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Abstract. Pseudo-random numbers are usually generated by linear congruential methods.
Starting with an integer yo, a sequence {y¡} is constructed by yi+x m ay i + r (mod m), m, a,
r being integers. The derived fractions x¡ = y¡/m are taken as samples from the uniform
distribution on [0, 1). In this paper it is shown that the joint probability distribution of
pairs xu Xi+, can be calculated exactly. Explicit calculations show that this distribution is
surprisingly near to the uniform distribution for most 'reasonable' generators. The best
approximation to the uniform distribution on the unit-square is achieved if the continued
fraction for a' and m (or a" and m If) is long.

1. Introduction. This paper deals with pseudo-random numbers generated by
the well-known linear congruential method, originally due to D. H. Lehmer [20]:
A sequence of integers is started with a value y0 and continued by

(1.1) y. + i = ay i + r (mod m),        0 ^ y{ < m    for all i.

The fractions

(1.1') Xi = y i/m

are the derived pseudo-random numbers in the interval [0, 1). The 'modulus' m, the
'factor' a, and the 'increment' r are given integers.

The linear congruential method has considerable advantages:
(1) For an appropriate choice of a, r, and m, the fractions xt = yt/m are uni-

formly distributed in the interval [0, 1).
(2) Subsequences of most generators pass different statistical tests, i.e. frequency

tests, run tests, poker tests.
(3) The method is fast and easy to program.

The fact (1) is well known and will be referred to in Section 2. The facts (2) and (3)
will not be considered in this paper.

Relatively recently, some mathematicians have considered number-theoretic
properties of the generator (1.1). Important for the randomness of the sequence x¿
is the serial correlation p, between x¡ and xi+„ taken over the whole period. In a
'good' random sequence, p, should be extremely small for small s. Coveyou [2] and
Greenberger [11] derived bounds for p,; Jansson [16], [17] showed that p, can be
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856 U. dieter

calculated exactly for some important generators. That fact was rediscovered by the
author (see Dieter [7]) without knowing Jansson's results. For an extremely fast
method of computation of the serial correlation, see the paper Dieter/Ahrens [8];
that paper covers all subcases of the generator (1.1). Computations showed that
the serial correlation p. is extremely small for most generators. Although this con-
dition is necessary for the use of a generator (1.1), it is in no way sufficient. Even if
a is equal to 1, the increment r can be determined in such a way that pi £¿ 0, which
shows that the serial correlation by itself is by no means a sufficient indicator of
randomness.

In most applications of pseudo-random numbers, one assumes that x¡ and x{+1
are independent. Hence, it would be interesting to know the exact value of

(1.2) AP = P(x g Xi < x + Ax, y ^ xi+1 < y + Ay) - AxAy.

The main purpose of this paper is to show that (1.2) can be calculated exactly for
any choice of x, Ax, y, Ay, and to give numerical results for some often used
generators.

The main tool of this calculation is the theory of the so-called generalized
Dedekind sums, which are defined as follows:

*«"»-I;(Ce+i)X(?+*£*))•
where a, c, g, h, j are integers and

(1.4) ((X))=\X-[X]--    if^°(™dl).

[0 if x = 0(mod 1)

differs only for integers x from the first Bernoulli-polynomial Pi(x) = x — [x] — §.
The explicit expressions for (1.2) are alternating sums of generalized Dedekind sums.
In particular, for the important generators yi+x = ay( (mod 2"), a = 5 (mod 8),
the exact value of (1.2) is an alternating sum of four generalized Dedekind sums.

The generalized Dedekind sums (1.3) may be calculated using the reciprocity
formula derived in Dieter [6]. This reciprocity suggests a Euclidean algorithm for
a and c:
(1.5) a = q0c — ax,        c = qxax — a2,        ax = q2a2 — a3, • • • , a„_i = q„an

where \c\ > \ax\ > \a2\ > ••• > |a„_i| > \a„\ = 1 and the a{ are minimal at each
step. The quotients q¡ lead to a bound for the generalized Dedekind sum

(1.6) D(a,c) = y^ (Ê k.| + 3n + 5j =  |#i(a,c)|,

which is independent of the subscripts g, h. Thus, D(a, c) yields a bound for the
quantity (1.2). For example, if the generator is defined by yi+x = ay¡ (mod 2"),
a = 5 (mod 8), then
(1.7) |AiV| = 2'"2 [AP| g 3 D(a, 2'~2).

AN is the deviation of the number N of pairs x¡, xi+x in a given rectangle
[x, x + Ax) X [y, y + Ay) from their expected value 2e~2AxAj;. Hence, (1.7) is small
if D(a, 2°~2) is small. This means:
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The factor a has to be chosen in such a way that the Euclidean algorithm for a and
2"~2 has small quotients q¡.

Similar statements are true for general m j¿ 2° and for generators with r^O.
Extensive numerical computations of AN have been carried out with the help

of J. Ahrens, Halifax, Canada and A. Grube, Karlsruhe, Germany. These calculations
showed a surprising result: if the unit-square is divided into 2" X 2" subsquares,
then AN is extremely small for most factors a. For example, if the generator is defined
by yi+i m 5lsyt (mod 236) and the unit-square is divided into 210 X 210 equal sub-
squares, AN is equal to one of the values 0, ± 1, ± 2, ±3, ±4, ±5, ±6, ±7, and
-8. This means: each of the 210 X 210 subsquares should contain 233"20 = 8,192
pairs Xi, xi+x. The actual numbers lie between 8,184 and 8,200. The bound (1. 7) is
39.75 < 40.

These theoretical and numerical considerations show:
The factor a can be chosen in such a way that x, and its successor xi+x are nearly

independent.
This property is particularly important for the generation of transformed random

variables. A typical example is the construction of a standard normal variable z
from two uniformly distributed independent random variables x and y according
to the formula z = (—21nx)1/2 cos wy. The convenient method of taking two suc-
cessive pseudo-random numbers for x and y is legal only if successors and predecessors
are statistically independent. Another example is numerical integration by Monte-
Carlo methods. Here, it is always assumed that pairs of successive pseudo-random
numbers are statistically independent.

The generator yi+x = 515j,- (mod 236) has the property that all quotients q( of
the Euclidean algorithm for 516 and 233 are small. However, some often used
generators have quotients q¡ which are quite large. These generators do not produce
pseudo-random numbers which are as uniformly distributed in the unit square.
For these generators it will be shown that to each large q¡ there corresponds a set
of sloping strips of subsquares of the unit square with equal values of AN. Although
the values of AN are small for most 'reasonable' choices of the factor a, such pseudo-
random number generators cannot be recommended: The set of sloping strips of
subsquares with equal AN ^ 0 causes a systematic deviation from the uniform
distribution of pairs x„ x,+1 in the unit square.

The results of this paper also show that the mixed congruential generator (r ?¿ 0)
has no advantage over the purely multiplicative congruential generator (r = 0).
Any adjustment of r cannot improve the statistical independence of pairs of pseudo-
random numbers.

The paper is self-contained except for some number-theoretical results in Section
2 (length of period) and Section 4 (reciprocity formula). The formulas for the exact
distribution of pairs are derived in Section 3. They are discussed in Section 5.
Section 6 contains numerical results. A comparison of different generators closes
the paper.

2. Length of Period and Generated Residues. The linear congruential method
(1.1) generates nonnegative integers y¡ which are smaller than the modulus m. If
yn — y a (mod m), the whole sequence {yi} is repeated. The smallest integer n such
that yn = Vo (mod m) is called the length of the period. For a good approximation
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to the continuous uniform distribution, the period should have maximum length
for a given modulus m. Fortunately, the maximum periods of the linear congruential
generators depend on relatively simple properties of a, r, and m. As the results are
different in the two cases r jé 0 (mod m) and r = 0 (mod m), they will be quoted
separately.

Case a. r f¿ 0 (mod m)—Mixed Congruential Method. The result is stated as
Theorem 2.1. A complete period of the sequence (1.1) contains all residues mod m,

if and only if
(i) r and m are relatively prime;
(ii) a = 1 (mod p) for all prime factors p ofm;
(iii) a = 1 (mod 4) if A is a factor ofm.
A proof of this theorem can be found in Hull/Dobell [14], Jansson [17], Knuth

[19]. In the proof, the relationship

(2.1) v„

a'y{ + (a°     + a"     + • • • + a + \)r (mod m),

a* y i -\-— r (mod m)    if a ^ 1 (mod m),
a — 1

ayi + sr (mod m) if a = I (mod m)

is prominent. (2.1) is a direct consequence of the defining recursion (1.1) and will be
used later on. In the rest of this paper, it is assumed that the conditions of Theorem
2.1 are always fulfilled.

Case h. r = 0 (mod m)—Multiplicative Congruential Method. If the increment
r is zero, the relation (2.1) can be simplified as

(2.2) yi + , = a" y i (mod m).

For the statement of the final result which corresponds to Theorem 2.1, an arithmetic
function X(m) has to be introduced.

Definition 2.2.

(2.3) X(V) =

O — l)p"        if p t¿ 2, p prime,

2'"£ if p = 2,eè 3,
i«-i2 if P — 2, e =  1 or 2,

and

(2.4) \(m) = \(pï ■ ■ ■ p'/) = LCM(X(a'), • • •  , \(p'')).

(LCM = Least common multiple.)
Secondly, the concept of a primitive element mod m is needed.

Definition 2.3. a is called a primitive element mod m if
(i) a is a primitive root mod p for all odd prime factors pofm;
(ii) a""1 jé 1 (mod/j2) ifp2 ¡^ A is a factor ofm;
(iii) a = ± 5 (mod 8) z/8 is a factor ofm;
(iv) am —I (mod 4) if m is even and m ^ 0 (mod 8).
With these definitions, the final result for the Case b can be stated as follows.
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Theorem 2.4. The sequence (1.1) with r = 0 (mod m) has maximal period of
length \(m) provided that

(i) y0 and m are relatively prime;
(ii) a is a primitive element mod m.
In the proof of Theorem 2.4, the recursion (2.2) is prominent. From now on,

it will be assumed that these conditions for y0 and a are fulfilled.
The Generated Residues. The mixed congruential method (r ?± 0) generates all

residues mod m if the directions of Theorem 2.1 are taken. Therefore, the interval
[0, 1) is covered by the x, in (1.1') such that all fractions p/m occur. This is obviously
the best approximation to the continuous uniform distribution within the accuracy
\/m.

In the case of the multiplicative congruential method (r = 0), the generated
residues mod m are not always spread as evenly. Therefore, Theorem 2.4 has to be
supplemented by a detailed study of the residues which are obtained within a full
period.

For this and for later purposes, an integer / is defined which depends solely on
the modulus m:

Definition 2.5.

(2.5) / is the smallest of the divisors n of m for which \(n)/n = \(m)/m.

If m/f is denoted by c one has

(2.6) m = cf    and    \(m) = c\(f).

lfm = 2" and e = 3 then / = 8. It is easy to see that each prime factor p of m divides
/. Since the directions in Theorem 2.4 for the choice of the factor a and the starting
value y0 are conditions mod p for odd p\m and mod 8 if 8\m, they are, in fact, con-
ditions mod /. Hence, the generated residue classes mod m may be classified in terms
of a set of residue classes ru r2, • ■ ■ , run mod /. From here, the generated pseudo-
random numbers may be represented as

(2.7) - + -;,- + -;, ••• ,- + —r"    where p = 0, 1, ■ • • , c — 1.c       cf   c       cf c cf

For applications of (2.7) to any given m, a, and y0, one starts with the determination
of /. Then the generated residues r, (mod /) are calculated. Obviously, they depend
only on the choice of the factor a and the starting value y0. Only half of the number
of possible choices for yQ have to be considered: if y0 is changed into — y0, the pseudo-
random numbers x,- = yt/m are merely transformed into — x¡ - —yi/m =
1 — (yiIm) (mod 1). Therefore, only those y0, for which 0 < y0 < f/2, will be con-
sidered in the following special cases.

Case A. m = 2''. These moduli are important since they are convenient on
binary computers. One can, of course, assume that e ^ 3. Depending on the choice
of the factor a, two subcases arise:

A.l. a = 5 (mod 8), y0 = 1 (mod 4). All residues

(2.8) Ap+ 1       0» = 0, 1, ••• ,2-2 - 1)

are generated. The derived pseudo-random numbers x¿ = yt/2' are as uniformly

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



860 u. dieter

distributed as possible within the accuracy l/2e~2. Since a classification mod 4 is
possible, / = 8 may be changed into / = 4 and therefore X(/) = 1, deviating from
Definition 2.5.

A.2. a = 3 (mod 8), y0 = I or 3 (mod 8). All residues

(2.9) 8m + 1, 8/i + 3        0* = 0, 1, • ■ • , 2-3 - 1)
are generated. / = 8 and \(f) = 2 remain in accordance with (2.5). The distribution
is not quite as uniform as the last one.

Case B. m = p', p ¿¿ 2. This case covers the odd prime numbers and their
powers, p' = 2* ± 1 and pe = 10* ± 1 are of practical interest. One has / = p,
A(/) = P — 1 and c = m/p = p'~x- The residues

(2.10) pp + v       (p = 0,1, ■■■ .p"1 - l,v = 1,2, ■■■ ,p - I)

are generated provided that the directions in Theorem 2. 4 are taken. If m is a prime
number p, all residues except 0 are generated. For e > 1, additional gaps occur at
all points pp.

3. Joint Probability Distribution of Pairs. In this section, pseudo-random num-
bers will be related to their successors: the joint probability distribution of the pairs
Xi, xi+i will be determined. The main tool is the theory of the generalized Dedekind
sums from which an accurate expression for

(3.1) AP = P(x g Xi < x + Ax, y =" xf+, < y + Ay) - AxAy

will be calculated. The results can be generalized easily to arbitrary pairs x,, xi+„
since the probabilities

P(x Ú Xi < x + Ax, y =: xi+, < y + Ay) — AxAy

for s > 1 may be obtained from the formulas below if the factor a is changed to a',
and r to r(a* — \)/(a — 1) if a ^ 1 (mod m) and rs if a = 1 (mod m). This is readily
seen from formula (2.1).

In an ideal random sequence, all AP should be very small signifying statistical
independence of predecessors and successors.

The discussion of (3.1) is started with a few elementary remarks. If x¿ and x are
numbers between 0 and 1 (excluding 1), the following formula holds:

i3 2) ,   T    if 0 ^ x, < x,

if x £¡ Xi < 1.
Therefore,

,, -, , .       r .  ,        1    if x < Xi < x + Ax,(3.3) [x( - x] - [x( - x - Ax] - J - T
[0   otherwise.

The left-hand side of (3.3) can be written in terms of the first Bernoulli polynomial

(3.4) Pi(x) = x - [x] - $

as

(3.5) [Xi — x] — [Xi — x — Ax] = Pi(x¿ — x — Ax) — Pi(x¿ — x) + Ax.
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Now let n be the period length of the pseudo-random numbers x, (i.e. n = m or
n = \(m)). Then the following formula for AP is a consequence of (3.5):

AP = - ¿ [/»,(*,- - x - Ax) - Pi(Xi - x) + A*]

(3.6)
[/\(x,+1 - .y - Ay) - Pi(xm - y) + Av] - A*Ay

1   n
= - 22 [p¿Xi - x - Ax) - P^x, - x)]

n  ,_!

where

Ay
n

[Pi(Xi + i - y - Ay) - Pi(xi+i - y)] + P., + R2,

¿ [/»,(*, - x - Ax) - P,(x, - x)]

(3.7)
= Av [P(x ti Xi < x + Ax) - Ax],

Ax   "
R2 = — E [^.(^i + i - .V - Av) - P,(xi+1 - y)]

n    ,_!

= Ax [P(y ^ xi+i < v + Av) - Ay].

According to the results of Section 2, the quantities F(x á x, < x + Ax) — Ax
must be small; otherwise the pseudo-random numbers are not uniformly distributed.
For an exact calculation of (3.7), a lemma is needed. (For the definition of ((x)),
see (1.4).)

Lemma 3.1.

P/-00/. Since the function /\(x) is periodic with period  1, one can  assume
0 ^ x < 1. Therefore,

V piß + x) = V (ß + x - -)
JZ%      \     m    )        pí\     m 2/

m — 1   , m 1        _ , ,.
= —^-r x — —- = x — - = Pi(jc),2 2 2

proving part (i) of the lemma. If x ^ 0 (mod 1), part (i) and (ii) of the lemma coincide;
If x = 0 (mod 1), one has

%t)) = f,t)) = l(î-i)
m — 1        m — 1= —2-2- =      = ^)'

which proves the lemma.
From now on the two cases r ^ 0 (mod m) and r = 0 (mod m) have to be

considered separately.
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Case a. r fé 0 (mod m). In this case, x4 = p/m and xi+1 = ((ap + r)/m) (mod 1),
where p runs from 0 to m — 1. Furthermore, the following notation will be used

(3.8)        x = & ,        x + Ax = — ,    and    y = ^ ,        y + Ay = ^-
m mm m

With the help of Lemma 3.1, the residual terms Ri and R2 in (3.7) are calculated
first:

*i = ±=±± E {*(* - *) - pU - ±)\m JrS I    \m       ml \m       ml)

Ji        J\ \Pi(-h) - PA-D],

r2 = ±^A E {p,(^^ - A) - p/^^ - i)|

V*1 [*»(-/,)- Pi(-/i)].

Without loss of generality, it can be assumed that Iu I2, Ju and J2 are integers. Then
Ri and R2 vanish.

Now, the main part of AP, the expression (3.6), is calculated. One has

which becomes by the substitution p —* p + I2 and p —► p + Iu

AP = 1 E W^W" + fl/a "  Ji + ') - Pi(ApÍ^ + q/2 ~  /x + r)

- Pi(4(3! + «A - * + ') + P, WPl(ffi + fl/' - * + ')}.
(3.9)

Here the sums are almost generalized Dedekind sums, since the function ((x)) differs
from Px(x) only for integer values. As this concerns only the values p = 0 and
p = —Ix + a~lJy — a~xr (mod m), where the subscripts X and v stand for 1 or 2,
(3.9) becomes

(3.10)

ap   .   ah —  J, + r

//a/i       a/, —  72 + A
Wot m I

níW(í+íí^rLtí"¡
where
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2mR3 =  -Pl[al2-J2 + r) + Px(a/> "Jl + ")

+ Pl(°Ii -J2 + ') - Pi(fl/l "/' + r)

Val2 —  J2 + r~\ _ Val2 —  Jx + r\

_ Val, - J2 + r~\       Valí -  Jr + r~\

2mRi =  -pK^2 ~r)- l2) + Pi(a'1(J2 - '> - M

+ p/fl'Vi - r) - ¿A _ p/a'l/i - r) - Ii\

_  [W, - r) - 7,"| _ ["«"'( /, - r) - /."I

_ ["fl-'(/i - r) - 7,1 + |"a~'(/i - r) - 7,1 _

Both expressions are of the form [a + b] + [c + d] — [a + c] — [b -{- d], which is
either — 1, 0, or +1. Consequently, P3 and P4 can only attain one of the values
— I/2m, 0, +1/2/71. This means that R3 + P4 is bounded by \/m.

Consequently, the final expression for AP becomes

(3.12)       AP = - E  (-tf*VÄw,+r(a, »0 + *    where \R\ ^ -•

Case b. r = 0 (mod m)—General Considerations. In this case, the pseudo-random
numbers x,- and their successors x.+i have the form (2.7):

P   \r>                    - av _i_ ar< (m a nx,- = - + — ,        x, + 1 =-1- (mod 1)
c       cf c cf

where p = 0, 1, • • • , c — 1, and the r, are residues mod /. Again, the notation (3.8)
will be used. Then the residual terms Ri and R2 in (3.7) become by means of Lemma
3.1:

r>      ._   Il_h(3.13)        l        ^

=   J* ~
cfk(1)

^gR+s-D-^+s-s)}
^W't6)-^)}

and similarly

If / is small, it can be assumed that L = I2 and Ji = J2 (mod /). Then (3.13) and
(3.14) vanish. If L fé I2 or /x ^ /2 (mod /), (3.13) and (3.14) have to be calculated
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exactly. A bound for Ri + R2 is given by

(3.15) \Ri + R2\ Ú-(I^A + A^A)^--c  \     cf cf      I       c

Now the main part (3.6) of AP will be calculated.

(3.16) •w'+^)-M7+^r»
where R' = Rx + R2. If

(3.17)      I, jé r„        I2 jé r„ Jx já r„ J2 jé r, (mod /)    for all r,

the function Px(-) can always be changed into ((•)) and AP becomes again an
alternating sum of generalized Dedekind sums. If one of the conditions (3.17) is
not fulfilled, the change of Px( • ) to (( ■ )) produces the following terms

Rt = 2c\(1)

where

. [l     ifx = 0(mod 1),
5(x) = 1

[o    ifx jé 0 (mod 1).

A reasoning similar to that after (3.11) shows that R3 and P4 are bounded by \/2c\(f).
This gives the final answer

(3.18) AP = -¿- E  E  (-DX+M5Í(íi-rx)..ix-/>.c) + Ä + Ä',
CAÍ./;   r,   x.M-i

where P is bounded by \/c\(j). If 7j = I2 and ^ = J2 (mod /), P' is 0; otherwise,
R' = Ri + R2, where Rx + P2 is bounded by (3.15) and has to be calculated
according to (3.13) and (3.14).

The results (3.12) and (3.18) show that AP is essentially an alternating sum of
generalized Dedekind sums with the same principal arguments a, m or a, c.

Case c. r = 0 (mod m)—Special Cases. For later discussion, the results of the
previous subsection will now be applied to some special m. The moduli m = 2" are
most important as they are convenient on binary computers.

A.l. m = 2°, e = 3, a = 5 (mod 8), y0 = 1 (mod 4). All residues of the form
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4/i + 1 (p = 0, 1, • • • , 2"~2 — 1) are generated. Therefore, c = 2e~2, / = 4, r, = 1
and formally, X(/) = 1. Without loss of generality, it can be assumed that h = Ia
and Ji = J2 (mod 4). (3.18) now becomes

(3.19) AP = -J=5 E (-DX+,,4-.(Wx)..rx-/,(fl, 2e-2) + P,        |Ä| á J=5"
■¿     x,^-i I

If A = I2 jé 1 and yx = J2 jé 1 (mod 4), the residual term R is 0. If Ix = 72 = ^ =
72 = 1 (mod 4), (3.19) can be simplified a little

(3.19')        AP = ~ E   (-l)X+"i£/x-/„(«. 2'-2) + P    where |P| g i
•¿        X.m-1 z

This expression is of the same form as (3.12) with m = 2'~2. It will be discussed
further in Section 7.

A.2. m = 2',e^3,a=3 (mod 8), y0= I or 3 (mod 8). All residues of the form
8/i, + 1, 8/i + 3 (p = 0, 1, • • ■ , 2'"3 - 1) are generated. Therefore, c - 2'"3, / = 8,
\(j) = 2 and r, = 1 or 3. Again, it can be assumed that A = 72 and Jx = /2 (mod 8).
(3.18) now becomes

Af = it   (-l)X+M{4î-).(1-rx)..rx-.,(a. 2'"3) + 4î->.(8-rx>..rx-^(«. 2e"3)} + P
(3.20) x"-" k J

where |P| Ú ~Zy^'

B.l. m = p' ?£ 2", p prime. All residues of the form pp -\- v (p = 0, \, ■ ■ • ,
p"~l — 1, j» = 1, • • • ,p — 1) are generated. Therefore, c = //~\ / = p and /•„ = »,
The residual terms P, (3.13) and P2 (3.14) are calculated first by means of Lemma'3.1 :

- ä^ö (i w^) - ̂ )} - 4-?) - *(-*)}
and hence, if 7, and 72 are integers,

For P2 a similar value is obtained.
To simplify the expression (3.18) for AP, a lemma is needed.
Lemma 3.2.

n-l

E sl%\,h(a, c) = 0«, « c).
»-0

Proof. If /i runs through the residue classes 0,1, • • • , c — 1, and j> runs through
the residue classes 0, 1, • • • , n — 1, then pn + v runs through all residue classes
0, 1, • • • , nc — 1. Consequently:
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E sir+ua, o - g £ ((Ä + ^))((- + afyf+fi+eh))
7To TTotToWc nfc   IIWc nfc II

fp y. (Ipn + v        g \\(fa(pn + v)      ag + ch\\
'  fío fk \\    ne      "^ h/c/A\       rc +       r/c     //

C:i(a. Re)

which proves the lemma.
An application of the lemma yields for (3.18),

D-l p-1

2-1 sv-Hr-i).ai-j(a, p    )—  2-1 sv'-n*-i).*i-Aa, p    ) — S-p,-,I¡aI-j(a, p    )
r-l ,-0

(3.22) = si*Vr..r-/(a, p') - lSJ?-.j.rf-/(a, p"1)

= «o.ar-/(a, P ) — »-»•-»r.ar-/(«i P     )■

(3.21) and (3.22) give the final answer

AP = -^rrj-n E  (-Dx+"
P (P   —    1) X.M-l

(3.23) -{fíS.-/,(a, p') - si'P?...Jx.a,w,(a, p-1)} + R

where |P| g -?rrrj-- + 4 < 4-
P    (P — 1)      P       P

B.2. m = p,p prime. Then, / = />, c = 1 and s^^/a, 1) = si'j'.-XO, 1) =
((I/p))((J/p))> according to Corollaries 1 and 2 of Section 4. Therefore, (3.23) can
be simplified to

(3.24) AP = —X— E   (-l)X+"s0:à/x-^(«. P) + R    where \R\ = -^— •
P   —    1   X.M-l P   —    1

The significance of the present expressions will be discussed in Sections 5, 6, and 7.
At the moment the results are merely summarized as

Theorem 3.3. The joint probability distribution of pairs of pseudo-random numbers
is expressed in the following formulae: for r jé 0 (mod m) in (3.12), for r = 0 (mod m)
and arbitrary m the expression is found in (3.18). In particular, for m = 2' and
a ss 5 (mod 8) in (3.19), for m = 2e anda = 3 (mod 8) in (3.20), and for m = pe ^ 2*
in (3.23) and (3.2A).

4. The Computation of Generalized Dedekind Sums. In the preceding sec-
tion, it was shown that the determination of the exact number of pairs of pseudo-
random numbers in a given rectangle can be reduced to the evaluation of generalized
Dedekind sums.

The methods of computation which are presented here utilize a number of
theorems on these sums which were proved in 1957 (cf. Dieter [6]). The correspond-
ing theorems for ordinary Dedekind sums s(a, c) have been known since Dedekind's
Supplement to the Complete Works of Bernhard Riemann. They are the special
cases g = h m 0 (mod /) in all the subsequent identities.

Reciprocity Formula. Let (a, c) = 1. Then
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sgn cs%(a, c) + sgn as<%, a) = £ /»,(«) + ¿ P2(^*) + ¿ P2(^)

+ \\{Kf)){\fÍ)    Íj (g' A) ̂  (0, 0) (m°d /}
.—\ sgn(ac)      if g = h = 0 (mod /).

Here

P2(x) = (x - [x])2 - (x - [x]) + \

is the second Bernoulli-polynomial.
Corollary 1. s(/l(a + nc, c) = sl/],„+k(a, c), n integral.
COROLLARY 2. S¿(0, 1) = ((g/f))((h/f)).
Corollary 3. #!(-*» c) = -si^a, c) = -¿^»(fl, c).
The corollaries are simple consequences of the definition of the generalized

Dedekind sums. The Reciprocity Formula is a deeper arithmetic law; for a proof
see Dieter [6], Meyer [26], Rademacher [28], or a forthcoming paper of the author [10].

The stated identities are utilized for a computational procedure in the following
way. Let s = s(//h(a, c) be the generalized Dedekind sum to be evaluated. If |a| iä |c|,
change s into a sum for which |a| < |c| by means of Corollary 1. Now, use the
Reciprocity Formula for exchanging the numbers in the positions a, c and g, h. The
new \a\ is no smaller than the new |c| and can therefore be reduced by an application
of Corollary 1.

Repeated steps of this kind will decrease the numbers in the positions a and c
until, finally, Corollary 2 becomes applicable. Often the process can be shortened
by applications of Corollary 3. The procedure suggests an Euclidean algorithm
for a and c:

a = qac — ay

c = qiüi — a2

(4.1) \
a„-2 — qn-ia„-i — an

a„_! = q„an    where an = ± 1.

The \ui\ must form a decreasing sequence if the process is to terminate. Since the
signs of the q{ and a¡ may be chosen freely, one can in fact ensure that

(4.2) |fli+1| = \ \ai\.

This assumption causes all <?, and a¡ to be uniquely determined. In Corollaries 1
and 3, the subscripts g and h are also transformed. This suggests the definitions:

(4.3) (g„, h.) = (q,gv-i + «,_!, — gv-i),        (g-x, h-x) = (g, h).

For the final expression, another integer, called d, is needed, d is the last number
in a chain of numbers 6, which is defined as follows:

(A A\ *n+l — «n, bn = 0, b„-i =  — ¿>n+1 =  — an,(4.4)
bk = qk+ibk+i — bkl2    for k = n — 1, n — 2, • ■ •  ,0,-1.
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(4.6)

+

Now

(4.5) bo = d

is used for the final expression of the Dedekind sums.
Theorem 4.1. Let the quotients q, be defined by the Euclidean algorithm (4.1), (4.2),

the subscripts g„ h, by (4.3) and the integer d by (4.4), (4.5). If (g, h) jé 0 (mod /)
one has

in,„    . _  d     (ag + ch\

If g = h = 0 (mod /), the ordinary Dedekind sums are obtained and the expression
(4.6) changes to

(4.7) s0!o(a, c) = s(a, c) = ——-— E 1* + 7 E sgn(a,_!ar)12c 12 fTo A fTi
where sgn (x) = x/|x| ifx^O and 0 otherwise.

Theorem 4.1 will be proved by induction. A different proof may be found in
Rademacher [27] for the ordinary Dedekind sums and in Dieter [6] for the generalized
Dedekind sums.

Proof of Theorem 4.1. The following identity will be considered first:

sgn (c)s'/X(a,c) = sgn (0*i?-..»..-.(«.-.. aJ - £- pJyS + C*)

(4.8) - ±* P2(*f) + i pJI^J^) + i 4l)

-É(t))((t))4-^.)^)<^Mt)}-
The function

(4.9) 5(x)=J1    tf'-OOnodl).
lO    if x jé 0(mod 1),

enables one to obtain (4.6) and (4.7) simultaneously from the special case m = n in
(4.8). The next two consequences of (4.1), (4.3), (4.6) and Corollary 2 show this:

sgn (an)slil,.h„_,(an-i, a„) = sgn (aJslC,A„_,(?»«», an)

= sgn (a„>ti)_,.(In,n_1+A„_1(0> an)

= iiï..,.(0, 1) -(»))

and

2an P\  f  )-  2 P2\f)-
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(4.8) will now be proved by induction. The case m = 0 is easily verified. The
induction step from m to m + 1 uses Corollaries 1 and 3 and the reciprocity formula
as follows:

sgn (am)sól>-,,x„-1(am-i. am) = sgn («,)s,._„l..,(?A — am+i, aM)

= sgn («!«>£»-,.«»««-,+»—,(~am+i, am) =  —sgn (am)sl",am(am+i, am)

= sgn (am+i)sllm¡h„(am, am+i) + ~sgn(amam+1) By-J 8\-j — \\^))\\f))

am p   (gm\    _ 1 _    p   (flmgrn   +   «.+ lÜ    _   "ntl    p   [O

2am+i2\f)       2amam+lP2\ f )        2amF*\f)'

The last term is transformed using (4.1) and (4.3):

After a substitution of (4.10) and (4.11) into (4.8), it merely remains to show that

bm       fag + ch\ _        1 lamgm + am+ihm\ _       bm+x       fag + ch\
2a„    2\      /       /       2amam+i    2\ f I 2am+i    2\      f       I

This identity follows from the relations

(4.12) ambm+i — am+ibm  = 1,

(4.13) amgm + am+xhm = ag + ch.

Formula (4.12) will be proved by descending induction. It holds for m = n since
a\ = 1. The induction step from m + 1 to m is carried out by means of an identity
which follows from (4.1) and (4.4). Namely,

ambm+\ ~ am+lbm = (qm+iam+i + am+2)bm+i — am+i(qm+ibm+i — bm+2)

= am+xb.m+2       am+2bm+i.

Formula (4.13) will be proved by ascending induction. It holds for m = —1,
since a-ig-i + a0«-i = ag + ch. The induction step from m — 1 to m is carried out
by means of an identity which follows from (4.1) and (4.3).

amgm + am+ihm = am(qmgm-i + hm-x) + (qmam — am-0(—/?m-i)

=   Um-lgm-l  + amhm-i.

This completes the proof of formula (4.8) and therefore of (4.6) and (4.7).

5. Numerical Considerations. Further information on the joint distribution
of pairs (xt, xi+1) can be extracted from Section 4 in which the precise calculation of
generalized Dedekind sums was outlined. This will throw some light on cases in
which the Euclidean algorithm for a and m or a and m/f has some large quotients.

The discussion will be based on generators

(5.1) j\ + i = av, (mod 2e),    where a = 5 (mod 8),
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since they are most important on binary computers. The unit-square is divided
into 2" X 2" subsquares of equal area 2"2a. Hence, the following quantity has to
be calculated

A  MA -> T-2DI    A     <- ^    A   +    \ p M   +    1  1 .«-2-2»
AA/(X, p) = 2    PI—  = x,■ < - , — g x, + 1 < -1 — 2\2a 2°        2" 2°    /

which becomes, by use of (3, 19),

AA/(X, /i) - S2--...x-m(«. 2e"2) - sr.-)...(x+i)-M(a. 2e~2)
„(2») [ ~i-2>      , (2") ^ T«-2s

— s2«-=,ax-M-i(a, 2     ) + s2«-.i0(x+i)_M_i(a, 2     ).

The calculation of s^i(a, c) in Section 4 starts with the Euclidean algorithm for a
and c:

(5.3) a — q0c — al; c = qxai — a2, ■ ■ ■  , an-2 = qn-ian-i — an, an-t = qnan.

Then, the integers (gv, h,) are constructed:

(5.4) (g-i, h-x) = (g, A),        (g„, A„) = (?,/i,_i + «,_j, —gv-i).

To obtain a simple expression for g>; h„ the so-called vth convergent to the fraction
a/c is defined as follows:

s0      <7o Si I s2 1
9o-,        ~ = <7o

i0 1 ii 9i f2 Qi —  1/92

and, generally,

(5.5) s, = q,s,-i       sv_j, tv = <7„i,_i       f„-2.

That (5.5) defines the Kth convergent to a/c follows from

\q,                 |S„-i        s,_\ q.+J_

[a,-)t,-i
\ 9f+i/

<?>'+l(i7>''i'-l '»-2) 'f-1 <7»+l'» '»-1 '»+1
r,_2

(5.5) yields the following expression for (g,, A„):

(5.6) (g„, A,) = (s,g + r,A, —s,_ig — i,_iA),

which can also be proved by induction:

(g,+i. A„+1) = (q,+1g, + h„ —gv) = ((q,+xs, — s,-x)g + (q,+xt, — tr-i)h, —gr)

= (Sy+ig + i, + iA, — syg — t,h).

With these definitions, formula (4.6) can now be applied to (5.2). However, the
following terms in (4.6),

<*?*) - h <i) ■ 14)- #* 4+) ■ Ai) - •*$
appear four times with alternating signs. Consequently, they cancel each other.

d_
2c
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The last sum E"-o (fer//)X(«»/7)) is bounded by \(n + 1) and will be denoted by P.
Therefore, one obtains

- P2(^ + "-l(aX - " " °)

/s„_i       f,_i(aX + a — /p\
- P\-T +      —jr      )

(5.7)

+ P2(^ + ^»(^+^-M-_lfy4 2°

(5.8) = -- Ë 9r5v_, + P    where \R\ £ n + I.2   „-i

Formula (5.7) results in a global bound for AiV(X, p):
Theorem 5.1. If the generator is defined by y',+1 = ay( (mod 2"), a = 5 (mod 8),

the deviation AN(\, p) is globally bounded by

(5.9) |AAT| ú\ Ê |a,| + «+ 1.^    i-0

Proof The second Bernoulli polynomial is bounded by — TV ̂  P2(x) g £. Hence,
the curly bracket in (5. 7) is bounded by \, which proves Theorem 5.1.

It should be noted that similar theorems are true for generators yi+x = ay{ + r
(mod m) with r ^ 0 or r = 0.

To obtain stronger results, the term in the curly brackets in (5.7) has to be
calculated exactly. For this, two lemmas are needed.

Lemma 5.2. P2(x + Ax) - P2(x) = 2AxPi(x) + (Ax)2 - 2 AxP, where

R = 0 if n ;£ x, x + Ax < n + 1 for some integer n,

0 < P ^  1     if n — l:£x<H=:x + Ax<n+l      for some integer n,

— 1 ^ P < 0    if n — 1=:x + Ax<«=:x<h+1      /or some integer n.

Lemma 5.3. Px(x + Ax) — Px(x) = Ax — P, where

R = 0        if n 5Í x, x + Ax :§ « + 1 /or jome integer n,

P=l if n — l=:x<n=:x + Ax<n+l    /or some integer n,

P =  — 1     if n — l:gx + Ax<«=:x<n+l    /or «owe integer n.

Proof of Lemma 5.2. As the function P2(x) is periodic with period 1, one can
assume 0 g x < 1. Hence,

P2(x + Ax) - P2(x) = (x + Ax - [x + Ax])2 - (x + Ax - [x + Ax]) - x2 + x

= 2 Ax(x - i) + (Ax)2 - [x + Ax][2(x + Ax) - [x + Ax] - lj

= 2 AxPj(x) + (Ax)2 - R'.
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If [x + Ax] = 0, then R' = 0. If [x + Ax] = 1, then P' = 2(x + Ax) - 2 ^ 2Ax.
If [x + Ax] = -1, then P' = -2(x + Ax) = -2Ax - 2x = 2 |Ax| since x ^ 0 and
Ax ^ 0 in this case. This proves Lemma 5.2.

Lemma 5.3 is obvious and will not be proved here.
The term in the curly brackets in (5.7) will be denoted by S,-x and \s, +

(l/2a)i,(aX — p) by A,. Two applications of Lemma 5.2 and one of Lemma 5.3
result in

(5.10) S, = P2(A,) - P2(a, - ^) - [p2(a, + Ç) - Pi(a. + f- ■£')}

(5.11) = 2 'p{Pl(A. - ±) - Pi(a, -£ + *)- *í" + *i"]

(5.12) = -2-^-^+2-^ {«•" -*»" +*•")    where |P<"| = 1.

It can be assumed that ¡\ and ai, are reduced mod 2". Let the residue x for which

(5.13) x = x (mod 2a), |x| = 2""1,

be denoted by x. Then (5.12) yields, for A7V(X, p),

(5.14) AA/(X, m) = - E «~ift («s" - «i" + RÍ") - h-^) + R',-o        \2 2    2 /

where |P'| _ n + 1 and the R\y) are bounded by 1.
To clarify the further discussion of (5.14), some additional notations are

convenient.
Definition 5.4. An index v for which q, is large is called essential; all other indices

are inessential. A subsquare Q(\, p) = [X2"a, (X + 1)2_") X [/i2"a, (p + 1)2~") is
called regular, if there are integers n, such that

(5.15) n, <   A, - — , A„ A, + — - — , A, + —  < n, + 1

is true for all essential v, where A, = \sv + (\/2°)t,(a\ — p). Otherwise, it is called
irregular.

In terms of these definitions, a theorem is formulated which is an elaboration of
the expression (5.14).

Theorem 5.5. If the subsquare Q(\, p) is regular, then
n T

(5.16) A 1V(X, p) = E Q. £s=î-=tî + P'    where \R'\ = /, + 1.
»-i       2"      2"

(5.16) is s/iza// i/z most cases and often zero. IfQ(X, p) is irregular, then each essential
index v,for which (5.15) is not fulfilled, contributes to AN(\, p) the amount

(5.17) -q, l^iJ/?<"    where |P("| ^ 1.

Pc,) is positive for pairs X, /*, z/i,._, > 0, a/,-, > 0, or i,_, < 0, at,-i < 0 and if
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there is an integer n, such that

(5.18) f- («, + K-i) - 1 < p - «X < j— (n, + K-i) + a-

P(,) is negative for pairs X, /t, //?,_. > 0, ai,.! < 0, or rF_. < 0, at,-i > 0 and if
there is an integer n, such that

(5.19) f- (r, + |s,_j) + â - 1 < M - äX < f- (r, + K-i).<»-i '.-i
Proof of Theorem 5.5. If a subsquare g(X, p) is regular, all P^' are zero. Hence

(5.14) results in (5.16).
If a subsquare g(X, p) is irregular, some of the P^are not zero. For the subsequent

discussion, it will be assumed that t,-x > 0 and at,-i > 0. The discussion in the
remaining three cases is similar and left to the reader.

According to (5.15), one of the following inequalities must hold for some
integer n,:

(5.20) *j* + ^ (a\ - p) - ^ < ~n, ^ '-** + ^ (aX - p),4 2 2 4 2

(5.21)

(5.22)

—- H- (aX - p) < -n, g —- + — (aX - p) +-4 2 4 2 2

'-T1 + IT («X - M) +
4 2 2

., ^- s»_i       i»_i af,_!
<  -r. = — + — (aX - m) + — •

If (5.20) is true, then 0 < Pi'"1' ^ 1, P'""1* = 0, P''"11 = 1. The term Pi'~u appears
during the transition from (5.10) to (5.11). The term R¡'~u appears during the tran-
sition from (5.11) to (5.12). Hence, the contribution to AM^> p) is

-q, ~ »•'"" - Ri~l)) = -9. H' *(">    where ° = Ä<" =  »■

If (5.21) is true, then Pi'-1) = P2'"u = 0, P*'-1' = +1. There appear no terms
R['~v and P^-1' during the transition from (5.10) to (5.11), but there does appear
the term R¡'~u = +1 during the transition from (5.11) to (5.12). Hence, the con-
tribution to AMX, ß) is

-a, ^d RÍ"" = -a, ^1 Rw    where P<" = 1.

If (5.22) is true, then P''"1' = 0, 0 < P2'"u g 1, P''"1' = 0. Only the term P''"1'
appears during the transition from (5.10) to (5.11). Hence, the contribution to
AMX, p) is

-q, ^ P2-U =  -q, }~l P("    where 0 < P(" < 1.
2" 2"
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P2'"n is 0 if the right-hand side of inequality (5.22) is an integer and obtained by
—»,. Consequently, the g sign in (5.22) can be changed to a < sign.

It has to be shown, that the conditions (5.20) to (5.22) are equivalent to (5.18).
A multiplication by 2"/i,-x changes (5.20) to (5.22) into

(5.200 |L(„, + ^)-1<M-aXá|l(R,+^),

(5.210 |l(/J, + ^)<M_ûX^|l(^ + £f) + 5_1,

(5.220        £(r, + >-f) + -a - 1  < p - aX < £-(r, + >-f) + a.

As the contribution to AMX, p) is similar in the three cases (5.20) to (5.22), (5.200
to (5.220 can be taken together into (5.17). This completes the proof of Theorem 5.5.

Theorem 5.5 needs some further discussion.
If the number of subsquares 22° is large compared with the quotients q¡, all the

regular subsquares will have a value zero for AN. Hence, only the irregular sub-
squares are of interest. If ä > 0, (5.17) shows that the irregular subsquares for qr
are situated at

(5-23)   £(»■+'-t) -■ < > - *x * £(«■+st)+*■

If X = 0, p attains the values

'-£(*+«?). + y,    where x = 0, 1, ••• , ?„_i — 1, v = 0,1, •

This means: Each row contains (a + \)t,-i irregular subsquares corresponding to q„
They are cut in t,-x subsets of subsquares; each subset consists of â + 1 neighbouring
irregular subsquares. Furthermore, the whole set of (X, <i)-values subject to (5.23) is
contained in t,-x sloping strips. The slope of these parallel strips is —l/ä. Due to
this slope, each strip is cut into |ô| pieces. The |ö| strips contained in (5.23) for fixed x
will be called one strip for obvious reasons.

The situation is best explained with the help of a sketch which shows the strips
of irregular subsquares of Example 1 of the next section. There, only qx and q2 are
significant. Furthermore, one has à = — 3, s0 = 0, t0 = l,Si = l,ti = 3 (mod 2°) for
small a ^ k (k is given). Hence, (5.19) is applicable and

(5.24) 2" - A < p + 3X < 2",

(5.25) y (n + 1) - 4 < p + 3X < y (n + |).

The strip which corresponds to (5.24) is denoted by 1. The strip which corresponds
to (5.25) consists of three substrips; they are denoted by 21, 22, 23. The slope of all
strips is \.

The situation is not so simple if more than two of the quotients g,- are significant.
In such a situation, some of the strips can overlap and partially cancel each other.
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The examples to follow will throw some further light on the situation.

875

6. Numerical Results. The formulas in Section 3 can easily be translated into
computer programs, which allows rapid calculations of the value of A/V for a given
rectangle. Computations of this kind have been carried out with the help of J. Ahrens,
Halifax, and A. Grube, Karlsruhe. The generators were of the type yi+x = ay i
(mod 20 with a = 5 (mod 8). The unit-square was divided into 2" X 2" subsquares
of equal size. Typical results for AN = 2"2AP are given in the next tables.

Table 1. >>i+1 = 16381 yt (mod 228); values of AN = 226AP

(o 1)     (i.4l     (2.2)     (Ih.)     (ii.2)     (1±\     tá 1)     tli)\u>a!       \p.'P.)       Vr'«'       ^H'S'       "■«'ft.'       '•ft'«'1       >«'«'       \R,'>k8'8J l8*8' l8'8 8'8J k8'8J l8'8J

(0

(i

(I
(I

(4
(i

2)

I)

171

170

-341

171

171

-286

228

-281*

171

171

-286

228

-284

171

170

-341

228

-284

171

170

-341

171

171

-286

170

-341

171

171

-286

228

-284

171

171

-286

228

-284

171

170

-341

171

-284

171

1/0

-341

171

171

-286

228

-341

171

171

-286

228

-284

171

170

-286

228

-284

171

170

-341

171

171
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Table 2. yx+i = 41475557 y, (mod 228); values of AN = 226AP.

<i*l
X; e

(0 1)    (12)    (2.2)    (2 1)    (h.2)    (2 k)    (ál)    (1 ,)\v,8)      \%<8)      V8.8;      \8'8'      v8'8;      ^8'8;      v8*8'      v8'    '

(0,1)

d
(*
(I
,6

(*

!)

i>

I)
D£)

O

-1

1

-1

2

1

0

-2

2

1

0

-2

0

-1

1

-1

The tables show the following facts:
(i) The rows (columns) are cyclic permutations of the first one. A shift of tnree

to the left changes a row into the next one.
(ii) The deviations AN are surprisingly small. The second generator is superior

to the first one.
Fact (i) follows immediately from (5.2). This shows that only the first row has to

be calculated.
It is no surprise that the second generator is better than the first one. The quotients

of the continued fraction for 41475557 and 226 = 67108864 are given by 1, 3, 3, 3, 3,
3, 3, 3, 2, —2, 21, 4, —A, —5, —3, 3, whereas the quotients of the continued fraction
of 16181 and 226 are 0, -4097, -4, 455, 5, 2.

The next three examples treat some generators more systematically. The first
two are generators which cannot be recommended. The third one, suggested by
O. Taussky, generates pseudo-random numbers which are nearly independent on
the unit-square.

Example 1. The generator is of the type a œ sfc:

(6.1) m = 22k+2,       c = 22\        a = 2* - 3.

The Euclidean algorithm for a and c starts with

2* - 3 = 0 X 22* - (-2* + 3),        22* = (-2* - 3)(-2* + 3) - (-9),

-2k + 3 = a2(-9) + e, |e| z< A.

Hence,

a0 = 0,       a, = -2* - 3,       fla ftf £(2* - 3),       =Fo„ = 1, 2, or 4,

and

so = 0,       t0 = 1;       «i = l,       h = 2* + 3.

The only essential indices are v = 1 and v — 2. Formula (5.18) of Theorem 5.5 yields:
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If Q(X, p) is irregular, then

(6.2) AN « -2k~"    if n X 2" - A < p + 3X < nX 2a, 0 < n < A,

(6.3) AN « \2k~a    if §(« + \)2" - A < p + 3X < \(n + i)2°, 0 < « < 12.

(6.2) is a sloping strip of width 3. (6.3) consists of three strips of width 4.
Actual calculations according to Section 3 were compared with the approximate

values (6.2), (6.3). The case k = 13 was tested by dividing the unit-square into
29 X 29 subsquares. Hence, the values of (6.2) and (6.3) became

AATœ-16 if 512« - 4 < p + 3X < 512«, «=1,2,3,

16       .   rr    .,.512          128 ^ ,v       512      ,   128    A  „      ^ ,„A/V œ y = 5, 66    lf ^ " + ^-4<m+3X<—n + — ,0<n<12.

The actual values for A;V are, for X = 0,

-16,-16,-16    if p. = 509, 510, 511,

1, 6, 5, 4 if/i = 39, 40, 41, 42,

3,6,5,2 if p = 210, 211, 212, 213,

6, 5, 5 if/i = 381, 382, 383.

Note how accurate these values are.
Although the values of AJV indicate reasonable uniformity of the distribution of

pairs, the generator cannot be recommended: The strip (6.2) is deficient for general
k and a, by 3 X 2'"" X 2" = 3X2* pairs. These missing pairs are contained in the
other three strips of (6.3). In the example k = 13, this is a dislocation of 24576 out
of 67,108,864 pairs, constituting a small but systematic deficiency of the generator.

Example 2. The generator is of the type a œ \rm:
,£■     .-. *2fc+2 r,2k r.k+1 *,(6.4) m = 2      ,       c=2,        a = 2      — 3.

The Euclidean algorithm for a and c is
2t+1 - 3 = 0 X 22* - (-2*+1 + 3),

22k = (-2k~l - 1) X (-2t+1 + 3) - (2*_1 - 3),

_2*+i _|_ 3 = (_4) x (2*-i _ 3) _ 9)

2"-1 - 3 = q3 X 9 - É, |e| = 4.

Hence

a, =  -21-1 - 1,        a2 =  -4,        a3 «i £(2t_1 - 3),        Ta4=l,2    or 4,

and

50 = 0,        i0 = 1;       s, = 1,        ?! = 2*"1 + 1;       s2 = 4,        fs = 2*+1 — 3.

As a2 may be neglected, formula (5.18) of Theorem 5.5 shows:
If Q(X, p) is regular, then

AN~ i [3(2i_1 - 1) - 3(2*-' - 3)] = — » 0;       .
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if g(X, p) is irregular, then

(6.5) AN tt -§2*~1_a    if r2" - 4 < 3X + p < n2a, 0 < n < A,

«_     ANtt\2k-x-a        iff X 2° - 4 < 3X + p < \ X 2", 0 < n < 12,
(6.6) o j

n jé 0 (mod 3).

(6.5) is again one sloping strip of width 3 and (6.6) consists of two strips of width 3.
Again, actual calculations according to Section 3 were carried out for comparison:

k = 13 and 29 X 29 subsquares lead to values for (6.5) and (6.6) of —5.66 and 2.66,
respectively. The actual values were —5, —5, —6 for (6.5) and 3, 3, 2 and 2, 2, 3, 1
for (6.6). The strip (6.5) had a deficiency of 3 X f X 2k'1~" X 2" = 2* pairs. The
generator is better than the previous one but it is not really recommended because
it still suffers from systematic deficiencies of the distribution of pairs.

Example 3. This generator, suggested by O. Taussky [30], is widely used:

m = 235,        a = 515 = 4 747 774 349 (mod 230-

The Euclidean algorithm (4.1) for 4 747 774 349 and 233 yields the quotients:

q( = 1, 2, -A, A, -8, 5, -23, -5, 4, 13, 3, 6, 2, -A, -2, 3.

The bound (5.9) of Theorem 5.1 for AN is equal to 38|. The actual values of AN
are given in Table 3. The unit-square was divided into 210 X 210 subsquares of equal
area. The maximal values of AN are —8 and +7. Only the values for AMO. p),
0 ^ p ^ 1023 are given; the other values AMX, p) for X ¿¿ 0 are cyclic permutations
of these values.

7. Final Conclusions. The question has been raised whether any particular
value of r in the mixed congruential generator yi+i = ay( + r (mod m) offers special
advantages. From the behaviour of pairs (x¿, x,+1), a negative answer seems to be
indicated.

Obviously, the probability P(h S y, < 72, Jx 5Í yi+1 < J2) is equal to
P(h S y< < h, Ji Ú ay i + r < J2). If r is changed into r + r', one has

1}        Pili Ú yi < h, Jig ayi+r + r' < J2)

= P(7j Ú yi < h, Jx-r' = ay, + r <   J2 - r').

Hence, a shift r —> r + / simply moves the rectangle [I¡, I2) X [Jx, J2) to
[Iu I2) X [Ji — r', J2 — r'). The same can be deduced from formula (3.12)

(7.2) AP = -  E   (-l)X+*Soma'iw,+r(a, m).
m \,p.-i

Changing r into r -\- r' merely moves Jy to Jx — r' and J2 to J2 — r'.
For the total square [0, 1) X [0, 1), the consequences are as follows: If this square

is split into n2 equal subsquares of length 1/n, the integers h and J„ are of the form
vm/n, where v = 0,1, • • • , n — 1. Thus, as long as / is a multiple of m/n, the change
r—tr + r1 effects the same cyclic permutation on all subsquares of each strip parallel
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to the /-axis. In other words, it merely permutes the "rows" [0, 1) X [A, Jt) of sub-
squares cyclically.

Table 3
Values of AN(0, /x), 0 â ß < 1024, for the generator yi+i m 5isyt (mod 235)

ix-  u'+p» f^o 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

- 0
20
¡10
60
80

100
120
HO
160
180
200
220
240
260
280
300
320
340
360
380
4oo
420
44Ö
460
480
500
520
540
560
580
600
620
640
660
680
700
720
740
760
780
800
820
840
860
880
900
920
940
960
980

1000
1020

-2
-5
+ 3
+ 2
-5
+ 3
+ 2
-4
+ 1
+3
-3
-2
+ 5

0
-3
+5

0
-6
+2
t2-4

0
+3
-2

O
+ 5
-2
-5
+4
+ 1
-3
+ 3
+ 1
-4
+ 1
+3
-5
-2
+ 5

O
-2
+5
-1
-4
+ 3
+1
-5

O
+ 5
-3

o
+6

-4
O

+5
-3
-4
+4

O
-2

+4
-1
-5
+4

-3
+ 2
+ 2
-5

+2 +2
-4 +4

-2 +4

+ 3
+ 1

-5
-2

-1
+ 5

o
-4
+ 3
+ 3
-7

O
+3
-3

O
-6
+ 2
+ 3
-6
-3
+ 5
-1

O
+6

-5 +4
+ 1 -1

+2
-4

o
+6
-4
-4
v4
+ 1

-1
+ 5
-1
-5
+4
♦ 2
-4
+4

+ 3
-2
-2
+5

o
-2

O
+4

o
-3
+3
+ 2

+2 -3
+4 -4
-2 +4
-3 +2
+ 5 -5

O O
-6 +3
+2 -3
+2 +2
-3 +4
+3 -6
+2 -3

+6
-1
-3
+ 2
+ 1
-2
+ 2
+ 1
-7

O

+6 -8
-2 O
-7 +3
+2 -2
+3 +1
-5 +4
+1 -3
+3 -2
-2 +5

0.-1
+ 5
-3
-5
+4

-2 +1
♦3 -5
-1 O
-6 +5
+3 -3
+2 -2
-5 +4
-2 O
+5 -7

O +5
O -1

+ 5 -7
-3 +3
-3 +2
+4 -5
+1 +1
-5 +3

O -2
+3 O

-5
O

+4
-1
-3
+ 4
+ 1
-1
+4
-1
-7 +5
+ 1 -2

+2 +3
-4 +2
+3
+1
-5
+2

+ 4
-3
-4
+4
+ 1
-4
+3

+2 -3
-5 +5

-3 +1
+3 -4
+2 +1
-4 +2

+ 4
-5
-1
+ 3
-1
-1
+4

-1
+4

o
-1
+ 4
-1
-5

-2
+6
-1
-2
+6
-1

+ 1
-2
+ 4
-1
-8
+ 2

-3 +3
+2 -5

-2 +2
-6 +4

+ 1
-5
4-1
+4
-3

O

+ 2
+ 1
-7
+ 1
+ 6
-3
-1
+ 5
-1
-2
+4
-1
-4 +3

+ 1
-4
♦ 2
+2
-4
+ 3
+4
-6
-2
+ 5
-1
-1
+4

O
-4
+4
+ 1
-8
-1
+ 5
-3
+ 1
+4
-3
-1
+ 5
-1
-5
+3
+2
-3
+2
+2
-4

O
+ 5
-3
-2
+4

O
-2
+3

o
-7
+ 1
+ 3
-4
+ 1
+3
-3
-1

+ 1
+ 2
-4
+ 1
+4
-5
-5
+ 4
+2
-3
+4
-1
-5
+4
+ 2
-5
-2
+ 6

O
-1
+ 5
-3
-4
+ 5

o
-5

O
+4
-3
+ 1
+ 3
-5
-1
+ 5
-2
-3
+4
+ 1
-4
+ 2
+ 1
-6

O
+ 5
-3
-1
+6
-2
-2
+ 3

o

+4
O

-3
+2
+2
-3
+3
+3
-6
-1
+5
-2
-1
+4
-1
-3
+3
+ 1
-8

O
+4
-3
+ 1
+4
-2
-2
+4
-1
-4
+4
+ 2
-4
+2
+3
-6
-1
+5
-3
-1
+4
-1
-2
+3
+ 1
-8
+ 1
+3
-4
+2
+ 3
-3

-4
+ 1
+ 1
-4
+ 2
+ 3
-4
-5
+6
+ 1
-3
+ 4
-1
-4
+4
+ 1
-5
-1
+6
-1
-1
+ 5
-3
-3
+4

O
-5
+ 2
+ 3
-4

o
+ 3
-4
-2
+ 5
-1
-2
+ 5

O
-4
+ 2
+ 1
-5

O
+ 5
-3

O
+ 6
-3
-3
+ 3

+ 3
-3

o
+4
-2
-4
+3
+3
-4
+ 3
+2
-7
+ 2
+3
-4
-1
+ 5
-1
-2
+4
-1
-5
+ 3
+ 1
-5
+ 2
+4
-3
-1
+4
-2
-2
+ 5

O
-4
+ 5
+ 1
-6

O
+ 3
-2

O
+4
-2
-1
+7
-2
-6
+ 2
+ 2
-3

-3
+ 5

O
-3
+ 2
+3
-3
+ 1
+3
-6
-2
+ 5
-2
-1
+4

o
-4
+ 4
+ 1
-7
+ 2
+ 3
-3

O
+ 5
-3
-2
+4
-1
-3
+ 3
+ 1
-4
+ 2
+ 3
-7
-1
+ 5
-3

O
+ 3
-1
-3
+4

O
-8
+ 1
+ 4
-3
+2
+ 2

+2 +1
-5 +3
+2 -4
+1 +1
-3 +3
+ 1 -2
+3 -3
-4 +4
-3 +2
+6 -4

-4 +4
-2 +2
+5 -5
-1 +2
-3 +2
+3 -4
+2 +1

+3
+ 1
-6

o
+ 3
-4

O
+ 5
-1
-3
+4

o
-5
+2
+2

+4 -5
O +3

-4 +3
+3 -4
+2
-4

O
+4

+ 5
-1
-2

-3 +4
3 O

+6 -7
-1
-4
+ 2 -2
+ 2 -1

+4
-2

O
+ 5
■3

+5 -6
3 +2
4 +3

-4
+ 1
+3
-6
-1
+4
-1
-1
+ 5
-1
-4
+4

O
-5
+ 1
+3
-3
♦ 1
+6
-4
-3

-5 +5
+ 1 -3
+4 -3
-3 +4
-1 -1
+4 -3
-2 +3
-2 +1
+5 -6

+2
+3
•5

+2 -2
-6 +5

O -1
+3 -1
-4 +5
+ 1 -2
+ 5 -4
-2 +4
-3 +1
+4 -4
+ 1
-6
+2

O
+3
-3

+ 5 -3
-1 +4
-2 +1
+2 -4
+1 +1
-4 +4
+3 -4
+2 -3
-8 +6
-1
+ 5
-2
-1
+3
-1
-2
+5

O
-7
+ 1
+5
-3
+1

+2 4-1
-4 +5
+4 -5
+2 -3
-5 +5
-1 O
+4 -3
-1 +2
-3 +1
+4 -3

O +3
-2 +1
+6 -8

O
-8
+ 1

-1
+6
-2

+5 -1
-4 +4
-1
+4
-2 +5
+1 -1
+4
-3
-7
+3

-7
+3
+5
-4

This leaves the question whether the mixed congruential generators yi+i =
tyi + r (mod m) have any advantage over the purely multiplicative generators
J\+i — ay, (mod m). Undoubtedly, the mixed generators provide a larger period for
the same modulus.
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In the following comparison, purely multiplicative and mixed generators with
the same period 2e~2 and the same factor a are taken:

(7.3) yi+i m ayi + r (mod 2'"2),        a = 5 (mod 8), r = 1 (mod 2),

(7.4) yi+i = ayt (mod 20   ,        a s 5 (mod 8),        y0 = 1 (mod 2).
For both generators the probability that

,, ,. , , _ /y,     y,-+i\ c-   _7j__   _A_\ v \ J±_     J2 \
(l--1) (Xi,  Xi + l)   —    \-ye-2   »   ^«-2/   fc ~e-2   >   .(-2I    A _s-2   .   ',»-21

will be calculated. For the generator (7.3), one has

(7.6)
/A. < Jü_ < .A 7i   < ay, + /■       _y|_

2.-2 =      2.-2     < 2,-2

=   p(-L- < -Ü- < -A.    A_ r        a/i /a -
=    2«-2    <• 2        / (0 g »u < 2'"2).

This expression was determined in (3.12) as

(7.7) ¿2_Il    V   -A___A   _|_        ̂  V*      / l\Xf„<2'~*> / -)«-2\
~i-2 A -t-2 T    ~»-2     2—1      y '/ s0,a(\-J,t r\a,   Z ).

For the generator (7.4), one can use that yt is of the form Ap'  +   1  where
0 ^ p' < 2'~2. Hence, the subsquare in (7.5) may be changed according to

[A,    Jr)
|_2.-2 . y-2)

X 47, + 1     472 + f\ v  VaJi + 1    4/2+ A
/x I    2e     '    r    )

This yields, for the probability of (7.5),

p( A_ < ^ < A_   _A < £!Zi < „A
\2""2 = 2*       2e_2 ' 2"~2 =2' 2"

(Ali + 1  < £¡       472 + 1     AJi + 1       £*       4/2 + A
\     2'       = T 2'       '       2'        =2" 2'      I(7.8)

Ah + 1       4m' + 1        47, + 1     47, + 1        4a// + a
2' <

■72 + A

(7.9)      = P ^e-2   ==    ~e-2
72

-*e-2   »

7i - 1 1

~«-2 =    -»-2   ^-

(7.8) was calculated in (3.19); for the application of (3.19), Ix and /„ have to be
substituted by Ah + 1 and AJ„ + 1 and a factor 4 has to be cancelled in the subscripts.
This yields

(7.10) ~z^2     X      r^j       \-    e_2   2_i   (    1)    s0,<,rx-/„+(o-i)/4(a, 2     ).
¿ z ¿        x.^-l

If one compares (7.6) and (7.9) or the equivalent expressions (7.7) and (7.10),
one realizes immediately:

The multiplicative congruential generator (7.4) is equivalent to the mixed con-
gruential generator (7.3) with r = (a — l)/4. As the mixed congruential generators
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are equivalent for different increments r, they are all equivalent to the purely multiplica-
tive congruential generator (7.4).

It should be mentioned that a similar argument is true for triplets, quadruplets,
and any number of pseudo-random numbers. Hence, the above material indicates:

A special choice of the increment r has no advantage with respect to the joint
probability distribution of two, three, four, or more successive pseudo-random numbers.
If the modulus is of the form m = 2e, r = 0 seems to be as good a choice as any. For
random-number transformations, it has the advantage that a precise 0 is never generated.

This shows that the properties of the linear congruential generator are merely
determined by the factor a. The results of this paper suggest the following rule for
the choice of the factor:

The factor a should be chosen in such a way that the Euclidean algorithm for a and
c = m/f (in the multiplicative case) or a and m (in the mixed congruential case) has
small quotients. In particular, for the generator yi+1 = ay; (mod 20, a = 5 (mod 8),
the quotients of the Euclidean algorithm for a and 2'~2 should be small.

A measure for the quality of the generator is the global bound

(7.11) ; Ê \9i\ +«+U  \AN\
*t    i-0

for the deviation AA^ of pairs x,, x,+1 in any subsquare of the unit-square. It was
derived in Theorem 5.1.

It should be noted that such a choice of the factor a results also in a small value
for the serial correlation pi between x, and x,+1. The explicit expressions for px can
be found in Dieter/Ahrens [8]. They are again sums of generalized Dedekind sums.
For example, for the generator yi+i = ay, (mod 20, a = 5 (mod 8), one has

48 /,„      ..-2,      _i_\y^s,„(a,2     )-TxJ.)
(7.12) />, = -tt^sl^a, 2-2).

1  - — 21 22.

In a subsequent paper, it will be shown that the frequency of permutations of
triplets can also be expressed as sums of generalized Dedekind sums. For example,
for the generator yi+1 = ay i (mod 20, a = 5 (mod 8), one has the following expressions
where a'1 stands for an integer for which aa~l = 1 (mod 20

P(X;_,   <  Xi   <  Xi + i)  -

2"

6

(4).    2      T«-2,.      , (4) ,    2 f-2\Si,0(a, 2     ) — Si,0(a ,2     ) + suo(a   — a, 2     )

+ si:0(a-2 - a"', 2-2) + 45Í40(a, 2'"o} + R„

P(X,   < Xi + 1   <  Xi-i)  - 6
1       J (4),    -1 .       .1-2,      , (4),    2 .       -«-2.,

,7=2)—Si.o(a     —1,2     ) + s,.o(a   —1,2     )2'

+ Cía - a2, 2-2) + IÍV - a. 2-0 - As^d + a"1, 2-4)l + P2,
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P(Xi  < Xi-i  < X, + I) - -

2

where

1      J (4) y .      •e-2',     i        (4),   -2,■35)— Si,o(a - 1, 2     ) + S!,o(a     —1,2    )

+ si^a'1 - a~2, 2-2) + Oa - a"1, 2e"2) - 4Sl(40(l + a, 2-4)| + Ä8,

»   ._ 1 _       8 »   ._ A _       32 „   _  _1 _       32
Ki - 2.       3 x 22e , «2 - 2.       3 x 22" *3 ~       2'       3 X 22*

if a = 5 (mod 16),

R   - _± _       8 »   _  _A _       32 n   _ A _       321 ~      2'       3 X 22e ' 2 ~      T       3 X 22e ' 3 ~ 2'       3 X 22*

if a = 13 (mod 16).

The residual terms Rx, P2, P3 are extremely small for any choice of the factor a.
The exact values of P(x,_! < x{ < xi+x), P(x¿ < xi+x < x¿_i), P(x{ < xt-i < xi+0
can be calculated using the results of Section 4. For most 'reasonable' factors a,
these values are rather small. For example, for the generator

yi + i = 41475557 y, (mod 220

only 3, 2, or 1 triplets are dislocated. More details will be given in the forthcoming
paper [9].

Often, bounds for P(x¡_! < x, < xi+0 — è are sufficient. For this purpose, the
function D(a, c) defined in (1.6) may be used. If the factor a is chosen in such a way
that

D(a, 2-2), 7J(a - 1, 2e-2), D(a + 1, 2-4), Z)(a_1 - 1, 2-2), D(a~1 + 1, 2e"4),

D(a, 2-4), D(a2, 2'~2), D(a2 - 1, 2-2), 7>(a-2 - 1, 2'-2),

D(a2 - a, 2-2), D(a~2 - a'\ 2"2), D(a - a"1, 2'"2)

are generally bounded by K, then

2-2(P(x,_1 < x, < xi+1) - \),

2-2(P(x, < xi+1 < x.-,)- |),

2-2(P(x; < Xi-i < xi + 1) - |)

are bounded by 8^ + f. This means: At most 8^+2 triplets are dislocated with
respect to their order.

This shows again the high quality of some linear congruential generators.
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