standard errors of β̂. Use of equation (A1) in the Appendix, which is identical
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to the robust sandwich covariance estimate from SAS, gives {SE(β̂1), SE(β̂2)} = (0·32, 0·27) and
corr(β̂1, β̂2) = 0·56. For comparison β̂IPW = (1·29, 0·33) with estimated standard errors (0·33,
0·31).

4·2. Biased samples with right censoring

Miller & Halpern (1982) compared four regression techniques on the updated Stanford heart
transplant data without acknowledging that the transplant patient’s survival time was sampled
with bias. As mentioned in § 1, the survival times can be treated as a biased sample with a weight
function equal to the distribution of the transplant waiting time. Miller & Halpern (1982) did
not provide the transplant waiting times but Crowley & Hu (1977) did. The Weibull distribution
fits the transplant waiting times very well. The R2 of the fit of log[−log{Ŝw(t)}] to log(t) is
0·97, where Ŝw is the product-limit estimate of the transplant waiting time survival function
based on Crowley & Hu’s (1977) 103 patients. The conditional maximum likelihood estimate
for the Weibull survival function of transplant waiting time is exp(−0·027t0·925). Hence, the
weight function, W (t) = 1 − exp(−0·027t0·925), will be used to obtain the parameters of the
proportional hazards model. We assume that the hazard rate of the transplant patient’s survival
is proportional to exp{β1age + β2(age)2}. Miller & Halpern (1982) deleted 27 patients lacking
the T5 mismatch score and 5 patients with survival times less than 10 days from the total of 184
patients in one of their data analyses. Based on 152 Stanford heart transplant patients, the pseudo-
partial likelihood estimate (β̂1, β̂2) is (−0·13, 0·0021) with {SE(β̂1), SE(β̂2)} = (0·051, 0·0006)
and β̂IPW = (−0·17, 0·0026) with SE(β̂IPW) = (0·061, 0·0007). In calculating the variances of the
estimates, we assume that the weight function is known without error. Both methods show a
strong relationship between survival time and age.

4·3. Missing covariates

It is assumed that, for each i , (Ti , Di , zi , Ri ) are independent and identically distributed random
vectors, where Ri = 1 if zi is fully observed and is zero otherwise. Let W (t, z) = pr(R = 1 | T =
t, Z = z) be the conditional probability of observing the full covariates data given the covariates
z and follow-up time T = t . We assume that W (t, z) is either completely known or can be
estimated from other methods; see Qi et al. (2005) and an unpublished Harvard School of Public
Health technical report by M. Pugh, J. Robins, S. Lipsitz and D. Harrington. Copas & Farewell
(2001), Qi et al. (2005) and Pugh et al.’s report proposed the following weighted complete-case
pseudolikelihood score function for inference of the proportional hazards models with missing
covariates:

UIPW(β) =
n∑

i=1

W −1
i

∫
Ri {zi (t) − z̄IPW(β, t)}d Ni (t), (13)

where z̄IPW(β, t) = ∑
j {R j z j Y j (t)eβTz j /W j }/ ∑

j {R j Y j (t)eβTz j /W j } and Wi = W {Ti , zi (Ti )}.
The inverse probability weighted estimator β̂IPW is the solution of UIPW(β) = 0. This
pseudo-score UIPW was also proposed and studied by Binder (1992) and Lin (2000) in the
survey-sampling literature. We may treat the complete case, with Ri = 1, as a biased sample
from the population with selection probability proportional to W (t, z). The conditional density of
(T, D) given the covariates z and R = 1 is proportional to W (t, z) f D(t | z)S(1−D)(t | z). Since
the censoring was applied to the data before the cases with missing covariates were dropped,
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Pseudo-partial likelihood with biased sampling 611

Table 2. Analysis of mouse leukaemia data using the Cox regression model with various
methods. Here β̂ is the pseudo-partial likelihood estimator and β̂IPW is the inverse probability

weighted estimator

Thymic leukaemia Thymic and nonthymic leukemia
Coefficient estimate (SE) Coefficient estimate (SE)

Approach GPD1 Virus GPD1 Virus
Complete-case −1·44(0·60) 1·44(0·72) −1·46(0·57) 1·22(0·65)
β̂ −1·15(0·64) 1·51(0·71) −1·19(0·59) 1·28(0·62)
β̂IPW −1·47(0·65) 1·48(0·75) −1·41(0·63) 1·27(0·67)

SE: estimated standard error.

the censoring is of the first type considered in § 3·3. The pseudo-partial score function becomes
Umc(β) = ∑n

i=1 Umci , where Umci = ∫
Ri {zi (μ) − z̄p(β,μ)}d Ni (μ), and

z̄p(β, t) =
∑

j

{
R j W (t, z j )z j Y j (t)e

βTz j /W j
}/ ∑

j

{
R j W (t, z j )Y j (t)e

βTz j /W j
}

.

Let β̂ denote the solution of Umc(β) = 0. If W (t, z) = W (t), then z̄IPW = z̄p. Hence,
UIPW = ∑n

i=1 W −1
i Umci is a weighted mean of Umc1, . . . , Umcn, with weight proportional to

1/Wi , while Umc is the unweighted mean. When some of the Wi are close to zero, the equation
UIPW = 0 becomes unstable. Therefore, in order to prove the asymptotic normality of the estima-
tor β̂IPW, Pugh et al.’s report and Qi et al. (2005) had to assume that Wi > ε > 0 for some positive
ε. We need weaker assumption to prove the asymptotic properties of the estimator β̂; see the
Appendix.

We now analyze the mouse leukaemia data of Kalbfleisch & Prentice (2002) by the
pseudo-partial likelihood method and the inverse probability weighted method. As in
Kalbfleisch & Prentice (2002), we dichotomized virus level into a binary variable with zero
representing values below 104 and one otherwise. There are two analyses, corresponding to the
endpoints death by thymic leukaemia and death by thymic or nonthymic leukaemia. Logistic
regression was used to model the conditional probability W (t, z) of observing the full covariates
data, based on 156 mice that survived for at least 400 days; the observation probabilities were
set to zero for the remaining 48 mice that died or were censored before 400 days. In order to
make the analysis comparable with that of Wang & Chen (2001), we included only the survival
time and its quadratic term as two predictors in our logistic regression model. Both analyses
used 204 mice and treated both virus level and GPD1 phenotype as the missing covariates. Table
2 shows the results from applying the pseudo-partial likelihood method and the inverse proba-
bility weighted method. The pseudo-partial likelihood method shows that the virus level has a
significant relationship with both endpoints, while the GPD1 has a significant relationship with
death of thymic or nonthymic leukaemia and GPD1 has a moderately significant relationship
with thymic leukaemia death. The inverse probability weighted method shows that GPD1 has a
significant relationship with both endpoints and virus level has a moderately significant relation-
ship with both endpoints. The inclusion of death by nonthymic leukaemia changes the estimates
for GPD1 phenotype slightly, but moderately reduces the estimates for the virus level. A similar
phenomenon was also found by Qi et al. (2005). As in the Stanford heart transplant data analysis,
the weight function is treated as known. If the weight function were treated as unknown, then the
variance estimator in Theorem A2 would overestimate the true sample variance of β̂.
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If W (·) is a function of D, then β̂IPW is still a consistent estimator. Generally, however, under
the same conditions, β̂ is not consistent, since E{Umc(β0)} � 0. For generalization to the Cox
model with missing covariates and a detailed simulation comparison of β̂ and β̂IPW, see Luo et al.
(2009).

5. DISCUSSION

The procedures developed in this paper can be easily extended to other types of incomplete
data. The basis of our method is the conditional expectation of the partial score function given the
data. For the proportional hazards model, if N (t) is completely known, the conditional expectation
involves two terms; see equation (3). One is the conditional expectation of z, while the other is
the conditional expectation of S(0)(β, t). If z is completely known, we only have to consider the
conditional expectation of S(0). In other types of incomplete data, we may also have to compute
the conditional expectation of z or 
N (t) or both. For example, in the proportional hazards
models with missing covariates or with covariates with measurement errors, the covariates z are
partially missing. Paik & Tsai (1997) applied a similar idea and proposed two estimators of β for
the proportional hazards models with missing covariates.

The estimators β̂ and 	̂0, proposed in § 3, are not nonparametric maximum likelihood esti-
mators and, therefore, we generally do not expect these estimators to be optimal. However, as a
special case, when W (t, x) = W (t) and β0 = 0, the estimator 	̂0 is the nonparametric maximum
likelihood estimator and is the most efficient estimator. Since β̂ and 	̂0 maximize the pseudo-
partial likelihood, we expect the efficiency of these two estimators to be quite high. Empirical
evidence from our limited simulation and real-data experiments suggests that β̂ is more efficient
than β̂IPW.

Another special case is given by W (t, x) = t x , f (t | z) = f0(t) and p = pr(x = 0) = 1 −
pr(x = 1). The nonparametric maximum likelihood estimator F̃0(t) of F0(t) = ∫ t

0 f0(s)ds was
studied by Vardi (1982). We computed the asymptotic relative efficiency of exp{−	̂0(t)} with
respect to 1 − F̃0(t), when F0 is a uniform distribution on [0,1], for t and p ∈ {0·2, 0·4, 0·6, 0·8}.
When p = 0 or 1, the product limit estimator based on 	̂0 is identical to the nonparametric
maximum likelihood estimator, so that the asymptotic relative efficiency equals 1 for p = 0 and
p = 1. The lowest asymptotic relative efficiency we obtained was 0·985. Since the estimator
	̂0(t) is much easier to calculate than the nonparametric maximum likelihood estimator, 	̂0(t)
is a preferred estimator.
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APPENDIX

Large sample properties

In deriving equation (12), we explicitly assume that the weight function W (t, x) is a distribution function
for any given x . However, after the likelihood (12) is obtained, we only need a weaker assumption, that
the weight be nonnegative, to prove the asymptotic properties. Here, we assume that the weight function
W (t, x) satisfies Assumption 1.
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Assumption 1. For every fixed x , there exists a constant a(x) such that {t | W (t, x) > 0} = (a(x),∞)
or [a(x),∞).

Assumption 1 does not require that W (·, x) be a nondecreasing function for any fixed x . The following
four theorems describe the asymptotic properties of the estimators β̂ and 	̂0(t, β̂).

THEOREM A1. If Assumption 1 holds and the matrix I (β) is positive definite, β̂ converges to β0 in
probability as n → ∞, where I (β) = limn→∞ In(β) and In(β) = −n−1∂U (β)/∂β.

Proof . If Assumption 1 holds, we have

s(k)(β0, t) = E

[
E

{
I (T � t)

W (t, x)

W (T, x)
eβT

0 z(t)zk(t) | x, z(s), s � t

}]

= E
{

W (t, x)eβT
0 z(t)zk(t)S(t | z)G(t | z)/α(x, z)

}
(k = 0, 1),

where G(t | Z ) = pr(C � t | Z ). Then n−1
∫ ∞

0 S̄(1)(β0, t)/S̄(0)(β0, t)d N (t) converges in probability to

E
{

Di s
(1)(β0, Ti )/s(0)(β0, Ti )

}
=

∫ ∞

0

s(1)(β0, t)

s(0)(β0, t)
E

{
W (t, x)λ0(t)eβT

0 z(t)S(t | z)G(t | z)/α(x, z)
}

dt

=
∫ ∞

0
s(1)(β0, t)λ0(t)dt =

∫ ∞

0
E{W (t, x)z(t) f (t | z)G(t | z)/α(x, z)}dt

= E{Di zi (t)}.
Hence, U (β0) → 0 in probability as n → ∞ and, therefore, Theorem A1 holds by a standard argument.

For asymptotic normality, we need to introduce more notation. Define

ξi = Di

{
zi (Ti ) − s(1)(β0, Ti )

s(0)(β0, Ti )

}
−

∫ ∞

0

eβT
0 zi (t)Yi (t)W (t, xi )

s(0)(β0, t)W (Ti , xi )

{
zi (t) − s(1)(β0, t)

s(0)(β0, t)

}
d F1(t),

where s(k)(β, t) = E{S̄(k)(β, t)}, k = 0, 1, and F1(t) = pr{Ti < t, I (Di = 1)}. Furthermore, we define

ξ̂i = Di

{
zi (Ti ) − S̄(1)(β̂, Ti )

S̄(0)(β̂, Ti )

}
−

∫ ∞

0

eβ̂Tzi (t)Yi (t)W (t, xi )

S̄(0)(β̂, t)W (Ti , xi )

{
zi (t) − S̄(1)(β̂, t)

S̄(0)(β̂, t)

}
d

N (t)

n
.

Note that ξ̂i is obtained by substituting s(0), s(1), F1(t) and β0 by S̄(0), S̄(1), N (t)/n and β̂, respectively, in
ξi . �

THEOREM A2. Under the same conditions as in Theorem A1, n1/2(β̂ − β0) converges weakly to a normal
distribution with zero-mean and covariance matrix

∑ = I −1(β0)I −1(β0), where  = E(ξ⊗2).

Proof . The score function n−1/2U (β0) can be expressed as

n−1/2
n∑

i=1

Di

{
zi (Ti ) − s(1)(β0, Ti )

s(0)(β0, Ti )

}
− n1/2

∫ ∞

0

{
S̄(1)(β0, t)

S̄(0)(β0, t)
− s(1)(β0, t)

s(0)(β0, t)

}
d F1(t) + op(1).

By Taylor series expansion, the second term in the above equation can be written as

−n1/2
∫ ∞

0

S̄(1)(β0, t)s(0)(β0, t) − s(1)(β0, t)S̄(0)(β0, t)

s(0)(β0, t)s(0)(β0, t)
d F1(t) + op(1)

= −n−1/2
n∑

i=1

∫ ∞

0

eβT
0 zi (t)W (t, xi )

s(0)(β0, t)W (Ti , xi )

{
zi (t) − s(1)(β0, t)

s(0)(β0, t)

}
d F1(t) + op(1).

Hence, n−1/2U (β0) = n−1/2
∑n

i=1 ξi + op(1). By the multivariate central limit theorem and its corollary,
n−1/2U (β0) converges to a multivariate normal distribution, yielding Theorem A2. �
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Note that I (β0) can be consistently estimated by In(β̂) and  can be consistently estimated by ̂ =
n−1

∑n
i=1 ξ̂⊗2

i . Thus, the covariance matrix
∑

can be consistently estimated by

V̂ = I−1
n (β̂)̂I−1

n (β̂). (A1)

We now study the large sample properties of the estimated baseline integrated hazard function 	̂0(t, β̂).

THEOREM A3. Let M be a large positive number such that pr(T � M) is strictly positive. Under the
same conditions as in Theorem A1, for t < M the process n1/2{	̂0(t, β̂) − 	0(t)} converges weakly to
a Gaussian process with zero-mean and covariance function E{ξ0i (s)ξ0i (t)}, which can be consistently
estimated by n−1

∑n
i=1 ξ̂0i (s)ξ̂0i (t), where

ξ0i (t) = ξ T
i {I (β0)}−1

∫ t

0

s(1)(β0, μ)

{s(0)(β0, μ)}2
d F1(μ) + ξ1i (t) + ξ2i (t),

ξ1i (t) =
∫ t

0

s(0)(β0, μ) − eβT
0 zi (μ)Yi (μ)W (μ, xi )/W (Ti , xi )

{s(0)(β0, μ)}2
d F1(μ),

ξ2i (t) = s(0)(β0, Ti )
−1 Di I (Ti � t) − 	0(t),

ξ̂0i (t) = ξ̂ T
i I−1(β̂)

∫ t

0

S̄(1)(β̂, μ)

{S̄(0)(β̂, μ)}2
d N (μ)/n + ξ̂1i (t) + ξ̂2i (t),

ξ̂1i (t) =
∫ t

0

S̄(0)(β̂, μ) − eβ̂Tzi (μ)Yi (μ)W (μ, xi )/W (Ti , xi )

{S̄(0)(β̂, μ)}2
d

N (μ)

n
,

ξ̂2i (t) = S̄(0)(β̂, Ti )
−1 Di I (Ti � t) − 	̂0(t, β̂).

THEOREM A4. Under the conditions of Theorem A1, the asymptotic covariance of n1/2(β̂ − β0) and
n1/2{	̂0(t, β̂) − 	0(t)} can be consistently estimated by n−1

∑n
i=1 ξ̂i ξ̂0i (t).

Proofs of Theorem A3 and Theorem A4. We may write n1/2{	̂0(t, β̂) − 	0(t)} as

n1/2
∫ t

0

{
1

S̄(0)(β̂, μ)
− 1

S̄(0)(β0, μ)
+ 1

S̄(0)(β0, μ)
− 1

s(0)(β0, μ)

}
d F1(μ)

+ n1/2
∫ t

0
s(0)(β0, μ)−1d

{
N (μ)

n
− F1(μ)

}

+ n1/2
∫ t

0

{
1

S̄(0)(β̂, μ)
− 1

S̄(0)(β0, μ)
+ 1

S̄(0)(β0, μ)
− 1

s(0)(β0, μ)

}
d

{
N (μ)

n
− F1(μ)

}
.

Here, the last term can be shown to converge to zero in probability. By Theorem A2, n1/2(β̂ − β0) =
n−1/2 I −1(β0)

∑n
i=1 ξi + op(1), and by Taylor series expansion around β0, the first term can be approximated

by

−n1/2(β̂ − β0)T

∫ t

0

s(1)(β0, μ)

{s(0)(β0, μ)}2
d F1(μ) + n1/2

∫ t

0

s(0)(β0, μ) − S̄(0)(β0, μ)

{s(0)(β0, μ)}2
d F1(μ)

= −n−1/2
∫ t

0

s(1)(β0, μ)

{s(0)(β0, μ)}2
d F1(μ)I −1(β0)

n∑
i=1

ξi + n−1/2
n∑

i=1

ξ1i (t) + op(1)

= An(t) + Bn(t) + op(1).
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The second term can be expressed as

n−1/2
n∑

i=1

{s(0)(β0, Ti )
−1 I (Ti � t)Di − 	0(t)} = n−1/2

n∑
i=1

ξ2i (t) = Cn(t).

Therefore, a simple application of the multivariate central limit theorem implies that the finite-
dimensional distribution of {An(t), Bn(t), Cn(t)} is a multivariate normal. As in the proof in Tsiatis
(1981), the sequence of distributions induced by An, Bn and Cn is tight. �
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