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We consider pseudounitary quantum systems and discuss various properties of
pseudounitary operators. In particular we prove a characterization theorem for
block-diagonalizable pseudounitary operators with finite-dimensional diagonal
blocks. Furthermore, we show that every pseudounitary matrix is the exponential of
i=\—1 times a pseudo-Hermitian matrix, and determine the structure of the Lie
groups consisting of pseudounitary matrices. In particular, we present a thorough
treatment of X2 pseudounitary matrices and discuss an example of a quantum
system with a X2 pseudounitary dynamical group. As other applications of our
general results we give a proof of the spectral theorem for symplectic transforma-
tions of classical mechanics, demonstrate the coincidence of the symplectic group
Sp(2n) with the real subgroup of a matrix group that is isomorphic to the
pseudounitary group W;n), and elaborate on an approach to second quantization
that makes use of the underlying pseudounitary dynamical group20@ Ameri-

can Institute of Physics]DOI: 10.1063/1.1646448

I. INTRODUCTION

For the past 2 years we have witnessed a growing interest in pseudo-Hermitian
Hamiltonians~*3Initially, the concept of a pseudo-Hermitian operator was developed to describe
the mathematical structure the possibly nonunitajyP T-symmetric quantum system$Then it
became clear that any diagonalizable Hamiltonian that admitted a symmetry generated by an
invertible antilinear operator was necessarily pseudo-Hermiffarhe intriguing spectral proper-
ties of pseudo-Hermitian Hamiltonians generalize to the class of block-diagonalizable Hamilto-
nians with finite-dimensional blocksso does the connection with antilinear symmettsmong
the most important outcomes of the study of pseudo-Hermitian Hamiltonians is the recent solution
of the old problem of constructing invariant positive—definite inner products on the solution space
of the Klein—Gordon-type equatioh$!®

A quantum system with &ime-independentpseudo-Hermitian Hamiltonian has necessarily a
pseudounitary evolution. Pseudounitary quantum systems with a two-dimensional Hilbert space
provide the simplest nontrivial examples of such systems. As shown in Ref. 14, a classical simple
harmonic oscillator is equivalent to a pseudounitary quantum system with a two-dimensional
Hilbert space. Recently Ahmed and Jait? and Ahmed® have considered the application of
certain 2<2 pseudo-Hermitian matrices in statistical mechanics and elaborated on the fact that
they form a Lie algebra.

The purpose of this paper is threefold. First, we use the method of Ref. 6 to obtain a charac-
terization of the block-diagonalizable pseudounitary operators having finite-dimensional diagonal
blocks. Next, we confine our attention to pseudounitary matrices and show that they are obtained
by exponentiating pseudo-Hermitian matrices. This is a nontrivial result, because, for afixed
not every n-pseudounitary matrix is the exponential iof /—1 times anz-pseudo-Hermitian
matrix. Finally, we emphasize that unlike the setjgbseudounitary operato(with a fixed ), the
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set of all pseudounitary operators does not form a group. If the Hilbert space in which these
operators act is finite dimensional, then the groupygdseudounitary operators is isomorphic to
one of the groups W() or U(n,m) for somem,neZ*. For example, the Lie algebra of the
pseudounitary matrices constructed in Ref. 11 is isomorphi¢Xdu This follows from the fact

that the corresponding inner product is indefinite; there is no need to go through the calculation of
the structure constants as done in Ref. 11.

The paper is organized as follows. In Sec. Il we present a brief discussion of some basic
properties of pseudounitary operators and their relevance to symplectic transformations. In Sec. llI
we explore block-diagonalizable pseudounitary operators with finite-dimensional diagonal blocks.
In Sec. IV we use the results of Secs. Il and Il to study pseudounitary matrices. In Sec. V we offer
a thorough discussion of thex2 pseudounitary matrices. In Sec. VI we study an application of
our general results for a quantum system with a pseudounitary dynamical group and elaborate on
the relation between the choice of the dynamical group and the issue of second quantization.
Finally, in Sec. VII we provide a survey of our main results and present our concluding remarks.

Il. PSEUDO-HERMITIAN AND PSEUDOUNITARY OPERATORS

By definition?! a linear operatoH: H—H acting in a Hilbert spacé{ is said to be pseudo-
Hermitian if there exists a linear, invertible, Hermitian operafdt(—7H such that

Hf'=nH7 L (1)

For a given pseudo-Hermitian operatdr the operatory satisfying (1) is not unique’-'* Each
choice of 7 determines a possibly indefinite inner prod(ectpseudoinner producbn 7, namely,

(s @Dpi=(lmb), ®)

where ,¢peH, and( | ) is the original inner product of{. Conversely, every pseudoinner
product onH has the form(2). As a result,s7 is sometimes called a metric operator.

If we make a particular choice fay, we say that is »-pseudo-Hermitian. In this case, it is
Hermitian with respect to the inner produgt )),. Therefore, the study of-pseudo-Hermitian
operators is equivalent to the study of Hermitian operators in a vector space with an indefinite
metric® The application of the latter in quantum physics dates back to the 16&g= also Refs.

18 and 19. As emphasized in Ref. 19, there is an important distinction between the concept of
pseudo-Hermiticity, where one does not fix the inner product and has the freedom of choosing it,
and the well-studied notion of-pseudo-Hermiticity.

We can express the defining conditiéh) in the form H*=H whereH*:= 5 'HT% is the
n-pseudoadjoint oH. Using the latter one can also define the notion of ;apseudounitary
operatorU:H—H by requiring thatU satisfiesU#=U 1.

Definition: A linear invertible operatol:H—H is said to be pseudounitary if there exists a
linear, invertible, Hermitian operatoy.:H—7H such thatU is z-pseudounitary, i.e.,

Ut=yu-1y % 3

Similarly to the case of pseudo-Hermitian operatayss not unique. If we make a choice fay,
we say thatU is z-pseudounitary. In this case it is not difficult to show thatleaves the
pseudoinner produgf, )), invariant. This is easily seen by writin@) in the form

utypu=17, 4
and using(2) and(4) to check that

<<U ¢!U¢>>77:<<w1 ¢>>77! V¢1¢EH (5)

Given an n-pseudo-Hermitian operatard one can construct a one-parameter family of
n-pseudounitary operators, namélft)=e """ with t e R.
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Proposition 1 Let ee R™, te (—¢,€), H:H—H be at-independent linear operator acting in
a Hilbert spaceH, U(t):=e "™ and »:H—H be at-independent Hermitian, invertible, linear
operator. ThenH is #z-pseudo-Hermitian if and only ifU(t) is #z-pseudounitary for allt
e(—e€,€).

Proof: Suppose thaH is 7-pseudo-Hermitian, then a direct application of Et), U(t)"
=eM" andU(t)"1=€'™M, shows thatJ(t) satisfies(3), i.e., it is 7-pseudounitary. Conversely, let
U(t) be 7-pseudounitary for alt e (— €,€). Then substitutindgJ (t) for U in Eq. (3), taking the
derivative of both sides with respecttoand setting=0 in the resulting expression, we find that
H satisfies(1), i.e., it is z-pseudo-Hermitian. O

BecausdJ(t) may be identified with the evolution operator for a quantum system havias
its Hamiltonian, a quantum system with a time-independent Hamiltonian has a pseudounitary
evolution if and only if the Hamiltonian is pseudo-Hermiti#n.

The one-parameter family (t) clearly forms an Abelian Lie group under composition. This
is indeed a subgroup of the grody,(#) of all 7-pseudounitary operators. The latter forms a
group because for any pdit,, U,:H—H of »-pseudounitary operators,

(U0 =URUD) t=9U; YU iy ) = Uy Ty tgUsp t= (U TU,) iyt

Thereforeld,(H) is a subgroup of the group GH) of all invertible linear transformations acting

in H. In Ref. 11, the authors considered this group for the ¢ase_". They call it the pseudouni-

tary group. This terminology is rather misleading as it does not reflect the important fact that a
particular choice fom has been made. In fact, it is not true that the product of any two pseudouni-
tary operatorsV; andV, is pseudounitary. This is because they may belong/f0#) with
different #. This observation calls for a more careful study of the structure of the/&e)
:=U,U,(H) of all pseudounitary operators acting

In the remainder of this section we discuss two simple properties of pseudounitary operators
that will be of future use.

Proposition 2:Let 7, be a Hermitian, invertible, linear operator acting in a Hilbert spice
A:H—H, U;:H—H be invertible linear operator&],:=A~*U,A and 7,:=A"7,A. ThenU, is
n1-pseudounitary if and only iU, is 7,-pseudo-Hermitian.

Proof: First note that the defining conditia3) may be written in the formd » U 5=1,
wherel is the identity operator. Then a simple calculation shows that

Uoz, tUS =AU AA 2y AT TATU AT YTAT A= AL (U 7, TUT A

Therefore,U,7; *Uln,=1 if and only if U,7, Ul 7,=1. O

Proposition 3:Let U,:H—H be a pseudounitary operator acting in a Hilbert spcandu
be an eigenvalue dfi. Then 10* is also an eigenvalue &f. In other words, eigenvalues bfare
either unimodular |u|=1) or they come in inverse-complex-conjugate pairsLiu*).

Proof: Let |u) be an eigenvector dff with eigenvaluey, i.e., U|u)=u|u). Acting out both
sides of(4) onu~|u), we findUT5|u)y=u"19y|u). Becauseyis invertible, 7|u) # 0. This in turn
means thati ! is an eigenvalue dfiT. But the eigenvalues @™ are complex conjugates of those
of U. Therefore,u”* =1/u* is an eigenvalue ofJ. If u=1/u*, u is unimodular; otherwise
(u,1/u*) is a pair of distinct inverse-complex-conjugate eigenvalues. O

As a straightforward application of Proposition 3, consider the caseHkat?™, for some
me 7", and endowC?™ with the metric operator

73:=1J, (6)

whereJ: (2"— (2™ has the following matrix representation in the standard orthonormal basis of
c2m:

o)
J= Lo, ) (7)
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Here Q,, and 1, are, respectively, theaxX m zero and identity matrices, respectively. According to
(6) and (7), the operatorp; has a Hermitian matrix representation in an orthonormal basis, and
77§=1. Hencez; is indeed a Hermitian invertiblémetric) operator acting irt>™.

Next, observe that the operatbrestricted tak?™ yields the usual symplectic forfhon R?™.
The associated symplectic transformations coincide with reak 2m matricesS satisfying®

SJs=J, (8)

where S' stands for the transpose 6f We can view the symplectic transformatioBsas linear
operators acting ir2P. Then the condition that they admit real matrix representatiomshe
standard basjgakes the form

TST=S, 9)

whereT is the (time-reversgl operator defined by/Ze 2P, Tz=z*. Making use of(6) and the
fact thatT ~1=T andS'=$!, we can, respectively, express the defining relati@hsnd(9) of the
symplectic transformationS as

S'7;8=n;, (10
[S,T]=0. (11

BecauseT is an antilinear Hermitian invertible operator, according to Theorem 2 of Ref. 3, Eq.
(11) implies thatS is a pseudo-Hermitian operator. Furthermore, Bidf)) means thatS is in
addition a pseudounitary operator.

In view of Proposition 3 and the spectral characterization theorem for pseudo-Hermitian
operatordRef. 1, Theorem R the fact that symplectic transformations are both pseudo-Hermitian
and pseudounitary leads to the following well-known spectral theorem for symplectic
transformationg?

Theorem 1:Let A be an eigenvalue of a symplectic transformai®ithen so ara*, 1/\, and
1N*.

Proof: BecauseSis pseudounitary 3 is an eigenvalue. Because it is pseudo-Hermik&n
and (1/\*)*=1/\ are eigenvalues. O

lll. BLOCK-DIAGONALIZABLE PSEUDOUNITARY OPERATORS WITH FINITE-
DIMENSIONAL DIAGONAL BLOCKS

Consider an operatdd:H—H acting in a Hilbert spacé&{ and having a discrete spectrum.
ThenU is said to be block diagonalizable with finite-dimensional diagonal bfoifkis can be
expressed in the form

Pn,a Pna—1

dn
U=§ a; ungllwn,a,i><¢n,a,i|+ ;l [ a,i)(bn,ai+1] |, (12)

wheren is the spectral labely,, are the eigenvalues &f, d,, is the geometric multiplicity ofi,,,
ae{l,2,..d,} is a degeneracy labg,, , is the dimension of the Jordan block associated with the
labelsn anda (these are called the Jordan dimensfonand{| ¢, ,a,i),|¢,,a,i)} is a complete
biorthonormal system satisfying

dy Pn,a
(Un @il dm D.1Y=8mndadis 20 2 2 [t} (dm il =1, (13

In view of (12) and (13),

U|l//n1a1l>:un|wn1a7l>’ UT|¢naavpn,a>:u:|¢naa1pn,a>a (14)
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i.e.,|¢,,a,1) are the eigenvectors &f and|¢,,a,p, ») are the eigenvectors &ft. Clearly, the
eigenvalues ob) T are complex conjugates of thoseldf and if U is invertible the eigenvaluas,
do not vanish.

Lemma 1:Let U:H—H be an invertible operator acting in a Hilbert spakeand ze C
—{0}. Then for all¢ e 7,

kerne[ (U™ 1=z 1) ]=kerne[(U—2)‘]. (15)
Proof: This identity follows by induction ovef. For =1, we have
|€) ekerne[U -z e (U -z Y& =0

ezUU -z Y8 =0e(2—U)|£)=0s]&) e kerne[U — 7],
(16)

where we have used the fact ttzdd is an invertible operator. Relatioi$6) show that(15) holds
for ¢=1. Now, supposé&15) holds for somel =ke Z". Then

&) ekermne[(U -z H* e U -z Hku1-z"h|¢g=0
& (UL=z Y[&) ckerne[ (U 1-z ]
& (U 1=z Y[¢) c kernel (U~ 2)"]
e(U-2Ut-z71[§)=0
=zUU-2)5Ut-2"1)[&)=0
=(U-2)4z-U)|§)=06£) c kerne[ (U—2)**1].

Therefore,(15) holds for¢ =k+ 1; by induction, it holds for all € Z*. (I
Theorem 2: Let U:H—H be an operator acting in a Hilbert spakeand having a discrete
spectrum. Suppose thetis block diagonalizable with finite-dimensional diagonal blocks so that
(12) holds. ThenU is pseudounitary if and only if the eigenvalugsof U are either unimodular
(i.e.,|uy|=1) or they come in inverse-complex-conjugate pairs 1/uy) and that the geometric
multiplicity and the Jordan dimensions for the inverse-complex-conjugate eigenvalues coincide.
Proof: Suppose thatl is pseudounitary. Then, according to Proposition 3 the eigenvalues of
U are either unimodular or they come in inverse-complex-conjugate pairs. Supposs, tHiad
1/uy; form a pair of distinct inverse-complex-conjugate eigenvalues. In order to show that they
have the same geometric multiplicity and Jordan dimensions we prove that fdredl',
kernelU —u,)‘ and kernely — 1/u%) ¢ have the saméinite) dimension. To see this, first note that
U and UT have the same Jordan block structure; in view(d®), for all €7, kernelU
—u,)¢ and kernely"—u*)¢ have the saméfinite) dimension. Hence they are isomorphic as
vector spaces. Next, we use the fact thds an invertible operator to establish the isomorphism
between kernely"—u*)¢ and
kernel - Y(UT—u¥) nl=kerne[ (7 *UTyp—u¥)‘1=kerne[ (U 1—u*)‘]

n
=kerne[ (U—1/u*)].

Here we have made use of the defining relati@h and the identity(15) of Lemma 1. This
completes the proof that for all e 2", kernelU—u,)¢ is isomorphic to kerneld —1/u*)*.
Therefore, they have the sartfanite) dimension.

Next, suppose thdll has unimodular and/or inverse-complex-conjugate pairs of eigenvalues
with identical geometric multiplicity and Jordan dimensions. Themay be expressed as
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dy, Puy.a Puga—1
U= 1(‘%21 [ yp i) by ani|+ 21 |¢V0,a,i><¢,,0,a,i+1|)
vy a= i= “
d, [Pya 1
22 [2 (“»l% ANy [+ [ 21, ,a,n)
pv,371
2 (s @iy @i+ 1]+, 2N, ,ai+1])|, 17

where we have set=rv,, v+, or v— depending on whethéu,|=1, |u,|>1, or|u,| <1, respec-
tively, and usedv to denote the common value oft andv—. In order to show that), as given
by (17), is pseudounitary we construct a Hermitian, invertible, linear operateatisfying(3) or

equivalently(4). Consider the ansatz

dvo pVO,a d,, Py.a
7’:2 21 .jzl Zvo,a,i,j|¢V0!a'i><¢vo!a!j|+2 4 ‘jEI (gv,a,i,j|¢v— va1j><¢v+ !a!il
o a=1l1,]= v a=1i,j=
+§:,a,i,j|¢v+ va1i><¢v— !a!jl)i (18)

wherez, .i;and/,,;; are complex coefficients and

*

Zyy,ai,j = Zrg.aii- (19

The latter relation ensures thatis Hermitian. Now, impose the conditiogd). Substituting(17)
and (18) in (4) and using the biorthonormality and completeness relati@8s we find after a
quite lengthy calculation thatyo’ayiyj and{, ., are solutions of the following equations far

=U,, P=Py,a andu=u,, p=p, ., respectively,
X1;=X1=0, Vie{l2,.p—1}, (20
UXi—j+ UM% o1+ X_qj-1=0, Vi,je{2,..p}. (21)
It turns out that these equations have the following exact solution:
0 for i+j<p,
"L i-k-1

L2 (p—j—l

k=1

. o 22
)(—1)'—kup+'—l—kxkp for j<p<i+j, @2

where for allr,se Z* with r<s

(s) sl
r :=r!(s—r)!’

andx, , with ke {1,2,...p} are arbitrary complex numbers. We have obtained the sol{@2rby
a tedious inspection scheme and checked its validity by direct substitutiodlinit clearly
satisfies(20). It is important to note that according (82), x; ; form ap>p matrix x of the form
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0 0 0 0 X1p
0 0 Xop—1 X2p
0 0 o X3p-2 X3p-1 X3p
x=| : RS : : : : (23
0 0 Xp-23 " Xp-2p-2 Xp-2p-1 Xp-2p
0 Xp-12 Xp-13 " Xp-1p-2 Xp-1p-1 Xp-1p
Xp1  Xp2  Xpz 7 Xpp-2 Xpp-1 Xpp

In view of (22) all the entries ok are determined in terms of the entries in the last column. For
example, we have

Xipoiv1=(—1)'"20" V%, Vie{l,2,.p}. (24)

Moreover note that the determinantyofs up to a sign the product of the entrig®l). Therefore,
x is an invertible matrix provided thag; ,#0 andu#0. Next, consider the case thats unimo-
dular and seek for the solutiori®2) that makex Hermitian, i.e., find solutions fof20) and (21)
subject to the condition

= X (25)

Imposing this condition on the solutid@2) restricts the choice of the initially free entries, namely
Xi p- For example, setting=p andj=1 in (22) or alternatively setting=p in (24), we find
Xp1=(—1)PTu®P~ Ny, ;. Now, using(25) which impliesx, ;=X ,, we find

X1p= (= D)7 ut~Pp, (26

wherep= |x1,p| is an arbitrary non-negative real number. A similar analysis shows that the con-
dition (25) leads to similar restrictions on the choicesxpf, with i>1. But these restrictions do

not lead to any contradictions, i.€25) can always be satisfied. Indeed there are infinitely many
solutions of the form(22) that fulfill (25). In particular, if we choosgu|=1 andp#0, the matrix

X is an invertible Hermitian matrix. Setting= U, we have a set of solutions,o,a,i,j of (20) and

(21) that respect the conditioil9) and that the matrices,  , formed out ofz, ,; ; are invertible.

Similarly, settingu=u, we have a set of solutions, ,; ; of (20) and(21) such that the matrices
{,,a formed out ofZ, ,; ; are also invertible. The existence of these solutions is equivalent to the
existence of a linear operatarof the form(18) that satisfie44) and is Hermitian and invertible.
The inverse ofy is given by

dvo pvo,a du pV,a

7771:2 2 2 Evo,a,i,j|¢v01a1i><¢'v01a1j|+ED 2 (ZV,a,i,j|(/IV7!a1j><wv+’a!i|

vg a=1i,j=1 a=1li,j=1

+ il Wos 20— a0, 27)

where"ivo,a,iyj are the entries of the matrb{ofa, andzvyayiyj are those ot;f. One can check by
direct calculation thaty”*7=1. This completes the proof of the pseudounitarityUof O

IV. PSEUDOUNITARY MATRICES

According to Theorem 2, a square mattikis pseudounitary if its eigenvalues are either
unimodular or they come in inverse-complex-pairs and that geometric multiplicity and the Jordan
dimensions of the latter are identical. A direct consequence of this observation is the following.

Proposition 4:Every pseudounitary matri¥ has a unimodular determinant, i.edetU|=1.
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Proof: This follows from the fact that in the Jordan canonical formUbthe nonunimodular
entries come is inverse-complex-conjugate pairs, X/u’). Hence their product which yields
detU is unimodular. O

According to this proposition the s&{C") of all nX n pseudounitary matrices is a subset of
the group

3L(n,C):={ge GL(n,C)| |detg|=1}, (29

of nXn matrices with unimodular determinant. We shall ¢all(n,C) the pseudospecial groups
As a subset of GLg,C), 2L (n,C) is the inverse image of the group(1) under the homomor-
phism det:GL(,C)— GL(1,C). Therefore,L(n,C) is a subgroup of GL{,C). In fact, it is not
difficult to show that>, L (n,C) is isomorphic to the product group U(X)SL(n,C). Note however
that not every element of the pseudospecial groups is pseudounitary. For exangpe lat2<2
diagonal matrix with diagonal entries 2nd—i/2. Clearly, deg=1<U(1), soge 2L (2,C). But,
(2i) " =i/2# —i/2. Hence the eigenvalues a&nd—i/2 are not inverse-complex-conjugates, and
g is not pseudounitary. In generd(C") is a proper subset &L (n,C).

Next, consider the grouf,(C") for a fixed Hermitian invertiblenxn matrix 7. We recall
Sylvester’s law of inertia according to which satisfies

n=A", A, (29
whereA is some invertiblen X n matrix and»,  is a diagonal matrix of the form
Npg=diag —1,-1,..,-1,1,1,...,3, (30)

which hasp negative andj:=n—p positive entries.
Proposition 5:Let 7 be annxn Hermitian and invertible matrix. Then the grotfy(C") is
isomorphic to the pseudounitary group

U(p.@)={ge GL(n,0)|g" 75 q9= 7p g} =Uy (L"),

for somepe{0,1,...n} andqg:=n—p. [Note that U(0n) =U(n).]

Proof: SettingU,=U, n,= 7, andn,= 7, q in Proposition 2, we see thate /,(C") if and
only if U;:==AUA 'eU(p,q). Hence, U, (C")=A"1U(p,q)A. Because the conjugation
ia:GL(Nn,C)—GL(n,C) defined byiA(g):=A"“gA is an automorphism of the group G () that
mapsit,(C") onto U(p,q), the subgroups/,(C") and U,q) are isomorphic. O

According to Proposition 5, the pseudounitary grouf$C") are isomorphic to and obtained
from the classical groups @(q) [or U(n)] by conjugation;u,,(f(]”)=A‘1U(p,q)A for someA
e GL(n,C). Therefore, the s&(C") may be viewed as the union of the orbits of the subgroups
U(p,q) under conjugation in Glg,C). Obviously these orbits, which according to Proposition 4
lie in the pseudospecial grodl_(n,C), are not disjoint. For example!™ e 24(C") belongs to both
unl(ﬂcn) andM,,Z(C“), if H is both 5,- and 7,-pseudo-Hermitian. The latter holds if and only if
7,=A"7,A for someA e GL(n,C) commuting withH.’

Another simple consequence of Proposition 5 is the following.

Corollary: Let meZ". Then the group Sp(®) of symplectic transformations df®™ is
isomorphic to the real subgroup @ matrix group that is isomorphic)tthe pseudounitary group
u(m,m).

Proof: According to the argument given above Theorem 1, &p(ghay be identified with the
subgroup ounJ(sz) consisting of real matrices. It is not difficult to show that the spectrum;of
consists of—1 and 1 each with multiplicitym. Hence according to Proposition HWJ(sz) is
isomorphic to U, m), and Sp(2n) is isomorphic to the real subgroup U@J(‘sz). O

Note also that according to the argument used in the above proof of Theorem 1 and the
spectral characterization theorems for pseudo-Hermitian and pseudounitary op@mtoffieo-
rem 1 of Ref. 6 and Theorem 2 aboyegiven an eigenvalug of a symplectic transformatio8
e Sp(2m), the eigenvaluea™, 1/\, and 1A* have the same geometric multiplicity and Jordan
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dimensions aa. This in particular proves the well-known fact th@has a unit determinant. In
particular, Sp(21) may be identified with the real subgroup (@ matrix group that is isomorphic
to) SU(m,m).

Next, we state and prove the following lemma.

Lemma 2:Let peZ", EeC, andh be ap X p matrix of the Jordan form

h=E1,+a,, (30

where 1, is the pX p identity matrix anda,, is the pxX p matrix

0
00 1 - 00

B I 32

%»=lo0 0 0 - 01 0 (32)
0 1
000 - 00 0

(a, provides an irreducible representation of the annihilation operator for a para-Fermion of order
p—12%). Thene" has the following canonical Jordan form:

eFl,+a,. (33

Equivalently, € is the unique eigenvalue af" with geometric multiplicity 1 and algebraic
multiplicity p.
Proof: Using the fact thaagzo, we can easily compute

eh=gE> _
=o €!

This is an upper triangular matrix with a single eigenvalnemelye'®) and a single(linearly
independenteigenvector. Therefore its geometric multiplicity is 1 and its algebraic multiplicity is
p. U
Theorem 3: Every pseudounitary matrix) may be expressed as" for some pseudo-
Hermitian matrixH.
Proof: Let U be annXn pseudounitary matrix. Clearly) € GL(n,C). Now, because the
exponential map for the group Gh(C) is 0nt9,22 there is a square matrbt such thaU=e'". We

can perform a similarity transformatiod — H:=A"1HA that mapsH into its Jordan canonical
form H. We then have

U=AeHA L, (34)

In view of Proposition 2 and Lemmaj_\i,H is pseudounitary, and its eigenvalues are of the form
e'En where E,, are the eigenvalues d. Moreover, the geometric multiplicity and the Jordan
dimensions ofthe canonical Jordan form o0& coincide with those ofl. Now, because'" is

pseudounitary, Theorem 2 implies that the eigenvakiesof et are either unimodular or they
come in inverse-complex-conjugate pairs with identical geometric multiplicity and Jordan dimen-
sions. First we consider the unimodular eigenvalues which we denote'®my Because 1

—|eiEvo|2= elEvoeTEL, we haveE, —E} =2k, for somek, e 7. But the left-hand side of this
equation is imaginary while its right-hand side is real. This impkgos= 0. HenceE, is real.
Next, consider the eigenvalue& that are not unimodular. These are paired with their inverse-
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complex-conjugate, namelyg‘E:. e+ and eV have the same geometric multiplicity, and
Jordan dimensiong,, , - Because'E» is an eigenvalue o', according to Lemma 2 there is an
eigenvalueE’, of H such that

e'El =¢lEs, (35)
and thatE, has the same geometric multiplicity and Jordan dimensions'®@s Hence the
geometric multiplicity and Jordan dimensionsof are, respectivelyd, andp,, . Furthermore,
Eq.(35) impliesE, =E} + 2wk, for somek, e Z. Now, letE, . andE,_, respectively, denote the
eigenvalues oH with positive and negative imaginary part. In view of the preceding argument,
for eachE,, there is an eigenvalug, =E* +2wk,, . Furthermore all the eigenvalues with
negative imaginary part may be obtained from the eigenvalues with positive imaginary part in this
way. Now, letH’ be the matrix obtained fromi by replacing the eigenvaluds, . with E,_
:=E,_—2wk,, =E%, . Then, by constructionHd’ has real and/or complex-conjugate pairs of
eigenvalues, the latter having identical geometric multiplicity and Jordan dimensions. In light of
Theorem 1 of Ref. 6, this implies that’ is pseudo-Hermitian. One can also check that

gH' =gt (36)

Next, let
H :==AH'A"L (37)

Clearly, H' is the Jordan canonical form df’. In particular,H’ is also pseudo-Hermitian.
Combining Egs(34), (36), and(37), we finally have

Y . _ AT a1 .
U:AeIHA l:AeIH’A l:eIAH'A :eIH'.

This completes the proof of the fact thdt is the exponential of times a pseudo-Hermitian
matrix. O

Corollary 1: A square matrixJ is pseudounitary if and only i~i InU is pseudo-Hermitian,
i.e.,U=e" for a pseudo-Hermitian matri.

Proof: If U is pseudounitary, then according to Theorem 3 it is of the feffhfor some
pseudo-Hermitian matrix. i) =e'" for a pseudo-Hermitian matrid, then settinge=2,t=—1 in
Proposition 1 we find that) =U(—1) is pseudounitary. O

Corollary 1 is rather surprising, for it is well known that the exponential map is not onto for
pseudounitary groups such a$ll1).? This does not however contradict the statement of Corol-
lary 1, because when one speaks of a pseudounitary group one fixes the opevditat has been
done in the proof of Theorem 3 is to show that for a given pseudounitary opérdbare is any
such thau is -pseudounitary anHl := —In U is n-pseudo-Hermitian. This is not equivalent to the
erroneous statement that given an—iInU is z-pseudo-Hermitian for every-pseudounitary
matrix U. The exponential map for the pseudounitary groggC") is generally not onto, but the
exponential map for the set of all pseudounitary matrices is onto. This is another demonstration of
the importance of the difference between the notionsngiseudo-Hermiticity (respectively,
n-pseudounitarityand pseudo-Hermiticityrespectively, pseudounitarjty®

V. 2X2 PSEUDOUNITARY MATRICES

In this section we shall study the case=2 in more detail. The following corollary of
Theorem 3 yields the general form ok2 pseudounitary matrices.

Corollary 2: A 2x2 matrix U is pseudo-Hermitian if and only i/ =A"'DA whereA is an
invertible 2<2 matrix andD is a matrix assuming one of the following three forms:
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e’ 0
D,= 0 elle-0 0,0 eR, (38
rel 0
D,= 0 e¥r) reRY, 6eR, (39
el 1
D3: 0 eig f 6eR. (40)

Proof: Block diagonalizingU we find a matrixD which is either diagonal or has the form

o
D={, o) (42

whereu e C. According to Proposition 2D is also pseudounitary. This together with Theorem 3
imply that

(i) if D is diagonal, its eigenvalues are either both unimodular, és of the form(38), or
they are inverse-complex-conjugate, iB.js of the form(39);

(i) if D has the form(41), then it has a single eigenvaluewhich is necessarily unimodular.
That isD is of the form(40). O

In order to demonstrate the utility of Theorem 3, here we include a direct proof of Corollary
2. This proof involves the calculation of the matricesvhose general form is given in the proof
of Theorem 2.

A direct proof of corollary 2:First consider the case thidtis diagonalizable, then the canoni-
cal Jordan forrD=AUA! of U is diagonal. Clearly déd=detU and according to Proposition
4 detUeU(1). Hence|detD|=1. This implies thaD must have the form

o o
D=

0 e¢/z) (42
where {:=re'’c C—{0} ande'¢cU(1), i.e,, reR" and ,peR. Next, note that in view of
Proposition 2 is 7-pseudounitary if and only iD is A~ *"7A ™ -pseudounitary. This reduces the
problem to finding the necessary and sufficient conditions @iternativelyr, §) and¢ that make

D pseudounitary. Using the general form

a ¢
& b

= ) abeR, ¢£eC, ab#|g? (43

of the Hermitian matrixy and the fact thab is »-pseudounitary for some of the form(43), i.e.,

D'=7%D 15 torD'yD =7, we find that foré&=0:r=1 andD=D, and for¢+#0: e ¢=¢'? and

D=D,. Next, consider the case thdtis not diagonalizable. TheD has the form(41). Again

becauseD is pseudounitary, d@eU(1). This impliesue U(1), i.e., u=e'? for some #eR.

Substituting this expression and the general fd#8) of » in DTyD=7, we find that this

equation can always be satisfied without restrictih@ herefore, in this casB=D5. O
The above analysis also yields the formspfor each of the cases considered.

(1) ForD=D,, there are two possibilities.
(1a) e'°+#e?% In this case£=0 and 7 has the diagonal form

a 0

n= nlzz(o b s a,beR—{O}. (44)




J. Math. Phys., Vol. 45, No. 3, March 2004 Pseudounitary operators and quantum dynamics 943

TABLE I. OperatorsHp and » for D=D,, D,, Dj.

i D; HDi 7i

1 e 0 6 0 a o0
0 dl? 0 o6 0 b

2 (rei" 0 (9—ilnr 0 (o I3
0 e“’/r) 0 O+ilnr & O)

3 g’ 1) (0 e(étl)*l) ( 0 iire"‘g)
(0 g’ 0 0 Firel? 0

Becausea and b may have arbitrary sign, the group,h(cz) is isomorphic to either (2) or
u(,1).

(1b) €¢=e??: In this caseD=¢€'’l wherel is the 2<2 unit matrix. Hence, there is no
restriction onz; it has the general forn¥3), andu”(cz) is isomorphic to either (2) or U(1,1).
(2) If D=D, with r=1 we recover the cagdb). If D=D, andr# 1, thena=b=0 and# has
the off-diagonal form

cel S G e
1= 02| e o)) £eC—{0}. (45)

Becauser, is an indefinite matrixunz(Cz) is isomorphic to W1,1). (3)
(3) If D=Dj3. Theny has the general form

0 +ire "0
, reR*, 6ekR, (46)

T Lirel? 0

andi/,, (%) is isomorphic to W1,).

We can check that the above expressionssi@re consistent with the general form gfas
given in the proof of Theorem 2. Furthermore, we can obtain the explicit form of the operator
H:=—ilnU. In view of the identityU=A"1DA, it is not difficult to see that if we obtain an
operatorH,, satisfyingD=e'"o, thenH=A"*HpA will satisfy U=¢e'"'. Table | gives the opera-
tors Hp and 5 for D=D,, D,, D3. Note that in this tabled,oeR, reR", a,be R—{0},
£eC—{0}, and that the trivial case whef® is proportional to the unit matrix is omitted.

VI. PSEUDOUNITARY DYNAMICAL GROUPS AND THE HARMONIC OSCILLATOR

Suppose thakl is a 2<2 pseudo-Hermitian matrix serving as tftgne-independentHamil-
tonian for a quantum systerd(t) :=e~ """ is the corresponding evolution operatéy; is the set of
all invertible Hermitian 22 matricesy satisfying(1), and

U= Ju, (), auy= U au,(c2),

neéy neéy

whereG,(C?) denotes the Lie algebra of,(C?). Then clearlyiH e G4, and for allte R U(t)

€Uy . This in particular means that for eagte &, UW(CZ) serves as a dynamical group for the
quantum systerf® If H is diagonalizable with a real spectrum then the dynamical group may be
taken to belisomorphic tg either U2) or U(1,2) (or one of their subgroupslf H has(nonreal
complex eigenvalues or if it is not diagonalizable, then the dynamical group is necessarily
morphic to a subgroup ©fU(1,1). [The generalization of this statement to arbitrary block-
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diagonalizable pseudo-Hermitian Hamiltonians with finite-dimensional blocks is immediate. If the
Hamiltonian is not diagonalizable or has complex eigenvalues, then the dynamical groups that the
system admits are necessarilgomorphic to a subgroup ptJ(p,q) with p#0+#q.]

A concrete example is provided by the classical equation of motion for a simple harmonic
oscillator of frequencyw,

X+ w?x=0. (47)

As explained in Refs. 4 and 14, this equation is equivalent to the Siclyer equation,

d
iﬁa\lf=H\I', (48)
where
X+iAX i No?+Nt Nw?-\T1
“lx—inx)’ H::E I R N (49

and\ e R* is a time scale. Clearly is a traceless matrix. It is also easy to check that-det
ek if and only if w?e R. Therefore, according to Theorem 3 of RefHjs a pseudo-Hermitian
matrix provided thaw?e R. FurthermoreH is diagonalizable unless=0.

In the following we shall only consider the casée R.

For w#0, we can easily solve the eigenvalue problem and diagoniliZéhe corresponding
diagonal matrix has the forrhlp=#%wo; where o3 is the diagonal Pauli matrix digh,—1).
Comparing the expression féty with the results given in the above table, we see thgtis
n-pseudo-Hermitian with respect to a diagonal metric operatof the form (44) provided that
»?>0. In this case the system admits both the dynamical grodgsand U1,1). If ©2<0,H is
n-pseudo-Hermitian with respect to an off-diagonal metric operatof the form (45) and the
system only admits the dynamical groug1ll). Finally for «=0, H is not diagonalizabletJ
=e'" has the Jordan canonical fofn; it is 7-pseudounitary for a metric operatgrof the form
(46) and the system admits the dynamical groufl,0). [It is interesting to observe that the
noncompact dynamical group(L}1) arises for the case thai><0 where Eq.(47) admits un-
bounded solution$.

For the casav®>0, the freedom in the choice of the dynamical group is equivalent to the
choice of a positive—definite or an indefinite inner product on the space of solutions Gf7EY'

This freedom does not exist #?<0.

Now, consider changing the parameigt from a positive value down to a negative value. If
one adopts an indefinitéout possiblyw?-dependentinner product, one can kee Hermitian
with respect to this inner product and view the evolution operator as tracing a curve in the
dynamical group L,1). The best-known example is the Klein—Gordon inner product that corre-
sponds to the choicey= o3, and therefore is independent of the value of the paramefer
However, if one initially adopts &possibly w?-dependentpositive—definite inner product, one
cannot maintain the Hermiticity dff with respect to this inner product one& crosses zero. The
dynamical group undergoes an abrupt transition from the gro@ 19 the group W1,1). This
transition may be identified with the change of the signature of the meipieratoy.

For w?>0, one may endow the Hilbert space?] with a positive—definite invariant inner
product. In this case the system has @)Udynamical group and is physically equivalent to the
two-level spin syster® i.e., a spin-1/2 particle interacting with a fixed magnetic field. The time
evolution is clearly unitary. This equivalence is destroyed onédecomes nonpositive. In this
case the dynamical group ig11) and the system does not admit a unitary evolution with respect
to any positive—definite inner product 6R. For the case thab®>0 one could as well choose an
indefinite invariant inner produdthis is precisely what was done historicallBut such a choice
leads to a nonunitary quantum system with a two-dimensional Hilbert space afigla dynami-
cal group. As is well known the corresponding quantum harmonic oscillator also héls B [br



J. Math. Phys., Vol. 45, No. 3, March 2004 Pseudounitary operators and quantum dynamics 945

rather SW1,1)] dynamical groug? Therefore, as far as the dynamics is concerned the nonunitary
system describing the dynamics of the classical oscillator is equivalent to the unitary quantum
harmonic oscillator.

For the casen?>0 there are therefore two alternatives. One is to choose a positive—definite
invariant inner product which corresponds to the dynamical gro(@. The other is to choose an
indefinite invariant inner product which leads to the dynamical gro(jp 1)

Now, suppose that one wishes to keep the same dynamical group but insists on being able to
describe the dynamics using a unitary quantum system. In the first alternative this is already the
case. But in the second alternative one needs to use an infinite-dimensional Hilbert space, because
being a noncompact Lie group(lJ1) does not admit a finite-dimensional unitary representation.
Thereforeit is the demand for unitarity that leads to the quantization of the oscillafbe latter
is however not unique becausd€l1Lll) has inequivalent unitary irreducible representations. This
does not lead to any problems, because the dynamics always takes place in the dynamicl group.
As a result the dynamical aspects of all possible quantum systems associated with the classical
harmonic oscillator are equivaler{Note that here quantization does not mean the canonical
gquantization which is unique in the sense that the Weyl—Heisenberg algebra has a unique irreduc-
ible (projective representation. It means defining the Hilbert space as the representation space of
a unitary irreducible projective representation of the dynamical group, and representing the Hamil-
tonian as an element of the Lie algebra of the dynamical gtoup.

The above two alternatives are also available in describing free Klein—Gordon(beld®re
generally Klein—Gordon fields interacting with a stationary magnetic)figlde second alternative
applies more generally even to the cases of interacting fields. It corresponds to Dirac’s method of
second quantization that forms the foundations of quantum field theories. The first alternative was
noticed quite recentlj*1>?4(See however Ref. 25 that were brought to the author’s attention after
the completion of this projedtlts advantage is to provide a genuine probability interpretation for
first quantized Klein—Gordon fieldS.Its main application is in quantum cosmology.

VII. CONCLUSION

In this paper, we explored various properties of pseudounitary operators and proved a spectral
characterization theorem for the class of block-diagonalizable pseudounitary operators with finite-
dimensional blocks. We applied our results to clarify the structure of pseudounitary matrices
paying attention to the role of the inner product and the fact that it is not unique. We showed that
the relationship between Hermitian and unitary matrices generalize to the pseudo-Hermitian and
pseudounitary matrices. Specifically every pseudounitary matrix is the exponentigintds a
pseudo-Hermitian matrix.

We showed that the symplectic transformations of classical mechanics are certain pseudouni-
tary and pseudo-Hermitian operators. This led to a proof of the spectral theorem for symplectic
matrices and to the identification of the symplectic groups 8p(&ith the real subgroups of
certain pseudounitary matrix groups that are isomorphic to,k). The description of the sym-
plectic transformations in terms of pseudounitary and pseudo-Hermitian operators suggests the
possibility of the application of the latter in classical mechan(iEsr a related discussion see Ref.

27)

Furthermore, we derived the canonical forms of arbitrar22pseudounitary matrices, and
studied the pseudounitary system describing a classical harmonic oscillator. For real nonzero
frequencies, this system admits both the dynamical grou@s & U(1,1). If one imposes the
condition of the unitarity of the evolution, then the choicéUidentifies the dynamics of the
oscillator with that of a two-level quantum system, and the choitg ) leads to a quantization
of the oscillator. This picture provides a rather interesting link between the demand for unitarity
and the need fofsecond quantization.
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