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Pseudo-spin–valley coupled edge states in a
photonic topological insulator
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Pseudo-spin and valley degrees of freedom engineered in photonic analogues of topological

insulators provide potential approaches to optical encoding and robust signal transport. Here

we observe a ballistic edge state whose spin–valley indices are locked to the direction of

propagation along the interface between a valley photonic crystal and a metacrystal emu-

lating the quantum spin–Hall effect. We demonstrate the inhibition of inter-valley scattering

at a Y-junction formed at the interfaces between photonic topological insulators carrying

different spin–valley Chern numbers. These results open up the possibility of using the valley

degree of freedom to control the flow of optical signals in 2D structures.
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T
opological concepts have recently entered the realm of
photonics. Topological states of light engineered in a
variety of systems, from magnetic photonic crystals to

silicon ring resonators and waveguide arrays, and across the
electromagnetic spectrum, from the microwave to the optical
domains, have been shown to exhibit fascinating phenomena
such as robust guiding and quantum entanglement of photons1–9.
These demonstrations and the great potential for photonics
applications are spurring research in the optical domain. How-
ever, one significant problem in scaling down topological designs
is the complexity of their geometries, which make them hardly
feasible with present-day nano-fabrication techniques. There has
therefore been growing interest in simpler designs in which
topological states could be emulated in photonics by using lattice
symmetries and associated synthetic degree of freedom (DOF)
that might be achieved in structures that are less challenging to
fabricate. One such approach is based on the use of the valley
DOF. Valley is an additional discrete synthetic degree of freedom
in crystals with triangular and hexagonal point symmetries.
Valley refers to one of the two high-symmetry points of the
Brillouin zone, the K and K′ points and their immediate neigh-
borhoods, and can be viewed as a pseudo-spin DOF. Conserva-
tion of the valley DOF under a broad class of perturbations10

makes it suitable for emulating photonic topological states and
facilitates the design of valley Hall photonic topological insulators
(VHTIs)10–16.

The valley DOF has recently gained prominence in condensed
matter physics in the context of valleytronics (i.e., valley-locked
electronic propagation) in a wide variety of materials17–21. In
VHTIs, one considers a restricted topological phase of photons
that is defined at only one of the two valleys and is characterized
by a valley projected half-integer Chern number associated with
the valley: CK/K′

= ±1/2. Such a restricted topology is often suf-
ficient to lead to edge states at the domain walls between parity
conjugate VHTIs with opposite valley Chern number11. To dis-
tinguish such edge states from states of conventional electronic

and photonic topological insulators (TIs), such edge states are
also referred to as valley–Hall kink states22–26.

The control of currents by manipulating the valley DOF has been
successfully realized in novel electronic devices such as the valley
splitter and the valley valve27–29. These developments have further
stimulated the exploration of the valley DOF of photons. The interest
in generating fully valley-polarized electromagnetic waves stems from
potential applications in valley-based information encoding and
processing30,31. However, in order to manipulate the valley DOF, it is
necessary to properly break the valley degeneracy. For instance, a
photonic valley splitter was achieved by utilizing the valley-dependent
trigonal warping distortion in graphene bands28,32. Previous pub-
lications have suggested that a valley photonic crystal (VPC) could be
created by lifting inversion symmetry10,33. These results show that
valleytronics may provide a practical approach for realizing a full
control of photonic states in valley–Hall systems.

The development of photonic TIs opens up the possibility of
extending valleytronics to optics where the valley DOF is com-
bined with the pseudo-spin DOF responsible for the topological
order. Although interest in the valley DOF in the context of
topological photonics is increasing rapidly, the properties of such
hybrid topological states combining valley-polarized waves with
other synthetic degrees of freedoms in photonic TIs have not
been realized experimentally.

Here we demonstrate that the combination of valley and
pseudo-spin degrees of freedom in one system enables unidirec-
tional states along the interface between aVPC and a photonic
TI34,35 with entangled valley and pseudo-spin degrees of freedom.
Based on this property, we construct a spin-valley polarized
splitter for the edge states which can be used to route signals in
optical networks and interconnects.

Results
Metacrystal design. To create valley-polarized edge states con-
fined to an interface, we juxtapose a VPC and a topological
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Fig. 1 Schematic of the sample configuration. a Side view of the structure. b Arrangement of two crystalline regions with the two copper plates on top and

bottom removed. Lattice constant a= 1.0890 cm. c, d Unit cells of two crystals emulating the quantum spin–Hall (QSH) and quantum valley-Hall (QVH)

effects. Dimensions of unit cells: H= 1.0890 cm, hc= 0.3580 cm, dc= 0.6215 cm, d0= 0.3175 cm, h= 0.5040 cm, g= 0.0810 cm, l= 0.5020 cm.

e, f Berry curvatures of the triangular lattice (valley Hall crystal) for the TE mode in the valence bands near the K and K′ points
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photonic crystal (upper region in Fig. 1a, b) possessing a complete
topological band gap. The elements of the topological crystal are
copper rods with concentric collars, as shown in Fig. 1c. The rods
can be pushed to be in contact with one or the other of the
bounding copper plates or to lie between the plates. When the
collar deviates from the midpoint between the plates, ơh sym-
metry is broken and a bandgap opens at Dirac points. Reducing
ơh symmetry leads to coupling between transverse-electric-like
(TE) and transverse-magnetic-like (TM) modes, in which the Ez
and Hz components vanish. The eigenstates of the structure are
then a mixture of TE and TM modes whose in-phase and out-of-
phase combinations define pseudo-spin up and down states36,37.
This rod-collar-lattice emulates the quantum spin–Hall (QSH)
effect38,39, with the bulk bands (with collars at the bottom,
Fig. 1c) acquiring spin-Chern numbers C↑↓= ±0.5 in both the K
and K′ sectors36 (The effective Hamiltonian is shown in Sup-
plementary Note 1).

The structure10 emulating the quantum valley Hall (QVH)
effect is shown in the lower region of Fig. 1b. Copper triangular
prism pairs with a gap between them (Fig. 1d) are arranged in a
triangular lattice. A bandgap appears for this orientation of the
triangles40, as shown in the bulk photonic band structure
(Fig. S1 in ref. 34). The dimensions of the triangular prisms are
selected so that there is an appreciable overlap of the bandgap
of the rod-collar-lattice and the triangle-lattice. As a result,
electromagnetic waves propagating in the metawaveguide
within this frequency range are confined to the interface and
decay exponentially into the surrounding domains. A novel
feature of this interface is that the edge states are spin–valley-
polarized, providing an additional tool for guiding transport as
compared to a trivial 1D channel.

Unlike the rod-collar-lattice with bianisotropic response, the
TE and TM modes in the triangular structure are decoupled

owing to the ơh and C3 symmetry of the triangular prism11. The
structure is designed so that TE and TM modes are degenerate
near the K/K′ valleys and the pseudo-spin states can still be
defined. The triangular unit cell differs from a trivial photonic
crystal in that it breaks inversion symmetry. This gives rise to
different local Chern numbers in the two valley sectors. The Berry
curvature41,42 for the TE mode around the two valleys is shown in
Fig. 1e, f. The local valley Chern numbers in the K/K′ sectors are
±0.5, while the global Chern number vanishes due to TR
symmetry. Similar results are obtained for the TM mode as a
result of the degeneracy of the TE and TM modes. These
numerical results agree with the theoretical value obtained using
the effective Hamiltonian method10. We note that rotating the
triangular prisms by 180° reverses the valley Chern number for
the TE/TM modes from CK/K’= ±0.5 to CK/K’=�0:511. The
bulk-interface correspondence principle ensures the presence of
edge states when there is a difference in the topological invariant
across the interface43–45. As a result, the Chern number difference
is (−0.5)−0.5=−1 for the super-cell shown in Fig. 2a in the
spin-down sector of the K valley. This corresponds to a
backwards propagating spin-down state at the K valley. Similarly,
a forward spin-up state exists at the K′ valley. These counter-
propagating edge states are protected by TR symmetry and are
immune to backscattering46,47 in the absence of a magnetic field
and magnetic materials.

Edge states and effect of disorder. As a first step, we demonstrate
the existence of edge states by measuring the transmission spec-
trum. Measurements are performed for a zigzag cut of the crystal,
as shown in Fig. 1b, because reflection of the edge state at the
interface between the metawaveguides and air is inhibited in this
case10. The source and detector dipoles are inserted vertically
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through small holes in the copper plate. A comparison of trans-
mission spectra for a straight line and a path with a 60-deg turn
(Fig. 3c) is shown in Fig. 2c. Although the intensity near the left
edge of the bandgap (~20.3 GHz) decreases by 5 dB in the case of
the bent path relative to the intensity for the straight path, the
signal at the middle of the bandgap is the same for both paths.
The high-transmission plateau inside the bandgap (shaded part in
Fig. 2c) reflects the confinement of the edge state. This contrasts
with a drop in transmission of ~15 dB in the pass band. In
addition, the strong suppression of transmission in the bulk of the
TI lattice and the lattice of triangles, which is seen in Fig. 2d,
confirms that the observed transmission is due to the excitation of
the edge state. This proves the robustness of the edge state
encountering a bent path. Strong suppression of backscattering at
a corner is a signature of topologically protected edge states and
makes it possible to realize unidirectional electromagnetic
transport along a complex path.

Structural defects are inevitable in fabricated materials.
Considering that the spin and valley indices of the states are
locked to the transport direction, the edge state reflected at a
turning point or at defects will experience both inter-valley
mixing and spin flipping. Because of the large separation in
momentum space between K and K′, it is reasonable to suppose
that the valley index is conserved to a high degree. Here, we
focus on the spin–orbit coupling term, Hcoupling ¼ εmB ŝz τ̂z σ̂z ;
pushing rods to the opposite copper plate switches ɛ from 1 to
−1. Two kinds of disorder are introduced in experiment: firstly,
weak disorder when a collar is positioned between the plates so
that ɛ is between −1 and 1, and secondly, strong disorder when
a collar is moved so that it is in contact with the opposite plate,
so that ɛ=−1.

The strength of backscattering and the conservation of valley
in the presence of disorder can be determined from measure-
ments of the delay time. The band structure (Fig. 2a) gives a
nearly constant value of the group velocity across the band gap,
vg ¼

∂ω

∂k of 1.06 × 108m/s. The group velocity can be extracted
from the linear increase of the delay time with position along

the domain wall. The delay time is equal to the spectral
derivative of the phase48, τ ω; xð Þ ¼ dφ ω;xð Þ

dω
, where φ is the phase

shift of the electric field between the source and detector, ω is
the angular frequency, and x is the distance from the source.
The average delay time τ is obtained from an average over seven
configurations.

The inverse of the slopes determined from the data in Fig. 3d
for straight or bent paths are in agreement with the calculated
group velocity. This demonstrates that the wave propagates
ballistically along the bent paths. When some of the collars are
positioned between the two plates, the measured velocity is found
to be 9.86 × 107m/s, which is close to the value of 1.04 × 108m/s
in the ordered sample. This shows that valley and spin are
conserved on the scale of the metawaveguide used in the
experiment. However, when disorder is introduced by having the
rods touch the opposite plate, the mean dwell time increases
(green line in Fig. 3d) compared to the dwell time for the edge
state of the ordered crystal. This indicates that the wave follows
longer trajectories because of scattering (Fig. 3b) and the
spin–valley indices are not conserved. These measurements
reveal the limits of robustness of the edge states.

Valley-dependent waveguiding. For photonic communications,
the valley DOF can be used to encode a binary logic, 0 and 1. A
valley splitter will then play an important role in filtering sig-
nals by their binary state. To achieve such functionality, we
incorporate three different domains in a single platform: lattices
with collars up or down (collars in contact with the upper or
lower plate) and a triangle-lattice. The resultant Y-junction
provides a basis for realizing the valley splitter11,16. The wave is
injected into port 1, as shown in Fig. 4a. Two spin-down states

at both valleys (Ψ#
K=K ′ ) are supported along the transport

direction in the channel between collars-up and collars-down
lattices34, while each output channel of the Y-junction supports

only a single spin-down state in a single valley (φ#
K=K ′ ).

According to the photonic band structure (Fig. 2a, b), the edge
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state φ↓ is exactly at the K/K’ valley at 21 GHz. For the Ψ↓ state,
this frequency should be 21.5 GHz (Fig. 2 in ref. 34). Since the
pseudo-spin DOF does not determine the path here, the edge
state will follow a path based on the valley polarization, pro-
vided that inter-valley scattering can be neglected at the Y-
junction. To test this, we control the valley index of the source
and compare the transmission spectra at the two outputs. In
order to generate a single-valley signal at port 1, the wave first
goes through a filter (a path segment between a rods-down
lattice and a triangle-lattice) so that all incoming modes are
evanescent except for the edge mode. The valley of the input
edge state can be altered by rotating the triangles 60°. (from
Fig. 4b–d). In the case of Fig. 4b, the input mode carries K′

valley. K′/K valley edge states are supported along the domain
wall from the intersection towards ports 2/3 , respectively. If the
valley is conserved at the intersection point, the wave should
only follow the path to port 2. As expected, we observe a drop
in transmission of ~10 dB around 21–21.5 GHz at port 3 (red
line in Fig. 4c). As the frequency is shifted from the 21 to
the 21.5 GHz range, the signal in port 3 remains small com-
pared to the high transmission plateau of port 2 (blue line in
Fig. 4c). This shows that the inhibition of inter-valley scattering
is strongest for the edge states exactly at K/K’, i.e. the waves
largely maintain their original valley indices. To further
demonstrate this, we conduct a contrast experiment. When the
valley of the input signal is changed to K (Fig. 4d), we see a
similar phenomenon with port 2 and 3 exchanging roles
(Fig. 4e). The dip of the signal in port 2 around 21.2 GHz is ~30
dB lower than the signal at port 3, which demonstrates the
suppression of transport along the path to port 2. Simulations
carried out with COMSOL Multiphysics are in agreement with
measurement. In this experiment, the path selected is purely
decided by its valley property. Distinct valley signals are guided

to different outputs with contrast of 20–30 dB. This indicates
that the valley DOF of electromagnetic waves is robust at the Y-
junction.

Discussion
The experimental results presented here demonstrate the
robustness of the edge states along the interface between QSH-
like and QVH-like photonic crystals. Energy entering the system
can move along a bent path without appreciable scattering or
additional delay. The Y-junction integrated into such a system
can then serve as a fault-tolerant valley splitter. While previous
bulk valley splitters28,33 could only steer valley-polarized waves in
fixed directions (such as the ΓK or ΓK′ directions), the Y-junction
demonstrated here is reconfigurable and the shape of the edge can
be laid out in forms that are not restricted by the orientation of
the unit cell of the 2D platform.

The approach taken here of exploiting pseudo-spin and
valley DOF to guide microwave radiation can potentially be
extended to the optical domain. In Supplementary Note 2, we
present a design for a germanium nanostructure lattice that
emulates the QSH effect. Designs for dielectric lattices sup-
porting valley are also being pursued to create photonic
structures in which the valley DOF can be used to control the
flow of optical signals along domain walls separating QSH and
valley photonic crystals.

Methods
Numerical simulations of Berry curvature and band structure. The Berry
curvature is calculated using the numerical eigenstates obtained with use of the
COMSOL RF module. We apply Floquet periodic boundary conditions on the unit
cell and sweep the k-space under COMSOL eigenfrequency sector. The Berry
curvature is given by Ωv=∇k × Av, where Av=−i<Ev(k)|∇kEv(k)>, with subscript
v representing either valleys K or K′, and Ev(k) represents the v-th eigenstate of the
TE/TM band.
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To obtain the edge bands between QSH and QVH domains, we consider a 40 ×
1 supercell with Floquet periodic boundary, whose upper half is a rod and whose
lower half is a pair of triangular prisms. Kx is scanned from –π/a to π/a with
121 steps. Twenty eigenfrequency points around 21 GHz are calculated. Frequency
points corresponding to edge states at the upper/lower edge of the supercell are
removed.

The numeric transmission profiles in Figs. 3, 4 are obtained using the COMSOL
frequency sector at 21 GHz. The boundary conditions are a perfectly matched layer
as in Fig. 3a–c and a second-order scattering boundary in Fig. 4b, d.

Measurements of edge modes and dwell time. Spectra of the field transmission
coefficient are taken using an Agilent PNA-X Network Analyzer. The source dipole
is connected to the vector network analyzer via a power amplifier. Two sets of holes
are drilled through the copper plates. One set with diameter of 1.1 mm, is for the
insertion of an antenna, the other, with diameter of 3.3 mm, is for fixing the
position of the rods and triangular prisms. The triangular prisms can be rotated
and are fixed by screws. Both source and detector antennas are inserted into the
holes in the copper plate to a depth of approximately 8 mm. Since the wave
intensity oscillates along the interface, measurements of intensity are averaged over
20 points in a small region near the source and the output using 5 successive points
on 4 parallel lines near the boundary. We apply a moving average to the trans-
mission spectra to smooth out fluctuations. Each frequency point is replaced by the
average value of the 15 nearest data points corresponding to a frequency interval of
3.75MHz.

The phase of the electric field is calibrated by subtracting the measured phase
from the phase measured with the source and detector antennas in close proximity
in air. The spectral derivative of the phase, dφdω, is obtained from the average value of
Δφ

Δω
over the bandgap (20.3–21.3 GHz), with Δω= 7.5 MHz.

Data availability. The authors declare that all data that support the findings of this
study are available from Yuhao Kang at ykang1@gradcenter.cuny.edu upon rea-
sonable request.
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