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PSEUDOBOUNDED OR ω-PSEUDOBOUNDED
PARATOPOLOGICAL GROUPS

Fucai Lin and Shou Lin

Abstract

We say that a paratopological group G is pseudobounded (ω-pseudobounded),
if for every neighborhood V of the identity element e of G, there exists a natu-
ral number n such that G = V n (G =

⋃∞
n=1 V n). In this paper, we mainly dis-

cuss the pseudobounded and ω-pseudobounded paratopological groups. First,
we give an example to show that a theorem in [4] is not true. And then, we
define the concept of premeager, and discuss when a pseudobounded paratopo-
logical group is a topological group. Moreover, we also discuss some properties
of ω-pseudobounded topological groups, and show that the class of connected
topological groups is contained in the class of ω-pseudobounded topological
groups. Finally, some open problems concerning the paratopological groups
are posed.

1 Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such
that the product maps of G×G into G is jointly continuous and the inverse map of
G onto itself associating x−1 with arbitrary x ∈ G is continuous. A paratopological
group G is a group G with a topology such that the product maps of G×G into G
is jointly continuous.

It is well known that paratopological groups is a good generalization of topolog-
ical groups. The topic of paratopological groups is quite popular nowadays and one
can see a lot of activities going on in what concerns of the study of these objects,
see [1, 3, 7, 10, 11].

Recently, K.H. Azar defined the bounded topological groups [4]. However, in
this paper, we call it pseudobounded instead of bounded since the boundedness has
other meaning in topological algebra. In this paper, we define the pseudobounded
and ω-pseudobounded paratopological groups.

2010 Mathematics Subject Classifications. 54A05; 54B05; 54C05; 54H11.
Key words and Phrases. Pseudobounded; ω-pseudobounded; paratopological groups; topolog-

ical groups; quasi-metric; premeager spaces; Polish spaces.
Received: December 11, 2010; Revised: March 16, 2011
Communicated by Ljubǐsa D.R. Kočinac
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Definition 1. [4] Let G be a paratopological group and A ⊂ G. We say that A is
a pseudobounded subset of G, if for every neighborhood V of the identity element e
of G, there exists a natural number n such that A ⊂ V n. If G is a pseudobounded
subset, then we say that G is pseudobounded.

It is well known that the Sorgenfrey line [5, Example 1. 2. 2] is a first-countable
and non-pseudobounded paratopological group, where as a set the Sorgenfrey line
is the set of real numbers and its topology is generated by taking as a basis the half
open intervals [a, b), a < b.

Moreover, there exists a pseudobounded paratopological group G such that G
is not a topological group, see Example 2.

Definition 2. A quasi-metric d on a set X is a function from X ×X into the set
R+ of positive real numbers such that for any x, y, z ∈ X the following conditions
are satisfied:

1. d(x, y) = 0 ⇔ x = y;

2. d(x, y) ≤ d(x, z) + d(z, y).

If d also satisfies the additional condition (3) d(x, y) = d(y, x), then d is called a
metric on X.

In this paper, we mainly discuss the pseudobounded and ω-pseudobounded
paratopological groups. In Section 2, we give an example to show that a theorem
in [4] is not true. Moreover, we also discuss when a pseudobounded paratopologi-
cal group G has a quasi-metric such that G is pseudobounded with respect to the
quasi-metric. In Section 3, we define the concept of premeager, and discuss when a
pseudobounded paratopological group is a topological group. In Section 4, we define
the concept of ω-pseudobounded and discuss some properties of ω-pseudobounded
topological groups, and show that the class of connected topological groups is con-
tained in the class of ω-pseudobounded topological groups. Finally, some open
problems concerning the paratopological groups are posed.

All spaces are Hausdorff unless stated otherwise, and all maps are onto. N
denotes the set of all positive natural numbers. The letter e denotes the neutral
element of a group. Readers may refer to [2, 5, 6] for notations and terminology
not explicitly given here.

2 Pseudobounded topological groups and paratopo-
logical groups

In [4], K. H. Azar proved the following theorem:

Theorem 1. [4] Let G be a topological group metrizable with respect to a left in-
variant metric d. Then G is pseudobounded with respect to the topology if and only
if G is bounded with respect to the metric d.
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However, the proof of Theorem 1 has a gap. Indeed, the result of this theorem
is not true, see the following counterexample.

Example 1. Let R be the real line endowed with the Euclidean topology F . Then
R has an Euclidean metric ρ on R by the equation ρ(x, y) = |x − y| for any two
points x, y ∈ R. Put d(x, y) = min{ρ(x, y), 1} for any two points x, y ∈ R. Then
d(x, y) is a standard bounded metric that induces the same topology as ρ. It is
well known that (R,F , +) is an Abelian topological group with respect to the usual
addition. Also, d is an invariant metric. In fact, for any two points x, y ∈ R, it is
easy to see that d(z + x, z + y) = d(x, y) for any z ∈ R. However, the space R is
not pseudobounded. Indeed, let Bd(0, 1

2 ) = {x ∈ R : d(0, x) < 1
2}. Then it is easy

to see that nBd(0, 1
2 ) = (−n

2 , n
2 ) 6= R for each n ∈ N.

However, we have the following theorem.

Theorem 2. Let G be a paratopological group with a continuous and left invariant
quasi-metric d. If G is pseudobounded, then G is bounded with respect to the quasi-
metric d.

Proof. Fix an A > 0. Since d : G×G → R+ is continuous, there exist open neigh-
borhoods U and V of e such that d(U×V ) ⊂ [0, A). Because G is a paratopological
group, there is an open neighborhood W of e such that W ⊂ U ∩ V . Since G is
pseudobounded, we can find an n ∈ N such that Wn = G. Therefore, we have
d(W × W ) ⊂ [0, A). Next, we shall show that d(G × G) ⊂ [0, (2n − 1)A). Since
d(G×G) = d(Wn×Wn), it is equivalent to show that d(Wn×Wn) ⊂ [0, (2n−1)A).

First, we show that d(W 2×W 2) ⊂ [0, 3A). For each (x, y) ∈ W 2×W 2, we have
x = x1x2 and y = y1y2, where x1, x2, y1, y2 ∈ W . Then

d(x, y) = d(x1x2, y1y2)
≤ d(x1x2, x1) + d(x1, y1y2)
= d(x2, e) + d(x1, y1y2)
≤ d(x2, e) + d(x1, y1) + d(y1, y1y2)
= d(x2, e) + d(x1, y1) + d(e, y2)
< A + A + A

= 3A.

Suppose that d(W k × W k) ⊂ [0, (2k − 1)A), where 2 ≤ k < n. We show that
d(W k+1×W k+1) ⊂ [0, (2k+1)A). In fact, for each (u, v) ∈ W k+1×W k+1, we have
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u = u1u2 and v = v1v2, where u1, v1 ∈ W k and u2, v2 ∈ W . Then

d(u, v) = d(u1u2, v1v2)
≤ d(u1u2, u1) + d(u1, v1v2)
= d(u2, e) + d(u1, v1v2)
≤ d(u2, e) + d(u1, v1) + d(v1, v1v2)
= d(u2, e) + d(u1, v1) + d(e, v2)
< A + (2k − 1)A + A

= (2k + 1)A.

Therefore, we have d(Wn×Wn) ⊂ [0, (2n− 1)A), and it follows that d is bounded.

Let G be a paratopological group, and H be a closed subgroup. Denote by G/H
the set of all left cosets aH of H in G, and endow it with the quotient topology
with respect to the canonical mapping π : G → G/H defined by π(a) = aH, for
every a ∈ G.

Theorem 3. Let G be a paratopological group and let H be a normal subgroup of
G. If H and G/H are pseudobounded, then G is pseudobounded.

Proof. Let U be a neighborhood of e. Obviously, the set V = U ∩ H is an open
neighborhood of e in H. Since G/H and H are pseudobounded, there exist m,n ∈ N
such that V n = H and (U/H)m = G/H. We claim that Um+n = G. In fact, let
x ∈ G.

Case 1: x ∈ H.
Obviously, we have x ∈ H = V n ⊂ Un ⊂ Um+n.
Case 2: x 6∈ H.
Then we have xH ∈ G/H = (U/H)m, and therefore, there exist points x1, · · · , xm ∈

U such that xH = x1 · · ·xmH. Hence, there exists an h ∈ H such that xh ∈ Um.
It follows that x ∈ UmH = UmV n ⊂ UmUn = Um+n.

Therefore, we have Um+n = G, that is, G is pseudobounded.

The following proposition is easy, and we omit it.

Proposition 1. Let each Gα be a pseudobounded paratopological group, where α ∈
I. Then the product topology

∏
α∈I Gα is also a pseudobounded paratopological

group.

Example 2. There exists a normal pseudobounded paratopological group G such
that G is not a topological group.

Proof. Let X = {(x, 1) : 0 ≤ x < 1}, and let the topology on X be generated by
the base consisting of sets of the form

{(x, 1) ∈ X : x0 < x < x0 +
1
k
} ∪ {(x0, 1)},
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where 0 ≤ x0 < 1 and k ∈ N.
Then the space X is the arrow space which is homeomorphic to the Sorgenfrey

line. Moreover, there exists a natural structure of an Abelian group on X such
that the multiplication (u, v) 7→ u · v is continuous, that is, the space X admits a
structure of a paratopological group. For example, if u = (x, 1) and v = (y, 1) are
two points in X, then u · v = (x + y, 1) if x + y < 1, and u · v = (x + y − 1, 1) if
x + y ≥ 1. Obviously, X is pseudobounded. However, the Sorgenfrey line is not a
topological group, and hence X is not a topological group.

Note 1. It follows from Example 2 that the pseudoboundedness is not a topological
invariant.

3 Premeager paratopological groups

Definition 3. Let G be a paratopological group. G is called premeager if, for any
its nowhere dense subset A of G, we have An 6= G for each n ∈ N.

A Lusin space is an uncountable space such that every its nowhere dense set
is countable. A Polish space is a separable completely metrizable space. A Polish
group is a topological group G regarded as a topological space which is itself a Polish
space.

It is well known that a Polish space is a Lusin space. Therefore, we have the
following proposition.

Proposition 2. A paratopological Lusin group has the premeager property. In
particular, a Polish group has the premeager property.

The proof of the following Proposition 3 is due to M. Sakai.

Proposition 3. The Sorgenfrey line X (X = R) does not have the premeager
property. In particular, the Euclidean line does not have the premeager property.

Proof. Let C be the usual Cantor set in [0,1]. It is well known that C is nowhere
dense in X. By [9, p.37, Lemma 1], we have C + C = [0, 2], where ‘+’ is the usual
additive. Let A =

⋃
n∈Z(2n + C), where Z is the integer. Then A is nowhere dense

in X, but A + A = X since C + C = [0, 2].

A map f : X → Y is called quasi-open if we have int(f(U)) 6= ∅ for each
non-empty open subset U of X.

First, we discuss some properties of the premeager.

Proposition 4. Let f : G → H be a continuous quasi-open homomorphism map,
where G, H are paratopological groups. If G is premeager, then H is also premeager.

Proof. Let A be any nowhere dense subset of H. Suppose that there exists some
n ∈ N such that An = H. Therefore, (f−1(A))n = f−1(An) = f−1(H) = G. Since
G is premeager, the set f−1(A) is a non-nowhere dense subset of X. Hence there is
a non-empty open subset U of X such that U ⊂ f−1(A). It follows from f−1(A) ⊂
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f−1(A) that f(U) ⊂ A. Since f is quasi-open, we have ∅ 6= int(f(U)) ⊂ f(U) ⊂ A,
which is a contradiction.

Since open maps are quasi-open maps, we have the following corollary.

Corollary 1. Let f : G → H be an open and continuous homomorphism map,
where G,H are paratopological groups. If G is premeager, then H is also premeager.

Proposition 5. Let G be a pseudobounded and premeager paratopological group.
Then every open subgroup of G is premeager.

Proof. Let H be an open subgroup of G. Suppose that H is non-premeager. Then
there exists a nowhere dense subset A of H and an n ∈ N such that An = H. Since
G is pseudobounded, it follows that there is an m ∈ N such that Hm = G. Hence
(An)m = Hm = G = Anm. However, the set A is a nowhere dense subset of G,
which is a contradiction.

Next, we mainly discuss when a paratopological group is a topological group.

Lemma 1. [1] Assume that G is a paratopological group and not a topological
group. Then there is an open neighborhood U of the neutral element e of G such
that U ∩ U−1 is nowhere dense in G.

Theorem 4. Suppose that G is a pseudobounded topological group, H is a premea-
ger paratopological group, and that f : G → H is a continuous onto homomorphism.
Then H is a topological group.

Proof. Assume that H is not a topological group. By Lemma 1, there is an open
neighborhood U of the neutral element e of H such that U ∩U−1 is nowhere dense.
Let W be a symmetric neighborhood of the identity in G such that f(W ) ⊂ U .
Since f(W ) = f(W−1) = f−1(W ) ⊂ U−1. Hence we have f(W ) ⊂ U ∩ U−1. Since
G is pseudobounded, there exists an n ∈ N such that Wn = G, and it follows that
f(Wn) = f(G) = [f(W )]n = H ⊂ (U ∩ U−1)n. Thus H = (U ∩ U−1)n, and H
does not have the premeager property, which is a contradiction. Therefore, H is a
topological group.

For a paratopological group G with a topology τ , one defines the conjugate
topology τ−1 on G by τ−1 = {U−1 : U ∈ τ}. The upper bound τ∗ = τ ∨ τ−1 is a
group topology on G. Then we call G∗ = (G, τ∗) the group associated to G.

Definition 4. [11] Let P be a topological property. A paratopological group G is
called totally P if the associated topological group G∗ has property P.

Obvious, if a paratopological group is totally pseudobounded then G is pseu-
dobounded.

Theorem 5. Let G be a totally pseudobounded paratopological group. If G has the
premeager property, then G is a topological group.
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Proof. Suppose that G is not a topological group. It follows from Lemma 1 that
there is an open neighborhood U of the neutral element e of G such that U ∩U−1 is
nowhere dense in G. Since G is totally pseudobounded and U ∩U−1 in open in the
associated topological group G∗, there exists an n ∈ N such that (U ∩ U−1)n = G.
Therefore, G does not have the premeager property, which is a contradiction.

Corollary 2. If G is a totally pseudobounded paratopological Lusin group, then G
is a topological group.

Proof. It is easy to see from Proposition 2 and Theorem 5.

4 ω-pseudobounded topological groups and paratopo-
logical groups

Let G be a locally compact topological group. Then G is connected if and only if,
for every neighborhood V of the identity element e of G, we have G =

⋃
n∈N V n,

see [8, Corollary 7.9]. Therefore, we have the following definition.

Definition 5. Let G be a paratopological group and A ⊂ G. We say that A is an
ω-pseudobounded subset of G, if for every neighborhood V of the identity element
e of G, we have A ⊂ ⋃

n∈N V n. If G is an ω-pseudobounded subset of G then we
say that G is ω-pseudobounded.

Obviously, a pseudobounded paratopological group is ω-pseudobounded. How-
ever, there exists an ω-pseudobounded topological group which is not pseudobounded,
see Example 3.

The proof of the next proposition is an easy exercise.

Proposition 6. Let G be a paratopological group. Then we have the following four
assertions.

1. If A ⊂ G is pseudobounded (resp. ω-pseudobounded), then A is a pseu-
dobounded (resp. ω-pseudobounded) subset of G;

2. If G is ω-pseudobounded, then G has no proper open subgroups;

3. If G is locally compact and pseudobounded (resp. ω-pseudobounded), then G
is compact (resp. σ-compact);

4. If A,B are pseudobounded (resp. ω-pseudobounded) subsets in G, then AB
and A−1 are also pseudobounded (resp. ω-pseudobounded) subsets in G.

Example 3. There exists an ω-pseudobounded and non-pseudobounded topological
group.

Proof. Let (R,+) be the real line endowed with the Euclidean topology, where
‘+’ is the additive operation. Obviously, the R with the additive operation is ω-
pseudobounded. However, the R with the additive operation is not pseudobounded.
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In Example 3, the Euclidean topology R is connected. So a question arises
as follow: Is every connected topological group ω-pseudobounded? The answer is
affirmative. Indeed, we have the following proposition.

Proposition 7. If G is a connected topological group, then G is ω-pseudobounded.

Proof. For any open neighborhood U of the neutral element e of G, there exists
an open symmetric neighborhood V of e in G such that V ⊂ U. Clearly, the set
W =

⋃∞
n=1 V n is an open subgroup of G. Since every open subgroup of a topological

group is closed, the set W is closed in G. It follows from the connectedness of G
that G = W . Since V ⊂ U , we have G =

⋃∞
n=1 Un, that is, the space G is

ω-pseudobounded.

Example 4. There exists a T1, connected and non-ω-pseudobounded paratopolog-
ical group.

Proof. Let G = (R, +) be the group of real numbers with the usual addition, and let
τ = {{x} ∪ [y, +∞) : x, y ∈ R} ∪ {∅, X} be the topology of G. Then the operation
‘+’ is jointly continuous, hence (G, +) is a T1 paratopolgical group. Moreover, it is
easy to see that G is connected and non-ω-pseudobounded.

Remark 1. It follows from Example 4 that one cannot generalize Proposition 7
to T1 paratopological groups. However, we don’t know if there exists a Hausdorff
connected and non-ω-pseudobounded paratopological group, see Question 10.

Proposition 8. [8, Corollary 7.9] Let G be a locally compact topological group.
Then the following conditions are equivalent:

1. G is connected;

2. G has no proper open subgroups;

3. G is ω-pseudobounded.

Since an 0-dimensional space is non-connected, we have the following corollary
by to Proposition 8.

Corollary 3. If G is a locally compact O-dimensional topological group, then G is
non-ω-pseudobounded.

We cannot omit the condition “locally compact” in Proposition 8, see Example 5.

Example 5. There exists an ω-pseudobounded, nowhere locally compact and non-
connected topological group.

Proof. Let Q be the set of rational numbers with the topology inherited from R.
Then (Q, +) is a topological group with the additive operation. It is easy to see
that Q is ω-pseudobounded and non-connected.
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Remark 2. In [4], K.H. Azar proved that every pseudobounded topological group
is connected, see [4, Theorem 2.6]. But, the proof has a gap. It is still an open
problem if every pseudobounded topological group is connected, see Question 9.

The following proposition generalizes a result in [2], see Corollary 4.

Proposition 9. Suppose that H is a discrete invariant subgroup of an ω-pseudobounded
topological group G. Then each element of H commutes with each element of G,
that is, H is contained in the center of the group G.

Proof. If H = {e}, there is nothing to prove. Assume that H is a non-trivial
subgroup of G. Choose an arbitrary point x ∈ H \ {e}. Since H is discrete, there
exists an open neighborhood U of x in G such that U ∩H = {x}. It follows from the
continuity of the multiplication in G that there is an open symmetric neighborhood
V of e in G such that V xV ⊂ U .

Claim: For each y ∈ V , we have xy = yx.
Indeed, for each y ∈ V , since H is an invariant subgroup, we have yxy−1 ∈ H.

Moreover, we have yxy−1 ∈ V xV −1 = V xV ⊂ U . Thus yxy−1 ∈ H ∩ U = {x},
that is, yxy−1 = x.

Since G is ω-pseudobounded, we have G =
⋃n=∞

n=1 V n. For each g ∈ G, there
exists an n ∈ N such that g ∈ V n, that is, the element g can be written in the form
g = y1 · · · yn, where y1, · · · , yn ∈ V . Since x commutes with each element of V by
Claim, we have

gx = y1 · · · ynx = y1 · · ·xyn = · · · = y1x · · · yn = xy1 · · · yn = xg.

Therefore, the element x ∈ H is in the center of the group G. Because x is an
arbitrary element in H, we conclude that the center of G contains H.

It follows from Propositions 7 and 9 that we have following corollary.

Corollary 4. Suppose that H is a discrete invariant subgroup of a connected topo-
logical group G. Then each element of H commutes with each element of G, that
is, H is contained in the center of the group G.

Theorem 6. Let G be a paratopological group and let H be a normal subgroup of
G. If H and G/H are ω-pseudobounded, then G is ω-pseudobounded.

Proof. Let U be a neighborhood of e in G. Obviously, the set V = U ∩ H is an
open neighborhood of e in H. Since G/H and H are ω-pseudobounded, we have⋃∞

n=1 V n = H and
⋃∞

n=1(U/H)n = G/H. We claim that
⋃∞

n=1 Un = G. In fact,
let x ∈ G.

Case 1: x ∈ H.
Since x ∈ H, there exists an n ∈ N such that x ∈ V n. Therefore, we have

x ∈ H ∩ V n ⊂ Un ⊂ ⋃∞
n=1 Un.

Case 2: x 6∈ H.
Then we have xH ∈ G/H, and hence there exists an m ∈ N such that xH ∈

(U/H)m. Therefore, there exist points x1, · · · , xm ∈ U such that xH = x1 · · ·xmH.
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Hence, there exist an h ∈ H and a l ∈ N such that xh ∈ Um and h ∈ V l. It follows
that x ∈ UmH = UmV l ⊂ UmU l = Um+l ⊂ ⋃∞

n=1 Un.
Therefore, we have

⋃∞
n=1 Un = G, that is, G is ω-pseudobounded.

5 Open problems

The Sorgenfrey line is a paratopological group which is first-countable, non-pseudobounded
and does not have the premeager property. However, the Sorgenfrey line is not a
topological group. Therefore, we have the following three questions.

Question 1. If G is a pseudobounded and premeager paratopological group, is G a
topological group?

Question 2. Is every first-countable and pseudobounded paratopological group a
topological group?

Question 3. Is every first-countable paratopological group with the premeager prop-
erty a topological group?

It follows from Corollary 2 that it is natural to pose the following question.

Question 4. If G is a pseudobounded paratopological Lusin group, is G a topological
group?

Since a first-countable topological group is metrizable, we have the following
question.

Question 5. Is every first-countable and pseudobounded paratopological group metriz-
able?

Note 2. If the answer to Question 2 is positive, then the answer to Question 5 is
also positive.

In [10], O.V. Ravsky proved that every paratopological group has a left invariant
quasi-metric if and only if it is first-countable. So we have the following question:

Question 6. Is every first-countable and pseudobounded paratopological group bounded
with respect to a left invariant quasi-metric?

In [10], O.V. Ravsky posed the following question:

Question 7. Does every first-countable paratopological group have a continuous
and left invariant quasi-metric?

Note 3. It follows from Theorem 2 that if the answer to Question 7 is positive then
the answer to Question 6 is also positive.

It follows from Theorem 5 that we have the following question.

Question 8. If G is a totally ω-pseudobounded paratopological group with the pre-
meager property, is G a topological group?
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Question 9. Is every pseudobounded topological group connected?

Question 10. Is every Hausdorff (regular) connected paratopological group ω-pseudobounded?
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[2] A.V. Arhangel’shǐı, M. Tkachenko, Topological Groups and Related Structures,
Atlantis Press and World Sci., 2008.

[3] C. Alegre, S. Romaguera, On paratopological vector spaces, Acta Math. Hun-
garica 101 (2003), 237–261.

[4] K.H. Azar, Bounded topological groups, arXiv: 1003.2876.

[5] R. Engelking, General Topology (revised and completed edition), Heldermann
Verlag, Berlin, 1989.

[6] G. Gruenhage, Generalized metric spaces, In: K. Kunen, J.E. Vaughan, eds.,
Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423–501.
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