VOL. 114

2009

NO. 1

PSEUDO-SYMMETRIC CONTACT 3-MANIFOLDS III

ΒY

JONG TAEK CHO (Kwangju), JUN-ICHI INOGUCHI (Utsunomiya) and JI-EUN LEE (Daejeon)

Abstract. A trans-Sasakian 3-manifold is pseudo-symmetric if and only if it is η -Einstein. In particular, a quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold. Some examples of non-Sasakian pseudo-symmetric contact 3-manifolds are exhibited.

Introduction. A Riemannian 3-manifold (M, g) is said to be a proper pseudo-symmetric space if its Ricci eigenvalues $\{\varrho_1, \varrho_2, \varrho_3\}$ satisfy the relation $\varrho_1 = \varrho_2 \neq \varrho_3 \ (\varrho_3 \neq 0)$ up to numbering [14]. In particular, a proper pseudo-symmetric 3-space (M, g) is said to be of constant type if ϱ_3 is a nonzero constant.

Such spaces have been studied from different motivations. For instance, in hypersurface geometry of nonflat 4-dimensional Riemannian space forms, it is shown that isometrically deformable hypersurfaces of type number two are pseudo-symmetric spaces of constant type [20].

O. Kowalski explained some other motivations of the study of pseudosymmetric 3-spaces with *constant* principal Ricci curvatures in [28].

In our previous paper [11], we have investigated pseudo-symmetry of contact Riemannian 3-manifolds. In particular, we have shown that every Sasakian 3-manifold is constant type pseudo-symmetric. Moreover, in [12], we proved that tangent sphere bundles over Riemannian 2-manifolds are pseudo-symmetric if and only if the base manifolds are of constant curvature.

As is well known, odd-dimensional spheres are typical examples of Sasakian manifolds. On the other hand, odd-dimensional hyperbolic spaces cannot admit a Sasakian structure, but have a so-called *Kenmotsu structure*. K. Kenmotsu manifolds are normal (noncontact) almost contact Riemannian manifolds. Kenmotsu [25] investigated fundamental properties and local structure of such manifolds. Kenmotsu manifolds are locally isometric to warped product spaces with 1-dimensional base and Kähler fiber.

²⁰⁰⁰ Mathematics Subject Classification: 53B20, 53C25, 53C30.

Key words and phrases: pseudo-symmetric spaces, almost contact manifolds.

The second named author is partially supported by Grant-in-Aid for Encouragement of Young Researchers, Utsunomiya University, 2006.

As a generalization of both Sasakian manifolds and Kenmotsu manifolds, J. A. Oubiña [36] introduced the notion of trans-Sasakian manifold. An almost contact Riemannian manifold $(M; \varphi, \xi, \eta, g)$ is said to be a *trans-Sasakian manifold* if it satisfies

 $(\nabla_X \varphi)Y = \alpha \{g(X, Y)\xi - \eta(Y)X\} + \beta \{g(\varphi X, Y)\xi - \eta(Y)\varphi X\}$

for some functions α and β . Here ∇ denotes the Levi-Civita connection.

J. C. Marrero [30] has proven that there are no proper trans-Sasakian manifolds in higher dimensions. Moreover, Marrero has shown the existence of proper trans-Sasakian 3-manifolds.

N. Hashimoto and M. Sekizawa [21] investigated conformally flat (irreducible) pseudo-symmetric 3-spaces of constant type. Their (local) classification says such spaces are warped products with 1-dimensional base and constant curvature fiber. One can see that every 3-dimensional warped product with 1-dimensional base and 2-dimensional fiber admits a trans-Sasakian structure with $\alpha = 0$.

In this paper, motivated by these observations, we study pseudo-symmetry of trans-Sasakian 3-manifolds.

As another generalization of Sasakian manifolds, generalized (κ, μ) -spaces have been extensively studied ([5], [6], [9], [16], [17], [24], [26], [27]).

A contact Riemannian manifold is said to be a generalized (κ, μ) -space if

$$R(X,Y)\xi = (\kappa I + \mu h)\{\eta(Y)X - \eta(X)Y\}, \quad X, Y \in \mathfrak{X}(M),$$

for some functions κ and μ . Here h is an endomorphism field defined by $h = \pounds_{\xi} \varphi/2$. If both κ and μ are constants, M is called a (κ, μ) -space. One can see that Sasakian manifolds are (κ, μ) -spaces with $\kappa = 1$ and h = 0.

In the final section, we shall study pseudo-symmetry of 3-dimensional generalized (κ, μ) -spaces.

Throughout this paper we assume that all manifolds are connected.

The authors would like to thank Professor Zbigniew Olszak and the referee for their useful comments.

1. Preliminaries. Let (M, g) be a Riemannian manifold with its Levi-Civita connection ∇ . Denote by R the Riemannian curvature of M:

$$R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}, \quad X,Y \in \mathfrak{X}(M).$$

Here $\mathfrak{X}(M)$ is the Lie algebra of all vector fields on M. A tensor field F of type (1,3),

 $F: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M),$

is said to be *curvature-like* provided that F has the symmetry properties of R. For example,

(1.1)
$$(X \wedge Y)Z = g(Y,Z)X - g(Z,X)Y, \quad X,Y \in \mathfrak{X}(M),$$

defines a curvature-like tensor field on M. Note that the curvature R of a Riemannian manifold (M,g) of constant curvature c satisfies the formula $R(X,Y) = c(X \wedge Y)$.

As is well known, every curvature-like tensor field F acts on the algebra $\mathcal{T}_s^1(M)$ of all tensor fields on M of type (1, s) as a derivation [35, p. 44]:

$$(F \cdot P)(X_1, \dots, X_s; Y, X) = F(X, Y) \{ P(X_1, \dots, X_s) \}$$
$$-\sum_{j=1}^s P(X_1, \dots, F(X, Y)X_j, \dots, X_s),$$
$$X_1, \dots, X_s \in \mathfrak{X}(M), P \in \mathcal{T}_s^1(M)$$

The derivative $F \cdot P$ of P with respect to F is a tensor field of type (1, s+2).

For a tensor field P of type (1, s), we denote by $\mathcal{Q}(g, P)$ the derivative of P with respect to the curvature-like tensor defined by (1.1):

$$\mathcal{Q}(g,P)(X_1,\ldots,X_s;Y,X) = (X \wedge Y)P(X_1,\ldots,X_s)$$
$$-\sum_{j=1}^s P(X_1,\ldots,(X \wedge Y)X_j,\ldots,X_s)$$

A Riemannian manifold (M, g) is said to be *semi-symmetric* if $R \cdot R = 0$. Obviously, locally symmetric spaces $(\nabla R = 0)$ are semi-symmetric.

More generally, a Riemannian manifold (M, g) is said to be *pseudo-symmetric* if

$$R \cdot R = L\mathcal{Q}(q, R)$$

for some function L. In particular, if L is constant, then M is called a *pseudo-symmetric space of constant type* [29]. A pseudo-symmetric space is said to be *proper* if it is not semi-symmetric.

For Riemannian 3-manifolds, the following characterizations of pseudosymmetry are known (cf. [29]).

PROPOSITION 1.1. A Riemannian 3-manifold (M, g) is pseudo-symmetric if and only if it is quasi-Einstein. This means that there exists a one-form ω such that the Ricci tensor field ϱ has the form

$$\varrho = ag + b\omega \otimes \omega.$$

Here a and b are functions.

PROPOSITION 1.2. Let (M, g) be a Riemannian 3-manifold. Then (M, g)is a pseudo-symmetric space of constant type if and only if there exists a oneform ω such that the Ricci tensor field ρ is expressed as $\rho = ag + b\omega \otimes \omega$, where a is a function and $a + b|\omega|^2$ is a constant (provided that $\omega \neq 0$).

REMARK 1. The preceding proposition can be rephrased as follows (see [29, Proposition 0.1]):

A Riemannian 3-manifold is a pseudo-symmetric space of constant type with $R \cdot R = LQ(g, R)$ if and only if the principal Ricci curvatures (eigenvalues of the Ricci tensor) locally satisfy the following relations (up to numbering):

$$\varrho_1 = \varrho_2, \quad \varrho_3 = 2L$$

2. Almost contact Riemannian manifolds

2.1. Let M be an odd-dimensional manifold. An *almost contact structure* on M is a quadruple of tensor fields (φ, ξ, η, g) , where φ is an endomorphism field, ξ is a vector field, η is a one-form and g is a Riemannian metric such that

(2.1)
$$\varphi^2 = -I + \eta \otimes \xi, \quad \eta(\xi) = 1,$$

(2.2)
$$g(\varphi X, \varphi Y) = g(X, Y) - \eta(X)\eta(Y), \quad X, Y \in \mathfrak{X}(M).$$

A (2n+1)-dimensional manifold together with an almost contact structure is called an *almost contact Riemannian manifold* (or *almost contact manifold*). The *fundamental 2-form* Φ of M is defined by

$$\Phi(X,Y) := g(X,\varphi Y), \quad X,Y \in \mathfrak{X}(M).$$

If an almost contact Riemannian manifold $(M;\varphi,\xi,\eta,g)$ satisfies the condition

$$\varrho = ag + b\eta \otimes \eta$$

for some functions a and b, then M is said to be η -Einstein. Clearly, every η -Einstein almost contact 3-manifold is pseudo-symmetric.

2.2. Let $(M; \varphi, \xi, \eta, g)$ be an almost contact Riemannian manifold. A tangent plane at a point of M is said to be a *holomorphic plane* if it is invariant under φ . The sectional curvature of a holomorphic plane is called its *holomorphic sectional curvature*. If the sectional curvature function of M is constant on all holomorphic planes in TM, then M is said to be of *constant holomorphic sectional curvature*.

On the other hand, if the sectional curvature function is constant on all planes in TM which contain ξ , then M is said to be of constant ξ -sectional curvature.

2.3. An almost contact Riemannian manifold $(M; \varphi, \xi, \eta, g)$ is called a *contact Riemannian manifold* if

$$(2.3) \Phi = d\eta.$$

The formula (2.3) implies that the one-form η is actually a *contact form*, namely η satisfies $(d\eta)^n \wedge \eta \neq 0$. On a contact Riemannian manifold M, the structure vector field ξ is traditionally called the *characteristic vector field* (or *Reeb vector field*). **2.4.** An almost contact Riemannian manifold M is said to be of rank r = 2s (> 0) if $(d\eta)^s \neq 0$ and $\eta \wedge (d\eta)^s = 0$, and of rank r = 2s + 1 if $\eta \wedge (d\eta)^s \neq 0$ and $(d\eta)^{s+1} = 0$. Thus contact Riemannian manifolds are of rank 2n + 1.

An almost contact Riemannian manifold M is said to be *normal* if it satisfies $[\varphi, \varphi] + 2d\eta \otimes \xi = 0$, where $[\varphi, \varphi]$ is the Nijenhuis torsion of φ .

A normal almost contact Riemannian manifold is said to be a *quasi-Sasakian manifold* if its fundamental 2-form Φ is closed $(d\Phi = 0)$ [1]. In particular, a contact Riemannian manifold is called a *Sasakian manifold* if it is normal. By definition, Sasakian manifolds are quasi-Sasakian manifolds of rank 2n + 1.

2.5. According to Oubiña [36], an almost contact manifold $(M; \varphi, \xi, \eta, g)$ is said to be a *trans-Sasakian manifold* (of type (α, β)) if

(2.4)
$$(\nabla_X \varphi)Y = \alpha \{g(X, Y)\xi - \eta(Y)X\} + \beta \{g(\varphi X, Y)\xi - \eta(Y)\varphi X\}$$

for some functions α and β .

In particular, a trans-Sasakian manifold is said to be a

- Sasakian manifold if $(\alpha, \beta) = (1, 0)$,
- Kenmotsu manifold if $(\alpha, \beta) = (0, 1)$,
- coKähler manifold if $(\alpha, \beta) = (0, 0)$.

More generally a trans-Sasakian manifold of type $(\alpha, 0)$ with nonzero constant α is homothetic to a Sasakian manifold and called a *homothetic Sasakian manifold* or α -Sasakian manifold. Analogously, a *homothetic Kenmotsu manifold* (or β -Kenmotsu manifold) is a trans-Sasakian manifold of type $(0, \beta)$ with nonzero constant β [23].

REMARK 2. Trans-Sasakian manifolds are normal [36].

There are two typical subclasses of the class of trans-Sasakian manifolds.

A trans-Sasakian manifold of type (α, β) is said to be of class C_5 if $\alpha = 0$. This class C_5 contains the class of β -Kenmotsu manifolds. On the other hand, a trans-Sasakian manifold is said to be of class C_6 if $\beta = 0$. α -Sasakian manifolds and coKähler manifolds are of class C_6 .

Let $(M; \varphi, \xi, \eta, g)$ be a trans-Sasakian manifold. Then from (2.1) and (2.4), we have

(2.5)
$$\nabla_X \xi = -\alpha \varphi X + \beta \{ X - \eta(X) \xi \}, \quad X, Y \in \mathfrak{X}(M).$$

In particular, we have $\nabla_{\xi}\xi = 0$. Hence on trans-Sasakian manifolds, integral curves (trajectories) of ξ are geodesics.

Moreover, trans-Sasakian manifolds satisfy the following formula ([7], [42, (4.9)]):

(2.6)
$$2\alpha\beta + \xi\alpha = 0.$$

The formula (2.6) implies the following characterization of α -Sasakian manifolds.

LEMMA 2.1 ([7]). Let M be a trans-Sasakian manifold of type (α, β) . If α is a nonzero constant, then $\beta = 0$ and hence M is α -Sasakian.

Marrero proved the following fundamental result (see also [42, The-orem 4.8]).

PROPOSITION 2.1 ([30]). Trans-Sasakian manifolds of dimension ≥ 5 are either of class C_5 or of class C_6 with constant α .

From (2.5)-(2.6), one can deduce the following formulas:

$$\alpha = -(\nabla_X \Phi)(X,\xi), \quad \beta = -\frac{1}{2n}\,\delta\eta, \quad X \perp \xi, \, |X| = 1.$$

Here δ denotes the codifferential operator. The function $\delta\eta$ is defined by $\delta\eta = -\text{trace}(\nabla\eta)$.

3. Pseudo-symmetric trans-Sasakian 3-manifolds

3.1. Let $(M; \varphi, \xi, \eta, g)$ be an almost contact Riemannian 3-manifold. Then the covariant derivative $\nabla \varphi$ of φ satisfies ([33])

(3.1)
$$(\nabla_X \varphi)Y = g(\varphi(\nabla_X \xi), Y)\xi - \eta(Y)\varphi\nabla_X \xi, \quad X, Y \in \mathfrak{X}(M).$$

In dimension 3, there exist *proper* trans-Sasakian manifolds, namely, trans-Sasakian manifolds which are neither of class C_5 or of class C_6 (see Proposition 3.7).

On the other hand, Olszak obtained the following characterization of trans-Sasakian 3-manifolds.

PROPOSITION 3.1. Let M be an almost contact Riemannian 3-manifold. Then the following three conditions are equivalent:

- $\nabla \xi \circ \varphi = \varphi \circ \nabla \xi$.
- M is normal.
- M is trans-Sasakian.

In that case, M is a trans-Sasakian manifold of type (α, β) with

$$\alpha = \frac{1}{2} \operatorname{trace}(\varphi \nabla \xi), \quad \beta = \frac{1}{2} \operatorname{div} \xi.$$

Moreover, Olszak gave the following characterization of quasi-Sasakian 3-manifolds.

PROPOSITION 3.2 ([33]). Let M be an almost contact Riemannian 3manifold. Then M is quasi-Sasakian if and only if M is a trans-Sasakian manifold of type $(\alpha, 0)$ with $d\alpha(\xi) = 0$. In particular, every quasi-Sasakian 3-manifold is of class C_6 .

The Ricci operator of a trans-Sasakian 3-manifold is given by the following formula due to Olszak [33].

PROPOSITION 3.3. Let M be a trans-Sasakian 3-manifold. Denote by Q the Ricci operator of M defined by

$$\varrho(X,Y) = g(QX,Y), \quad X,Y \in \mathfrak{X}(M).$$

Then Q is given by

$$QX = \{s/2 + \xi\beta - (\alpha^2 - \beta^2)\}I + \{-s/2 - \xi\beta + 3(\alpha^2 - \beta^2)\}\eta(X)\xi -\eta(X)\{\operatorname{grad}\beta - \varphi\operatorname{grad}\alpha\} - \{d\alpha(\varphi X) + d\beta(X)\}\xi,$$

where $s = tr \rho$ is the scalar curvature of M.

Now let M be a pseudo-symmetric trans-Sasakian 3-manifold. Let us take a local orthonormal frame field $\{e_1, e_2, e_3\}$ such that $\eta(e_1) = 0$, $e_2 = \varphi e_1$, $e_3 = \xi$. Denote by ϱ_{ij} the components of the Ricci tensor field ϱ with respect to this frame;

$$\begin{split} \varrho_{11} &= \varrho_{22} = \mathbf{s}/2 - \alpha^2 + \beta^2 + d\beta(\xi), \quad \varrho_{33} = 2\alpha^2 - 2\beta^2 - 2d\beta(\xi), \\ \varrho_{12} &= 0, \quad \varrho_{13} = d\alpha(\varphi e_1) + d\beta(e_1), \quad \varrho_{23} = d\alpha(\varphi e_2) + d\beta(e_2). \end{split}$$

Then the characteristic polynomial $\Psi(\lambda) = \det(\lambda \delta_{ij} - \rho_{ij})$ for ρ is given by

$$\Psi(\lambda) = (\lambda - \varrho_{11})F(\lambda),$$

$$F(\lambda) = \lambda^2 - (\varrho_{11} + \varrho_{33})\lambda + \varrho_{11}\varrho_{33} - 4\sum_{i=1}^2 \{d\alpha(\varphi e_i) + d\beta(e_i)\}^2.$$

Hence $\rho_0 := \rho_{11} = \rho_{22}$ is a Ricci eigenvalue. The solutions ρ_{\pm} to $F(\lambda) = 0$ are given by

$$\varrho_{\pm} := \frac{1}{2} \left[(\varrho_0 + \varrho_{33}) \pm \sqrt{(\varrho_0 - \varrho_{33})^2 + 4 \left\{ \sum_{i=1}^2 \{ d\alpha(\varphi e_i) + d\beta(e_i) \right\}^2} \right].$$

CASE 1: ρ_0 solves $F(\lambda) = 0$. In this case, $F(\rho_0) = 0$ is equivalent to $d\alpha(\varphi e_i) + d\beta(e_i) = 0, \quad i = 1, 2.$

In other words, $F(\rho_0) = 0$ if and only if

(3.2) $g(\operatorname{grad}\beta - \varphi \operatorname{grad}\alpha, X) = 0$

for all $X \in \mathfrak{X}(M)$ orthogonal to ξ . In this case, the Ricci eigenvalues are ϱ_0 , ϱ_0 and ϱ_{33} .

CASE 2: $\rho_+ = \rho_-$. The trans-Sasakian manifold M satisfies $\rho_+ = \rho_$ if and only if M satisfies (3.2) and $\rho_{33} = \rho_0$. In this case, all the Ricci eigenvalues are the same function. Hence M is of constant curvature.

Hence we obtain the following result.

LEMMA 3.1. Every pseudo-symmetric trans-Sasakian 3-manifold satisfies (3.2).

Here we give an interpretation of the condition (3.2).

LEMMA 3.2. On a trans-Sasakian 3-manifold M, ξ is an eigenvector field of the Ricci operator Q if and only if M satisfies (3.2).

Proof. Direct computations using Proposition 3.3 show that

 $Q\xi = 2(\alpha^2 - \beta^2 - d\beta(\xi))\xi - (\operatorname{grad}\beta - \varphi \operatorname{grad}\alpha).$

Hence ξ is an eigenvector field of Q if and only if (3.2) holds. In that case, the following formulas hold:

 $\operatorname{grad} \beta - \varphi \operatorname{grad} \alpha = d\beta(\xi)\xi, \quad Q\xi = (2(\alpha^2 - \beta^2) - 3d\beta(\xi))\xi.$

LEMMA 3.3. Let M be a trans-Sasakian 3-manifold. Then M is pseudo-symmetric if and only if M is η -Einstein.

Proof. (\Leftarrow) If M is η -Einstein, then M is pseudo-symmetric by Proposition 1.1.

 (\Rightarrow) Assume that *M* is pseudo-symmetric. Then *M* satisfies (3.2). Hence the Ricci tensor field is given by

 $\varrho = \{s/2 + \xi\beta - (\alpha^2 - \beta^2)\}g + \{-s/2 - 3\xi\beta + 3(\alpha^2 - \beta^2)\}\eta \otimes \eta.$

This formula says M is η -Einstein.

E. Vergara-Diaz and C. M. Wood gave the following characterization of (3.2).

LEMMA 3.4 ([42]). A trans-Sasakian 3-manifold M satisfies (3.2) if and only if ξ is a harmonic section of the unit tangent sphere bundle T_1M of M.

Hence we obtain the following result.

THEOREM 3.1. Let M be a trans-Sasakian 3-manifold. Then the following conditions are equivalent:

- (1) M is pseudo-symmetric.
- (2) M is η -Einstein.
- (3) ξ is an eigenvector field of Q.
- (4) ξ is a harmonic section of the unit tangent sphere bundle T_1M ,
- (5) M satisfies (3.2).

In this case, the Ricci tensor field of M is given by

(3.3)
$$\varrho = \{ s/2 + \xi\beta - (\alpha^2 - \beta^2) \} g + \{ -s/2 - 3\xi\beta + 3(\alpha^2 - \beta^2) \} \eta \otimes \eta.$$

EXAMPLE 3.1 (CoKähler 3-manifolds). Let M be a coKähler 3-manifold. Then its Ricci operator is given by

$$Q = \frac{s}{2} I - \frac{s}{2} \eta \otimes \xi.$$

Thus the principal Ricci curvatures are

$$\varrho_1 = \varrho_2 = s/2, \qquad \varrho_3 = 0.$$

Hence M is semi-symmetric.

EXAMPLE 3.2 (Homothetic Kenmotsu manifolds). Let M be a 3-dimensional almost contact Riemannian manifold of class C_5 . Then its principal Ricci curvatures are

$$\varrho_1 = \varrho_2 = s/2 + \beta^2 + d\beta(\xi), \quad \varrho_3 = -2\beta^2 - 2d\beta(\xi),$$

Thus M is pseudo-symmetric if and only if $d\beta(X) = 0$ for all $X \perp \xi$. In particular, every homothetic Kenmotsu 3-manifold is a pseudo-symmetric space of constant type.

EXAMPLE 3.3 (Homothetic Sasakian manifolds). The principal Ricci curvatures of α -Sasakian manifold M are

$$\varrho_1 = \varrho_2 = s/2 - \alpha^2, \quad \varrho_3 = 2\alpha^2 > 0$$

Thus every α -Sasakian 3-manifold is a pseudo-symmetric space of constant type.

REMARK 3. Let (M^3, g) be a locally symmetric Riemannian 3-manifold. Then M is (locally) isometric to one of the following spaces:

- Euclidean 3-space \mathbb{E}^3 (coKähler),
- the 3-sphere $\mathbb{S}^3(c^2)$ of curvature c^2 (homothetic Sasakian) or hyperbolic 3-space $\mathbb{H}^3(-c^2)$ of curvature $-c^2$ (homothetic Kenmotsu),
- Riemannian products $\mathbb{S}^2(c^2) \times \mathbb{E}^1$ or $\mathbb{H}^2(-c^2) \times \mathbb{E}^1$ (coKähler).

It is known that semi-symmetric Kenmotsu manifolds are locally symmetric and hence of constant curvature -1 [25]. On the other hand, semi-symmetric Sasakian manifolds are locally symmetric and hence of constant curvature 1. Thus we obtain

Corollary 3.1.

- (1) β -Kenmotsu 3-manifolds other than hyperbolic space forms are proper pseudo-symmetric spaces of constant type.
- (2) α -Sasakian 3-manifolds other than spherical space forms are proper pseudo-symmetric spaces of constant type.

Here we give a classification of pseudo-symmetric quasi-Sasakian 3-manifolds.

COROLLARY 3.2. A quasi-Sasakian 3-manifold is pseudo-symmetric if and only if it is a coKähler manifold or a homothetic Sasakian manifold.

Proof. For a quasi-Sasakian 3-manifold M, (3.2) reduces to

$$g(\varphi \operatorname{grad} \alpha, e_1) = g(\varphi \operatorname{grad} \alpha, e_2) = 0.$$

Since $e_2 = \varphi e_1$ and $e_1 = -\varphi e_2$, (3.2) is equivalent to the equation

$$e_1\alpha = e_2\alpha = 0$$

Thus M is pseudo-symmetric if and only if α is constant, because $\xi\alpha=0$ by Proposition 3.2. \blacksquare

Every Sasakian 3-manifold satisfies the condition $Q\varphi = \varphi Q$. We consider here the commutator $[Q, \varphi]$. Direct computation shows that

 $(Q\varphi - \varphi Q)X = g(X, \operatorname{grad} \alpha + \varphi \operatorname{grad} \beta)\xi - \eta(X)(\operatorname{grad} \alpha + \varphi \operatorname{grad} \beta).$

From this formula, we get the following result.

PROPOSITION 3.4. On a trans-Sasakian 3-manifold M, the following three conditions are equivalent.

- $\eta(Q\varphi \varphi Q) = 0.$
- $Q\varphi = \varphi Q.$
- grad $\alpha + \varphi$ grad $\beta = 0$.

In this case, $\xi \alpha = -2\alpha\beta = 0$ and M is η -Einstein with Ricci tensor field (3.3).

Proof. It is clear that $\eta([Q, \varphi]) = 0$ if and only if $Z := \operatorname{grad} \alpha + \varphi \operatorname{grad} \beta$ = 0. By (2.6), we have $\eta(Z) = \xi \alpha = -2\alpha\beta$.

EXAMPLE 3.4 (Warped products). Let (N, h, J) be a Riemannian 2manifold together with the compatible orthogonal complex structure J. Take a direct product $M = \mathbb{E}^1(t) \times N$ and denote by π and σ the natural projections onto the first and second factors, respectively.

Take the warped product $M = \mathbb{E}^1 \times_f N$ and define $\xi = \partial/\partial t$. Then the Levi-Civita connection ∇ of M is given by (cf. [35])

$$\nabla_{\overline{X}^{\mathbf{v}}}\overline{Y}^{\mathbf{v}} = (\overline{\nabla}_{\overline{X}}\overline{Y})^{\mathbf{v}} - \frac{1}{f}g(\overline{X}^{\mathbf{v}},\overline{Y}^{\mathbf{v}})f'\xi,$$
$$\nabla_{\xi}\overline{X}^{\mathbf{v}} = \nabla_{\overline{X}^{\mathbf{v}}}\xi = \frac{f'}{f}\overline{X}^{\mathbf{v}},$$
$$\nabla_{\xi}\xi = 0.$$

Here the superscript v means the vertical lift operation of vector fields from N to M. Define φ by $\varphi X = \{J(\sigma_* X)\}^{v}$. Then we get

$$\nabla_X \xi = \beta(X - \eta(X)\xi),$$

$$(\nabla_X \varphi)Y = \beta \{ g(\varphi X, Y) - \eta(Y)\varphi X \}, \quad \beta = f'/f.$$

Hence $M = \mathbb{E}^1 \times_f N$ is of class C_5 .

Take a local orthonormal frame field $\{\overline{e}_1, \overline{e}_2\}$ of (N, h) such that $\overline{e}_2 = J\overline{e}_1$. Then we obtain a local orthonormal frame field $\{e_1, e_2, e_3\}$ by

$$e_1 = \frac{1}{f} \bar{e}_1^{v}, \quad e_2 = \frac{1}{f} \bar{e}_2^{v} = \varphi e_1, \quad e_3 = \xi.$$

Then the holomorphic sectional curvature of M is given by

$$H = K(e_1 \wedge e_2) = \frac{1}{f^2} \{ K_N - (f')^2 \}.$$

On the other hand, the sectional curvature of a plane containing ξ is

$$K(e_1 \wedge e_3) = K(e_2 \wedge e_3) = -\frac{f''}{f}$$

The Ricci tensor components $\rho_{ij} = \rho(e_i, e_j)$ are given by

$$\varrho_{11} = \varrho_{22} = \frac{K}{f^2} - \frac{f''}{f} - \left(\frac{f'}{f}\right)^2, \quad \varrho_{33} = -\frac{2f''}{f}$$

Hence M is a pseudo-symmetric space. In particular, M is of constant type if and only if f is a solution to f'' = -Lf for some constant L.

The local structure of Kenmotsu manifolds is described as follows.

Proposition 3.5 ([25]).

- Kenmotsu manifolds of constant holomorphic sectional curvature are hyperbolic space forms of curvature −1.
- A Kenmotsu manifold M is locally isomorphic to a warped product $I \times_f N$ whose base $I \subset \mathbb{E}^1(t)$ is an open interval and N is a Kähler manifold with warping function $f(t) = e^{ct}, c \neq 0$. The structure vector field is $\xi = \partial/\partial t$.

As we saw before, warped products of the form $M = \mathbb{E}^1 \times_f N$ with 2-dimensional standard fiber are pseudo-symmetric trans-Sasakian 3-manifolds. In particular M is of constant type if and only if the warping function fsatisfies the ODE f'' = -Lf for some constant L. In particular, if we assume that, in addition, N is of constant Gaussian curvature, the warped product is conformally flat. Conversely, 3-dimensional conformally flat irreducible pseudo-symmetric space of constant type are locally isometric to warped products as above. More precisely, Hashimoto and Sekizawa obtained the following result.

THEOREM 3.2 ([21]). Let (M, g) be a 3-dimensional conformally flat irreducible pseudo-symmetric space of constant type. Then M is locally isometric to the warped product space $\mathbb{E}^1 \times_f N^2(k)$, whose base is the real line \mathbb{E}^1 and standard fiber $N^2(k)$ is a 2-dimensional space form of curvature k, respectively. The warping function f is one of the following:

$$f(t) = \begin{cases} t, & L = 0, \\ \sinh(\lambda t) \text{ or } \cosh(\lambda t), & L = -\lambda^2 < 0, \\ \sin(\lambda t) & L = \lambda^2 > 0. \end{cases}$$

The principal Ricci curvatures are given by

$$\varrho_1 = \varrho_2 = \pm \frac{a^2}{f(t)^2} + 2L, \quad \varrho_3 = 2L,$$

where a is a positive constant. The curvature constant k is determined as follows:

- If (M, g) is semi-symmetric, then $k = 1 \pm a^2$.
- If $L = -\lambda^2 < 0$, then $k = \lambda^2 \pm a^2$ when $f(t) = \sinh(\lambda t)$, and $k = -\lambda^2 \pm a^2$ when $f(t) = \cosh(\lambda t)$, respectively.
- If $L = \lambda^2 > 0$, then $k = \lambda^2 \pm a^2$.

REMARK 4. M. S. Goto [15] studied global structures of compact conformally flat semi-symmetric spaces of dimension 3. Olszak [34] gave an example of a conformally flat quasi-Sasakian 3-manifold which is not pseudo-symmetric.

CoKähler manifolds are characterized as follows.

PROPOSITION 3.6 ([8, Lemma 2]). Let $(M; \varphi, \xi, \eta, g)$ be an almost contact manifold such that ξ is Killing and $d\eta = 0$. Then M is locally isometric to a Riemannian product $N \times I$, where I is an open interval and N is an almost Hermitian manifold.

In particular, a coKähler manifold is locally isometric to a Riemannian product $N \times I$, where I is an open interval and N is a Kähler manifold.

Marrero [30] showed the nonexistence of proper trans-Sasakian manifolds of dimension greater than 3. On the other hand, he showed the following method of constructing proper trans-Sasakian 3-manifolds (see also [32]).

PROPOSITION 3.7 ([30], [32]). Let M be a Sasakian 3-manifold and σ a nonconstant positive function on M. Then the pseudo-conformal deformation

$$g \mapsto g^{\sigma} := \sigma g + (1 - \sigma)\eta \otimes \eta$$

induces a trans-Sasakian manifold $(M; \varphi, \xi, \eta, g^{\sigma})$ of type $(\alpha^{\sigma}, \beta^{\sigma})$, where

$$\alpha^{\sigma} = \frac{1}{\sigma}, \quad \beta^{\sigma} = \frac{1}{2\sigma} d\sigma(\xi).$$

- If dσ(ξ) ≠ 0, then (M; φ, ξ, η, g^σ) is a proper trans-Sasakian manifold. Moreover, (M; φ, ξ, η, g^σ) is neither of class C₅ nor of class C₆.
- If $d\sigma(\xi) = 0$, then M is quasi-Sasakian. Conversely, every quasi-Sasakian 3-manifold can be obtained in this way ([32]).

Let $\mathbb{R}^3(-3)$ be the Heisenberg group

$$\left\{ \left(\begin{array}{ccc} 1 & y & z \\ 0 & 1 & x \\ 0 & 0 & 1 \end{array} \right) \middle| (x, y, z) \in \mathbb{R}^3 \right\}$$

with the canonical Sasakian structure (φ, ξ, η, g) of constant holomorphic sectional curvature -3:

$$g = \frac{1}{4} (dx^2 + dy^2) + \eta \otimes \eta, \quad \eta = \frac{1}{2} (dz - xdy), \quad \xi = 2 \frac{\partial}{\partial z},$$
$$\varphi = \begin{pmatrix} 0 & -1 & 0\\ 1 & 0 & 0\\ x & 0 & 0 \end{pmatrix}.$$

We take a global orthonormal frame field:

$$e_1 = 2\frac{\partial}{\partial x}, \quad e_2 = 2\left(\frac{\partial}{\partial y} + x\frac{\partial}{\partial z}\right), \quad e_3 = 2\frac{\partial}{\partial z} = \xi.$$

Then the endomorphism field φ satisfies $\varphi e_1 = e_2$, $\varphi e_2 = -e_1$ and $\varphi \xi = 0$.

Now let us take a positive function σ on $\mathbb{R}^3(-3)$ such that $d\sigma(\xi) \neq 0$ and consider the pseudo-conformal deformation $g \mapsto \tilde{g} := g^{\sigma}$. The resulting proper trans-Sasakian 3-manifold is of type

$$\widetilde{\alpha} = \frac{1}{\sigma}, \quad \widetilde{\beta} = \frac{\sigma_z}{2\sigma}$$

We can take a global orthonormal frame field

$$\widetilde{e}_1 = \frac{1}{\sqrt{\sigma}} e_1, \quad \widetilde{e}_2 = \frac{1}{\sqrt{\sigma}} e_2, \quad \widetilde{e}_3 = \xi.$$

Let us consider the pseudo-symmetry condition:

$$\widetilde{g}(\widetilde{e}_i, \operatorname{grad}_{\widetilde{g}} \widetilde{\beta} - \varphi \operatorname{grad}_{\widetilde{g}} \widetilde{\alpha}) = 0, \quad i = 1, 2,$$

for the deformed manifold. Direct computation shows that the deformed manifold is pseudo-symmetric if and only if

(3.4)
$$\left(\frac{\sigma_z}{2\sigma}\right)_x + \left(\frac{1}{\sigma}\right)_y + x\left(\frac{1}{\sigma}\right)_z = 0,$$

(3.5)
$$-\left(\frac{1}{\sigma}\right)_x + \left(\frac{\sigma_z}{2\sigma}\right)_y + x\left(\frac{\sigma_z}{2\sigma}\right)_z = 0.$$

PROPOSITION 3.8. Let $\sigma(x, y, z)$ be a positive solution to the system (3.4)–(3.5) such that $\sigma_z \neq 0$. Then the pseudo-conformal deformation of $\mathbb{R}^3(-3)$ by σ is a pseudo-symmetric proper trans-Sasakian 3-manifold.

For simplicity, we assume that σ depends only on z. Then the pseudosymmetry condition reduces to

$$\left(\frac{1}{\sigma}\right)_z = \left(\frac{\sigma_z}{\sigma}\right)_z = 0.$$

Hence σ is a constant. Thus the example due to Marrero (pseudo-conformal deformation of $\mathbb{R}^3(-3)$ with $\sigma = e^z$) is not pseudo-symmetric.

4. Pseudo-symmetric homogeneous contact Riemannian 3manifolds. A contact Riemannian manifold $(M; \varphi, \xi, \eta, g)$ is said to be a homogeneous contact Riemannian manifold if there exists a connected Lie group G acting transitively on M as a group of isometries which leave the contact form η invariant.

Assume that M is simply connected. Then by a theorem due to Sekigawa [40], M is a Riemannian symmetric space or a Lie group with a left invariant metric. By using the classification of 3-dimensional Lie groups with left invariant metric due to J. Milnor [31], D. Perrone classified all simply connected homogeneous contact Riemannian 3-manifolds.

PROPOSITION 4.1 ([37]). Let $(M; \varphi, \xi, \eta, g)$ be a simply connected homogeneous contact Riemannian 3-manifold. Then M is a Lie group G together with a left invariant contact Riemannian structure (η, g) and Webster scalar curvature $\mathcal{W} = (s - \varrho(\xi, \xi) + 4)/8$ and torsion invariant $\tau = \pounds_{\xi}g$. Here \pounds_{ξ} denotes the Lie differentiation with respect to ξ .

- If G is unimodular, then G is one of the following:
 - (1) the Heisenberg group \mathbb{H}_3 if $\mathcal{W} = |\tau| = 0$;
 - (2) SU(2) if $4\sqrt{2}\mathcal{W} > |\tau|$;
 - (3) $\widetilde{E}(2)$ if $4\sqrt{2}\mathcal{W} = |\tau| > 0;$
 - (4) $\widetilde{\mathrm{SL}}(2,\mathbb{R})$ if $-|\tau| \neq 4\sqrt{2} \mathcal{W} < |\tau|;$
 - (5) E(1,1) if $4\sqrt{2}W = -|\tau| < 0.$

The Lie algebra \mathfrak{g} of G is generated by an orthonormal basis $\{e_1, e_2 = \varphi e_1, e_3 = \xi\}$ with commutation relations

 $[e_1, e_2] = 2e_3, \quad [e_2, e_3] = c_2e_1, \quad [e_3, e_1] = c_3e_2.$

• If G is nonunimodular, then the Lie algebra g of G satisfies the commutation relations

 $[e_1, e_2] = \alpha e_2 + 2e_3, \quad [e_2, e_3] = 0, \quad [e_3, e_1] = \gamma e_2,$

where $e_3 = \xi$, $e_1, e_2 \in \text{Ker } \eta$, $e_2 = \varphi e_1$, $\alpha \neq 0$ and $4\sqrt{2} \mathcal{W} < |\tau|$. If $\gamma = 0$ then the structure is Sasakian ($\tau = 0$) and $\mathcal{W} = -\alpha^2/4$.

In our previous work [11], we obtained the following result.

PROPOSITION 4.2. Every 3-dimensional unimodular Lie groups with special left invariant contact Riemannian structure is a pseudo-symmetric space of constant type.

On the other hand, unfortunately, our result on nonunimodular groups in [11] is not correct. We take this opportunity to give a correct classification of pseudo-symmetric *nonunimodular* Lie groups with left invariant contact Riemannian structure (cf. [22]).

Let G be a 3-dimensional nonunimodular Lie group with a left invariant contact Riemannian structure. Then there exists an orthonormal basis $\{e_1, e_2 = \varphi e_1, e_3 = \xi\}$ of the Lie algebra \mathfrak{g} such that

$$[e_1, e_2] = \alpha e_2 + 2e_3, \quad [e_2, e_3] = 0, \quad [e_3, e_1] = \gamma e_2,$$

where $\alpha \neq 0$. In particular, $\gamma = 0$ if and only if G is a Sasakian manifold of constant holomorphic sectional curvature $-3 - \alpha^2$. In this case G is isomorphic to $\widetilde{SL}(2,\mathbb{R})$ with left invariant Sasakian structure of some constant holomorphic curvature as a contact Riemannian manifold, but not isomorphic as a homogeneous contact manifold. The Ricci curvatures of G are given in terms of $\{e_1, e_2, e_3\}$ as follows:

$$\begin{aligned} \varrho_{11} &= -\alpha^2 - 2 + 2\gamma - \gamma^2/2, \\ \varrho_{22} &= -\alpha^2 - 2 + \gamma^2/2, \\ \varrho_{32} &= \varrho_{23} = \alpha\gamma, \quad \varrho_{33} = 2 - \gamma^2/2 \end{aligned}$$

The characteristic polynomial $\Psi(\lambda) = \det(\lambda \delta_{ij} - \varrho_{ij})$ for the Ricci tensor field is given by

$$\Psi(\lambda) = (\lambda - \varrho_{11})F(\lambda),$$

$$F(\lambda) = \lambda^2 + \alpha^2 \lambda - \{\alpha^2(2 + \gamma^2/2) + (2 - \gamma^2/2)^2\}.$$

The discriminant \mathcal{D} of $F(\lambda) = 0$ is

$$\mathcal{D} = \alpha^4 + 4\{\alpha^2(2+\gamma^2/2) + (2-\gamma^2/2)^2\} > 0.$$

Thus the equation $F(\lambda) = 0$ has no double roots. On the other hand, we have $F(\rho_{11}) = 2\gamma\{(\gamma + 2)^2 + \alpha^2\}$. Thus $F(\rho_{11}) = 0$ if and only if $\gamma = 0$. In this case,

$$\varrho_{11} = \varrho_{22} = -\alpha^2 - 2, \quad \varrho_{33} = 2.$$

Thus we obtain the following result.

THEOREM 4.1. A 3-dimensional nonunimodular Lie group with a left invariant contact Riemannian structure is pseudo-symmetric if and only if it is a Sasakian space form of constant holomorphic sectional curvature $-3 - \alpha^2 < -3$. 5. Pseudo-symmetric non-Sasakian contact Riemannian 3manifolds. As we saw in the preceding section, there exist many pseudo-symmetric homogeneous Riemannian 3-manifolds. Moreover, the unit tangent sphere bundle of a Riemannian 2-manifold of constant curvature is locally homogeneous and pseudo-symmetric. In fact, in our previous paper [12], we have shown that for every Riemannian 2-manifold of constant curvature c, its unit tangent sphere bundle T_1M equipped with the standard contact Riemannian structure is a pseudo-symmetric space of constant type. In particular, if $c \neq 1$, the unit tangent sphere bundle is non-Sasakian. It was pointed out by D. E. Blair, Th. Koufogiorgos and B. J. Papantoniou [5] that the unit tangent sphere bundle of a surface with constant curvature cwith standard contact Riemannian structure is a so-called (κ, μ) -space with $\kappa = c(2 - c)$ and $\mu = -2c$.

Note that non-Sasakian 3-dimensional (κ, μ) -spaces are locally homogeneous and of constant holomorphic sectional curvature $H = -(\kappa + \mu)$

On the other hand, O. Kowalski [28] gave examples of nonhomogeneous pseudo-symmetric 3-spaces. Nonhomogeneous Sasakian 3-manifolds provide examples of nonhomogeneous pseudo-symmetric spaces.

In view of the results of our previous papers, one may raise the following question:

Are there examples of nonhomogeneous, non-Sasakian, pseudo-symmetric contact Riemannian 3-manifolds?

In this section we exhibit some examples of non-Sasakian pseudo-symmetric contact Riemannian 3-manifolds.

5.1. Let M be a contact Riemannian 3-manifold. Then the formula (3.1) reduces to ([41])

$$(\nabla_X \varphi) Y = g((I + h)X, Y)\xi - \eta(Y)(I + h)X, Y \quad X \in \mathfrak{X}(M),$$

where I is the identity transformation and the endomorphism field h is defined by $h = \pounds_{\xi} \varphi/2$.

Now let us define an endomorphism field ℓ by

 $\ell(X) = R(\xi, X)\xi, \quad X \in \mathfrak{X}(M).$

Then ℓ and h satisfy the following relations:

$$\begin{split} \mathbf{h}\xi &= \ell(\xi) = 0, \quad \eta \circ \mathbf{h} = 0, \quad \mathrm{tr} \, \mathbf{h} = \mathrm{tr}(\mathbf{h}\varphi) = 0, \quad \mathbf{h}\varphi + \varphi \mathbf{h} = 0, \\ \nabla_{\xi}\mathbf{h} &= \varphi(I - \ell - \mathbf{h}^2), \quad \mathrm{tr} \, \ell = 2 - \mathrm{tr}(\mathbf{h}^2). \end{split}$$

LEMMA 5.1 (cf. [10]). Let M be a 3-dimensional contact Riemannian manifold. Then there exists a local orthonormal frame field $\mathcal{E} = \{e_1, e_2, e_3\}$ such that

$$he_1 = \lambda e_1, \quad e_2 = \varphi e_1, \quad e_3 = \xi.$$

With respect to
$$\mathcal{E}$$
, the Levi-Civita connection ∇ is given by
 $\nabla_{e_1}e_1 = be_2$, $\nabla_{e_1}e_2 = -be_1 + (1+\lambda)\xi$, $\nabla_{e_1}\xi = -(1+\lambda)e_2$,
 $\nabla_{e_2}e_1 = -ce_2 + (\lambda - 1)e_3$, $\nabla_{e_2}e_2 = ce_1$, $\nabla_{e_2}\xi = (1-\lambda)e_1$,
 $\nabla_{\xi}e_1 = \alpha e_2$, $\nabla_{\xi}e_2 = -\alpha e_1$, $\nabla_{\xi}\xi = 0$.
The Ricci operator Q is given by
 $Qe_1 = \varrho_{11}e_1 + \xi(\lambda)e_2 + (2b\lambda - e_2(\lambda))\xi$,
 $Qe_2 = \xi(\lambda)e_1 + \varrho_{22}e_2 + (2c\lambda - e_1(\lambda))\xi$,
 $Q\xi = (2b\lambda - e_2(\lambda))e_1 + (2c\lambda - e_1(\lambda))e_2 + 2(1-\lambda^2)\xi$,

where

 $\varrho_{11} = s/2 + \lambda^2 - 2\alpha\lambda - 1, \quad \varrho_{22} = s/2 + \lambda^2 + 2\alpha\lambda - 1.$

PROPOSITION 5.1 ([16]). On a contact Riemannian 3-manifold with local orthonormal frame field \mathcal{E} as in Lemma 5.1, $Q\varphi = \varphi Q$ if and only if b = c = 0.

PROPOSITION 5.2. Let M be a contact Riemannian 3-manifold with local orthonormal frame field \mathcal{E} as in Lemma 5.1. Then $\varrho_{11} = \varrho_{22}$ if and only if $\alpha = 0$ or M is Sasakian.

COROLLARY 5.1 (cf. [18, Proposition 2]). If a contact Riemannian 3manifold M has constant ξ -sectional curvature, then $\alpha = 0$ or M is Sasakian.

REMARK 5. A contact Riemannian 3-manifold is said to be a $(3-\tau)$ manifold if $\nabla_{\xi}\tau = 0$ [3], [16]. Every contact Riemannian 3-manifold of constant ξ -sectional curvature is a $(3-\tau)$ -manifold with constant tr ℓ [18, Proposition 2].

Now let M be a contact Riemannian 3-manifold with constant ξ -sectional curvature. Then the Ricci operator has the form:

$$Qe_1 = (s/2 + \lambda^2 - 1)e_1 + 2b\lambda\xi,$$

$$Qe_2 = (s/2 + \lambda^2 - 1)e_2 + 2c\lambda\xi,$$

$$Q\xi = 2b\lambda e_1 + 2c\lambda e_2 + 2(1 - \lambda^2)\xi.$$

Hence the characteristic polynomial $\Psi(t) = \det(t\delta_{ij} - \varrho_{ij})$ for the Ricci tensor field ϱ is

$$\Psi(t) = (t - \varrho_{11})F(t),$$

$$F(t) = t^2 - (\varrho_{11} + 2 - 2\lambda^2)t + \{2(1 - \lambda^2)\varrho_{11} - 4\lambda^2(b^2 + c^2)\}.$$

CASE 1: ρ_{11} solves F(t) = 0. Direct computation shows that $F(\rho_{11}) = 0$ if and only if $\lambda = 0$ (i.e., M is Sasakian) or b = c = 0 (i.e., $Q\varphi = \varphi Q$).

CASE 2: F(t) = 0 has real double solutions. The discriminant \mathcal{D} of the equation F(t) = 0 is

$$\mathcal{D} = (\varrho_{11} + 2\lambda^2 - 2)^2 + 16(b^2 + c^2).$$

Hence F(t) = 0 has two equal real solutions if and only if $\rho_{11} + 2\lambda^2 - 2 = 0$ and b = c = 0.

5.2.

DEFINITION 5.1. A contact Riemannian manifold is said to be a generalized (κ, μ) -space if

$$R(X,Y)\xi = (\kappa I + \mu h)\{\eta(Y)X - \eta(X)Y\}, \quad X,Y \in \mathfrak{X}(M),$$

for some functions κ and μ . If both κ and μ are constants, M is called a (κ, μ) -space. A generalized (κ, μ) -space is said to be proper if $(d\kappa)^2 + (d\mu)^2 \neq 0$.

Sasakian manifolds are (κ, μ) -spaces with $\kappa = 1$, $\mu = 0$ and h = 0. Generalized (κ, μ) -spaces are of particular interest in dimension 3. In fact, the following results are known.

THEOREM 5.1 ([26]). Let M be a non-Sasakian generalized (κ, μ) -space of dimension greater than 3. Then M is a (κ, μ) -space.

PROPOSITION 5.3 ([27, Lemma 1]). Let M be a 3-dimensional generalized (κ, μ) -space. Then there exists a local orthonormal frame field $\mathcal{E} = \{e_1, e_2, e_3\}$ such that

$$he_1 = \lambda e_1, \quad e_2 = \varphi e_1, \quad e_3 = \xi,$$

where $\lambda = \sqrt{1-\kappa} > 0$. The Ricci operator Q is given by

$$QX = aX + b\eta(X)\xi + \mu hX, \quad X \in \mathfrak{X}(M).$$

with

$$a = \frac{1}{2}(s - 2\kappa), \quad b = \frac{1}{2}(6\kappa - s).$$

Hence the principal Ricci curvatures of a 3-dimensional generalized (κ, μ) -space are given by

$$\varrho_1 = \frac{1}{2}(s - 2\kappa) + \mu\sqrt{1 - \kappa},$$

$$\varrho_2 = \frac{1}{2}(s - 2\kappa) - \mu\sqrt{1 - \kappa},$$

$$\varrho_3 = 2\kappa.$$

From these we can see that

$$\begin{aligned} \varrho_1 &= \varrho_2 \iff \mu = 0 \text{ or } \kappa = 1, \\ \varrho_1 &= \varrho_3 \iff \mu = \frac{1}{\sqrt{1-\kappa}} \left(3\kappa - s/2 \right), \\ \varrho_2 &= \varrho_3 \iff \mu = -\frac{1}{\sqrt{1-\kappa}} \left(3\kappa - s/2 \right) \end{aligned}$$

PROPOSITION 5.4. A 3-dimensional proper generalized (κ, μ) -space is pseudo-symmetric if and only if $\mu = 0$ or $\mu = \pm \frac{1}{\sqrt{1-\kappa}}(3\kappa - s/2)$.

Perrone gave a characterization of "generalized (κ, μ)-property" as follows:

THEOREM 5.2 ([39]). On a contact Riemannian 3-manifold M, its Reeb vector field $\xi : M \to T_1 M$ is a harmonic map with respect to the Sasakilift metric if and only if M satisfies the generalized (κ, μ) -condition on an everywhere dense open subset of M.

For 3-dimensional (κ, μ) -spaces, the following characterization is known.

THEOREM 5.3 ([6]). Let M be a contact Riemannian 3-manifold. Then the following three conditions are equivalent:

- (1) M is η -Einstein.
- (2) $Q\varphi = \varphi Q$.
- (3) M is a $(\kappa, 0)$ -space with $\kappa \leq 1$.

In the third case, M is of constant holomorphic sectional curvature $-\kappa$.

THEOREM 5.4 ([6]). Let M be a contact Riemannian 3-manifold. Then M satisfies $Q\varphi = \varphi Q$ if and only if M is either

- (1) a Sasakian 3-manifold,
- (2) a flat contact Riemannian 3-manifold, or
- (3) a non-Sasakian contact Riemannian space form of constant holomorphic sectional curvature -κ and constant ξ-sectional curvature κ.

In the third case, $\kappa < 1$.

These results imply that every $(\kappa, 0)$ -space with $\kappa \leq 1$ is a pseudo-symmetric space.

To close this paper we exhibit two examples.

EXAMPLE 5.1. In [38], D. Perrone gave the following example of weakly φ -symmetric 3-space which is neither homogeneous nor strongly φ -symmetric. Let M be the open submanifold $\{(x, y, z) \in \mathbb{R}^3(x, y, z) \mid x \neq 0\}$ of Cartesian 3-space \mathbb{R}^3 together with a contact form $\eta = xydx + dz$. The Reeb vector field of this contact 3-manifold is $\xi = \partial/\partial z$. Take a global frame field

$$e_1 = -\frac{2}{x}\frac{\partial}{\partial y}, \quad e_2 = \frac{\partial}{\partial x} - \frac{4z}{x}\frac{\partial}{\partial y} - xy\frac{\partial}{\partial z}, \quad e_3 = \xi$$

and define a Riemannian metric g by the condition that $\{e_1, e_2, e_3\}$ is orthonormal with respect to it. Moreover, define an endomorphism field φ by $\varphi e_1 = e_2$, $\varphi e_2 = -e_1$ and $\varphi \xi = 0$. Then (φ, ξ, η, g) is the associated almost contact structure of (M, η) . The endomorphism field h satisfies $he_1 = e_1$, $he_2 = -e_2$. Hence M is non-Sasakian. Perrone showed that this contact Riemannian 3-manifold is nonhomogeneous. The Ricci operator of (M, g) is given by $Q = -8\omega^1 \otimes e_1$, where ω^1 is the dual 1-form of e_1 . Hence (M,g) is pseudo-symmetric. Thus Perrone's example is a nonhomogeneous and non-Sasakian contact Riemannian 3-manifold which is pseudo-symmetric.

Next we recall an example of a generalized (κ, μ) -space constructed by Koufogiorgos and Ch. Tsichlias [26] (see also [24, Section 4.3]).

EXAMPLE 5.2. Let $M = \{(x, y, z) \in \mathbb{R}^3 \mid z \neq 0\}$. Define a frame field $\mathcal{U} = \{u_1, u_2, u_3\}$ by

$$u_1 = \frac{\partial}{\partial x}, \quad u_2 = -2yz \frac{\partial}{\partial x} + \frac{2x}{z^2} \frac{\partial}{\partial y} - \frac{1}{z^2} \frac{\partial}{\partial z}, \quad u_3 = \frac{1}{z} \frac{\partial}{\partial y}.$$

Then we have

$$[u_1, u_2] = \frac{2}{z^2} u_3, \quad [u_2, u_3] = 2u_1 + \frac{1}{z^3} u_3, \quad [u_3, u_1] = 0.$$

Put $\xi = u_1$ and define a Riemannian metric g by $g(u_i, u_j) = \delta_{ij}$. Then we have a contact Riemannian manifold $M = (M; \varphi, \xi, \eta, g)$ with structure $\eta = g(\xi, \cdot)$ and

$$\varphi u_1 = 0, \quad \varphi u_2 = u_3, \quad \varphi u_3 = -u_2$$

Then $\mathcal{E} = \{e_1, e_2, e_3\} = \{u_2, u_3, u_1\}$ satisfies the condition

$$he_1 = \lambda e_1, \quad he_2 = -\lambda e_2, \quad h\xi = 0,$$

where $\lambda = 1/z^2$. Moreover this contact Riemannian 3-manifold is a generalized (κ, μ) -space with

$$\kappa = \frac{z^4 - 1}{z^4}, \quad \mu = 2\left(1 - \frac{1}{z^2}\right).$$

The Ricci operator Q is given by

$$Qe_1 = \varrho_{11}e_1, \quad Qe_2 = \varrho_{22}e_2, \quad Q\xi = 2(1-\lambda^2)\xi,$$

where

$$\varrho_{11} = s/2 + \lambda^2 - 2\alpha\lambda - 1, \quad \varrho_{22} = s/2 + \lambda^2 + 2\alpha\lambda - 1,
\alpha = -1 + 1/z^2, \quad b = 1/z^3, \quad c = 0.$$

The scalar curvature is

$$\mathbf{s} = \frac{6}{z^6} - \frac{2}{z^4} - \frac{2}{z^3} + \frac{4}{z^2} - 2.$$

Hence this space is not pseudo-symmetric.

REFERENCES

- D. E. Blair, The theory of quasi-Sasakian structures, J. Differential Geom. 1 (1967), 331–345.
- [2] —, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.

- D. E. Blair, On the class of contact metric manifolds with (3-τ)-structure, Note Mat. 16 (1996), 99–104.
- [4] —, Riemannian Geometry of Contact and Symplectic Manifolds, Progr. Math. 203, Birkhäuser Boston, 2002.
- [5] D. E. Blair, Th. Koufogiorgos and B. J. Papantoniou, Contact metric manifolds satisfying a nullity condition, Israel J. Math. 91 (1995), 189–214.
- [6] D. E. Blair, Th. Koufogiorgos and R. Sharma, A classification of 3-dimensional contact metric manifolds with $Q\varphi = \varphi Q$, Kōdai Math. J. 13 (1990), 391–401.
- [7] D. E. Blair and J. A. Oubiña, Conformal and related changes of metric on the product of two almost contact metric manifolds, Publ. Math. 34 (1990), 199–207.
- [8] D. E. Blair and L. Vanhecke, Symmetries and φ-symmetric spaces, Tôhoku Math. J. 39 (1987), 373–383.
- [9] E. Boeckx, A full classification of (κ, μ) -spaces, Illinois J. Math. 44 (2000) 212–219.
- [10] G. Calvaruso, D. Perrone and L. Vanhecke, Homogeneity on three-dimensional contact metric manifolds, Israel J. Math. 114 (1999), 301–321.
- J. T. Cho and J. Inoguchi, Pseudo-symmetric contact 3-manifolds, J. Korean Math. Soc. 42 (2005), 913–932.
- [12] —, —, Pseudo-symmetric contact 3-manifolds II. When is the tangent sphere bundle over a surface pseudo-symmetric?, Note Mat. 27 (2007), 119–129.
- [13] U. C. De and M. M. Tripathi, Ricci tensors in 3-dimensional trans-Sasakian manifolds, Kyungpook Math. J. 43 (2003), 247–255.
- [14] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. 44 (1992), 1–34.
- [15] M. S. Goto, Global structures of compact conformally flat semi-symmetric spaces of dimension 3 and of non-constant curvature, in: From Geometry to Quantum Mechanics in Honor of Hideki Omori, Progr. Math. 252, Birkhäuser, 2007, 69–83.
- [16] F. Gouli-Andreou and Ph. J. Xenos, On 3-dimensional contact metric manifolds with $\nabla_{\xi} \tau = 0$, J. Geom. 64 (1999), 80–88.
- [17] —, —, A class of contact metric 3-manifolds with $\xi \in N(\kappa, \mu)$ and κ, μ functions, Algebra Groups Geom. 17 (2000), 401–107.
- [18] —, —, A classification of contact metric 3-manifolds with constant ξ-sectional and φ-sectional curvatures, Beiträge Algebra Geom. 43 (2002), 181–193.
- [19] —, —, On a type of contact metric 3-manifolds, Yokohama Math. J. 46 (1999), 109–118.
- [20] V. Hájková, O. Kowalski and M. Sekizawa, On three-dimensional hypersurfaces with type number two in ℍ⁴ and S⁴ treated in intrinsic way, Rend. Circ. Mat. Palermo (2) Suppl. 72 (2004), 107–126.
- [21] N. Hashimoto and M. Sekizawa, Three-dimensional conformally flat pseudo-symmetric spaces of constant type, Arch. Math. (Brno) 36 (2000), 279–286.
- [22] J. Inoguchi, Pseudo-symmetric Lie groups of dimension 3, Bull. Fac. Edu. Utsunomiya Univ. Sect 2. 57 (2007), 1–5.
- [23] D. Janssens and L. Vanhecke, Almost constant structures and curvature tensors, Kōdai Math. J. 4 (1981), 1–27.
- [24] J. N. Karatsobanis and P. J. Xenos, On a new class of contact metric 3-manifolds, J. Geom. 80 (2004), 136–153.
- [25] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (1972), 93–103.
- [26] Th. Koufogiorgos and Ch. Tsichlias, On the existence of a new class of contact metric manifolds, Canad. Math. Bull. 43 (2000), 440–447.
- [27] —, —, Generalized (κ, μ) -contact metric manifolds with $\|\text{grad}\kappa\| = \text{constant}, J.$ Geom. 78 (2003), 83–91.

98	J. T. CHO E	ET AL.
[28]	O. Kowalski, A classification of Rieman Ricci curvatures $\varrho_1 = \varrho_2 \neq \varrho_3$, Nagoya M	nian 3-manifolds with constant principal ath J 132 (1993) 1–36
[29]		ensional Riemannian manifolds of c-conul-
[=0]		nullity Two, Chapter 11, World Sci., Sin-
	gapore, 1996.	
[30]	·	ans-Sasakian manifolds, Ann. Mat. Pura
	Appl. (4) 162 (1992), 77–86.	
[31]		trics on Lie groups, Adv. Math. 21 (1976),
[0-1]	293–329.	(10+0),
[32]		si-Sasakian manifolds, Tensor (N.S.) 38
[9-]	(1982), 19–28.	
[33]		lds of dimension three, Ann. Polon. Math.
[]	47 (1986), 41–50.	
[34]		t quasi-Sasakian manifolds, Period. Math.
	Hungar. 33 (1996), 105–113.	1 0 /
[35]		with Application to Relativity, Academic
	Press, Orlando, FL, 1983.	
[36]	J. A. Oubiña, New classes of almost cont	act metric structures, Publ. Math. Debre-
	cen 32 (1985), 187–193.	
[37]	D. Perrone, Homogeneous contact Rieman	nnian three-manifolds, Illinois J. Math. 42
	(1998), 243-256.	
[38]	—, Weakly ϕ -symmetric contact metric	spaces, Balkan J. Geom. Appl. 7 (2002),
	67–77.	
[39] —, Harmonic characteristic vector fields on contac		on contact metric three-manifolds, Bull.
	Austral. Math. Soc. 67 (2003), 305–315.	
[40]	K. Sekigawa, On some 3-dimensional cur	vature homogeneous spaces, Tensor (N.S.)
	31 (1977), 87-97.	
[41]	S. Tanno, Sur une variété de K-contact métrique de dimension 3, C. R. Acad. So	
	Paris Sér. A-B 263 (1966), A317–A319.	
[42]	E. Vergara-Diaz and C. M. Wood, <i>Harmonic almost contact structures</i> , Geom. I	
	icata 123 (2006), 131–151.	
D		
-	Department of Mathematics Department of Mathematics Educa	
Chonnam National University		Utsunomiya University
CNU, The Institute of Basic Science		Utsunomiya, 321-8505, Japan
Kwangju, 500–757, Korea E-mail: inoguchi@cc.utsunomiya-u.ac. E-mail: jtcho@chonnam.ac.kr		E-mail: inoguchi@cc.utsunomiya-u.ac.jp
E-ma	an: Jicno@cnonnam.ac.kr	
Natio	onal Institute for Mathematical Sciences	
	l6, Doryong-dong, Yuseong-gu	
	eon, 305-340, Korea	
E-ma	ail: jelee@nims.re.kr	

Received 20 February 2007; revised 22 April 2008

(4875)