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In this paper we introduce a new notion of Z-tensor and a new kind of Riemannian man-
ifold that generalize the concept of both pseudo Ricci symmetric manifold and pseudo
projective Ricci symmetric manifold. Here the Z-tensor is a general notion of the Einstein
gravitational tensor in General Relativity. Such a new class of manifolds with Z-tensor
is named pseudo Z symmetric manifold and denoted by (PZS),. Various properties of
such an n-dimensional manifold are studied, especially focusing the cases with harmonic
curvature tensors giving the conditions of closeness of the associated one-form. We study
(PZS)n manifolds with harmonic conformal and quasi-conformal curvature tensor. We
also show the closeness of the associated one-form when the (PZS), manifold becomes
pseudo Ricci symmetric in the sense of Deszcz (see [A. Derdzinsky and C. L. Shen,
Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. 47(3)
(1983) 15-26; R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A
44 (1992) 1-34]). Finally, we study some properties of (PZS)4 spacetime manifolds.
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conformal curvature tensor; quasi-conformal curvature tensor; conformally symmetric;
conformally recurrent; Riemannian manifolds.
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1. Introduction

In 1988 Chaki [4] introduced and studied a type of non-flat Riemannian manifold
whose Ricci tensor is not identically zero and satisfies the following equation:

ViRje = 2ARj0 + AjRie + A¢Ryj. (1.1)
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Such a manifold is called pseudo Ricci symmetric, Ay is a non-null covector called
associated 1-form, V is the operator of covariant differentiation with respect to the
metric gge and the manifold is denoted by (PRS),,. Here we have defined the Ricci
tensor to be Ry, = —R™,, [30] and the scalar curvature R = g% R;;. This notion of
pseudo Ricci symmetric is different from that of Deszcz [14, 15]. In [5] the authors
considered conformally flat pseudo Ricci symmetric manifolds, where the conformal
curvature tensor

m m 1 m m m m
e = Ripe + m(éj Rype — 0 Rje + R gre — Ry, gijt)

- m@wgke = 0;'g5¢) (1.2)
vanishes, that is, C;’,‘d = 0. It may be scrutinized that the conformal curvature
tensor vanishes identically for n = 3 [21]. In [2], a (PRS),, with harmonic curvature
tensor, that is, VmR?}d = 0 and with harmonic conformal curvature tensor, that
is, V;nCfp, = 0 was studied (see [3]).

Such a notion of harmonic is related to the co-closeness of the curvature ten-
sor. From this, together with the notion of closeness of the associated 1-form in
(1.1), it gives us some important geometric meanings in the theory of Yang—-Mill’s
Connections, Harmonic Mappings and Mathematical Physics, in particular, in Fin-
stein’s Relativity. From such a point of view, in this paper, we mainly consider the
closeness of associated 1-forms for some generalized curvature tensors.

On the other hand, Suh, Kwon and Yang [27] introduced the notion of confor-
mal curvature-like tensor on a semi-Riemannian manifold and have given a complete
classification of conformally symmetric semi-Riemannian manifold with generalized
non-null stress—energy tensor. More generally, Suh and Kwon [25] considered the
notion of conformally recurrent semi-Riemannian manifolds with harmonic con-
formal curvature tensor and gave another generalization of conformal symmetric
Riemannian manifolds. Moreover, in [26] due to Suh, Kwon and Pyo the impor-
tance of the closeness for the associated curvature-like 2-form corresponding to
each concircular, projective and conformal curvature-like tensor defined on semi-
Riemannian manifolds was remarked respectively.

Now let us consider a generalization of condition (1.1) introduced in a paper
by Chaki and Saha [9]. They considered the so-called projective Ricci tensor Pyg
obtained by a suitable contraction of the projective curvature tensor Pjen, [16].
More precisely, one obtains

n R
Pje = — <Rje - ggje) : (1.3)

n—1

where R = g% R;; denotes the scalar curvature.
Obviously gjerg = 0. The generalization defined in [9] is thus written as

Vkpjg = 2Akpjg + Aijg + Alij. (1.4)
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This kind of manifold is called pseudo projective Ricci symmetric and denoted
by (PPRS),. Recently in [7, 10] a further generalization of condition (1.1) was
considered. More precisely a manifold whose Ricci tensor satisfies the condition

ViRje = (Ax + Bi)Rjo + Aj Ry + Ag Ry (1.5)

is defined. Such a manifold is called almost pseudo Ricci symmetric and denoted
by (APRS),. Here Aj and By are non-null covectors.

In [10] the properties of conformally flat (APRS),, are studied and the authors
pointed out the importance of pseudo Ricci symmetric manifolds in the theory
of General Relativity. It is therefore worthwhile to undertake the study of an
n-dimensional manifold that generalizes both the (PRS),, and the (PPRS),, mani-
folds. In this paper we define a generalized (0,2) symmetric Z-tensor given by

Zye = Ry + dgne, (1.6)

where ¢ denotes an arbitrary scalar function. It is worth to notice that the Z-tensor
allows us to reinterpret many well-known structures on Riemannian manifolds. In
fact one can check that a Z flat Riemannian manifold is simply an Einstein space.

If a Z recurrent Riemannian manifold is considered i.e. a space satisfying the
condition

ViZie = NiZie
one can easily find that this condition is equivalent to
ViRke = N\iRge + (0 — 1) p1igre

with the choice (n — 1)u; = \j¢ — Vi¢. So the manifold reduces to a generalized
Ricci recurrent manifold [12] and if \;¢ — V;¢ = 0 a Ricci recurrent manifold is
recovered (see also [19]).

If we consider a Riemannian manifold with Z-tensor of Codazzi type (see [13]),
that is, with the property

Vi ng = Vj Ay,
one can easily find that this condition is equivalent to
ViRje = V;iRie = (V;0)gre — (Vid)gje-

Transvecting the previous relation with ¢g/¢ we get Vi (R + 2(n — 1)¢) = 0 and
finally

ViRjy — ViR = ViR)gje — (Vi R)gre]-

1
2(n—1) I
A manifold with Z-tensor of Codazzi type is thus a nearly conformal symmetric
manifold (NCS),,: this condition was introduced and studied by Roter [22] and Suh,
Kwon and Yang [27]. Conversely, an (NCS),, manifold has a Z-tensor of Codazzi
type if the condition Vi (R + 2(n — 1)¢) = 0 is satisfied.

One can observe that the n-dimensional Einstein equations with cosmologi-
cal constant A may be written in the same form Zy, = kTye with the choice
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o= —% + A. This choice comes naturally from the condition VT), = 0 for the
stress—energy tensor and the second Bianchi identity that gives Vk(g +¢)=0.In
this case the vacuum solution Z = 0 implies A = R"z—jf and thus an Einstein space.
So the generalized Z-tensor may be thought as a generalized Einstein gravitational
tensor with arbitrary scalar function ¢.

Finally one can also notice that Einstein’s equations in General Relativity
(n = 4) can be written in the suggestive form

Zie = kT

with the choice ¢ = —% without cosmological constant, that is, A = 0. In this case
the tensor Z is said to be the Finstein gravitational tensor, T the stress—energy
tensor and k a certain gravitational constant of a spacetime M, respectively. So for
example the condition V;Z, = 0 describes a spacetime in which the stress—energy
tensor is constant. When T' = 0, then the tensor Z = 0, i.e. the spacetime M could
be Ricci flat and M is said to be a vacuum (or empty) (see [20]).

In this paper we introduce a generalization of the condition V;Zy; = 0 men-
tioned above. In this way we will extend the limit of validity of the properties
of pseudo Ricci symmetric manifolds using this generalized Finstein gravitational
tensor. More precisely, we introduce a new kind of Riemannian manifold whose
non-null generalized Z tensor satisfies the following condition:

Vijg = 2Aije + AjZkg + Angj. (17)

Such a manifold is called pseudo Z symmetric and denoted by (PZS),,. It is worth
to notice that if ¢ = 0, we recover a pseudo Ricci symmetric manifold, that is,
a (PRS),, manifold, while if Z = ¢"Z;, = R+ né¢ = 0, one has ¢ = —% and
so we recover the classical Z tensor with Z;, = Rjp — %gjg = "T_leg. Thus the
space reduces to a pseudo projective Ricci symmetric manifold, that is, a (PPRS),,
manifold. Hereafter we call the generalized Z tensor simply Z tensor.

It is well known that in pseudo Ricci symmetric Riemannian manifold the con-
dition A R = %VkR is true giving a closed 1-form Ay in (1.1). From such a view
point and the motivations mentioned above, in our paper we study in more detail
the properties of pseudo Z symmetric manifold focusing our attention to peculiar
conditions that give rise to the closeness of the associated 1-form Ay in (1.7).

In particular, we will note that these conditions naturally arise from a (PZS),
manifold endowed with harmonic curvature tensors: the case with harmonic con-
formal curvature tensor will be studied in a special way. Moreover, we will point
out how these conditions depend on the choice of the scalar function ¢ in (1.6).

2. Elementary Properties of a (PZS),, Manifold

In this section elementary properties of a (PZS),, are shown. Let M be a non-flat
n-dimensional (n > 4) (PZS),, Riemannian manifold with metric g;; and Rieman-
nian connection V. We can state the following simple theorem.
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Theorem 2.1. Let M be an n-dimensional Riemannian (PZS),, manifold. If the
scalar function ¢ satisfies the following differential equation:

(Vi@)gje = ¢(2Akgje + Ajgre + Acgrj), (2.1)

then a (PZS),, manifold reduces to a (PRS),, one.

Proof. The proof follows from a straightforward calculation by inserting the defi-
nition of the generalized Z-tensor in Eq. (1.7). If Rj = 0, this condition is verified
and the manifold is reduced to a trivial pseudo Ricci symmetric one. O

Now we point out some useful formulas concerning (PZS),, manifolds. Transvect-
ing Eq. (1.7) with g/¢ gives immediately:

ViZ = 2447 +2A Zyy. (2.2)

In the same manner transvecting Eq. (1.7) with ¢** and using the relation V* Zijp =
%VJR + V¢ coming from the contracted second Bianchi identity one obtains

ViR +2Vip = 24,7 + 6A" Zyy. (2.3)

By using both Egs. (2.2) and (2.3) after a straightforward calculation, one obtains
the following results:

2 —
AlZyy = T”vm, (2.4)
and
—2 1
A Z = ”Tvkqs +5ViZ (2.5)

The last equations are the generalization of the correspondent results given in [4, 9].
In fact we can state the following simple remarks.

Remark 2.1. If V¢ = 0 with Z # 0 and VLR # 0, one has A*Z;,, = 0. That is
A'Riy = —pAy, and ApZ = %VkZ. So Ay, is a closed 1-form and it is an eigenvector
of the Ricci tensor with eigenvalue —¢. In particular if ¢ = 0, the results given in
[4] are recovered. We have shown that similar results are valid in more general
conditions.

Remark 2.2. If Z = 0, then ¢ = —%. And by a simple calculation we have
ViR = V¢ = 0. Furthermore, we have ARy, = %Ak. So we have obtained that
the scalar curvature is a covariant constant and that Ay is an eigenvector of the
Ricci tensor with eigenvalue %. These are the results given in [9].

Remark 2.3. If the scalar curvature is constant, that is, VR = 0 with Z # 0 and
Vi¢ # 0, one has Vi Z = nVi¢. Then from Eq. (2.5) it follows immediately that
ApZ = %V;@Z. This means that Ay is a closed 1-form.
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Remark 2.4. Let M be an n-dimensional Riemannian (PZS),, manifold with Z #
0 and Vi¢ # 0 having harmonic curvature tensor which satisfies the property
VmRﬂg = 0. Then A, becomes a closed 1-form.

Proof. The contracted second Bianchi identity is invoked:
VR = ViRj — Vj Ry

Transvecting this with ¢g*¢, one obtains ViR = 0. So we are in the hypothesis of
Remark 2.3. It is well known that if the space is locally symmetric ViR, =0 [19]
or Ricci symmetric V; Ry = 0 [24] and if the Ricci tensor is of Codazzi type, i.e.
ViRje = V;Ryg, then one has also Vng'}d =0. O

Remark 2.5. Let M be an n-dimensional Riemannian (PZS),, manifold whose Z-
tensor is of Codazzi type, that is, Vi Z;, = V;Zy. Then: (1) Z;, must be a singular
tensor, and (2) if V¢ = 0 we have Zj, = 0 (a trivial (PZS),, manifold) that is an
Einstein space.

Proof. (1) From (1.7) and the condition VZ;; = V;Zy, we can easily find
ApZyy = A;jZyy. If the Z-tensor is non-singular, i.e. if det(Zj,) # 0, there
exists a tensor (Z71)% of type (2,0) with the property (Z;)(Z~1)*¢ = 45
Thus we have

Aijg(Zil)se — AjZkg(Z71)8€

and so A7 = A;6;. This gives finally Ay = 0. But the 1-form Ay is supposed
to be non-null: thus we must have a singular Z-tensor.

(2) From (2.4) and being V¢ = 0 we have A'Zy, = 0 and thus AkAijg =
AjA¥Ziy = 0 from which Z;, = 0. This contradicts the definition of a (PZS),,
manifold and so such a kind of manifold can never exist. O

Now we consider other curvature tensors K7y, with the usual symmetries of the
Riemann tensor satisfying the first Bianchi identity. We can thus state the following
theorem.

Theorem 2.2. Let M be an n-dimensional Riemannian manifold having a gener-
alized curvature tensor K;’,’d with the property:

Vi Ky = aVi R, + 0[(ViR)gre — (Vi R)gje, (2.6)

where a and b are constants. If Vi K%, = 0 and the condition b # 2#—1) 1S

satisfied, then the scalar curvature R is a covariant constant, that is, ViR = 0.

Proof. Transvecting Eq. (2.6) with ¢g** and using the second contracted Bianchi
identity, one easily obtains (V;R)[2a — (n — 1)b] = 0 from which one concludes
immediately. O
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Corollary 2.1. Let M be an n-dimensional Riemannian (PZS), manifold with
Z # 0 and V¢ # 0 having a generalized curvature tensor which satisfies the
property (2.6). If Vi, K7i, = 0, then Ay is a closed 1-form.

Proof. It follows immediately from Remark 2.3 and Theorem 2.2. |

Some curvature tensors K7i, with the property (2.6) are well known. We give
its examples as follows: the projective curvature tensor Pjr,™ [16], the conformal
curvature tensor C7, [26, 27], the concircular curvature tensor éﬂz (28], the con-
harmonic curvature tensor N7}, [24] and the quasi-conformal curvature tensor W7,
[29]. So we can state the following corollaries whose proofs are very similar.

Corollary 2.2. Let M be an n-dimensional Riemannian (PZS), manifold with
Z # 0 and Vo # 0 having harmonic projective curvature tensor, that is, the
property V,, Pje™ = 0. Then Ay becomes a closed 1-form.

Proof. The components of the projective curvature tensor are defined as (see [16,
24]):

1
Pl = R, + m(f;}ané — 0 Rje). (2.7)
Applying the operator of covariant derivative to the previous equation and recalling

the second contracted Bianchi identity, one obtains
m n—2 m

Vm P = ——7 Vm - (2.8)

Thus we are in the condition of Theorem 2.2 and Corollary 2.1. |

Corollary 2.3. Let M be an n-dimensional Riemannian (PZS), manifold with
Z #0 and V¢ # 0 having harmonic concircular curvature tensor, that is, satisfy-

ing the property Vi, Cipy = 0. Then Ay is a closed 1-form.

Proof. The components of the concircular curvature tensor are defined as (see
[26, 28]):

~m m R m m
The = R + m(% gre — 01" gje)- (2.9)

Applying the operator of covariant derivative to the previous equation and consid-
ering the second contracted Bianchi identity, one obtains

VinClie = ViR + — (Vi R)gre — (Vi R)gje)- (2.10)

N
(n—1)

Thus we are in the condition of Theorem 2.2 and Corollary 2.1. O

Corollary 2.4. Let M be an n-dimensional Riemannian (PZS), manifold with
Z # 0 and V¢ # 0 having harmonic conharmonic curvature tensor, that is, the
property VmNJ“,gg = 0. Then Ay becomes a closed 1-form.
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Proof. The components of the conharmonic curvature tensor are defined as
(see [24]):

1
N;‘zé = R;’}C@ + m((S}“RM — 0, Rje + R;‘ngké — R}'gje). (2.11)
Applying the operator of covariant derivative to the previous equation and consid-

ering the second contracted Bianchi identity, one obtains

m n—3 m
Vi jke = mva]’u + VjR)gké - (VkR)gjd~ (2.12)

1
2(n—2) I

Thus we are in the condition of Theorem 2.2 and Corollary 2.1. O

Now we focus on Eq. (2.5). The operation of covariant derivation is applied on
it and the following relation is obtained:
n—2
4
Now a similar equation with indices k£ and j exchanged is written and then sub-
tracted from (2.13) to obtain

(VjAk—VkAj)Z—l—Ak(VjZ)—Aj(VkZ) =0. (2.14)

(VAR Z + A (V;2)

1
V;iVio+ §Vjka. (2.13)

This result will have a discrete consequence in the properties of a (PZS),, manifold.
Equation (2.5) is substituted in the previous relation and one has immediately:
2—n
2
We can then state the following theorem.

(VA =V A)Z +

[Ax(V;9) — A;(Vi¢)] = 0. (2.15)

Theorem 2.3. Let M be an n-dimensional Riemannian (PZS), manifold with
Z # 0 and Vo # 0. Then Ay, is a closed 1-form if and only if Ay, and Vi¢p # 0
are co-directional.

3. The Manifold (PZS),, with Cyclic Ricci and Z-Tensors

In this section we consider the properties of a (PZS),, manifold having cyclic Ricci
and Z-tensors. An n-dimensional Riemannian manifold is said to be cyclic Ricci
tensor if the condition:

ViRje + ViR + ViR =0 (3.1)
holds. According to [6], this implies Vi R = 0. So the following theorem also holds.

Theorem 3.1. Let M be an n-dimensional Riemannian (PZS), manifold with
Z #0 and V¢ # 0 having cyclic Ricci tensor. Then Ay is a closed 1-form.

Now an analogous definition of cyclic Z-tensor is introduced. An n-dimensional
manifold is said to be cyclic Z-tensor if the following condition holds:

ViZie+ViZi+ ViZij = 0. (3.2)
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The previous equation is now transvected with ¢7 to give
ViZ + Vi R+2Vi¢ = 0. (3.3)

Recalling the relation Z = R 4 n¢ the previous equation can be transformed in the
following ones:

2
ViR = —”; Vo, (3.4)
and
n—2
ViZ = ==V (3.5)
This result is then substituted in Eq. (2.5) to obtain
n—2 2 1
ApZ = — Vi Z+ =V Z =V 2. .
k 1 n_2vk +2Vk Vi (3.6)

We can thus state the following theorem.

Theorem 3.2. Let M be an n-dimensional Riemannian (PZS), manifold with
Z #0 and V¢ # 0 having cyclic Z-tensor. Then Ay is a closed 1-form.

4. Pseudo Z Symmetric Manifolds with Harmonic Conformal
and Quasi-Conformal Curvature Tensors

In this section an n-dimensional (n > 3) (PZS), Riemannian manifold with the
property VmC}zz = 0 and V,, W, = 0 is considered. In other words, we study
about a (PZS), with harmonic conformal curvature tensor and harmonic quasi-
conformal curvature tensor [3]. It is well known that the divergence of the conformal
tensor satisfies the relation:
n—3

VinClhe = —— |V R +

w9 {(ViR)gre — (ViR)gje}| . (4.1)

1
2(n—1)

So if we consider V,,,Cj1;"™ = 0, one immediately obtains

ViR = ViRje — VjRge = [(ViR)gje — (ViR)gr]. (4.2)

1
2(n—1)

This equation does not match with the hypothesis of Theorem 2.2. So we cannot
conclude that Ay is a closed form in this way. From the contracted second Bianchi
identity and from the definition of the Z-tensor Zy, = Rp¢ + ¢gre the following
equation can be written as

Vol = ViZio = Vi Zpo + (Vi) gee — (Vied)gje]- (4.3)
On the other hand, from the definition of a (PZS),, manifold one easily finds that

ViZje— Vil = ArZje — AjZyu. (4.4)
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In this way considering Eqs. (4.2)—(4.4) one can see that the following relation holds
for a (PZS),, manifold with harmonic conformal curvature tensor:

ApZjp — AjZyg = [Vi(R+2(n —1)d)g;e

1
2(n—1)
= Vi(R+2(n—1)¢)gke]. (4.5)
This is the starting point for the proofs of the most important properties of a (PZS),,
manifold having harmonic conformal curvature tensor, that is, VmCﬁl =0.

We note that the condition V,,C7;; = 0 implies that the manifold is a (NCS),
one: so if the condition Vi (R 4 2(n — 1)¢) = 0 is satisfied, the Z-tensor becomes
a Codazzi tensor from (4.4) and (4.5). In order to avoid Zj; to be singular we

will suppose Vi (R + 2(n — 1)¢) # 0 when we consider Remark 2.5 in the case
Vi Cliy = 0. Moreover, we can state the following remark.

Remark 4.1. A nearly conformal symmetric (PZS),, Riemannian manifold with
R = h¢ being h and ¢ constants can never exist.

Proof. In fact the condition R = h¢ implies V(R + 2(n — 1)¢) = 0. From this,
together with (4.5) it follows that

Aijg = AjZk-g

so the Z-tensor is of Codazzi type and by Remark 2.5 being V¢ = 0 we achieve
Zj¢ = 0. This contradicts the definition of a (PZS), manifold. This result general-
izes the previous one obtained in [4]. |

Now we can state the following fundamental result.

Theorem 4.1. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property V,, Clx, = 0. If the tensor Ziy is non-singular, then Ay, is a closed
1-form.

Proof. By performing the covariant derivative of Eq. (4.5) one easily obtains

(Vidi)Zie + A(ViZje) — (ViAj) Ze — Aj(ViZig)
1

= 50—y [(ViVer)gie = (ViVip)gul (4.6)

where p = R+ 2(n— 1)¢ denotes a scalar function. Now a cyclic permutation of the
indices 7, j, k is performed and the resulting three equations are added to obtain

(ViAk — vai)ZjE + (V]Al — VZA])ZM
+ (VkAj — VjAk)Zie + Aj(kaig —ViZe)
+Ak(Ving — VjZig) + Ai(VjZM — Vijg) =0. (47)
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Inserting Eq. (4.4) in the previous result one easily writes
(ViAk — vai)Zjé + (VJAl — ViAj)ZM =+ (vaj — VJA]C)ZM =0. (48)

Now if the Z-tensor is non-singular, i.e. if det(Zy¢) # 0, then there exists a (2,0)
tensor (Z~1)k™ with the property Zy,(Z~1)k™ = §*. Thus the previous equation
is multiplied by (Z71)"* to obtain

Now we put h = j and sum to obtain
(n—2)(V;Ar — Vi A;) =0. (4.10)

We can thus conclude that if n > 2, then A is a closed 1-form. O

Now we consider the case of harmonic quasi-conformal curvature tensor. In 1968
Yano and Sawaki [29] defined and studied a tensor Wi, on a Riemannian manifold
of dimension n, which includes both the conformal curvature tensor C7}, and the
concircular curvature tensor C‘;’,‘d as particular cases. This tensor is known as quasi-
conformal curvature tensor and its components are given by

Wiy = —(n—2)bCii, + a + (n — 2)b] N;,;@. (4.11)

In the previous equation a # 0, b # 0 are constants and n > 3 since the con-
formal curvature tensor vanishes identically for n = 3. A non-flat manifold has
the harmonic quasi-conformal curvature tensor if V., Wi, = 0. If the equations
for VmCﬁé =0 and Vméﬁé = 0 are employed and the covariant derivative with
respect to the index m is applied on the definition of quasi-conformal curvature
tensor, one obtains straightforwardly:

VijTZZ - (a + b)vaﬂg

2a —b(n—1)(n—4)
2n(n —1)

[(ViR)gre — (Vi R)gje]. (4.12)

Now if V,, Wi, = 0, transvecting the previous equation with g** after some calcu-
lations it follows that

b(n —2
(n—2) atbln-2)
This means that V;R = 0 or a + b(n — 2) = 0. Inserting this last result in (4.12),
we recover easily Eq. (4.2). If V;R = 0, Remark 2.4 is invoked. Then it follows that
Ay, is a closed 1-form. On the other hand, if Eq. (4.2) is valid, Theorem 4.1 is used.
Thus we can state the following theorem.

(ViR) = 0. (4.13)

Theorem 4.2. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property VmWﬂ;@ = 0. If the tensor Zyy is non-singular, then Ay is a
closed 1-form.
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Now we follow the procedure explained in [10] to point out other properties of
a (PZS), manifold. Transvecting Eq. (4.5) with g** gives

A Z — A™ 7, = %vj(Rm(n— 1)6). (4.14)

Inserting this result in (4.5), one can write the following relation:

1
Aijg — AjZké = m[(AkZ — Amka)gjg - (AjZ - Aijm)gkd. (4.15)
Transvecting the previous equation with A‘, one straightforwardly obtains
ARA Zj = AjA Zyy. (4.16)
Again we multiply the previous equation by A7 to obtain
Ay A A Zyy = Aj AV A Zyy. (4.17)
This last can be rewritten as
A ATAZ
A Zyy = 0 — A 4.18
Kkt AJAJ ks ( )
where t = A;’jiﬁ“ is a scalar function. We have just proved the following theorem

that generalizes a similar result in [10] for an (APRS),, Riemannian manifold.

Theorem 4.3. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property VmCﬁd = 0. Then the vector A’ is an eigenvector of the Zye
tensor with eigenvalue t.

Inserting (4.18) in Eq. (4.14), one easily obtains
1
At —2) = —§V;€(R+2(n— 1)¢). (4.19)

This result is again a natural generalization of a similar equation given in [10] for
an (APRS), Riemannian manifold.
Now transvecting Eq. (4.5) with A7 and using the result (4.18), one straightfor-
wardly shows that the following equation holds:
ALAy [nt—Z2 Z —t
— : : = . 4.2
Ry AjAJ[n—l}—i—gu[n—l ¢] (4.20)
In such a case a Riemannian manifold is said to be quasi-Einstein (see [8]). This
result can be written in the more compact form:

Rie = agre + BTy Ty, (4.21)
where a = Z=t — ¢ 3 = "M=Z are the associated scalars and T}, = —2:— is

\A;AI

naturally a unit covector. We have just proved the following theorem.

Theorem 4.4. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property VmCﬁe = 0. Then M is quasi-Finstein.
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Now from Eqgs. (4.18) and (2.4) one immediately writes
2—n
4

The operation of covariant derivation is applied on the previous result and the
following relation is obtained:

Apt = Vio. (4.22)

2 —
(V; At + AVt = T”vjvm. (4.23)

Now a similar equation with indices k and j exchanged is written and then sub-
tracted from (4.23) to obtain finally:

(VjAk — Vk-Aj)t = A]Vk.t — Ak.Vjt. (4.24)
We can thus state the following theorem.

Theorem 4.5. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property Vi Ci, = 0. Then the relation (4.24) holds.

At this point it is worth to note the following geometric remark.

Remark 4.2. (1) If ¢ = 0, we recover the (PRS),, manifold. Thus from (4.22) it
follows that t = 0 and being Z = R, Eq. (4.20) takes the form:

O ARAy R R
e = _AjAj {n— 1} + Gkt {n— 1} ' (425)

So the manifold is quasi-Einstein with opposite associated scalars.

(2) If ¢ = —£, then Z = 0. Thus we recover the (PPRS), manifold. And from
Remark 2.2 we easily obtain that VxR = V¢ = 0. So again we have ¢t = 0 and
thus finally Ry, = %gkz, that is, the manifold is Einstein.

According to Theorem 4.3, a (PZS),, Riemannian manifold with the property
VmCﬁé = 0 is quasi-Einstein, that is, the Ricci tensor satisfies Ryy = agie + 81T
(see [8]). If Zy, is non-singular, the covector Ay, is closed and by Eq. (4.24) we have
A;(Vit) = Ap(V;t). This is taken in conjunction with the equation A4;(V,Z2) =

A,(V;Z) coming in the same situation from Eq. (2.14). One easily obtains the

following relation:
nt—2 nt—2
o (RZE) oy (5,22). )

1

VA A

Thus multiplying the previous result by and considering Theorem 4.3 we

can state the following corollary.

Corollary 4.1. Let M be an n-dimensional (n > 3) (PZS),, Riemannian manifold
with the property VmC}zz = 0. Then the manifold M 1is quasi-FEinstein. Moreover,
if the tensor Zyy is non-singular, the following holds

T;(ViB) = Ti(V;P). (4.27)
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5. Conformally Flat Pseudo Z Symmetric Manifolds: Local Form
of the Metric Tensor

In this section we study in depth conformally flat (PZS),, manifold. In particular
we point out the existence of a proper concircular vector in such a manifold and
give the local form of the metric tensor. It is worth to notice that the proof in
the present paper is based only on the request of a non-singular Z-tensor. First we
recall the following theorem whose proof is different from that of [11].

Theorem 5.1. Let M be an n-dimensional (n > 3) manifold whose Ricci tensor
1s giwen by Ry = agre + BTk Ty where Ty, is a unit vector. If the manifold is con-
formally flat and the condition Tj(ViB) = T(V;03) is satisfied, then Ty, is a proper
concircular vector.

Proof. If the manifold is conformally flat, then the following naturally holds:

ViRje — VjRpe = ViR)gje — (Vi R)gre]. (5.1)

1
2(n—1) I

Equation (4.21) is then substituted in previous relation and the operations of covari-
ant differentiation are performed to give straightforwardly:

(VeB)T; Ty + B(ViT)Te + BT (ViTe) — (Vi B) Tk Ty — B(VT)Te — BTk (V;Te)

= ﬁ[(vké)gﬂ — (V;R)ge). (5.2)

where R = R — 2(n — 1)a. Recalling that T}, is a unit vector and so (V;Ty)T* = 0,
Eq. (5.2) is then transvected with g7 to obtain

Vi — (VBT Ty — B(VITW)T, — BTW(VATy) = %vké. (5.3)

Transvecting again Eq. (5.2) with T77T* gives

1 - 1 -
Vi — (V)T Tt — BTV T}) = ———ViR— ———(V,R)TWTY. (5.4
kB — (VeB)TRT™ — BT(VTk) 1)k 2(n_1)( (R)T}, (5.4)
Comparing the last two equations gives immediately:
_ ~ 1 N
T (V) = =" VyR— ——(V,R)T,T". 5.5
AL VT) = 50—y ViR = g =y VR T (5:5)

The last result is then transvected with 7% so that the following holds:
¢ 1 B\l
BV = —5(VeR)T (5.6)
Now Eq. (5.6) is substituted in (5.5) to give
(V¢R)TT' = ViR. (5.7)
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If the last result is substituted in (5.4), one can easily obtain
Vi — (VeB)TWT" = BTV Ty). (5.8)

It is worth to notice that, by (5.7) one easily has (ViR)T; = (V;R)T}). Thus
transvecting Eq. (5.2) with T gives immediately:

BIViT; = VT + T; Vi = TV ;5 = 0. (5.9)

Following the hypothesis of the theorem, we immediately conclude that T} is a
closed 1-form, that is,

Vi1 — VT = 0. (5.10)

Now using Egs. (5.10), (5.9) and (5.7) we can transvect again Eq. (5.2) with 77
recalling that (V;13)T7 = (V,1;)T? = 0 being T} closed to obtain the following

relation:
T™(VmR)
Vily = ————=T,T}, — . 5.11
1T Qﬁ(n—l)[e k= Y] (5.11)
So we conclude that T} is a concircular vector. O

Now we can state the following remarks.

Remark 5.1. From (Vm]%)TmTk = ViR we easily obtain by a covariant derivative
that the following is true:

V;ViR = (V;Te) (Vi R)T™ + Ty V; (Vi R)T™). (5.12)

A similar relation is written with indices k& and j exchanged and the resulting
equations are then subtracted recalling that T} is a closed 1-form to obtain finally:

Vi(ViR)T™) = TH(T*V(T™V,, R)). (5.13)

Remark 5.2. From V3 — (V,3)TT¢ = BT%(V,T}) recalling that T}, is a closed
1-form, one easily writes

Vi = (ViB)TRT". (5.14)
Now if the scalar function f = %ﬁ‘f‘) is considered by the previous remarks, one

can write V; f = puT); where i is another scalar function. Thus the 1-form wy = fT5
is closed and T}, is a proper concircular vector.

Now taking account of Corollary 4.1 and Theorem 5.1 one can state the following
theorem.

Theorem 5.2. Let M be an n-dimensional (n > 3) conformally flat (PZS)y,. If the
tensor Zyy is non-singular, then the manifold admits a proper concircular vector.
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In [1] it is well known that if a conformally flat space admits a proper concircular
vector, then this space is subprojective in the sense of Kagan. In this way the
following holds.

Theorem 5.3. Let M be an n-dimensional (n > 3) conformally flat (PZS),. If
the tensor Zye is non-singular, then the manifold is a subprojective space.

In [28] Yano proved that a necessary and sufficient condition for a Riemannian
manifold admits a concircular vector that there is a coordinate system in which the
first fundamental form may be written as

ds® = (dz')? + 1) g% sda® da® (5.15)

where g;,5 = g,5(27) are functions of 27 only (a, 8,7 = 2,3,...,n) and ¢ is a
function x! only. Since a conformally flat (PZS),, manifold with a non-singular Zy,
tensor admits a proper concircular vector field, this space is the warped product
1x e?M* where (M*, g*) is a (n— 1)-dimensional Riemannian manifold. Gebarosky
in [18] proved that the warped product 1 x e?M* satisfies the condition (5.1) if and
only if M™ is Einstein. Thus the following theorem holds.

Theorem 5.4. Let M be an n-dimensional (n > 3) conformally flat (PZS)y,. If the
tensor Zye is non-singular, then the manifold M is the warped product 1 x eI M*
where M* is Finstein.

6. Sufficient Conditions for a (PZS),, Riemannian Manifold
to be Ricci Pseudo Symmetric in the Sense of Deszcz

In this section we explore the connection between (PZS), Riemannian manifolds
and the notion of pseudo Ricci symmetric manifolds in the sense of Deszcz. We
shall give sufficient conditions for a (PZS),, manifold to be Ricci pseudo symmetric
in the sense of Deszcz [14, 15]. The starting point is the definition of a (PZS),
manifold, that is,

VsZie =2AsZ10 + ArZso + A¢Zgy. (6.1)

By performing a covariant derivative and employing (6.1) one obtains the following
results:

ViVsZie = 2(ViAg) Zye + 2A5(2A, Zky + Ak Zio + Ao Zyy;)
+ (ViAr) Zs + Ak (QAi Zgp + A Zip + AvZ;s)
+ (ViAo Zs + Ae(QA Zgj, + As Zit, + ArZs). (6.2)

Exchanging the indices s and 7 in the previous equation and subtracting after a
long calculation one gets

(VsVi—=ViVe)Zi = 2(VAi — Vi As) Zie + Zio(V A — AL Ag)
— Zs(ViAk — ALAi) + Z1i (Vs Ay — A Ag)
— Zsk (Vi — AgAy). (6.3)
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Now if V A — A As = vgrs being v an arbitrary scalar function, we obtain the
following identities chain:

(vsvz - V'Lvs)Zké

(Ziegsk — ZseGir + Zrigse — Zskit)

[(Rie + ¢gi0)gsk — (Rse + ¢gse)gix + (Rii + dgri)gse — (Rsk + dgsk)gie]
(R

(R

itGsk + 09iegsk — Rsegir — 09segi + Riigse + O9rigse — Rk gie — 0Gsk gie)

v
~y
v
v

sk — RstGik + Riigse — Rskie). (6.4)

Now we observe that (VsV; — V;V)Zre = (VsV; — ViVs)[Rre + dgre] =
(VsV; — ViVs)Rie being ¢ a scalar function. So we have obtained the final result:

(VsVi = ViVs)Rie = Y[Ritgsk — Rsegik + Riigse — Rskgie]- (6.5)

In such a case we call the manifold pseudo Ricci symmetric in the sense of Deszcz
[14, 15]. We can state the following theorem.

Theorem 6.1. Let M be an n-dimensional (PZS),, manifold. If the associated form
is concircular and satisfies the condition VA — A As = vgis, then the manifold
s Ricci pseudo symmetric in the sense of Deszcz.

On the other hand, if we consider a pseudo Z symmetric manifold, that is, also
pseudo Ricci symmetric in the sense of Deszcz, we can achieve an interesting result.
Let us consider Eqs. (4.3) and (4.4), by which we can write easily:

ViR = AxZje — AjZe + (V) gre — (Vied)gjel- (6.6)

Now the covariant derivative of the previous equation is performed and thus one
obtains

Vlvaﬂz (V Ak) je + Ak(V Zﬂ) (ViAj)ZM — AJ(VIZM)
+[(ViVid)gre — (ViVid)gjel. (6.7)

By performing a cyclic permutation of indices ¢, j, k, adding the resulting three
equations and using the contracted Bianchi identity one writes

(ViVi = ViVi)Rje + (V;Vi = V; V) Ry + (ViV; — V;Vi)Rie
= (ViAr — ViAi) Zjo + (VA — Vi Aj) Zie + (Vi Aj — VAR Z; (6.8)

If we consider that the manifold is also pseudo Ricci symmetric in the sense of
Deszcz, one can write

(ViVi = ViVi)Rj = Lg[gje Rie — gjiRie + giiRji — g Rjel, (6.9)

where L, is an arbitrary scalar function. Then it can be easily checked that the
sum of the three commutators vanishes so the previous equation takes the form:

(VA — Vi A Z je+ (V A; — VA )Zkg + (VkA -V Ak) 0 =0. (6.10)
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Now using the same procedure as in Sec. 4 we can finally state the following theorem.

Theorem 6.2. Let M be an n-dimensional (PZS),, manifold. If the manifold is
also pseudo Ricci symmetric in the sense of Deszcz and the Z-tensor is non-singular,
then Ay is a closed 1-form.

7. (PZS),, Spacetime Manifolds

In this section we study general properties of pseudo Z symmetric spacetimes; we
will focus on the closeness of the 1-form A and will state some theorems concerning
the perfect fluid spacetime.

If a (PZS), spacetime is considered i.e. Zy = kTy, then the condition
V¢Zi = 0 coming from the stress-energy tensor must be satisfied and so from
Eq. (2.3) it follows that 24,2 + 6A°Z, = 0, together with V(£ + ¢) = 0, and
from Eq. (2.2) it follows that Vi Z = 24, Z + 2A* Z},,. Combining this fact we obtain
ViZ =3AcZ and A'Zy = —%Z. Then we can state the following theorem.

Theorem 7.1. For a (PZS)4 spacetime manifold the 1-form Ay is closed and it is

. . . Z
an eigenvector of the Z-tensor with eigenvalue —%.

On the other hand, from the condition Vk(§ +¢) = 0 it follows that % +¢ =A,
where A is a cosmological constant and thus Einstein’s equation takes the form
Rye — %gke + Agre = kTye. An example of this situation is a perfect fluid spacetime
with non-null stress—energy tensor given by the following equation:

Tie = (b + p)urue + pYe, (7.1)

where p is the energy density, p is the isotropic pressure and u; the fluid flow velocity
with the condition u;u’ = —1. In addition p and . are related by an equation of state
governing the particular sort of perfect fluid under consideration. In general this is
an equation of the form p = p(u, T) where T is the absolute temperature. However,
we shall only be concerned with situations in which 7" is effectively constant so that
the equation of state reduces to p = p(u).

If the condition A‘Z;, = —%Z is applied on Einstein’s equation Ziy = kT
one can obtain the following relation:

Tre = (1 + p)urte + pgre, (7.2)
A
(ku — g) ApuF = 0. (7.3)

If the relation AyuF+£0 is fulfilled, then we have ky = % Now Zyy = kTye gives
rise to Z = kT and so by contracting (7.1) and using n = 4, we have T'=3p — u
and Z = k(3p — p). It follows immediately that kp = %Z and that pu = %p: this
is the equation of state of such a spacetime. Inserting ky = % in Eq. (7.2) one
easily obtain k(u + p)upAfup = —k(u + p)Ap and thus Ay, = —uy Alus. Now from
% +¢=Aand Z = R+ 4¢ it follows that Z = 4A — R. Inserting these relations in
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FEinstein’s equation it follows that

7 1 R
Ry = 5(4A — R)ugue + 9 (7/\ + 5) Gkl (7.4)

So we have obtained a quasi-Einstein manifold and so the following theorem is true.

Theorem 7.2. A (PZS)4 perfect fluid spacetime manifold is quasi-Finstein and
the 1-form Ay is proportional to the fluid flow velocity.

This theorem is a generalization of the result due to Ray-Guha [23] which says
that a perfect fluid pseudo Ricci symmetric spacetime is a quasi-Einstein manifold
with each of its associated scalars equal to %.

If a (PZS), spacetime with further condition V;Z;, = 0 (a spacetime with
the conservation of the stress—energy density) is considered, we get Vi Z = 0 and
from the previous results we may write 24,7 + 6A°Z,, = 0 and 24,7 + 2A°
Zie = 0. From this it follows that A‘Z,, = 0 and Z = ¢**Z;, = 0. So we obtain R =
—n¢ and from Vk(g + ¢) = 0 we know that VyR =0 = V¢ and A = R%-2. We
note that in this case a non-null cosmological constant is necessary. Thus Einstein’s
equations take the form Ry, — %gkg + Agre = kT, that is, Rge — %gu = kT}y.
In four dimension this implies Ry — %gke = kT}e. The vacuum solution is still
Rye — %gu = 0. On the other hand, the 1-form Aj becomes an eigenvector of
the stress—energy tensor with null eigenvalue. In other words, the 1-form Ay is
an eigenvector of the Ricci tensor with eigenvalue %. Moreover, by the result of
ViR = 0 = V¢ our space becomes also Ricci symmetric. The vacuum solution is
thus an Einstein space.

If the conservation of the stress—energy tensor kV; 1), = Vi Zj; = 0 is taken
under consideration for the perfect fluid spacetime we get the previous results like
A'Zyy = 0 and Z = 0. The condition Z = 0 implies T = 0 and consequently
= 3p: this is known as radioactive perfect fluid spacetime (see [17]). In fact = 3p
is the equation of state for radiation and the corresponding spacetime is isotropic
and homogeneous. The stress—energy tensor becomes Ty = 4purue + pgre. The
condition A*Zy, = 0 implies that ATy, = 0 and thus, if p # 0, then we have

Ak = —4ukAZUg. (75)

The previous result is thus transvected by u* to obtain easily Azu* = 0 and finally
A = 0. Thus we obtain ViR, = 0 and we state the following theorem.

Theorem 7.3. A (PZS)4 perfect fluid spacetime manifold with stress—energy con-
servation is a radioactive perfect fluid isotropic and homogeneous spacetime and it
18 Ricci symmetric.
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