Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Filomat **25:3** (2011), 93–103 DOI: 10.2298/FIL1103093L

PSEUDOBOUNDED OR ω-PSEUDOBOUNDED PARATOPOLOGICAL GROUPS

Fucai Lin and Shou Lin

Abstract

We say that a paratopological group G is *pseudobounded* (ω -*pseudobounded*), if for every neighborhood V of the identity element e of G, there exists a natural number n such that $G = V^n$ ($G = \bigcup_{n=1}^{\infty} V^n$). In this paper, we mainly discuss the pseudobounded and ω -pseudobounded paratopological groups. First, we give an example to show that a theorem in [4] is not true. And then, we define the concept of premeager, and discuss when a pseudobounded paratopological group is a topological group. Moreover, we also discuss some properties of ω -pseudobounded topological groups, and show that the class of connected topological groups is contained in the class of ω -pseudobounded topological groups. Finally, some open problems concerning the paratopological groups are posed.

1 Introduction

Recall that a topological group G is a group G with a (Hausdorff) topology such that the product maps of $G \times G$ into G is jointly continuous and the inverse map of G onto itself associating x^{-1} with arbitrary $x \in G$ is continuous. A paratopological group G is a group G with a topology such that the product maps of $G \times G$ into G is jointly continuous.

It is well known that paratopological groups is a good generalization of topological groups. The topic of paratopological groups is quite popular nowadays and one can see a lot of activities going on in what concerns of the study of these objects, see [1, 3, 7, 10, 11].

Recently, K.H. Azar defined the bounded topological groups [4]. However, in this paper, we call it pseudobounded instead of bounded since the boundedness has other meaning in topological algebra. In this paper, we define the pseudobounded and ω -pseudobounded paratopological groups.

²⁰¹⁰ Mathematics Subject Classifications. 54A05; 54B05; 54C05; 54H11.

Key words and Phrases. Pseudobounded; ω -pseudobounded; paratopological groups; topological groups; quasi-metric; premeager spaces; Polish spaces.

Received: December 11, 2010; Revised: March 16, 2011

Communicated by Ljubiša D.R. Kočinac

Supported by the NSFC (No. 10971185) and the Educational Department of Fujian Province (No. JA09166) of China.

Definition 1. [4] Let G be a paratopological group and $A \subset G$. We say that A is a *pseudobounded subset* of G, if for every neighborhood V of the identity element e of G, there exists a natural number n such that $A \subset V^n$. If G is a pseudobounded subset, then we say that G is *pseudobounded*.

It is well known that the Sorgenfrey line [5, Example 1. 2. 2] is a first-countable and non-pseudobounded paratopological group, where as a set the Sorgenfrey line is the set of real numbers and its topology is generated by taking as a basis the half open intervals [a, b), a < b.

Moreover, there exists a pseudobounded paratopological group G such that G is not a topological group, see Example 2.

Definition 2. A quasi-metric d on a set X is a function from $X \times X$ into the set R^+ of positive real numbers such that for any $x, y, z \in X$ the following conditions are satisfied:

1.
$$d(x, y) = 0 \Leftrightarrow x = y;$$

2. $d(x, y) \le d(x, z) + d(z, y).$

If d also satisfies the additional condition (3) d(x,y) = d(y,x), then d is called a *metric* on X.

In this paper, we mainly discuss the pseudobounded and ω -pseudobounded paratopological groups. In Section 2, we give an example to show that a theorem in [4] is not true. Moreover, we also discuss when a pseudobounded paratopological group G has a quasi-metric such that G is pseudobounded with respect to the quasi-metric. In Section 3, we define the concept of premeager, and discuss when a pseudobounded paratopological group is a topological group. In Section 4, we define the concept of ω -pseudobounded and discuss some properties of ω -pseudobounded topological groups, and show that the class of connected topological groups is contained in the class of ω -pseudobounded topological groups. Finally, some open problems concerning the paratopological groups are posed.

All spaces are Hausdorff unless stated otherwise, and all maps are onto. \mathbb{N} denotes the set of all positive natural numbers. The letter *e* denotes the neutral element of a group. Readers may refer to [2, 5, 6] for notations and terminology not explicitly given here.

2 Pseudobounded topological groups and paratopological groups

In [4], K. H. Azar proved the following theorem:

Theorem 1. [4] Let G be a topological group metrizable with respect to a left invariant metric d. Then G is pseudobounded with respect to the topology if and only if G is bounded with respect to the metric d.

Pseudobounded or ω -pseudobounded paratopological groups

However, the proof of Theorem 1 has a gap. Indeed, the result of this theorem is not true, see the following counterexample.

Example 1. Let \mathbb{R} be the real line endowed with the Euclidean topology \mathcal{F} . Then \mathbb{R} has an Euclidean metric ρ on \mathbb{R} by the equation $\rho(x, y) = |x - y|$ for any two points $x, y \in \mathbb{R}$. Put $d(x, y) = \min\{\rho(x, y), 1\}$ for any two points $x, y \in \mathbb{R}$. Then d(x, y) is a standard bounded metric that induces the same topology as ρ . It is well known that $(\mathbb{R}, \mathcal{F}, +)$ is an Abelian topological group with respect to the usual addition. Also, d is an invariant metric. In fact, for any two points $x, y \in \mathbb{R}$, it is easy to see that d(z + x, z + y) = d(x, y) for any $z \in \mathbb{R}$. However, the space \mathbb{R} is not pseudobounded. Indeed, let $B_d(0, \frac{1}{2}) = \{x \in \mathbb{R} : d(0, x) < \frac{1}{2}\}$. Then it is easy to see that $nB_d(0, \frac{1}{2}) = (-\frac{n}{2}, \frac{n}{2}) \neq \mathbb{R}$ for each $n \in \mathbb{N}$.

However, we have the following theorem.

Theorem 2. Let G be a paratopological group with a continuous and left invariant quasi-metric d. If G is pseudobounded, then G is bounded with respect to the quasi-metric d.

Proof. Fix an A > 0. Since $d: G \times G \to R^+$ is continuous, there exist open neighborhoods U and V of e such that $d(U \times V) \subset [0, A)$. Because G is a paratopological group, there is an open neighborhood W of e such that $W \subset U \cap V$. Since G is pseudobounded, we can find an $n \in \mathbb{N}$ such that $W^n = G$. Therefore, we have $d(W \times W) \subset [0, A)$. Next, we shall show that $d(G \times G) \subset [0, (2n - 1)A)$. Since $d(G \times G) = d(W^n \times W^n)$, it is equivalent to show that $d(W^n \times W^n) \subset [0, (2n - 1)A)$.

First, we show that $d(W^2 \times W^2) \subset [0, 3A)$. For each $(x, y) \in W^2 \times W^2$, we have $x = x_1 x_2$ and $y = y_1 y_2$, where $x_1, x_2, y_1, y_2 \in W$. Then

$$d(x,y) = d(x_1x_2, y_1y_2)$$

$$\leq d(x_1x_2, x_1) + d(x_1, y_1y_2)$$

$$= d(x_2, e) + d(x_1, y_1y_2)$$

$$\leq d(x_2, e) + d(x_1, y_1) + d(y_1, y_1y_2)$$

$$= d(x_2, e) + d(x_1, y_1) + d(e, y_2)$$

$$< A + A + A$$

$$= 3A.$$

Suppose that $d(W^k \times W^k) \subset [0, (2k-1)A)$, where $2 \leq k < n$. We show that $d(W^{k+1} \times W^{k+1}) \subset [0, (2k+1)A)$. In fact, for each $(u, v) \in W^{k+1} \times W^{k+1}$, we have

 $u = u_1 u_2$ and $v = v_1 v_2$, where $u_1, v_1 \in W^k$ and $u_2, v_2 \in W$. Then

$$d(u, v) = d(u_1u_2, v_1v_2)$$

$$\leq d(u_1u_2, u_1) + d(u_1, v_1v_2)$$

$$= d(u_2, e) + d(u_1, v_1v_2)$$

$$\leq d(u_2, e) + d(u_1, v_1) + d(v_1, v_1v_2)$$

$$= d(u_2, e) + d(u_1, v_1) + d(e, v_2)$$

$$< A + (2k - 1)A + A$$

$$= (2k + 1)A.$$

Therefore, we have $d(W^n \times W^n) \subset [0, (2n-1)A)$, and it follows that d is bounded. \Box

Let G be a paratopological group, and H be a closed subgroup. Denote by G/H the set of all left cosets aH of H in G, and endow it with the quotient topology with respect to the canonical mapping $\pi : G \to G/H$ defined by $\pi(a) = aH$, for every $a \in G$.

Theorem 3. Let G be a paratopological group and let H be a normal subgroup of G. If H and G/H are pseudobounded, then G is pseudobounded.

Proof. Let U be a neighborhood of e. Obviously, the set $V = U \cap H$ is an open neighborhood of e in H. Since G/H and H are pseudobounded, there exist $m, n \in \mathbb{N}$ such that $V^n = H$ and $(U/H)^m = G/H$. We claim that $U^{m+n} = G$. In fact, let $x \in G$.

Case 1: $x \in H$. Obviously, we have $x \in H = V^n \subset U^n \subset U^{m+n}$. Case 2: $x \notin H$.

Then we have $xH \in G/H = (U/H)^m$, and therefore, there exist points $x_1, \dots, x_m \in U$ such that $xH = x_1 \cdots x_m H$. Hence, there exists an $h \in H$ such that $xh \in U^m$. It follows that $x \in U^m H = U^m V^n \subset U^m U^n = U^{m+n}$.

Therefore, we have $U^{m+n} = G$, that is, G is pseudobounded.

The following proposition is easy, and we omit it.

Proposition 1. Let each G_{α} be a pseudobounded paratopological group, where $\alpha \in I$. Then the product topology $\prod_{\alpha \in I} G_{\alpha}$ is also a pseudobounded paratopological group.

Example 2. There exists a normal pseudobounded paratopological group G such that G is not a topological group.

Proof. Let $X = \{(x, 1) : 0 \le x < 1\}$, and let the topology on X be generated by the base consisting of sets of the form

$$\{(x,1) \in X : x_0 < x < x_0 + \frac{1}{k}\} \cup \{(x_0,1)\},\$$

where $0 \le x_0 < 1$ and $k \in \mathbb{N}$.

Then the space X is the arrow space which is homeomorphic to the Sorgenfrey line. Moreover, there exists a natural structure of an Abelian group on X such that the multiplication $(u, v) \mapsto u \cdot v$ is continuous, that is, the space X admits a structure of a paratopological group. For example, if u = (x, 1) and v = (y, 1) are two points in X, then $u \cdot v = (x + y, 1)$ if x + y < 1, and $u \cdot v = (x + y - 1, 1)$ if $x + y \geq 1$. Obviously, X is pseudobounded. However, the Sorgenfrey line is not a topological group, and hence X is not a topological group. \Box

Note 1. It follows from Example 2 that the pseudoboundedness is not a topological invariant.

3 Premeager paratopological groups

Definition 3. Let G be a paratopological group. G is called *premeager* if, for any its nowhere dense subset A of G, we have $A^n \neq G$ for each $n \in \mathbb{N}$.

A Lusin space is an uncountable space such that every its nowhere dense set is countable. A Polish space is a separable completely metrizable space. A Polish group is a topological group G regarded as a topological space which is itself a Polish space.

It is well known that a Polish space is a Lusin space. Therefore, we have the following proposition.

Proposition 2. A paratopological Lusin group has the premeager property. In particular, a Polish group has the premeager property.

The proof of the following Proposition 3 is due to M. Sakai.

Proposition 3. The Sorgenfrey line X ($X = \mathbb{R}$) does not have the premeager property. In particular, the Euclidean line does not have the premeager property.

Proof. Let C be the usual Cantor set in [0,1]. It is well known that C is nowhere dense in X. By [9, p.37, Lemma 1], we have C + C = [0, 2], where '+' is the usual additive. Let $A = \bigcup_{n \in \mathbb{Z}} (2n + C)$, where Z is the integer. Then A is nowhere dense in X, but A + A = X since C + C = [0, 2].

A map $f : X \to Y$ is called *quasi-open* if we have $int(f(U)) \neq \emptyset$ for each non-empty open subset U of X.

First, we discuss some properties of the premeager.

Proposition 4. Let $f : G \to H$ be a continuous quasi-open homomorphism map, where G, H are paratopological groups. If G is premeager, then H is also premeager.

Proof. Let A be any nowhere dense subset of H. Suppose that there exists some $n \in \mathbb{N}$ such that $A^n = H$. Therefore, $(f^{-1}(A))^n = f^{-1}(A^n) = f^{-1}(H) = G$. Since G is premeager, the set $f^{-1}(A)$ is a non-nowhere dense subset of X. Hence there is a non-empty open subset U of X such that $U \subset \overline{f^{-1}(A)}$. It follows from $\overline{f^{-1}(A)} \subset$

 $f^{-1}(\overline{A})$ that $f(U) \subset \overline{A}$. Since f is quasi-open, we have $\emptyset \neq \text{int}(f(U)) \subset f(U) \subset \overline{A}$, which is a contradiction.

Since open maps are quasi-open maps, we have the following corollary.

Corollary 1. Let $f : G \to H$ be an open and continuous homomorphism map, where G, H are paratopological groups. If G is premeager, then H is also premeager.

Proposition 5. Let G be a pseudobounded and premeager paratopological group. Then every open subgroup of G is premeager.

Proof. Let H be an open subgroup of G. Suppose that H is non-premeager. Then there exists a nowhere dense subset A of H and an $n \in \mathbb{N}$ such that $A^n = H$. Since G is pseudobounded, it follows that there is an $m \in \mathbb{N}$ such that $H^m = G$. Hence $(A^n)^m = H^m = G = A^{nm}$. However, the set A is a nowhere dense subset of G, which is a contradiction.

Next, we mainly discuss when a paratopological group is a topological group.

Lemma 1. [1] Assume that G is a paratopological group and not a topological group. Then there is an open neighborhood U of the neutral element e of G such that $U \cap U^{-1}$ is nowhere dense in G.

Theorem 4. Suppose that G is a pseudobounded topological group, H is a premeager paratopological group, and that $f: G \to H$ is a continuous onto homomorphism. Then H is a topological group.

Proof. Assume that H is not a topological group. By Lemma 1, there is an open neighborhood U of the neutral element e of H such that $U \cap U^{-1}$ is nowhere dense. Let W be a symmetric neighborhood of the identity in G such that $f(W) \subset U$. Since $f(W) = f(W^{-1}) = f^{-1}(W) \subset U^{-1}$. Hence we have $f(W) \subset U \cap U^{-1}$. Since G is pseudobounded, there exists an $n \in \mathbb{N}$ such that $W^n = G$, and it follows that $f(W^n) = f(G) = [f(W)]^n = H \subset (U \cap U^{-1})^n$. Thus $H = (U \cap U^{-1})^n$, and Hdoes not have the premeager property, which is a contradiction. Therefore, H is a topological group.

For a paratopological group G with a topology τ , one defines the *conjugate* topology τ^{-1} on G by $\tau^{-1} = \{U^{-1} : U \in \tau\}$. The upper bound $\tau^* = \tau \vee \tau^{-1}$ is a group topology on G. Then we call $G^* = (G, \tau^*)$ the group associated to G.

Definition 4. [11] Let \mathcal{P} be a topological property. A paratopological group G is called *totally* \mathcal{P} if the associated topological group G^* has property \mathcal{P} .

Obvious, if a paratopological group is totally pseudobounded then ${\cal G}$ is pseudobounded.

Theorem 5. Let G be a totally pseudobounded paratopological group. If G has the premeager property, then G is a topological group.

Pseudobounded or ω -pseudobounded paratopological groups

Proof. Suppose that G is not a topological group. It follows from Lemma 1 that there is an open neighborhood U of the neutral element e of G such that $U \cap U^{-1}$ is nowhere dense in G. Since G is totally pseudobounded and $U \cap U^{-1}$ in open in the associated topological group G^* , there exists an $n \in \mathbb{N}$ such that $(U \cap U^{-1})^n = G$. Therefore, G does not have the premeager property, which is a contradiction.

Corollary 2. If G is a totally pseudobounded paratopological Lusin group, then Gis a topological group.

Proof. It is easy to see from Proposition 2 and Theorem 5.

ω -pseudobounded topological groups and paratopo-4 logical groups

Let G be a locally compact topological group. Then G is connected if and only if, for every neighborhood V of the identity element e of G, we have $G = \bigcup_{n \in \mathbb{N}} V^n$, see [8, Corollary 7.9]. Therefore, we have the following definition.

Definition 5. Let G be a paratopological group and $A \subset G$. We say that A is an ω -pseudobounded subset of G, if for every neighborhood V of the identity element e of G, we have $A \subset \bigcup_{n \in \mathbb{N}} V^n$. If G is an ω -pseudobounded subset of G then we say that G is ω -pseudobounded.

Obviously, a pseudobounded paratopological group is ω -pseudobounded. However, there exists an ω -pseudobounded topological group which is not pseudobounded, see Example 3.

The proof of the next proposition is an easy exercise.

Proposition 6. Let G be a paratopological group. Then we have the following four assertions.

- 1. If $A \subset G$ is pseudobounded (resp. ω -pseudobounded), then \overline{A} is a pseudobounded (resp. ω -pseudobounded) subset of G;
- 2. If G is ω -pseudobounded, then G has no proper open subgroups;
- 3. If G is locally compact and pseudobounded (resp. ω -pseudobounded), then G is compact (resp. σ -compact);
- 4. If A, B are pseudobounded (resp. ω -pseudobounded) subsets in G, then AB and A^{-1} are also pseudobounded (resp. ω -pseudobounded) subsets in G.

Example 3. There exists an ω -pseudobounded and non-pseudobounded topological group.

Proof. Let $(\mathbb{R}, +)$ be the real line endowed with the Euclidean topology, where '+' is the additive operation. Obviously, the \mathbb{R} with the additive operation is ω pseudobounded. However, the \mathbb{R} with the additive operation is not pseudobounded.

In Example 3, the Euclidean topology \mathbb{R} is connected. So a question arises as follow: Is every connected topological group ω -pseudobounded? The answer is affirmative. Indeed, we have the following proposition.

Proposition 7. If G is a connected topological group, then G is ω -pseudobounded.

Proof. For any open neighborhood U of the neutral element e of G, there exists an open symmetric neighborhood V of e in G such that $V \subset U$. Clearly, the set $W = \bigcup_{n=1}^{\infty} V^n$ is an open subgroup of G. Since every open subgroup of a topological group is closed, the set W is closed in G. It follows from the connectedness of Gthat G = W. Since $V \subset U$, we have $G = \bigcup_{n=1}^{\infty} U^n$, that is, the space G is ω -pseudobounded. \Box

Example 4. There exists a T_1 , connected and non- ω -pseudobounded paratopological group.

Proof. Let $G = (\mathbb{R}, +)$ be the group of real numbers with the usual addition, and let $\tau = \{\{x\} \cup [y, +\infty) : x, y \in \mathbb{R}\} \cup \{\emptyset, X\}$ be the topology of G. Then the operation '+' is jointly continuous, hence (G, +) is a T_1 paratopolgical group. Moreover, it is easy to see that G is connected and non- ω -pseudobounded.

Remark 1. It follows from Example 4 that one cannot generalize Proposition 7 to T_1 paratopological groups. However, we don't know if there exists a Hausdorff connected and non- ω -pseudobounded paratopological group, see Question 10.

Proposition 8. [8, Corollary 7.9] Let G be a locally compact topological group. Then the following conditions are equivalent:

- 1. G is connected;
- 2. G has no proper open subgroups;
- 3. G is ω -pseudobounded.

Since an 0-dimensional space is non-connected, we have the following corollary by to Proposition 8.

Corollary 3. If G is a locally compact O-dimensional topological group, then G is non- ω -pseudobounded.

We cannot omit the condition "locally compact" in Proposition 8, see Example 5.

Example 5. There exists an ω -pseudobounded, nowhere locally compact and nonconnected topological group.

Proof. Let Q be the set of rational numbers with the topology inherited from \mathbb{R} . Then (Q, +) is a topological group with the additive operation. It is easy to see that Q is ω -pseudobounded and non-connected. **Remark 2.** In [4], K.H. Azar proved that every pseudobounded topological group is connected, see [4, Theorem 2.6]. But, the proof has a gap. It is still an open problem if every pseudobounded topological group is connected, see Question 9.

The following proposition generalizes a result in [2], see Corollary 4.

Proposition 9. Suppose that H is a discrete invariant subgroup of an ω -pseudobounded topological group G. Then each element of H commutes with each element of G, that is, H is contained in the center of the group G.

Proof. If $H = \{e\}$, there is nothing to prove. Assume that H is a non-trivial subgroup of G. Choose an arbitrary point $x \in H \setminus \{e\}$. Since H is discrete, there exists an open neighborhood U of x in G such that $U \cap H = \{x\}$. It follows from the continuity of the multiplication in G that there is an open symmetric neighborhood V of e in G such that $VxV \subset U$.

Claim: For each $y \in V$, we have xy = yx.

Indeed, for each $y \in V$, since H is an invariant subgroup, we have $yxy^{-1} \in H$. Moreover, we have $yxy^{-1} \in VxV^{-1} = VxV \subset U$. Thus $yxy^{-1} \in H \cap U = \{x\}$, that is, $yxy^{-1} = x$.

Since G is ω -pseudobounded, we have $G = \bigcup_{n=1}^{n=\infty} V^n$. For each $g \in G$, there exists an $n \in \mathbb{N}$ such that $g \in V^n$, that is, the element g can be written in the form $g = y_1 \cdots y_n$, where $y_1, \cdots, y_n \in V$. Since x commutes with each element of V by Claim, we have

$$gx = y_1 \cdots y_n x = y_1 \cdots xy_n = \cdots = y_1 x \cdots y_n = xy_1 \cdots y_n = xg.$$

Therefore, the element $x \in H$ is in the center of the group G. Because x is an arbitrary element in H, we conclude that the center of G contains H.

It follows from Propositions 7 and 9 that we have following corollary.

Corollary 4. Suppose that H is a discrete invariant subgroup of a connected topological group G. Then each element of H commutes with each element of G, that is, H is contained in the center of the group G.

Theorem 6. Let G be a paratopological group and let H be a normal subgroup of G. If H and G/H are ω -pseudobounded, then G is ω -pseudobounded.

Proof. Let U be a neighborhood of e in G. Obviously, the set $V = U \cap H$ is an open neighborhood of e in H. Since G/H and H are ω -pseudobounded, we have $\bigcup_{n=1}^{\infty} V^n = H$ and $\bigcup_{n=1}^{\infty} (U/H)^n = G/H$. We claim that $\bigcup_{n=1}^{\infty} U^n = G$. In fact, let $x \in G$.

Case 1: $x \in H$.

Since $x \in H$, there exists an $n \in \mathbb{N}$ such that $x \in V^n$. Therefore, we have $x \in H \cap V^n \subset U^n \subset \bigcup_{n=1}^{\infty} U^n$.

Case 2: $x \notin H$.

Then we have $xH \in G/H$, and hence there exists an $m \in \mathbb{N}$ such that $xH \in (U/H)^m$. Therefore, there exist points $x_1, \dots, x_m \in U$ such that $xH = x_1 \cdots x_m H$.

Hence, there exist an $h \in H$ and a $l \in \mathbb{N}$ such that $xh \in U^m$ and $h \in V^l$. It follows that $x \in U^m H = U^m V^l \subset U^m U^l = U^{m+l} \subset \bigcup_{n=1}^{\infty} U^n$.

Therefore, we have $\bigcup_{n=1}^{\infty} U^n = G$, that is, G is ω -pseudobounded.

$\mathbf{5}$ **Open problems**

The Sorgenfrey line is a paratopological group which is first-countable, non-pseudobounded and does not have the premeager property. However, the Sorgenfrey line is not a topological group. Therefore, we have the following three questions.

Question 1. If G is a pseudobounded and premeager paratopological group, is G a topological group?

Question 2. Is every first-countable and pseudobounded paratopological group a topological group?

Question 3. Is every first-countable paratopological group with the premeager property a topological group?

It follows from Corollary 2 that it is natural to pose the following question.

Question 4. If G is a pseudobounded paratopological Lusin group, is G a topological group?

Since a first-countable topological group is metrizable, we have the following question.

Question 5. Is every first-countable and pseudobounded paratopological group metrizable?

Note 2. If the answer to Question 2 is positive, then the answer to Question 5 is also positive.

In [10], O.V. Ravsky proved that every paratopological group has a left invariant quasi-metric if and only if it is first-countable. So we have the following question:

Question 6. Is every first-countable and pseudobounded paratopological group bounded with respect to a left invariant quasi-metric?

In [10], O.V. Ravsky posed the following question:

Question 7. Does every first-countable paratopological group have a continuous and left invariant quasi-metric?

Note 3. It follows from Theorem 2 that if the answer to Question 7 is positive then the answer to Question 6 is also positive.

It follows from Theorem 5 that we have the following question.

Question 8. If G is a totally ω -pseudobounded paratopological group with the premeager property, is G a topological group?

Pseudobounded or ω -pseudobounded paratopological groups

Question 9. Is every pseudobounded topological group connected?

Question 10. Is every Hausdorff (regular) connected paratopological group ω -pseudobounded?

Acknowledgements. We wish to thank the reviewers for the detailed list of corrections, suggestions to the paper, and all her/his efforts in order to improve the paper.

References

- A.V. Arhangel'skii, E.A. Reznichenko, Paratopological and semitopological groups versus topological groups, Topology Appl. 151 (2005), 107–119.
- [2] A.V. Arhangel'shiĭ, M. Tkachenko, Topological Groups and Related Structures, Atlantis Press and World Sci., 2008.
- [3] C. Alegre, S. Romaguera, On paratopological vector spaces, Acta Math. Hungarica 101 (2003), 237–261.
- [4] K.H. Azar, Bounded topological groups, arXiv: 1003.2876.
- [5] R. Engelking, *General Topology* (revised and completed edition), Heldermann Verlag, Berlin, 1989.
- [6] G. Gruenhage, Generalized metric spaces, In: K. Kunen, J.E. Vaughan, eds., Handbook of Set-Theoretic Topology, North-Holland, 1984, pp. 423–501.
- [7] O. Gutik, D. Pagon, D. Repovš, The continuity of the inversion and the structure of maximal subgroups in countably compact topological semigroups, Acta Math. Hungarica 124 (2009), 201–214.
- [8] E. Hewitt, K.A. Ross, Abstract Harmonic Analysis, Springer, Berlin, 1963.
- [9] A.B. Kharazishvili, Nonmeasurable sets and functions, Mathematical Studies 195, North-Holland, 2004.
- [10] O.V. Ravsky, Paratopological groups I, Matem. Studii 16 (2001), 37–48.
- [11] M. Sanchis, M. Tkachenko, Totally Lindelöf and totally ω-narrow paratopological groups, Topology Appl. 155 (2008), 322–334.

Fucai Lin (corresponding author): Department of Mathematics and Information Science, Zhangzhou Normal University, Zhangzhou 363000, P. R. China *E-mail*: linfucai2008@yahoo.com.cn

Shou Lin: Institute of Mathematics, Ningde Teachers' College, Fujian 352100, P. R. China

E-mail: linshou@public.ndptt.fj.cn