
2nd Reading

January 20, 2012 12:3 WSPC/S0219-8878 IJGMMP-J043 1250004

International Journal of Geometric Methods in Modern Physics
Vol. 9, No. 1 (2012) 1250004 (21 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S0219887812500041

PSEUDO Z SYMMETRIC RIEMANNIAN MANIFOLDS
WITH HARMONIC CURVATURE TENSORS

CARLO ALBERTO MANTICA

Physics Department, Università degli Studi di Milano
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In this paper we introduce a new notion of Z-tensor and a new kind of Riemannian man-
ifold that generalize the concept of both pseudo Ricci symmetric manifold and pseudo
projective Ricci symmetric manifold. Here the Z-tensor is a general notion of the Einstein
gravitational tensor in General Relativity. Such a new class of manifolds with Z-tensor
is named pseudo Z symmetric manifold and denoted by (PZS)n. Various properties of
such an n-dimensional manifold are studied, especially focusing the cases with harmonic
curvature tensors giving the conditions of closeness of the associated one-form. We study
(PZS)n manifolds with harmonic conformal and quasi-conformal curvature tensor. We
also show the closeness of the associated one-form when the (PZS )n manifold becomes
pseudo Ricci symmetric in the sense of Deszcz (see [A. Derdzinsky and C. L. Shen,
Codazzi tensor fields, curvature and Pontryagin forms, Proc. London Math. Soc. 47(3)
(1983) 15–26; R. Deszcz, On pseudo symmetric spaces, Bull. Soc. Math. Belg. Ser. A
44 (1992) 1–34]). Finally, we study some properties of (PZS )4 spacetime manifolds.
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1. Introduction

In 1988 Chaki [4] introduced and studied a type of non-flat Riemannian manifold
whose Ricci tensor is not identically zero and satisfies the following equation:

∇kRj� = 2AkRj� + AjRk� + A�Rkj . (1.1)
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Such a manifold is called pseudo Ricci symmetric, Ak is a non-null covector called
associated 1-form, ∇ is the operator of covariant differentiation with respect to the
metric gk� and the manifold is denoted by (PRS)n. Here we have defined the Ricci
tensor to be Rk� = −Rm

mk� [30] and the scalar curvature R = gijRij . This notion of
pseudo Ricci symmetric is different from that of Deszcz [14, 15]. In [5] the authors
considered conformally flat pseudo Ricci symmetric manifolds, where the conformal
curvature tensor

Cm
jk� = Rm

jk� +
1

n − 2
(δm

j Rk� − δm
k Rj� + Rm

j gk� − Rm
k gj�)

− R

(n − 1)(n − 2)
(δm

j gk� − δm
k gj�) (1.2)

vanishes, that is, Cm
jk� = 0. It may be scrutinized that the conformal curvature

tensor vanishes identically for n = 3 [21]. In [2], a (PRS )n with harmonic curvature
tensor, that is, ∇mRm

jk� = 0 and with harmonic conformal curvature tensor, that
is, ∇mCm

jk� = 0 was studied (see [3]).
Such a notion of harmonic is related to the co-closeness of the curvature ten-

sor. From this, together with the notion of closeness of the associated 1-form in
(1.1), it gives us some important geometric meanings in the theory of Yang–Mill ’s
Connections, Harmonic Mappings and Mathematical Physics, in particular, in Ein-
stein’s Relativity. From such a point of view, in this paper, we mainly consider the
closeness of associated 1-forms for some generalized curvature tensors.

On the other hand, Suh, Kwon and Yang [27] introduced the notion of confor-
mal curvature-like tensor on a semi-Riemannian manifold and have given a complete
classification of conformally symmetric semi-Riemannian manifold with generalized
non-null stress–energy tensor. More generally, Suh and Kwon [25] considered the
notion of conformally recurrent semi-Riemannian manifolds with harmonic con-
formal curvature tensor and gave another generalization of conformal symmetric
Riemannian manifolds. Moreover, in [26] due to Suh, Kwon and Pyo the impor-
tance of the closeness for the associated curvature-like 2-form corresponding to
each concircular, projective and conformal curvature-like tensor defined on semi-
Riemannian manifolds was remarked respectively.

Now let us consider a generalization of condition (1.1) introduced in a paper
by Chaki and Saha [9]. They considered the so-called projective Ricci tensor Pk�

obtained by a suitable contraction of the projective curvature tensor Pjk�m [16].
More precisely, one obtains

Pj� =
n

n − 1

(
Rj� − R

n
gj�

)
, (1.3)

where R = gijRij denotes the scalar curvature.
Obviously gj�Pj� = 0. The generalization defined in [9] is thus written as

∇kPj� = 2AkPj� + AjPk� + AlPkj . (1.4)
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This kind of manifold is called pseudo projective Ricci symmetric and denoted
by (PPRS )n. Recently in [7, 10] a further generalization of condition (1.1) was
considered. More precisely a manifold whose Ricci tensor satisfies the condition

∇kRj� = (Ak + Bk)Rj� + AjRk� + A�Rkj (1.5)

is defined. Such a manifold is called almost pseudo Ricci symmetric and denoted
by (APRS )n. Here Ak and Bk are non-null covectors.

In [10] the properties of conformally flat (APRS)n are studied and the authors
pointed out the importance of pseudo Ricci symmetric manifolds in the theory
of General Relativity. It is therefore worthwhile to undertake the study of an
n-dimensional manifold that generalizes both the (PRS )n and the (PPRS )n mani-
folds. In this paper we define a generalized (0, 2) symmetric Z-tensor given by

Zk� = Rk� + φgk�, (1.6)

where φ denotes an arbitrary scalar function. It is worth to notice that the Z-tensor
allows us to reinterpret many well-known structures on Riemannian manifolds. In
fact one can check that a Z flat Riemannian manifold is simply an Einstein space.

If a Z recurrent Riemannian manifold is considered i.e. a space satisfying the
condition

∇iZk� = λiZk�

one can easily find that this condition is equivalent to

∇iRk� = λiRk� + (n − 1)µigk�

with the choice (n − 1)µi = λiφ − ∇iφ. So the manifold reduces to a generalized
Ricci recurrent manifold [12] and if λiφ − ∇iφ = 0 a Ricci recurrent manifold is
recovered (see also [19]).

If we consider a Riemannian manifold with Z-tensor of Codazzi type (see [13]),
that is, with the property

∇kZj� = ∇jZk�

one can easily find that this condition is equivalent to

∇kRj� −∇jRk� = (∇jφ)gk� − (∇kφ)gj�.

Transvecting the previous relation with gj� we get ∇k(R + 2(n − 1)φ) = 0 and
finally

∇kRj� −∇jRk� =
1

2(n − 1)
[(∇kR)gj� − (∇jR)gk�].

A manifold with Z-tensor of Codazzi type is thus a nearly conformal symmetric
manifold (NCS )n: this condition was introduced and studied by Roter [22] and Suh,
Kwon and Yang [27]. Conversely, an (NCS )n manifold has a Z-tensor of Codazzi
type if the condition ∇k(R + 2(n − 1)φ) = 0 is satisfied.

One can observe that the n-dimensional Einstein equations with cosmologi-
cal constant Λ may be written in the same form Zk� = kTk� with the choice
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φ = −R
2 +Λ. This choice comes naturally from the condition ∇�Tk� = 0 for the

stress–energy tensor and the second Bianchi identity that gives ∇k(R
2 + φ) = 0. In

this case the vacuum solution Z = 0 implies Λ = Rn−2
2n and thus an Einstein space.

So the generalized Z-tensor may be thought as a generalized Einstein gravitational
tensor with arbitrary scalar function φ.

Finally one can also notice that Einstein’s equations in General Relativity
(n = 4) can be written in the suggestive form

Zk� = kTk�

with the choice φ = −R
2 without cosmological constant, that is, Λ = 0. In this case

the tensor Z is said to be the Einstein gravitational tensor, T the stress–energy
tensor and k a certain gravitational constant of a spacetime M , respectively. So for
example the condition ∇iZk� = 0 describes a spacetime in which the stress–energy
tensor is constant. When T = 0, then the tensor Z = 0, i.e. the spacetime M could
be Ricci flat and M is said to be a vacuum (or empty) (see [20]).

In this paper we introduce a generalization of the condition ∇iZkl = 0 men-
tioned above. In this way we will extend the limit of validity of the properties
of pseudo Ricci symmetric manifolds using this generalized Einstein gravitational
tensor. More precisely, we introduce a new kind of Riemannian manifold whose
non-null generalized Z tensor satisfies the following condition:

∇kZj� = 2AkZj� + AjZk� + A�Zkj . (1.7)

Such a manifold is called pseudo Z symmetric and denoted by (PZS )n. It is worth
to notice that if φ = 0, we recover a pseudo Ricci symmetric manifold, that is,
a (PRS )n manifold, while if Z = gk�Zk� = R + nφ = 0, one has φ = −R

n and
so we recover the classical Z tensor with Zj� = Rj� − R

n gj� = n−1
n Pj�. Thus the

space reduces to a pseudo projective Ricci symmetric manifold, that is, a (PPRS )n

manifold. Hereafter we call the generalized Z tensor simply Z tensor.
It is well known that in pseudo Ricci symmetric Riemannian manifold the con-

dition AkR = 1
2∇kR is true giving a closed 1-form Ak in (1.1). From such a view

point and the motivations mentioned above, in our paper we study in more detail
the properties of pseudo Z symmetric manifold focusing our attention to peculiar
conditions that give rise to the closeness of the associated 1-form Ak in (1.7).

In particular, we will note that these conditions naturally arise from a (PZS )n

manifold endowed with harmonic curvature tensors: the case with harmonic con-
formal curvature tensor will be studied in a special way. Moreover, we will point
out how these conditions depend on the choice of the scalar function φ in (1.6).

2. Elementary Properties of a (PZS)n Manifold

In this section elementary properties of a (PZS )n are shown. Let M be a non-flat
n-dimensional (n ≥ 4) (PZS )n Riemannian manifold with metric gij and Rieman-
nian connection ∇. We can state the following simple theorem.
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Theorem 2.1. Let M be an n-dimensional Riemannian (PZS )n manifold. If the
scalar function φ satisfies the following differential equation:

(∇kφ)gj� = φ(2Akgj� + Ajgk� + A�gkj), (2.1)

then a (PZS )n manifold reduces to a (PRS )n one.

Proof. The proof follows from a straightforward calculation by inserting the defi-
nition of the generalized Z-tensor in Eq. (1.7). If Rjl = 0, this condition is verified
and the manifold is reduced to a trivial pseudo Ricci symmetric one.

Now we point out some useful formulas concerning (PZS )n manifolds. Transvect-
ing Eq. (1.7) with gj� gives immediately:

∇kZ = 2AkZ + 2A�Zk�. (2.2)

In the same manner transvecting Eq. (1.7) with gk� and using the relation ∇�Zj� =
1
2∇jR + ∇jφ coming from the contracted second Bianchi identity one obtains

∇kR + 2∇kφ = 2AkZ + 6A�Zk�. (2.3)

By using both Eqs. (2.2) and (2.3) after a straightforward calculation, one obtains
the following results:

A�Zk� =
2 − n

4
∇kφ, (2.4)

and

AkZ =
n − 2

4
∇kφ +

1
2
∇kZ. (2.5)

The last equations are the generalization of the correspondent results given in [4, 9].
In fact we can state the following simple remarks.

Remark 2.1. If ∇kφ = 0 with Z �= 0 and ∇kR �= 0, one has A�Zk� = 0. That is
A�Rk� = −φAk and AkZ = 1

2∇kZ. So Ak is a closed 1-form and it is an eigenvector
of the Ricci tensor with eigenvalue −φ. In particular if φ = 0, the results given in
[4] are recovered. We have shown that similar results are valid in more general
conditions.

Remark 2.2. If Z = 0, then φ = −R
n . And by a simple calculation we have

∇kR = ∇kφ = 0. Furthermore, we have A�Rk� = R
n Ak. So we have obtained that

the scalar curvature is a covariant constant and that Ak is an eigenvector of the
Ricci tensor with eigenvalue R

n . These are the results given in [9].

Remark 2.3. If the scalar curvature is constant, that is, ∇kR = 0 with Z �= 0 and
∇kφ �= 0, one has ∇kZ = n∇kφ. Then from Eq. (2.5) it follows immediately that
AkZ = 3n−2

4n ∇kZ. This means that Ak is a closed 1-form.
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Remark 2.4. Let M be an n-dimensional Riemannian (PZS )n manifold with Z �=
0 and ∇kφ �= 0 having harmonic curvature tensor which satisfies the property
∇mRm

jk� = 0. Then Ak becomes a closed 1-form.

Proof. The contracted second Bianchi identity is invoked:

∇mRm
jk� = ∇kRj� −∇jRk�.

Transvecting this with gk�, one obtains ∇jR = 0. So we are in the hypothesis of
Remark 2.3. It is well known that if the space is locally symmetric ∇iR

m
jk� = 0 [19]

or Ricci symmetric ∇iRk� = 0 [24] and if the Ricci tensor is of Codazzi type, i.e.
∇kRj� = ∇jRk�, then one has also ∇mRm

jk� = 0.

Remark 2.5. Let M be an n-dimensional Riemannian (PZS )n manifold whose Z-
tensor is of Codazzi type, that is, ∇kZj� = ∇jZk�. Then: (1) Zj� must be a singular
tensor, and (2) if ∇φ = 0 we have Zj� = 0 (a trivial (PZS )n manifold) that is an
Einstein space.

Proof. (1) From (1.7) and the condition ∇kZj� = ∇jZk� we can easily find
AkZj� = AjZk�. If the Z-tensor is non-singular, i.e. if det(Zj�) �= 0, there
exists a tensor (Z−1)s� of type (2, 0) with the property (Zj�)(Z−1)s� = δs

j .
Thus we have

AkZj�(Z−1)s� = AjZk�(Z−1)s�

and so Akδs
j = Ajδ

s
k. This gives finally Ak = 0. But the 1-form Ak is supposed

to be non-null: thus we must have a singular Z-tensor.
(2) From (2.4) and being ∇kφ = 0 we have AlZk� = 0 and thus AkAkZj� =

AjA
kZk� = 0 from which Zj� = 0. This contradicts the definition of a (PZS )n

manifold and so such a kind of manifold can never exist.

Now we consider other curvature tensors Km
jk� with the usual symmetries of the

Riemann tensor satisfying the first Bianchi identity. We can thus state the following
theorem.

Theorem 2.2. Let M be an n-dimensional Riemannian manifold having a gener-
alized curvature tensor Km

jk� with the property:

∇mKm
jk� = a∇mRm

jk� + b[(∇jR)gk� − (∇kR)gj�], (2.6)

where a and b are constants. If ∇mKm
jk� = 0 and the condition b �= a

2(n−1) is
satisfied, then the scalar curvature R is a covariant constant, that is, ∇kR = 0.

Proof. Transvecting Eq. (2.6) with gk� and using the second contracted Bianchi
identity, one easily obtains (∇jR)[12a − (n − 1)b] = 0 from which one concludes
immediately.
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Corollary 2.1. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having a generalized curvature tensor which satisfies the
property (2.6). If ∇mKm

jk� = 0, then Ak is a closed 1-form.

Proof. It follows immediately from Remark 2.3 and Theorem 2.2.

Some curvature tensors Km
jk� with the property (2.6) are well known. We give

its examples as follows: the projective curvature tensor Pjk�
m [16], the conformal

curvature tensor Cm
jk� [26, 27], the concircular curvature tensor C̃m

jk� [28], the con-
harmonic curvature tensor Nm

jk� [24] and the quasi-conformal curvature tensor Wm
jk�

[29]. So we can state the following corollaries whose proofs are very similar.

Corollary 2.2. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having harmonic projective curvature tensor, that is, the
property ∇mPjk�

m = 0. Then Ak becomes a closed 1-form.

Proof. The components of the projective curvature tensor are defined as (see [16,
24]):

Pm
jk� = Rm

jk� +
1

n − 1
(δm

j Rk� − δm
k Rj�). (2.7)

Applying the operator of covariant derivative to the previous equation and recalling
the second contracted Bianchi identity, one obtains

∇mPm
jk� =

n − 2
n − 1

∇mRm
jk�. (2.8)

Thus we are in the condition of Theorem 2.2 and Corollary 2.1.

Corollary 2.3. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having harmonic concircular curvature tensor, that is, satisfy-
ing the property ∇mC̃m

jk� = 0. Then Ak is a closed 1-form.

Proof. The components of the concircular curvature tensor are defined as (see
[26, 28]):

C̃m
jk� = Rm

jk� +
R

n(n − 1)
(δm

j gk� − δm
k gj�). (2.9)

Applying the operator of covariant derivative to the previous equation and consid-
ering the second contracted Bianchi identity, one obtains

∇mC̃m
jk� = ∇mRm

jk� +
1

n(n − 1)
[(∇jR)gk� − (∇kR)gj�]. (2.10)

Thus we are in the condition of Theorem 2.2 and Corollary 2.1.

Corollary 2.4. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having harmonic conharmonic curvature tensor, that is, the
property ∇mNm

jk� = 0. Then Ak becomes a closed 1-form.
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Proof. The components of the conharmonic curvature tensor are defined as
(see [24]):

Nm
jk� = Rm

jk� +
1

n − 2
(δm

j Rk� − δm
k Rj� + Rm

j gk� − Rm
k gj�). (2.11)

Applying the operator of covariant derivative to the previous equation and consid-
ering the second contracted Bianchi identity, one obtains

∇mNm
jk� =

n − 3
n − 2

∇mRm
jk� +

1
2(n − 2)

[(∇jR)gk� − (∇kR)gj�]. (2.12)

Thus we are in the condition of Theorem 2.2 and Corollary 2.1.

Now we focus on Eq. (2.5). The operation of covariant derivation is applied on
it and the following relation is obtained:

(∇jAk)Z + Ak(∇jZ) =
n − 2

4
∇j∇kφ +

1
2
∇j∇kZ. (2.13)

Now a similar equation with indices k and j exchanged is written and then sub-
tracted from (2.13) to obtain

(∇jAk −∇kAj)Z + Ak(∇jZ) − Aj(∇kZ) = 0. (2.14)

This result will have a discrete consequence in the properties of a (PZS )n manifold.
Equation (2.5) is substituted in the previous relation and one has immediately:

(∇jAk −∇kAj)Z +
2 − n

2
[Ak(∇jφ) − Aj(∇kφ)] = 0. (2.15)

We can then state the following theorem.

Theorem 2.3. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0. Then Ak is a closed 1-form if and only if Ak and ∇kφ �= 0
are co-directional.

3. The Manifold (PZS)n with Cyclic Ricci and Z-Tensors

In this section we consider the properties of a (PZS )n manifold having cyclic Ricci
and Z-tensors. An n-dimensional Riemannian manifold is said to be cyclic Ricci
tensor if the condition:

∇kRj� + ∇jRk� + ∇�Rkj = 0 (3.1)

holds. According to [6], this implies ∇kR = 0. So the following theorem also holds.

Theorem 3.1. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having cyclic Ricci tensor. Then Ak is a closed 1-form.

Now an analogous definition of cyclic Z-tensor is introduced. An n-dimensional
manifold is said to be cyclic Z-tensor if the following condition holds:

∇kZj� + ∇jZk� + ∇�Zkj = 0. (3.2)
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The previous equation is now transvected with gj� to give

∇kZ + ∇kR + 2∇kφ = 0. (3.3)

Recalling the relation Z = R +nφ the previous equation can be transformed in the
following ones:

∇kR = −n + 2
2

∇kφ, (3.4)

and

∇kZ =
n − 2

2
∇kφ. (3.5)

This result is then substituted in Eq. (2.5) to obtain

AkZ =
n − 2

4
2

n − 2
∇kZ +

1
2
∇kZ = ∇kZ. (3.6)

We can thus state the following theorem.

Theorem 3.2. Let M be an n-dimensional Riemannian (PZS )n manifold with
Z �= 0 and ∇kφ �= 0 having cyclic Z-tensor. Then Ak is a closed 1-form.

4. Pseudo Z Symmetric Manifolds with Harmonic Conformal
and Quasi-Conformal Curvature Tensors

In this section an n-dimensional (n > 3) (PZS )n Riemannian manifold with the
property ∇mCm

jk� = 0 and ∇mWm
jk� = 0 is considered. In other words, we study

about a (PZS )n with harmonic conformal curvature tensor and harmonic quasi-
conformal curvature tensor [3]. It is well known that the divergence of the conformal
tensor satisfies the relation:

∇mCm
jk� =

n − 3
n − 2

[
∇mRm

jk� +
1

2(n − 1)
{(∇jR)gk� − (∇kR)gj�}

]
. (4.1)

So if we consider ∇mCjkl
m = 0, one immediately obtains

∇mRm
jk� = ∇kRj� −∇jRk� =

1
2(n − 1)

[(∇kR)gj� − (∇jR)gk�]. (4.2)

This equation does not match with the hypothesis of Theorem 2.2. So we cannot
conclude that Ak is a closed form in this way. From the contracted second Bianchi
identity and from the definition of the Z-tensor Zk� = Rk� + φgk� the following
equation can be written as

∇mRm
jk� = ∇kZj� −∇jZk� + [(∇jφ)gk� − (∇kφ)gj�]. (4.3)

On the other hand, from the definition of a (PZS )n manifold one easily finds that

∇kZj� −∇jZk� = AkZj� − AjZk�. (4.4)
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In this way considering Eqs. (4.2)–(4.4) one can see that the following relation holds
for a (PZS )n manifold with harmonic conformal curvature tensor:

AkZj� − AjZk� =
1

2(n − 1)
[∇k(R + 2(n − 1)φ)gj�

−∇j(R + 2(n − 1)φ)gk�]. (4.5)

This is the starting point for the proofs of the most important properties of a (PZS )n

manifold having harmonic conformal curvature tensor, that is, ∇mCm
jkl = 0.

We note that the condition ∇mCm
jkl = 0 implies that the manifold is a (NCS)n

one: so if the condition ∇k(R + 2(n − 1)φ) = 0 is satisfied, the Z-tensor becomes
a Codazzi tensor from (4.4) and (4.5). In order to avoid Zkl to be singular we
will suppose ∇k(R + 2(n − 1)φ) �= 0 when we consider Remark 2.5 in the case
∇mCm

jkl = 0. Moreover, we can state the following remark.

Remark 4.1. A nearly conformal symmetric (PZS )n Riemannian manifold with
R = hφ being h and φ constants can never exist.

Proof. In fact the condition R = hφ implies ∇k(R + 2(n − 1)φ) = 0. From this,
together with (4.5) it follows that

AkZj� = AjZk�

so the Z-tensor is of Codazzi type and by Remark 2.5 being ∇φ = 0 we achieve
Zj� = 0. This contradicts the definition of a (PZS )n manifold. This result general-
izes the previous one obtained in [4].

Now we can state the following fundamental result.

Theorem 4.1. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mCm

jk� = 0. If the tensor Zk� is non-singular, then Ak is a closed
1-form.

Proof. By performing the covariant derivative of Eq. (4.5) one easily obtains

(∇iAk)Zj� + Ak(∇iZj�) − (∇iAj)Zk� − Aj(∇iZk�)

=
1

2(n − 1)
[(∇i∇kρ)gj� − (∇i∇jρ)gk�] (4.6)

where ρ = R+2(n−1)φ denotes a scalar function. Now a cyclic permutation of the
indices i, j, k is performed and the resulting three equations are added to obtain

(∇iAk −∇kAi)Zj� + (∇jAi −∇iAj)Zk�

+ (∇kAj −∇jAk)Zi� + Aj(∇kZi� −∇iZk�)

+ Ak(∇iZj� −∇jZi�) + Ai(∇jZk� −∇kZj�) = 0. (4.7)
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Inserting Eq. (4.4) in the previous result one easily writes

(∇iAk −∇kAi)Zj� + (∇jAi −∇iAj)Zk� + (∇kAj −∇jAk)Zi� = 0. (4.8)

Now if the Z-tensor is non-singular, i.e. if det(Zk�) �= 0, then there exists a (2, 0)
tensor (Z−1)km with the property Zk�(Z−1)km = δm

� . Thus the previous equation
is multiplied by (Z−1)h� to obtain

(∇iAk −∇kAi)δh
j + (∇jAi −∇iAj)δh

k + (∇kAj −∇jAk)δh
i = 0. (4.9)

Now we put h = j and sum to obtain

(n − 2)(∇iAk −∇kAi) = 0. (4.10)

We can thus conclude that if n > 2, then Ak is a closed 1-form.

Now we consider the case of harmonic quasi-conformal curvature tensor. In 1968
Yano and Sawaki [29] defined and studied a tensor Wm

jk� on a Riemannian manifold
of dimension n, which includes both the conformal curvature tensor Cm

jk� and the
concircular curvature tensor C̃m

jk� as particular cases. This tensor is known as quasi-
conformal curvature tensor and its components are given by

Wm
jk� = −(n − 2)bCm

jk� + [a + (n − 2)b]C̃m
jk�. (4.11)

In the previous equation a �= 0, b �= 0 are constants and n > 3 since the con-
formal curvature tensor vanishes identically for n = 3. A non-flat manifold has
the harmonic quasi-conformal curvature tensor if ∇mWm

jk� = 0. If the equations
for ∇mCm

jk� = 0 and ∇mC̃m
jk� = 0 are employed and the covariant derivative with

respect to the index m is applied on the definition of quasi-conformal curvature
tensor, one obtains straightforwardly:

∇mWm
jk� = (a + b)∇mRm

jk�

+
2a − b(n − 1)(n − 4)

2n(n− 1)
[(∇jR)gk� − (∇kR)gj�]. (4.12)

Now if ∇mWm
jk� = 0, transvecting the previous equation with gk� after some calcu-

lations it follows that

(n − 2)
a + b(n − 2)

n
(∇jR) = 0. (4.13)

This means that ∇jR = 0 or a + b(n − 2) = 0. Inserting this last result in (4.12),
we recover easily Eq. (4.2). If ∇jR = 0, Remark 2.4 is invoked. Then it follows that
Ak is a closed 1-form. On the other hand, if Eq. (4.2) is valid, Theorem 4.1 is used.
Thus we can state the following theorem.

Theorem 4.2. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mWm

jk� = 0. If the tensor Zk� is non-singular, then Ak is a
closed 1-form.
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Now we follow the procedure explained in [10] to point out other properties of
a (PZS )n manifold. Transvecting Eq. (4.5) with gk� gives

AjZ − AmZjm =
1
2
∇j(R + 2(n − 1)φ). (4.14)

Inserting this result in (4.5), one can write the following relation:

AkZj� − AjZk� =
1

(n − 1)
[(AkZ − AmZkm)gj� − (AjZ − AmZjm)gk�]. (4.15)

Transvecting the previous equation with A�, one straightforwardly obtains

AkA�Zj� = AjA
�Zk�. (4.16)

Again we multiply the previous equation by Aj to obtain

AkAjA�Zj� = AjA
jA�Zk�. (4.17)

This last can be rewritten as

A�Zk� =
AkAjA�Zj�

AjAj
= tAk, (4.18)

where t = AjA�Zj�

AjAj is a scalar function. We have just proved the following theorem
that generalizes a similar result in [10] for an (APRS )n Riemannian manifold.

Theorem 4.3. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mCm

jk� = 0. Then the vector A� is an eigenvector of the Zk�

tensor with eigenvalue t.

Inserting (4.18) in Eq. (4.14), one easily obtains

Ak(t − Z) = −1
2
∇k(R + 2(n − 1)φ). (4.19)

This result is again a natural generalization of a similar equation given in [10] for
an (APRS )n Riemannian manifold.

Now transvecting Eq. (4.5) with Aj and using the result (4.18), one straightfor-
wardly shows that the following equation holds:

Rk� =
AkA�

AjAj

[
nt − Z

n − 1

]
+ gk�

[
Z − t

n − 1
− φ

]
. (4.20)

In such a case a Riemannian manifold is said to be quasi-Einstein (see [8]). This
result can be written in the more compact form:

Rk� = αgk� + βTkT�, (4.21)

where α = Z−t
n−1 − φ, β = nt−Z

n−1 are the associated scalars and Tk = Ak√
AjAj

is

naturally a unit covector. We have just proved the following theorem.

Theorem 4.4. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mCm

jk� = 0. Then M is quasi-Einstein.
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Now from Eqs. (4.18) and (2.4) one immediately writes

Akt =
2 − n

4
∇kφ. (4.22)

The operation of covariant derivation is applied on the previous result and the
following relation is obtained:

(∇jAk)t + Ak∇jt =
2 − n

4
∇j∇kφ. (4.23)

Now a similar equation with indices k and j exchanged is written and then sub-
tracted from (4.23) to obtain finally:

(∇jAk −∇kAj)t = Aj∇kt − Ak∇jt. (4.24)

We can thus state the following theorem.

Theorem 4.5. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mCm

jk� = 0. Then the relation (4.24) holds.

At this point it is worth to note the following geometric remark.

Remark 4.2. (1) If φ = 0, we recover the (PRS )n manifold. Thus from (4.22) it
follows that t = 0 and being Z = R, Eq. (4.20) takes the form:

Rk� = −AkA�

AjAj

[
R

n − 1

]
+ gk�

[
R

n − 1

]
. (4.25)

So the manifold is quasi-Einstein with opposite associated scalars.
(2) If φ = −R

n , then Z = 0. Thus we recover the (PPRS )n manifold. And from
Remark 2.2 we easily obtain that ∇kR = ∇kφ = 0. So again we have t = 0 and
thus finally Rk� = R

n gk�, that is, the manifold is Einstein.

According to Theorem 4.3, a (PZS )n Riemannian manifold with the property
∇mCm

jk� = 0 is quasi-Einstein, that is, the Ricci tensor satisfies Rk� = αgk� +βTkT�

(see [8]). If Zk� is non-singular, the covector Ak is closed and by Eq. (4.24) we have
Aj(∇kt) = Ak(∇jt). This is taken in conjunction with the equation Aj(∇kZ) =
Ak(∇jZ) coming in the same situation from Eq. (2.14). One easily obtains the
following relation:

Aj

(
∇k

nt − Z

n − 1

)
= Ak

(
∇j

nt − Z

n − 1

)
. (4.26)

Thus multiplying the previous result by 1√
AjAj

and considering Theorem 4.3 we

can state the following corollary.

Corollary 4.1. Let M be an n-dimensional (n > 3) (PZS )n Riemannian manifold
with the property ∇mCm

jk� = 0. Then the manifold M is quasi-Einstein. Moreover,
if the tensor Zk� is non-singular, the following holds

Tj(∇kβ) = Tk(∇jβ). (4.27)
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5. Conformally Flat Pseudo Z Symmetric Manifolds: Local Form
of the Metric Tensor

In this section we study in depth conformally flat (PZS )n manifold. In particular
we point out the existence of a proper concircular vector in such a manifold and
give the local form of the metric tensor. It is worth to notice that the proof in
the present paper is based only on the request of a non-singular Z-tensor. First we
recall the following theorem whose proof is different from that of [11].

Theorem 5.1. Let M be an n-dimensional (n > 3) manifold whose Ricci tensor
is given by Rk� = αgk� + βTkT� where Tk is a unit vector. If the manifold is con-
formally flat and the condition Tj(∇kβ) = Tk(∇jβ) is satisfied, then Tk is a proper
concircular vector.

Proof. If the manifold is conformally flat, then the following naturally holds:

∇kRj� −∇jRk� =
1

2(n − 1)
[(∇kR)gj� − (∇jR)gk�]. (5.1)

Equation (4.21) is then substituted in previous relation and the operations of covari-
ant differentiation are performed to give straightforwardly:

(∇kβ)TjT� + β(∇kTj)T� + βTj(∇kT�) − (∇jβ)TkT� − β(∇jTk)T� − βTk(∇jT�)

=
1

2(n − 1)
[(∇kR̃)gj� − (∇jR̃)gk�], (5.2)

where R̃ = R− 2(n− 1)α. Recalling that Tk is a unit vector and so (∇kT�)T � = 0,
Eq. (5.2) is then transvected with gj� to obtain

∇kβ − (∇�β)TkT� − β(∇�Tk)T� − βTk(∇�T�) =
1
2
∇kR̃. (5.3)

Transvecting again Eq. (5.2) with T jT � gives

∇kβ − (∇�β)TkT � − βT �(∇�Tk) =
1

2(n − 1)
∇kR̃ − 1

2(n − 1)
(∇�R̃)TkT �. (5.4)

Comparing the last two equations gives immediately:

βTk(∇�T�) =
2 − n

2(n − 1)
∇kR̃ − 1

2(n − 1)
(∇�R̃)TkT �. (5.5)

The last result is then transvected with T k so that the following holds:

β(∇�T�) = −1
2
(∇�R̃)T �. (5.6)

Now Eq. (5.6) is substituted in (5.5) to give

(∇�R̃)TkT � = ∇kR̃. (5.7)
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If the last result is substituted in (5.4), one can easily obtain

∇kβ − (∇�β)TkT � = βT �(∇�Tk). (5.8)

It is worth to notice that, by (5.7) one easily has (∇kR̃)Tj = (∇jR̃)Tk. Thus
transvecting Eq. (5.2) with T � gives immediately:

β[∇kTj −∇jTk] + Tj∇kβ − Tk∇jβ = 0. (5.9)

Following the hypothesis of the theorem, we immediately conclude that Tk is a
closed 1-form, that is,

∇kTj −∇jTk = 0. (5.10)

Now using Eqs. (5.10), (5.9) and (5.7) we can transvect again Eq. (5.2) with T j

recalling that (∇jT�)T j = (∇�Tj)T j = 0 being Tj closed to obtain the following
relation:

∇kT� =
T m(∇mR̃)
2β(n − 1)

[T�Tk − gk�]. (5.11)

So we conclude that Tk is a concircular vector.

Now we can state the following remarks.

Remark 5.1. From (∇mR̃)T mTk = ∇kR̃ we easily obtain by a covariant derivative
that the following is true:

∇j∇kR̃ = (∇jTk)(∇mR̃)T m + Tk∇j((∇mR̃)T m). (5.12)

A similar relation is written with indices k and j exchanged and the resulting
equations are then subtracted recalling that Tk is a closed 1-form to obtain finally:

∇j((∇mR̃)T m) = Tj(T k∇k(T m∇mR̃)). (5.13)

Remark 5.2. From ∇kβ − (∇�β)TkT � = βT �(∇�Tk) recalling that Tk is a closed
1-form, one easily writes

∇kβ = (∇�β)TkT �. (5.14)

Now if the scalar function f = T m(∇mR̃)
2β(n−1) is considered by the previous remarks, one

can write ∇jf = µTj where µ is another scalar function. Thus the 1-form ωk = fTk

is closed and Tk is a proper concircular vector.
Now taking account of Corollary 4.1 and Theorem 5.1 one can state the following

theorem.

Theorem 5.2. Let M be an n-dimensional (n > 3) conformally flat (PZS )n. If the
tensor Zk� is non-singular, then the manifold admits a proper concircular vector.
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In [1] it is well known that if a conformally flat space admits a proper concircular
vector, then this space is subprojective in the sense of Kagan. In this way the
following holds.

Theorem 5.3. Let M be an n-dimensional (n > 3) conformally flat (PZS )n. If
the tensor Zk� is non-singular, then the manifold is a subprojective space.

In [28] Yano proved that a necessary and sufficient condition for a Riemannian
manifold admits a concircular vector that there is a coordinate system in which the
first fundamental form may be written as

ds2 = (dx1)2 + eq(x1)g∗αβdxαdxβ , (5.15)

where g∗αβ = g∗αβ(xγ) are functions of xγ only (α, β, γ = 2, 3, . . . , n) and q is a
function x1 only. Since a conformally flat (PZS )n manifold with a non-singular Zk�

tensor admits a proper concircular vector field, this space is the warped product
1×eqM∗ where (M∗, g∗) is a (n−1)-dimensional Riemannian manifold. Gebarosky
in [18] proved that the warped product 1× eqM∗ satisfies the condition (5.1) if and
only if M∗ is Einstein. Thus the following theorem holds.

Theorem 5.4. Let M be an n-dimensional (n > 3) conformally flat (PZS )n. If the
tensor Zk� is non-singular, then the manifold M is the warped product 1 × eqM∗

where M∗ is Einstein.

6. Sufficient Conditions for a (PZS)n Riemannian Manifold
to be Ricci Pseudo Symmetric in the Sense of Deszcz

In this section we explore the connection between (PZS )n Riemannian manifolds
and the notion of pseudo Ricci symmetric manifolds in the sense of Deszcz. We
shall give sufficient conditions for a (PZS )n manifold to be Ricci pseudo symmetric
in the sense of Deszcz [14, 15]. The starting point is the definition of a (PZS )n

manifold, that is,

∇sZk� = 2AsZk� + AkZs� + A�Zsk. (6.1)

By performing a covariant derivative and employing (6.1) one obtains the following
results:

∇i∇sZk� = 2(∇iAs)Zk� + 2As(2AiZk� + AkZi� + A�Zik)

+ (∇iAk)Zs� + Ak(2AiZs� + AsZi� + A�Zis)

+ (∇iA�)Zsk + A�(2AiZsk + AsZik + AkZis). (6.2)

Exchanging the indices s and i in the previous equation and subtracting after a
long calculation one gets

(∇s∇i −∇i∇s)Zk� = 2(∇sAi −∇iAs)Zk� + Zi�(∇sAk − AkAs)

−Zs�(∇iAk − AkAi) + Zki(∇sA� − AsA�)

−Zsk(∇iA� − A�Ai). (6.3)
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Now if ∇sAk −AkAs = γgks being γ an arbitrary scalar function, we obtain the
following identities chain:

(∇s∇i −∇i∇s)Zk�

= γ(Zi�gsk − Zs�gik + Zkigs� − Zskgi�)

= γ[(Ri� + φgi�)gsk − (Rs� + φgs�)gik + (Rki + φgki)gs� − (Rsk + φgsk)gi�]

= γ[Ri�gsk + φgi�gsk − Rs�gik − φgs�gik + Rkigs� + φgkigs� − Rskgi� − φgskgi�]

= γ[Ri�gsk − Rs�gik + Rkigs� − Rskgi�]. (6.4)

Now we observe that (∇s∇i − ∇i∇s)Zk� = (∇s∇i − ∇i∇s)[Rk� + φgk�] =
(∇s∇i −∇i∇s)Rk� being φ a scalar function. So we have obtained the final result:

(∇s∇i −∇i∇s)Rk� = γ[Ri�gsk − Rs�gik + Rkigs� − Rskgi�]. (6.5)

In such a case we call the manifold pseudo Ricci symmetric in the sense of Deszcz
[14, 15]. We can state the following theorem.

Theorem 6.1. Let M be an n-dimensional (PZS )n manifold. If the associated form
is concircular and satisfies the condition ∇sAk − AkAs = γgks, then the manifold
is Ricci pseudo symmetric in the sense of Deszcz.

On the other hand, if we consider a pseudo Z symmetric manifold, that is, also
pseudo Ricci symmetric in the sense of Deszcz, we can achieve an interesting result.
Let us consider Eqs. (4.3) and (4.4), by which we can write easily:

∇mRm
jk� = AkZj� − AjZk� + [(∇jφ)gk� − (∇kφ)gj�]. (6.6)

Now the covariant derivative of the previous equation is performed and thus one
obtains

∇i∇mRm
jk� = (∇iAk)Zj� + Ak(∇iZj�) − (∇iAj)Zk� − Aj(∇iZk�)

+ [(∇i∇jφ)gk� − (∇i∇kφ)gj�]. (6.7)

By performing a cyclic permutation of indices i, j, k, adding the resulting three
equations and using the contracted Bianchi identity one writes

(∇i∇k −∇k∇i)Rj� + (∇j∇i −∇i∇j)Rk� + (∇k∇j −∇j∇k)Ri�

= (∇iAk −∇kAi)Zj� + (∇jAi −∇iAj)Zk� + (∇kAj −∇jAk)Zi�. (6.8)

If we consider that the manifold is also pseudo Ricci symmetric in the sense of
Deszcz, one can write

(∇i∇k −∇k∇i)Rj� = Ls[gj�Rk� − gjkRi� + gliRjk − glkRj�], (6.9)

where Ls is an arbitrary scalar function. Then it can be easily checked that the
sum of the three commutators vanishes so the previous equation takes the form:

(∇iAk −∇kAi)Zj� + (∇jAi −∇iAj)Zk� + (∇kAj −∇jAk)Zi� = 0. (6.10)
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Now using the same procedure as in Sec. 4 we can finally state the following theorem.

Theorem 6.2. Let M be an n-dimensional (PZS )n manifold. If the manifold is
also pseudo Ricci symmetric in the sense of Deszcz and the Z-tensor is non-singular,
then Ak is a closed 1-form.

7. (PZS)n Spacetime Manifolds

In this section we study general properties of pseudo Z symmetric spacetimes; we
will focus on the closeness of the 1-form Ak and will state some theorems concerning
the perfect fluid spacetime.

If a (PZS )4 spacetime is considered i.e. Zkl = kTkl, then the condition
∇�Zk� = 0 coming from the stress–energy tensor must be satisfied and so from
Eq. (2.3) it follows that 2AkZ + 6A�Zk� = 0, together with ∇k(R

2 + φ) = 0, and
from Eq. (2.2) it follows that ∇kZ = 2AkZ +2A�Zk�. Combining this fact we obtain
∇kZ = 4

3AkZ and A�Zk� = −Ak

3 Z. Then we can state the following theorem.

Theorem 7.1. For a (PZS )4 spacetime manifold the 1-form Ak is closed and it is
an eigenvector of the Z-tensor with eigenvalue −Z

3 .

On the other hand, from the condition ∇k(R
2 +φ) = 0 it follows that R

2 +φ = Λ,
where Λ is a cosmological constant and thus Einstein’s equation takes the form
Rk� − R

2 gk� +Λgk� = kTk�. An example of this situation is a perfect fluid spacetime
with non-null stress–energy tensor given by the following equation:

Tk� = (µ + p)uku� + pgk�, (7.1)

where µ is the energy density, p is the isotropic pressure and ui the fluid flow velocity
with the condition uiu

i = −1. In addition p and µ are related by an equation of state
governing the particular sort of perfect fluid under consideration. In general this is
an equation of the form p = p(µ, T ) where T is the absolute temperature. However,
we shall only be concerned with situations in which T is effectively constant so that
the equation of state reduces to p = p(µ).

If the condition A�Zk� = −Ak

3 Z is applied on Einstein’s equation Zk� = kTk�

one can obtain the following relation:

Tk� = (µ + p)uku� + pgk�, (7.2)(
kµ − Z

3

)
Akuk = 0. (7.3)

If the relation Akuk �=0 is fulfilled, then we have kµ = Z
3 . Now Zk� = kTk� gives

rise to Z = kT and so by contracting (7.1) and using n = 4, we have T = 3p − µ

and Z = k(3p − µ). It follows immediately that kp = 4
9Z and that µ = 3

4p: this
is the equation of state of such a spacetime. Inserting kµ = Z

3 in Eq. (7.2) one
easily obtain k(µ + p)ukA�u� = −k(µ + p)Ak and thus Ak = −ukA�u�. Now from
R
2 + φ = Λ and Z = R + 4φ it follows that Z = 4Λ−R. Inserting these relations in
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Einstein’s equation it follows that

Rk� =
7
9
(4Λ − R)uku� +

1
9

(
7Λ +

R

2

)
gkl. (7.4)

So we have obtained a quasi-Einstein manifold and so the following theorem is true.

Theorem 7.2. A (PZS )4 perfect fluid spacetime manifold is quasi-Einstein and
the 1-form Ak is proportional to the fluid flow velocity.

This theorem is a generalization of the result due to Ray-Guha [23] which says
that a perfect fluid pseudo Ricci symmetric spacetime is a quasi-Einstein manifold
with each of its associated scalars equal to R

3 .
If a (PZS )n spacetime with further condition ∇kZj� = 0 (a spacetime with

the conservation of the stress–energy density) is considered, we get ∇kZ = 0 and
from the previous results we may write 2AkZ + 6A�Zk� = 0 and 2AkZ + 2A�

Zk� = 0. From this it follows that A�Zk� = 0 and Z = gk�Zk� = 0. So we obtain R =
−nφ and from ∇k(R

2 + φ) = 0 we know that ∇kR = 0 = ∇kφ and Λ = Rn−2
2n . We

note that in this case a non-null cosmological constant is necessary. Thus Einstein’s
equations take the form Rk� − R

2 gk� + Λgk� = kTk�, that is, Rk� − R
n gk� = kTk�.

In four dimension this implies Rk� − R
4 gk� = kTk�. The vacuum solution is still

Rk� − R
4 gk� = 0. On the other hand, the 1-form Ak becomes an eigenvector of

the stress–energy tensor with null eigenvalue. In other words, the 1-form Ak is
an eigenvector of the Ricci tensor with eigenvalue R

n . Moreover, by the result of
∇kR = 0 = ∇kφ our space becomes also Ricci symmetric. The vacuum solution is
thus an Einstein space.

If the conservation of the stress–energy tensor k∇kTj� = ∇kZj� = 0 is taken
under consideration for the perfect fluid spacetime we get the previous results like
A�Zk� = 0 and Z = 0. The condition Z = 0 implies T = 0 and consequently
µ = 3p: this is known as radioactive perfect fluid spacetime (see [17]). In fact µ = 3p

is the equation of state for radiation and the corresponding spacetime is isotropic
and homogeneous. The stress–energy tensor becomes Tk� = 4puku� + pgk�. The
condition A�Zk� = 0 implies that A�Tk� = 0 and thus, if p �= 0, then we have

Ak = −4ukA
�u�. (7.5)

The previous result is thus transvected by uk to obtain easily Akuk = 0 and finally
Ak = 0. Thus we obtain ∇kRj� = 0 and we state the following theorem.

Theorem 7.3. A (PZS )4 perfect fluid spacetime manifold with stress–energy con-
servation is a radioactive perfect fluid isotropic and homogeneous spacetime and it
is Ricci symmetric.
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