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~Received 15 May 2003; accepted 15 December 2003!

We consider pseudounitary quantum systems and discuss various properties of
pseudounitary operators. In particular we prove a characterization theorem for
block-diagonalizable pseudounitary operators with finite-dimensional diagonal
blocks. Furthermore, we show that every pseudounitary matrix is the exponential of
i 5A21 times a pseudo-Hermitian matrix, and determine the structure of the Lie
groups consisting of pseudounitary matrices. In particular, we present a thorough
treatment of 232 pseudounitary matrices and discuss an example of a quantum
system with a 232 pseudounitary dynamical group. As other applications of our
general results we give a proof of the spectral theorem for symplectic transforma-
tions of classical mechanics, demonstrate the coincidence of the symplectic group
Sp(2n) with the real subgroup of a matrix group that is isomorphic to the
pseudounitary group U(n,n), and elaborate on an approach to second quantization
that makes use of the underlying pseudounitary dynamical groups. ©2004 Ameri-
can Institute of Physics.@DOI: 10.1063/1.1646448#

I. INTRODUCTION

For the past 2 years we have witnessed a growing interest in pseudo-Hermitian
Hamiltonians.1–13 Initially, the concept of a pseudo-Hermitian operator was developed to describe
the mathematical structure of~the possibly nonunitary! PT-symmetric quantum systems.1,2 Then it
became clear that any diagonalizable Hamiltonian that admitted a symmetry generated by an
invertible antilinear operator was necessarily pseudo-Hermitian.3,9 The intriguing spectral proper-
ties of pseudo-Hermitian Hamiltonians generalize to the class of block-diagonalizable Hamilto-
nians with finite-dimensional blocks,6 so does the connection with antilinear symmetries.10 Among
the most important outcomes of the study of pseudo-Hermitian Hamiltonians is the recent solution
of the old problem of constructing invariant positive–definite inner products on the solution space
of the Klein–Gordon-type equations.14,15

A quantum system with a~time-independent! pseudo-Hermitian Hamiltonian has necessarily a
pseudounitary evolution. Pseudounitary quantum systems with a two-dimensional Hilbert space
provide the simplest nontrivial examples of such systems. As shown in Ref. 14, a classical simple
harmonic oscillator is equivalent to a pseudounitary quantum system with a two-dimensional
Hilbert space. Recently Ahmed and Jain11,12 and Ahmed13 have considered the application of
certain 232 pseudo-Hermitian matrices in statistical mechanics and elaborated on the fact that
they form a Lie algebra.

The purpose of this paper is threefold. First, we use the method of Ref. 6 to obtain a charac-
terization of the block-diagonalizable pseudounitary operators having finite-dimensional diagonal
blocks. Next, we confine our attention to pseudounitary matrices and show that they are obtained
by exponentiating pseudo-Hermitian matrices. This is a nontrivial result, because, for a fixedh,
not everyh-pseudounitary matrix is the exponential ofi 5A21 times anh-pseudo-Hermitian
matrix. Finally, we emphasize that unlike the set ofh-pseudounitary operators~with a fixedh!, the

a!Electronic mail: amostafazadeh@ku.edu.tr

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 45, NUMBER 3 MARCH 2004

9320022-2488/2004/45(3)/932/15/$22.00 © 2004 American Institute of Physics

http://dx.doi.org/10.1063/1.1646448


set of all pseudounitary operators does not form a group. If the Hilbert space in which these
operators act is finite dimensional, then the group ofh-pseudounitary operators is isomorphic to
one of the groups U(n) or U(n,m) for somem,nPZ1. For example, the Lie algebra of the
pseudounitary matrices constructed in Ref. 11 is isomorphic to u~1,1!. This follows from the fact
that the corresponding inner product is indefinite; there is no need to go through the calculation of
the structure constants as done in Ref. 11.

The paper is organized as follows. In Sec. II we present a brief discussion of some basic
properties of pseudounitary operators and their relevance to symplectic transformations. In Sec. III
we explore block-diagonalizable pseudounitary operators with finite-dimensional diagonal blocks.
In Sec. IV we use the results of Secs. II and III to study pseudounitary matrices. In Sec. V we offer
a thorough discussion of the 232 pseudounitary matrices. In Sec. VI we study an application of
our general results for a quantum system with a pseudounitary dynamical group and elaborate on
the relation between the choice of the dynamical group and the issue of second quantization.
Finally, in Sec. VII we provide a survey of our main results and present our concluding remarks.

II. PSEUDO-HERMITIAN AND PSEUDOUNITARY OPERATORS

By definition,1 a linear operatorH:H→H acting in a Hilbert spaceH is said to be pseudo-
Hermitian if there exists a linear, invertible, Hermitian operatorh:H→H such that

H†5hHh21. ~1!

For a given pseudo-Hermitian operatorH, the operatorh satisfying ~1! is not unique.7,14 Each
choice ofh determines a possibly indefinite inner product~a pseudoinner product! on H, namely,

^̂ c,f&&hª^cuhf&, ~2!

where c,fPH, and ^ u & is the original inner product ofH. Conversely, every pseudoinner
product onH has the form~2!. As a result,h is sometimes called a metric operator.

If we make a particular choice forh, we say thatH is h-pseudo-Hermitian. In this case, it is
Hermitian with respect to the inner product^̂ , &&h . Therefore, the study ofh-pseudo-Hermitian
operators is equivalent to the study of Hermitian operators in a vector space with an indefinite
metric.16 The application of the latter in quantum physics dates back to the 1940s.17 See also Refs.
18 and 19. As emphasized in Ref. 19, there is an important distinction between the concept of
pseudo-Hermiticity, where one does not fix the inner product and has the freedom of choosing it,
and the well-studied notion ofh-pseudo-Hermiticity.

We can express the defining condition~1! in the form H#5H whereH#
ªh21H†h is the

h-pseudoadjoint ofH. Using the latter one can also define the notion of anh-pseudounitary
operatorU:H→H by requiring thatU satisfiesU#5U21.

Definition: A linear invertible operatorU:H→H is said to be pseudounitary if there exists a
linear, invertible, Hermitian operatorh:H→H such thatU is h-pseudounitary, i.e.,

U†5hU21h21. ~3!

Similarly to the case of pseudo-Hermitian operators,h is not unique. If we make a choice forh,
we say thatU is h-pseudounitary. In this case it is not difficult to show thatU leaves the
pseudoinner product̂̂ , &&h invariant. This is easily seen by writing~3! in the form

U†hU5h, ~4!

and using~2! and ~4! to check that

^̂ Uc,Uf&&h5 ^̂ c,f&&h , ;c,fPH. ~5!

Given an h-pseudo-Hermitian operatorH one can construct a one-parameter family of
h-pseudounitary operators, namelyU(t)5e2 i tH with tPR.
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Proposition 1: Let ePR1, tP(2e,e), H:H→H be at-independent linear operator acting in
a Hilbert spaceH, U(t)ªe2 i tH , and h:H→H be a t-independent Hermitian, invertible, linear
operator. ThenH is h-pseudo-Hermitian if and only ifU(t) is h-pseudounitary for allt
P(2e,e).

Proof: Suppose thatH is h-pseudo-Hermitian, then a direct application of Eq.~1!, U(t)†

5eitH †
andU(t)215eitH , shows thatU(t) satisfies~3!, i.e., it ish-pseudounitary. Conversely, let

U(t) be h-pseudounitary for alltP(2e,e). Then substitutingU(t) for U in Eq. ~3!, taking the
derivative of both sides with respect tot, and settingt50 in the resulting expression, we find that
H satisfies~1!, i.e., it is h-pseudo-Hermitian. h

BecauseU(t) may be identified with the evolution operator for a quantum system havingH as
its Hamiltonian, a quantum system with a time-independent Hamiltonian has a pseudounitary
evolution if and only if the Hamiltonian is pseudo-Hermitian.14

The one-parameter familyU(t) clearly forms an Abelian Lie group under composition. This
is indeed a subgroup of the groupUh(H) of all h-pseudounitary operators. The latter forms a
group because for any pairU1 , U2 :H→H of h-pseudounitary operators,

~U1
21U2!†5U2

†~U1
†!215hU2

21h21~hU1
21h21!215hU2

21h21hU1h215h~U1
21U2!21h21.

ThereforeUh(H) is a subgroup of the group GL~H! of all invertible linear transformations acting
in H. In Ref. 11, the authors considered this group for the caseH5Cn. They call it the pseudouni-
tary group. This terminology is rather misleading as it does not reflect the important fact that a
particular choice forh has been made. In fact, it is not true that the product of any two pseudouni-
tary operatorsV1 and V2 is pseudounitary. This is because they may belong toUh(H) with
different h. This observation calls for a more careful study of the structure of the setU(H)
ªøhUh(H) of all pseudounitary operators acting inH.

In the remainder of this section we discuss two simple properties of pseudounitary operators
that will be of future use.

Proposition 2:Let h1 be a Hermitian, invertible, linear operator acting in a Hilbert spaceH,
A:H→H, U1 :H→H be invertible linear operators,U2ªA21U1A andh2ªA†h1A. ThenU1 is
h1-pseudounitary if and only ifU2 is h2-pseudo-Hermitian.

Proof: First note that the defining condition~3! may be written in the formUh21U†h5I ,
whereI is the identity operator. Then a simple calculation shows that

U2h2
21U2

†h25A21U1AA21h1
21A21†A†U1A21†A†h1A5A21~U1h1

21U1
†h1!A.

Therefore,U1h1
21U1

†h15I if and only if U2h2
21U2

†h25I . h

Proposition 3:Let U1 :H→H be a pseudounitary operator acting in a Hilbert spaceH andu
be an eigenvalue ofU. Then 1/u* is also an eigenvalue ofU. In other words, eigenvalues ofU are
either unimodular (uuu51) or they come in inverse-complex-conjugate pairs (u,1/u* ).

Proof: Let uu& be an eigenvector ofU with eigenvalueu, i.e., Uuu&5uuu&. Acting out both
sides of~4! on u21uu&, we findU†huu&5u21huu&. Becauseh is invertible,huu&Þ0. This in turn
means thatu21 is an eigenvalue ofU†. But the eigenvalues ofU† are complex conjugates of those
of U. Therefore,u21* 51/u* is an eigenvalue ofU. If u51/u* , u is unimodular; otherwise
(u,1/u* ) is a pair of distinct inverse-complex-conjugate eigenvalues. h

As a straightforward application of Proposition 3, consider the case thatH5C2m, for some
mPZ1, and endowC2m with the metric operator

hJª iJ, ~6!

whereJ:C2m→C2m has the following matrix representation in the standard orthonormal basis of
C2m:

J5S 0m 21m

1m 0m
D . ~7!
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Here 0m and 1m are, respectively, them3m zero and identity matrices, respectively. According to
~6! and ~7!, the operatorhJ has a Hermitian matrix representation in an orthonormal basis, and
hJ

251. HencehJ is indeed a Hermitian invertible~metric! operator acting inC2m.
Next, observe that the operatorJ restricted toR2m yields the usual symplectic form20 on R2m.

The associated symplectic transformations coincide with real 2m32m matricesS satisfying20

StJS5J, ~8!

whereSt stands for the transpose ofS. We can view the symplectic transformationsS as linear
operators acting inC2p. Then the condition that they admit real matrix representations~in the
standard basis! takes the form

TST5S, ~9!

whereT is the ~time-reversal! operator defined by;zWPC2p, TzW5zW* . Making use of~6! and the
fact thatT215T andS†5St, we can, respectively, express the defining relations~8! and~9! of the
symplectic transformationsS as

S†hJS5hJ , ~10!

@S,T#50. ~11!

BecauseT is an antilinear Hermitian invertible operator, according to Theorem 2 of Ref. 3, Eq.
~11! implies thatS is a pseudo-Hermitian operator. Furthermore, Eq.~10! means thatS is in
addition a pseudounitary operator.

In view of Proposition 3 and the spectral characterization theorem for pseudo-Hermitian
operators~Ref. 1, Theorem 2!, the fact that symplectic transformations are both pseudo-Hermitian
and pseudounitary leads to the following well-known spectral theorem for symplectic
transformations.20

Theorem 1: Let l be an eigenvalue of a symplectic transformationS, then so arel* , 1/l, and
1/l* .

Proof: BecauseS is pseudounitary 1/l* is an eigenvalue. Because it is pseudo-Hermitianl*
and ~1/l* !*51/l are eigenvalues. h

III. BLOCK-DIAGONALIZABLE PSEUDOUNITARY OPERATORS WITH FINITE-
DIMENSIONAL DIAGONAL BLOCKS

Consider an operatorU:H→H acting in a Hilbert spaceH and having a discrete spectrum.
Then U is said to be block diagonalizable with finite-dimensional diagonal blocks6 if it can be
expressed in the form

U5(
n

(
a51

dn S un(
i 51

pn,a

ucn ,a,i &^fn ,a,i u1 (
i 51

pn,a21

ucn ,a,i &^fn ,a,i 11u D , ~12!

wheren is the spectral label,un are the eigenvalues ofU, dn is the geometric multiplicity ofun ,
aP$1,2,...,dn% is a degeneracy label,pn,a is the dimension of the Jordan block associated with the
labelsn anda ~these are called the Jordan dimensions6!, and$ucn ,a,i &,ufn ,a,i &% is a complete
biorthonormal system satisfying

^cn ,a,i ufm ,b, j &5dmndabd i j , (
n

(
a51

dn

(
i 51

pn,a

ucn ,a,i &^fm ,a,i u51. ~13!

In view of ~12! and ~13!,

Uucn ,a,1&5unucn ,a,1&, U†ufn ,a,pn,a&5un* ufn ,a,pn,a&, ~14!
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i.e., ucn ,a,1& are the eigenvectors ofU and ufn ,a,pn,a& are the eigenvectors ofU†. Clearly, the
eigenvalues ofU† are complex conjugates of those ofU, and if U is invertible the eigenvaluesun

do not vanish.
Lemma 1:Let U:H→H be an invertible operator acting in a Hilbert spaceH and zPC

2$0%. Then for all,PZ1,

kernel@~U212z21!,#5kernel@~U2z!,#. ~15!

Proof: This identity follows by induction over,. For ,51, we have

uj&Pkernel@U212z21#⇔~U212z21!uj&50

⇔zU~U212z21!uj&50⇔~z2U !uj&50⇔uj&Pkernel@U2z#,
~16!

where we have used the fact thatzU is an invertible operator. Relations~16! show that~15! holds
for ,51. Now, suppose~15! holds for some,5kPZ1. Then

uj&Pkernel@~U212z21!k11#⇔~U212z21!k~U212z21!uj&50

⇔~U212z21!uj&Pkernel@~U212z21!k#

⇔~U212z21!uj&Pkernel@~U2z!k#

⇔~U2z!k~U212z21!uj&50

⇔zU~U2z!k~U212z21!uj&50

⇔~U2z!k~z2U !uj&50⇔uj&Pkernel@~U2z!k11#.

Therefore,~15! holds for,5k11; by induction, it holds for all,PZ1. h

Theorem 2: Let U:H→H be an operator acting in a Hilbert spaceH and having a discrete
spectrum. Suppose thatU is block diagonalizable with finite-dimensional diagonal blocks so that
~12! holds. ThenU is pseudounitary if and only if the eigenvaluesun of U are either unimodular
~i.e., uunu51) or they come in inverse-complex-conjugate pairs (un,1/un* ) and that the geometric
multiplicity and the Jordan dimensions for the inverse-complex-conjugate eigenvalues coincide.

Proof: Suppose thatU is pseudounitary. Then, according to Proposition 3 the eigenvalues of
U are either unimodular or they come in inverse-complex-conjugate pairs. Suppose thatun and
1/un* form a pair of distinct inverse-complex-conjugate eigenvalues. In order to show that they
have the same geometric multiplicity and Jordan dimensions we prove that for all,PZ1,
kernel(U2un), and kernel(U21/un* ), have the same~finite! dimension. To see this, first note that
U and U† have the same Jordan block structure; in view of~12!, for all ,PZ1, kernel(U
2un), and kernel(U†2un* ), have the same~finite! dimension. Hence they are isomorphic as
vector spaces. Next, we use the fact thath is an invertible operator to establish the isomorphism
between kernel(U†2un* ), and

kernel@h21~U†2un* !,h#5kernel@~h21U†h2un* !,#5kernel@~U212un* !,#

5kernel@~U21/un* !,#.

Here we have made use of the defining relation~3! and the identity~15! of Lemma 1. This
completes the proof that for all,PZ1, kernel(U2un), is isomorphic to kernel(U21/un* ),.
Therefore, they have the same~finite! dimension.

Next, suppose thatU has unimodular and/or inverse-complex-conjugate pairs of eigenvalues
with identical geometric multiplicity and Jordan dimensions. ThenU may be expressed as
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U5(
n0

(
a51

dn0 S un0 (i 51

pn0 ,a

ucn0
,a,i &^fn0

,a,i u1 (
i 51

pn0 ,a21

ucn0
,a,i &^fn0

,a,i 11u D
1(

n
(
a51

dn F(
i 51

pn,a S unucn1 ,a,i &^fn1 ,a,i u1
1

un*
ucn2 ,a,i &^fn2 ,a,i u D

1 (
i 51

pn,a21

~ ucn1 ,a,i &^fn1 ,a,i 11u1ucn2 ,a,i &^fn2 ,a,i 11u!G , ~17!

where we have setn5n0 , n1, or n2 depending on whetheruunu51, uunu.1, or uunu,1, respec-
tively, and usedn to denote the common value ofn1 andn2. In order to show thatU, as given
by ~17!, is pseudounitary we construct a Hermitian, invertible, linear operatorh satisfying~3! or
equivalently~4!. Consider the ansatz

h5(
n0

(
a51

dn0

(
i , j 51

pn0 ,a

zn0 ,a,i , j ufn0
,a,i &^fn0

,a, j u1(
n

(
a51

dn

(
i , j 51

pn,a

~zn,a,i , j ufn2 ,a, j &^fn1 ,a,i u

1zn,a,i , j* ufn1 ,a,i &^fn2 ,a, j u!, ~18!

wherezn0 ,a,i , j andzn,a,i , j are complex coefficients and

zn0 ,a,i , j* 5zn0 ,a, j ,i . ~19!

The latter relation ensures thath is Hermitian. Now, impose the condition~4!. Substituting~17!
and ~18! in ~4! and using the biorthonormality and completeness relations~13!, we find after a
quite lengthy calculation thatzn0 ,a,i , j and zn,a,i , j are solutions of the following equations foru

5un0
, p5pn0 ,a andu5un , p5pn,a , respectively,

x1,i5xi ,150, ; i P$1,2,...,p21%, ~20!

uxi 21,j1u21xi , j 211xi 21,j 2150, ; i , j P$2,...,p%. ~21!

It turns out that these equations have the following exact solution:

xi , j5H 0 for i 1 j <p,

(
k51

i 1 j 2p S i 2k21
p2 j 21D ~21! i 2kup1 i 2 j 2kxk,p for j ,p, i 1 j ,

~22!

where for allr ,sPZ1 with r<s

S s
r Dª s!

r ! ~s2r !!
,

andxk,p with kP$1,2,...,p% are arbitrary complex numbers. We have obtained the solution~22! by
a tedious inspection scheme and checked its validity by direct substitution in~21!; it clearly
satisfies~20!. It is important to note that according to~22!, xi , j form a p3p matrix x of the form

937J. Math. Phys., Vol. 45, No. 3, March 2004 Pseudounitary operators and quantum dynamics



x5S 0 0 0 ¯ 0 0 x1,p

0 0 0 ¯ 0 x2,p21 x2,p

0 0 0 ¯ x3,p22 x3,p21 x3,p

] ] ] ]]] ] ] ]

0 0 xp22,3 ¯ xp22,p22 xp22,p21 xp22,p

0 xp21,2 xp21,3 ¯ xp21,p22 xp21,p21 xp21,p

xp,1 xp,2 xp,3 ¯ xp,p22 xp,p21 xp,p

D . ~23!

In view of ~22! all the entries ofx are determined in terms of the entries in the last column. For
example, we have

xi ,p2 i 115~21! i 21u2~ i 21!x1,p , ; i P$1,2,...,p%. ~24!

Moreover note that the determinant ofx is up to a sign the product of the entries~24!. Therefore,
x is an invertible matrix provided thatx1,pÞ0 anduÞ0. Next, consider the case thatu is unimo-
dular and seek for the solutions~22! that makex Hermitian, i.e., find solutions for~20! and ~21!
subject to the condition

xi , j* 5xj ,i . ~25!

Imposing this condition on the solution~22! restricts the choice of the initially free entries, namely
xi ,p . For example, settingi 5p and j 51 in ~22! or alternatively settingi 5p in ~24!, we find
xp,15(21)p21u2(p21)x1,p . Now, using~25! which impliesxp,15x1,p* , we find

x1,p56A~21!p21u12pr, ~26!

wherer5ux1,pu is an arbitrary non-negative real number. A similar analysis shows that the con-
dition ~25! leads to similar restrictions on the choices ofxi ,p with i .1. But these restrictions do
not lead to any contradictions, i.e.,~25! can always be satisfied. Indeed there are infinitely many
solutions of the form~22! that fulfill ~25!. In particular, if we chooseuuu51 andrÞ0, the matrix
x is an invertible Hermitian matrix. Settingu5un0

, we have a set of solutionszn0 ,a,i , j of ~20! and
~21! that respect the condition~19! and that the matriceszn0 ,a formed out ofzn0 ,a,i , j are invertible.
Similarly, settingu5un we have a set of solutionszn,a,i , j of ~20! and~21! such that the matrices
zn,a formed out ofzn,a,i , j are also invertible. The existence of these solutions is equivalent to the
existence of a linear operatorh of the form~18! that satisfies~4! and is Hermitian and invertible.
The inverse ofh is given by

h215(
n0

(
a51

dn0

(
i , j 51

pn0 ,a

z̃n0 ,a,i , j ucn0
,a,i &^cn0

,a, j u1(
n

(
a51

dn

(
i , j 51

pn,a

~ z̃n,a,i , j ucn2 ,a, j &^cn1 ,a,i u

1 z̃n,a,i , j* ucn1 ,a,i &^cn2 ,a, j u!, ~27!

wherez̃n0 ,a,i , j are the entries of the matrixzn0 ,a
21 , andz̃n,a,i , j are those ofzn,a

21† . One can check by

direct calculation thath21h51. This completes the proof of the pseudounitarity ofU. h

IV. PSEUDOUNITARY MATRICES

According to Theorem 2, a square matrixU is pseudounitary if its eigenvalues are either
unimodular or they come in inverse-complex-pairs and that geometric multiplicity and the Jordan
dimensions of the latter are identical. A direct consequence of this observation is the following.

Proposition 4:Every pseudounitary matrixU has a unimodular determinant, i.e.,udetUu51.
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Proof: This follows from the fact that in the Jordan canonical form ofU the nonunimodular
entries come is inverse-complex-conjugate pairs (un,1/un* ). Hence their product which yields
detU is unimodular. h

According to this proposition the setU(Cn) of all n3n pseudounitary matrices is a subset of
the group

SL~n,C!ª$gPGL~n,C!u udetgu51%, ~28!

of n3n matrices with unimodular determinant. We shall callSL(n,C) the pseudospecial groups.
As a subset of GL(n,C), SL(n,C) is the inverse image of the group U~1! under the homomor-
phism det:GL(n,C)→GL(1,C). Therefore,SL(n,C) is a subgroup of GL(n,C). In fact, it is not
difficult to show thatSL(n,C) is isomorphic to the product group U(1)3SL(n,C). Note however
that not every element of the pseudospecial groups is pseudounitary. For example letg be a 232
diagonal matrix with diagonal entries 2i and2 i /2. Clearly, detg51PU(1), sogPSL(2,C). But,
(2i )21* 5 i /2Þ2 i /2. Hence the eigenvalues 2i and2 i /2 are not inverse-complex-conjugates, and
g is not pseudounitary. In general,U(Cn) is a proper subset ofSL(n,C).

Next, consider the groupUh(Cn) for a fixed Hermitian invertiblen3n matrix h. We recall
Sylvester’s law of inertia according to whichh satisfies

h5A†hp,qA, ~29!

whereA is some invertiblen3n matrix andhp,q is a diagonal matrix of the form

hp,q5diag~21,21,...,21,1,1,...,1!, ~30!

which hasp negative andqªn2p positive entries.
Proposition 5:Let h be ann3n Hermitian and invertible matrix. Then the groupUh(Cn) is

isomorphic to the pseudounitary group

U~p,q!ª$gPGL~n,C!ug†hp,qg5hp,q%5Uhp,q
~Cn!,

for somepP$0,1,...,n% andqªn2p. @Note that U(0,n)5U(n).]
Proof: SettingU25U, h25h, andh15hp,q in Proposition 2, we see thatUPUh(Cn) if and

only if U1ªAUA21PU(p,q). Hence, Uh(Cn)5A21U(p,q)A. Because the conjugation
i A :GL(n,C)→GL(n,C) defined byi A(g)ªA21gA is an automorphism of the group GL(n,C) that
mapsUh(Cn) onto U(p,q), the subgroupsUh(Cn) and U(p,q) are isomorphic. h

According to Proposition 5, the pseudounitary groupsUh(Cn) are isomorphic to and obtained
from the classical groups U(p,q) @or U(n)] by conjugation;Uh(Cn)5A21U(p,q)A for someA
PGL(n,C). Therefore, the setU(Cn) may be viewed as the union of the orbits of the subgroups
U(p,q) under conjugation in GL(n,C). Obviously these orbits, which according to Proposition 4
lie in the pseudospecial groupSL(n,C), are not disjoint. For example,eiHPU(Cn) belongs to both
Uh1

(Cn) andUh2
(Cn), if H is bothh1- andh2-pseudo-Hermitian. The latter holds if and only if

h25A†h1A for someAPGL(n,C) commuting withH.7

Another simple consequence of Proposition 5 is the following.
Corollary: Let mPZ1. Then the group Sp(2m) of symplectic transformations ofR2m is

isomorphic to the real subgroup of~a matrix group that is isomorphic to! the pseudounitary group
U(m,m).

Proof: According to the argument given above Theorem 1, Sp(2m) may be identified with the
subgroup ofUhJ

(C2m) consisting of real matrices. It is not difficult to show that the spectrum ofhJ

consists of21 and 1 each with multiplicitym. Hence according to Proposition 5,UhJ
(C2m) is

isomorphic to U(m,m), and Sp(2m) is isomorphic to the real subgroup ofUhJ
(C2m). h

Note also that according to the argument used in the above proof of Theorem 1 and the
spectral characterization theorems for pseudo-Hermitian and pseudounitary operators~i.e., Theo-
rem 1 of Ref. 6 and Theorem 2 above!, given an eigenvaluel of a symplectic transformationS
PSp(2m), the eigenvaluesl* , 1/l, and 1/l* have the same geometric multiplicity and Jordan
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dimensions asl. This in particular proves the well-known fact thatS has a unit determinant. In
particular, Sp(2m) may be identified with the real subgroup of~a matrix group that is isomorphic
to! SU(m,m).

Next, we state and prove the following lemma.
Lemma 2:Let pPZ1, EPC, andh be ap3p matrix of the Jordan form

h5E1p1ap , ~31!

where 1p is thep3p identity matrix andap is thep3p matrix

apªS 0 1 0 ¯ 0 0 0

0 0 1 ¯ 0 0 0

] ] � �� ] ] ]

0 0 0 ¯ 0 1 0

0 0 0 ¯ 0 0 1

0 0 0 ¯ 0 0 0

D ~32!

(ap provides an irreducible representation of the annihilation operator for a para-Fermion of order
p2121!. Theneih has the following canonical Jordan form:

eiE1p1ap . ~33!

Equivalently, eiE is the unique eigenvalue ofeih with geometric multiplicity 1 and algebraic
multiplicity p.

Proof: Using the fact thatap
p50, we can easily compute

eih5eiE (
,50

p21
i ,a,

,!
.

This is an upper triangular matrix with a single eigenvalue~namelyeiE) and a single~linearly
independent! eigenvector. Therefore its geometric multiplicity is 1 and its algebraic multiplicity is
p. h

Theorem 3: Every pseudounitary matrixU may be expressed aseiH for some pseudo-
Hermitian matrixH.

Proof: Let U be ann3n pseudounitary matrix. Clearly,UPGL(n,C). Now, because the
exponential map for the group GL(n,C) is onto,22 there is a square matrixH such thatU5eiH . We
can perform a similarity transformationH→H̃ªA21HA that mapsH into its Jordan canonical
form H̃. We then have

U5AeiH̃A21. ~34!

In view of Proposition 2 and Lemma 2,eiH̃ is pseudounitary, and its eigenvalues are of the form
eiEn where En are the eigenvalues ofH̃. Moreover, the geometric multiplicity and the Jordan

dimensions of~the canonical Jordan form of! eiH̃ coincide with those ofH̃. Now, becauseeiH̃ is

pseudounitary, Theorem 2 implies that the eigenvalueseiEn of eiH̃ are either unimodular or they
come in inverse-complex-conjugate pairs with identical geometric multiplicity and Jordan dimen-
sions. First we consider the unimodular eigenvalues which we denote byeiEn0. Because 1

5ueiEn0u25eiEn0e2 iEn0
* , we haveEn0

2En0
* 52pkn0

for somekn0
PZ. But the left-hand side of this

equation is imaginary while its right-hand side is real. This implieskn0
50. HenceEn0

is real.
Next, consider the eigenvalueseiEn that are not unimodular. These are paired with their inverse-
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complex-conjugate, namely,eiEn* . eiEn and eiEn* have the same geometric multiplicitydn and

Jordan dimensionspn,a . BecauseeiEn* is an eigenvalue ofeiH̃ , according to Lemma 2 there is an
eigenvalueEn8 of H̃ such that

eiEn* 5eiEn8, ~35!

and thatEn8 has the same geometric multiplicity and Jordan dimensions aseiEn* . Hence the
geometric multiplicity and Jordan dimensions ofEn8 are, respectively,dn andpn,a . Furthermore,
Eq. ~35! impliesEn85En* 12pkn for someknPZ. Now, letEn1 andEn2 , respectively, denote the
eigenvalues ofH̃ with positive and negative imaginary part. In view of the preceding argument,
for eachEn1 there is an eigenvalueEn25En1* 12pkn1 . Furthermore all the eigenvalues with
negative imaginary part may be obtained from the eigenvalues with positive imaginary part in this
way. Now, let H̃8 be the matrix obtained fromH̃ by replacing the eigenvaluesEn2 with En28
ªEn222pkn15En1* . Then, by construction,H̃8 has real and/or complex-conjugate pairs of
eigenvalues, the latter having identical geometric multiplicity and Jordan dimensions. In light of
Theorem 1 of Ref. 6, this implies thatH̃8 is pseudo-Hermitian. One can also check that

eiH̃ 85eiH̃ . ~36!

Next, let

H8ªAH̃8A21. ~37!

Clearly, H̃8 is the Jordan canonical form ofH8. In particular, H8 is also pseudo-Hermitian.
Combining Eqs.~34!, ~36!, and~37!, we finally have

U5AeiH̃A215AeiH̃ 8A215eiAH̃8A21
5eiH 8.

This completes the proof of the fact thatU is the exponential ofi times a pseudo-Hermitian
matrix. h

Corollary 1: A square matrixU is pseudounitary if and only if2 i ln U is pseudo-Hermitian,
i.e., U5eiH for a pseudo-Hermitian matrixH.

Proof: If U is pseudounitary, then according to Theorem 3 it is of the formeiH for some
pseudo-Hermitian matrix. IfU5eiH for a pseudo-Hermitian matrixH, then settinge52, t521 in
Proposition 1 we find thatU5U(21) is pseudounitary. h

Corollary 1 is rather surprising, for it is well known that the exponential map is not onto for
pseudounitary groups such as U~1,1!.22 This does not however contradict the statement of Corol-
lary 1, because when one speaks of a pseudounitary group one fixes the operatorh. What has been
done in the proof of Theorem 3 is to show that for a given pseudounitary operatorU there is anh
such thatU is h-pseudounitary andHª2 ln U is h-pseudo-Hermitian. This is not equivalent to the
erroneous statement that given anh, 2 i ln U is h-pseudo-Hermitian for everyh-pseudounitary
matrix U. The exponential map for the pseudounitary groupUh(Cn) is generally not onto, but the
exponential map for the set of all pseudounitary matrices is onto. This is another demonstration of
the importance of the difference between the notions ofh-pseudo-Hermiticity~respectively,
h-pseudounitarity! and pseudo-Hermiticity~respectively, pseudounitarity!.19

V. 2Ã2 PSEUDOUNITARY MATRICES

In this section we shall study the casen52 in more detail. The following corollary of
Theorem 3 yields the general form of 232 pseudounitary matrices.

Corollary 2: A 232 matrix U is pseudo-Hermitian if and only ifU5A21DA whereA is an
invertible 232 matrix andD is a matrix assuming one of the following three forms:
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D15S eiu 0

0 ei ~w2u!D , u,wPR, ~38!

D25S reiu 0

0 eiu/r D , r PR1, uPR, ~39!

D35S eiu 1

0 eiuD , uPR. ~40!

Proof: Block diagonalizingU we find a matrixD which is either diagonal or has the form

D5S u 1

0 uD , ~41!

whereuPC. According to Proposition 2,D is also pseudounitary. This together with Theorem 3
imply that

~i! if D is diagonal, its eigenvalues are either both unimodular, i.e.,D is of the form~38!, or
they are inverse-complex-conjugate, i.e.,D is of the form~39!;

~ii ! if D has the form~41!, then it has a single eigenvalueu which is necessarily unimodular.
That isD is of the form~40!. h

In order to demonstrate the utility of Theorem 3, here we include a direct proof of Corollary
2. This proof involves the calculation of the matricesh whose general form is given in the proof
of Theorem 2.

A direct proof of corollary 2:First consider the case thatU is diagonalizable, then the canoni-
cal Jordan formD5AUA21 of U is diagonal. Clearly detD5detU and according to Proposition
4 detUPU(1). HenceudetDu51. This implies thatD must have the form

D5S z 0

0 eiw/z D , ~42!

where zªreiuPC2$0% and eiwPU(1), i.e., r PR1 and u,wPR. Next, note that in view of
Proposition 2,U is h-pseudounitary if and only ifD is A21†hA21-pseudounitary. This reduces the
problem to finding the necessary and sufficient conditions onz ~alternativelyr, u! andw that make
D pseudounitary. Using the general form

h5S a j

j* bD , a,bPR, jPC, abÞuju2, ~43!

of the Hermitian matrixh and the fact thatD is h-pseudounitary for someh of the form~43!, i.e.,
D†5hD21h21 or D†hD5h, we find that forj50: r 51 andD5D1 , and forjÞ0: eiw5eiu and
D5D2 . Next, consider the case thatU is not diagonalizable. ThenD has the form~41!. Again
becauseD is pseudounitary, detDPU(1). This implies uPU(1), i.e., u5eiu for someuPR.
Substituting this expression and the general form~43! of h in D†hD5h, we find that this
equation can always be satisfied without restrictingu. Therefore, in this caseD5D3 . h

The above analysis also yields the form ofh for each of the cases considered.

~1! For D5D1 , there are two possibilities.
~1a! eiwÞe2iu: In this case,j50 andh has the diagonal form

h5h1ªS a 0

0 bD , a,bPR2$0%. ~44!
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Becausea and b may have arbitrary sign, the groupUh1
(C2) is isomorphic to either U~2! or

U~1,1!.
~1b! eiw5e2iu: In this case,D5eiuI where I is the 232 unit matrix. Hence, there is no

restriction onh; it has the general form~43!, andUh(C2) is isomorphic to either U~2! or U~1,1!.
~2! If D5D2 with r 51 we recover the case~1b!. If D5D2 andrÞ1, thena5b50 andh has
the off-diagonal form

h5h2ªS 0 j

j* 0D , jPC2$0%. ~45!

Becauseh2 is an indefinite matrix,Uh2
(C2) is isomorphic to U~1,1!. ~3!

~3! If D5D3 . Thenh has the general form

h5h3ªS 0 6 ire2 iu

7 ireiu 0 D , r PR1, uPR, ~46!

andUh3
(C2) is isomorphic to U~1,1!.

We can check that the above expressions forh are consistent with the general form ofh as
given in the proof of Theorem 2. Furthermore, we can obtain the explicit form of the operator
Hª2 i ln U. In view of the identityU5A21DA, it is not difficult to see that if we obtain an
operatorHD satisfyingD5eiH D, thenH5A21HDA will satisfy U5eiH . Table I gives the opera-
tors HD and h for D5D1 , D2 , D3 . Note that in this tableu,wPR, r PR1, a,bPR2$0%,
jPC2$0%, and that the trivial case whereD is proportional to the unit matrix is omitted.

VI. PSEUDOUNITARY DYNAMICAL GROUPS AND THE HARMONIC OSCILLATOR

Suppose thatH is a 232 pseudo-Hermitian matrix serving as the~time-independent! Hamil-
tonian for a quantum system,U(t)ªe2 i tH is the corresponding evolution operator,EH is the set of
all invertible Hermitian 232 matricesh satisfying~1!, and

UHªø
hPEH

Uh~C2!, GUHªø
hPEH

GUh~C2!,

whereGUh(C2) denotes the Lie algebra ofUh(C2). Then clearlyiH PGUH and for all tPR U(t)
PUH . This in particular means that for eachhPEH , Uh(C2) serves as a dynamical group for the
quantum system.23 If H is diagonalizable with a real spectrum then the dynamical group may be
taken to be~isomorphic to! either U~2! or U~1,1! ~or one of their subgroups!. If H has~nonreal!
complex eigenvalues or if it is not diagonalizable, then the dynamical group is necessarily~iso-
morphic to a subgroup of! U~1,1!. @The generalization of this statement to arbitrary block-

TABLE I. OperatorsHD andh for D5D1 , D2 , D3 .

i Di HDi
h i

1 Seiu 0

0 ei~w2u!D Su 0

0 w2u
D Sa 0

0 b
D

2 Sreiu 0

0 eiu/r
D Su2i ln r 0

0 u1i ln r
D S 0 j

j* 0
D

3 Seiu 1

0 eiuD Su u~eiu21!21

0 u
D S 0 6ire2iu

7ireiu 0
D
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diagonalizable pseudo-Hermitian Hamiltonians with finite-dimensional blocks is immediate. If the
Hamiltonian is not diagonalizable or has complex eigenvalues, then the dynamical groups that the
system admits are necessarily~isomorphic to a subgroup of! U(p,q) with pÞ0Þq.]

A concrete example is provided by the classical equation of motion for a simple harmonic
oscillator of frequencyv,

ẍ1v2x50. ~47!

As explained in Refs. 4 and 14, this equation is equivalent to the Schro¨dinger equation,

i\
d

dt
C5HC, ~48!

where

C5..S x1 il ẋ
x2 il ẋD , H5..

\

2 S lv21l21 lv22l21

2lv21l21 2lv22l21D , ~49!

and lPR1 is a time scale. ClearlyH is a traceless matrix. It is also easy to check that detH
PR if and only if v2PR. Therefore, according to Theorem 3 of Ref. 6,H is a pseudo-Hermitian
matrix provided thatv2PR. Furthermore,H is diagonalizable unlessv50.

In the following we shall only consider the casev2PR.
For vÞ0, we can easily solve the eigenvalue problem and diagonalizeH. The corresponding

diagonal matrix has the formHD5\vs3 where s3 is the diagonal Pauli matrix diag~1,21!.
Comparing the expression forHD with the results given in the above table, we see thatHD is
h-pseudo-Hermitian with respect to a diagonal metric operatorh of the form ~44! provided that
v2.0. In this case the system admits both the dynamical groups U~2! and U~1,1!. If v2,0, H is
h-pseudo-Hermitian with respect to an off-diagonal metric operatorh of the form ~45! and the
system only admits the dynamical group U~1,1!. Finally for v50, H is not diagonalizable;U
5eiH has the Jordan canonical formD3 ; it is h-pseudounitary for a metric operatorh of the form
~46! and the system admits the dynamical group U~1,1!. @It is interesting to observe that the
noncompact dynamical group U~1,1! arises for the case thatv2,0 where Eq.~47! admits un-
bounded solutions.#

For the casev2.0, the freedom in the choice of the dynamical group is equivalent to the
choice of a positive–definite or an indefinite inner product on the space of solutions of Eq.~47!.14

This freedom does not exist ifv2<0.
Now, consider changing the parameterv2 from a positive value down to a negative value. If

one adopts an indefinite~but possiblyv2-dependent! inner product, one can keepH Hermitian
with respect to this inner product and view the evolution operator as tracing a curve in the
dynamical group U~1,1!. The best-known example is the Klein–Gordon inner product that corre-
sponds to the choiceh5s3 , and therefore is independent of the value of the parameterv2.
However, if one initially adopts a~possiblyv2-dependent! positive–definite inner product, one
cannot maintain the Hermiticity ofH with respect to this inner product oncev2 crosses zero. The
dynamical group undergoes an abrupt transition from the group U~2! to the group U~1,1!. This
transition may be identified with the change of the signature of the metric~operator!.

For v2.0, one may endow the Hilbert space (C2) with a positive–definite invariant inner
product. In this case the system has a U~2! dynamical group and is physically equivalent to the
two-level spin system,23 i.e., a spin-1/2 particle interacting with a fixed magnetic field. The time
evolution is clearly unitary. This equivalence is destroyed oncev2 becomes nonpositive. In this
case the dynamical group is U~1,1! and the system does not admit a unitary evolution with respect
to any positive–definite inner product onC2. For the case thatv2.0 one could as well choose an
indefinite invariant inner product~this is precisely what was done historically!. But such a choice
leads to a nonunitary quantum system with a two-dimensional Hilbert space and a U~1,1! dynami-
cal group. As is well known the corresponding quantum harmonic oscillator also has a U~1,1! @or
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rather SU~1,1!# dynamical group.23 Therefore, as far as the dynamics is concerned the nonunitary
system describing the dynamics of the classical oscillator is equivalent to the unitary quantum
harmonic oscillator.

For the casev2.0 there are therefore two alternatives. One is to choose a positive–definite
invariant inner product which corresponds to the dynamical group U~2!. The other is to choose an
indefinite invariant inner product which leads to the dynamical group U~1,1!.

Now, suppose that one wishes to keep the same dynamical group but insists on being able to
describe the dynamics using a unitary quantum system. In the first alternative this is already the
case. But in the second alternative one needs to use an infinite-dimensional Hilbert space, because
being a noncompact Lie group U~1,1! does not admit a finite-dimensional unitary representation.
Thereforeit is the demand for unitarity that leads to the quantization of the oscillator. The latter
is however not unique because U~1,1! has inequivalent unitary irreducible representations. This
does not lead to any problems, because the dynamics always takes place in the dynamical group.23

As a result the dynamical aspects of all possible quantum systems associated with the classical
harmonic oscillator are equivalent.@Note that here quantization does not mean the canonical
quantization which is unique in the sense that the Weyl–Heisenberg algebra has a unique irreduc-
ible ~projective! representation. It means defining the Hilbert space as the representation space of
a unitary irreducible projective representation of the dynamical group, and representing the Hamil-
tonian as an element of the Lie algebra of the dynamical group.#

The above two alternatives are also available in describing free Klein–Gordon fields~or more
generally Klein–Gordon fields interacting with a stationary magnetic field!. The second alternative
applies more generally even to the cases of interacting fields. It corresponds to Dirac’s method of
second quantization that forms the foundations of quantum field theories. The first alternative was
noticed quite recently.14,15,24~See however Ref. 25 that were brought to the author’s attention after
the completion of this project.! Its advantage is to provide a genuine probability interpretation for
first quantized Klein–Gordon fields.26 Its main application is in quantum cosmology.15

VII. CONCLUSION

In this paper, we explored various properties of pseudounitary operators and proved a spectral
characterization theorem for the class of block-diagonalizable pseudounitary operators with finite-
dimensional blocks. We applied our results to clarify the structure of pseudounitary matrices
paying attention to the role of the inner product and the fact that it is not unique. We showed that
the relationship between Hermitian and unitary matrices generalize to the pseudo-Hermitian and
pseudounitary matrices. Specifically every pseudounitary matrix is the exponential ofi times a
pseudo-Hermitian matrix.

We showed that the symplectic transformations of classical mechanics are certain pseudouni-
tary and pseudo-Hermitian operators. This led to a proof of the spectral theorem for symplectic
matrices and to the identification of the symplectic groups Sp(2n) with the real subgroups of
certain pseudounitary matrix groups that are isomorphic to U(n,n). The description of the sym-
plectic transformations in terms of pseudounitary and pseudo-Hermitian operators suggests the
possibility of the application of the latter in classical mechanics.~For a related discussion see Ref.
27.!

Furthermore, we derived the canonical forms of arbitrary 232 pseudounitary matrices, and
studied the pseudounitary system describing a classical harmonic oscillator. For real nonzero
frequencies, this system admits both the dynamical groups U~2! or U~1,1!. If one imposes the
condition of the unitarity of the evolution, then the choice U~2! identifies the dynamics of the
oscillator with that of a two-level quantum system, and the choice U~1,1! leads to a quantization
of the oscillator. This picture provides a rather interesting link between the demand for unitarity
and the need for~second! quantization.
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