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Pseudodistances and Pseudometrics

on Real and Complex Manifolds (+).

SERGIO VENTURINI

Summary. — In this paper we study the relationships between o class of distances and infinite-
simal metrics on real and complex manifolds and their behavior under differentiable and
holomorphic mappings. Some application to Riemannian and Finsler geometry are given
and also new proofs and generalizations of some resulls of Royden, Harris and Reiffen on
Kobayashi and Carathéodory metrics on complew manifolds are oblained. In particular we
prove that on every complex manifold (finite or infinite-dimensional) the Kobayashi distance
is the integrated form of the corresponding infinitesimal metric.

0. - Introduction.

In this work we investigate a class of pseudodistances and pseudometrics, which
we call admissible, on real or complex manifold modelled on open sets of a locally
convex vector topological space, including Riemannian and Finsler metrics on real
manifolds and Kobayashi-type and Carathéodory pseudodistances and pseudometrics
on complex manifolds.

After defining the derivative of an admissible pseudodistance and the (upper
and lower) integrated forms of an admissible pseudometric we prove that for every
admissible pseudodistance d on M the integrated form of its derivative is the inner
pseudodistance associated to d.

Next we give a characterization of the derivative of a pseudodistance and of the
lower integrated form of a pseudometric by means of an extremality property. We
investigate the behavior of admissible pseudodistances and pseundometrics under
differentiable mappings; some applications to Finsler geometry are given.

We apply these results o the study of Carathéodory and Kobayashi-type pseudo-
distances and pseudometrics on complex manifolds. Among the Kobayashi-type
pseudometries and pseudodistances the Kobayashi and Hahn pseudometrics and
pseudodistances are included. _

The main result is that every Kobayashi-type pseudodistance is the integrated
form of the corresponding pseudometric and symmetrically, the Carathéodory
pseudometric is the derivafive of the corresponding pseudodistance, improving and
unifying particular results of Royden and Harris for the Kobayashi pseudometric
and of Reiffen and Harris for the Carathéodory pseudomsetric.

(*) Entrata in Redazione il 20 febbraio 1988.
Indirizzo dell’A.: Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italia.
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It is known that there are manifolds for which the Carathéodory psendodistance
is not inner, and therefore it is not the integrated form of the relative pseudometrie.
We give here the example of a domain for which the Kobayashi pseudometric is
not the derivative of the corresponding pseudodistance.

We investigate the integrability of Kobayashi-type pseudometrics along curves
on manifolds with countable base modelled on a separable Fréchet space.

We prove gimilar results for pseudometrics and pseundodistances arising in the
study of projective mappings on manifolds endowed with an affine connection.

Finally we prove that a lower semicontinuous convex positive admissible metric
on a finite dimensional connected real manifold is the derivative of its integrated
form extending a result of Busemann and Mayer.

§ 1. — Let # be a Hausdorff locally convex topological vector space and let M
be a connected manifold modelled on open domains of ¥.

For every # in M a local coordinale sysiem at x is by definition a pair (U, ¢),
where U is an open neighbourhood of # in M and ¢ a differentiable (holomorphic)
homeomorphic mapping between U and an open convex balanced neighbourhood
of the origin B in F such that ¢(x) = 0.

We call E-pseudodistance, or admissible pseudodistance on M a mapping

d: MXM—%R+: [0, 4 o0)

which is a pseudodistance on M (that is a mapping which is symmetrie, satisfies
the triangle inequality and verifies d(x, ) = 0 for every » in M) such that for every »
in M there exist a local coordinate system (U, ¢) at », an open neighbourhood V
of # in U and a positive constant C such that

dy, 2)<CploW) — olz)), yeV, zeV,

where p is the Minkowsky functional associated to B = ¢(U).
We call E-pseudometric, or admissible pseudometric on M a mapping

F:TM -R,,
where T'M is the (real) tangent fiber bundle to M, satisfying
F@g) = |tlF(g), teR, §&EeTM,
and such that, for every » in M, there exist (U, ¢) at w, V and O as before such that

F(&)<Op(Dek), &eTV,

where Dy is the differential of ¢ and the tangent space at every poinf of B = ¢(U)
i8 naturally identified with Z.
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No assumption is made on the regularity of F.

We call a curve u: [a, b] — E absolutely continuous if for every seminorm p in E
and for every &> 0 there exist ¢ > 0 such that if (%, 81)y ..., (ta, 8,) 18 & family of
pairwise disjoint intervals contained in [a,b] for which Y (f;— s,) < d, then
S p(ult) — uls) < e

For the general case we call a curve u: [6, b] — M absolutely continuous if for
every ¢ in [a, b] and every local coordinate system (U, @) at u(t) the curve pou| - y):
¢ {U) — ¥ is absolutely continuous in the above sense. When M = F the two
definitions of absolute continuity coincide by the compactness of the interval [a, b].

For every manifold M an admissible curve in M is, by definition, a curve

w: [a, 0] - M

which satisfies the following conditions:

a) the curve u is absolutely continuous;

b) the curve % is almost everywhere derivable in the interval [a, b].

For example, every piecewise 01 curve is an admissible curve.

ReMARK. — If ¥ is a reflexive Banach space condition @) implies condition b),
but there are isometries from the unit interval to the Banach space L*(0,1) which
are not derivable at any point (for details see [4] 2.9.22, 2.9.23).

Now we define the integrated forms of E-pseudometrics.

Let F be an E-pseudometric on M. For # and y in M let

¥ (@, y) = A*(F)(a, y) =
*b
- inf{ [F(Dutt) @u: 1o, 6] ~ M admissible, u(e) = o, u(p) = y}

a

dy(@, y) = dyu(F) (@, y) =
b
— inf { f F(Du(t) dtfu: [a, 5] > M admissible, u(a) = a, u(b) = y}

*a

% .
where f and f stand respectively for the upper and lower integral.
£

The functions d*(¥) and d.(F) are E-pseudometrics and will be called respect-
ively the wpper and lower integrated form of I

An E-pseudometric F is said to be weakly integrable it d*(F) and d.(F) are equal.
In this case we put d(F) = d*(F") = d(F) and call it the integrated form of 7.

The E-pseudometric F is said to be strongly integrable if for every admissible curve
u: [a, b] — M the function F(D(u(t))) is Lebesgue integrable on the interval {a, b].
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Clearly every strongly integrable E-pseudometric is weakly integrable.

We introduce an equivalence relation on the space of all E-pseudometrics. We
call two H-pseudometrics F and G equivalent if for every admissible curve
u: [a, b] = M the functions F(u(t)) and G(u(f)) are almost everywhere equal on [a, b].
Clearly that is an equivalence relation on H-pseudometries.

It is clear that the upper (lower) integrated forms of equivalent pseudometrics
coincide.

To define the derivative on an E-pseudodistance we need some result from the
theory of length of curves in pseudometric spaces.

Let X be a set and let d be a pseudodistance on X. A mappings defined in a
closed interval [a, b]c R into X is said to be a curve. For a curve u: [a,b] — X
the length of w iz the number

Liu) = sap {3 d(ultu), u(@))je = t,< ... <t,= b} .

The curve #: [a, 8] — X is absolutely continuous (with respect to d) if for every
&> 0 there exist § > 0 such that if (4, 81), ..., (8, 5,) I8 2 family of pairwise disjoint
intervals contained in [a, b] for which if 3 (f;— s;) << then > d(u(t.), u(s;)) < e.
For such a curve the following theorem holds:

TrEOREM 1.1, — Let u: [a, b] — X be an absolutely continuous curve. For every t
in [a, b] put
D*(t) = limsup d(u(t + h), u(t))/|h],

h—0

D, (8) = liminf d(u(t -+ ), u(t))/|h] .

h—>0

Then the functions D*(E) and D.(t) coincide almost everywhere in [a, b]; they are
Lebesgue integrable; furthermore L{u) < + oo, and

b b
Lin) = f Dty dt = f D, (t)dt .

The above definition of absolute continuity and the proof of this theorem are
in [16] § 13 where only the metric case is considered, but the proof does holds also
in this less restrictive case.

Now we define the derivative of every H-pseudometric up to equivalence.

Let d be an E-pseudometric on M. For every & T'M define

FH(E) = F*(d)(&) = limsup d{u{h), u(0))/|h],

h—>0

F (&) = F () (&) = liminf d{u(h), u(0))/|h|,
>0
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where u is a curve in M defined in a neighbourhood of 0 in R, which is derivable
at 0 and such that #'(0) = & The definition does not depend on the choice of the
curve %. Indeed let u, and , be two curves with u;(O) = u,(0) = & Put # = u,(0) =
= uy(0). Let (U, ¢) be a local coordinate system at x. Since the pseudometric d
is admissible there exist an open neighbourhood V of # in U and a positive con-
stant O such that for every y and # in V

(Y, 2) < Cp(p(y) — ¢(2)) -
Then

Limsup d(uy(h), %(0)) /|| <Limsup (@(ua(R), uy()) -+ Auy(h), 1,(0)) /4] <
h—0

h—>0
<1im Op(p(ua(h)) — g (ws(1))) || -+ Limsup d(uy(h), wa(0))/ 1] =

= limsup d(uy(h), u,(0))/[h] .

h—0

Interchanging u; with #, we obtain the opposite inequality. By a symilar argu-
ment we have
liminf d(us(h), u,(0))/[h] = Liminf (d(uy(h), us(0)))/|A] .
h—>0 h—~>0
Hence the functions F* and F, are well defined on the tangent bundle to M

and it is easy to show that they are admissible psendometries, The following theo-
rem holds:

THEOREM 1.2. — For every E-pseudodistance d the H-pseudometrics F* and F,
defined above are equivalent. For every admissible curve u: [a, ] — M the function
F*(D(u(t))) (cmd hence F*(D(u(t)))) ts Lebesgue measurable and

b b
L{w) = [ F*(Du(t)) dt = [Fu(Dut) dt

where the length is computed with respect to the pseudodistomce d.

ProOF. ~ Let u: [a, b] — M be an admissible curve. By the compactness of the
interval [¢, b], the curve u is absolutely continuous with respect to the pseudo-
metric d. With the notations of theorem 1 we have F*(Du(t)) = D*u(t) and
F.(Du(t)) = Dyu(t). The assertion follows from theorem 1.

We call the equivalence class of the E-pseudometric F* (or F,) the derivative
of the F-pseudodistance d and write #(d) for it. By abuse of language we call de-
rivative of the E-pseudodistance d any E-pseudometric which is in the equivalence
class of F*,
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Let d bo an E-pseudodistance on M; for # and y in M define
d'(w, y) = inf {L(u)|u: (@, b] - M admissible, u(a) = », u(b) = y} .

Since M is connected, every pair of points in M can be joined by an admis-
sible curve.

A straightforward argument shows that d¢ is an admissible pseudodistance on J.
It is called the inner distance associated to d and the distance d is said to bhe inner
if d = d’. The teminology is consistent since for every IE-pseudomefric we have
(di)i= @*.

Theorem 1.2 implies the following theorem:

THEOREM 1.3. — For every admissible pseudodistance d on the connected manifold M
the derivative F(d) of d is strongly integrable and its integrated form coincides with the
inner distance associated to d.

COROLLARY 1.1. — An admissible pseudodistance on M 1is the infegrated form of its
derivative if, and only if, it is inner.

Let denote by D(M) and by M(M) respectively the set of the E-psendodistances
and the E-pseudometrics on the connected manifold M.

For d and & in D(M) set by definition d<h if d(x, y)<h(z, y) for every choice
of # and y in M. This relation is an order relation on D(M).

For F and @ in M(M) set by definition F< @ if for every admissible curve
u: [a, b] — M, then F(Du(t))<G(Du(t)) for almost every ¢ in the interval [a, b].
This relation is a pre-order relation on the space AG(M) and we have F< @ and G< I
if, and only if, the HF-pseudometrics ' and G are equivalent.

With respect to these order relations we have the following characterization of
the derivative of any H-pseudodistance and of the (lower) integrated form of any
E-pseudometric:

THEOREM 1.4. — For d e D(M) and F e M(HM),
(1) F(d) = min {G € M(HM)|d\(G)>d},
(2) d.(F) = max {h e D(M)|F(h)<F}.

ProOF. — By theorem 3 the integrated form of the derivative of d is greater
than d. Let G be an E-pseudometric such that d.(G)>d. We have to prove that
G>F(d). Let u:[a,b] > M be an admissible curve in M. Let f: [a,b] — R be a
Lebesgue measurable function sueh that f(f)<@(Du(t)) for every te [a,bd], and

b b

f f(t) dt = f G(Dult)) dt .

[
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Then for every ¢t and s in [a, b] with { << s we have

fsf(t) dt = fG(Du(t)) dt
11 *f

Indeed we have

t 4 s ] b

f 1(t) dt< f G(Dult)) dt , f ft) dt < f G(Dult)) d , f 1) dt < f bG(Du(t)) dt ,

3 *a [ *t $

11 s b b

[1oa +[roa + 1w a =[jna =
§ H a

[

—[&(D(uw)) @t = [6(pw)) & + f G(D(u(v) dt + [6¢(D(u(t)

and the latter conditions holds only if

f ft) dt = f G(Du(t)) dt

i

Then, at almost every Lebesgue point ¢ of the function f we have

B(d)(u(0)) = Lim d(u{t 4 k), u(t))/|h|<lim @(G)(u(t) -+ h), u(t))/[h] <
h<-0

b0

t+h
<lim - f ds =lim - f
k—0 h b0 h f

Hence F(d)< @ and (1) follows.

)t

<G(Du(t)) .

Consider now the pseudometric F. By (1) and theorem 1.3, the derivative of the
pseudodistance d,(F) is less than F. Let h be an E-pseudodistance such that F(h)< F.
We have to prove that b <<d,(F). Let & and y be arbitrary in M ; let u: [a,b] > M
be an admissible curve such that u(a) = & and wu(b) = y. Since by theorem 3

b b
Rz, y) < f F(h)(Dut)) dt < f P(Dut)) dt

the fact that the curve u is arbitrary we have h(z, y) <d.(F)(@, y), and (2) follows.
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§ 2. — In this section we describe the behavior of pseudodistances and psendo-
metrics under differentiable mappings.

Fix two manifolds M and N (not necessarily modelled on the same topological
vector space) and a family F of differentiable mappings from M to N.

Consider an admissible psendometric F on M weakly integrable and let d = d(#).
Suppose, with the notations of section 1, that for every feTM we have
Fo(d)()<F(E).

We cbserve that by thecrem 1.3, for every weakly integrable pseudometric on
M there exists an equivalent pseudometric which enjoys this property.

For every » and 4 in N set

537(907 y) = int {d(m,’ y,)} ?

where the greatest lower bound is taken over all pairs ' and %’ in & for which there
exists fe F such that f(#') = « and f(y') = y. If such ', ¥’ and f cannot be found
then put Sg(w, y) = + oo. The function d4 is symmetric but in general does not
satisfies the triangle inequality. Hence, for every » and y in M, set

dg(w, y) = inf {3 Og(Pers, D)@ == P1y ooy Pu= ¥} .
For £e T'HM putb

Fg(§) = inf {F(n)} ,

where the greatest lower bound is taken over all 5 € TN for which there exists fe F
such that Df(n) = & If such & and f cannot be found then put F4(£) = + oo

It is not difficult to prove that if d(x, ¥) and F4(£) are finite for every choice
of w and ¥ in M and & in TM then they are respectively a pseudodistance and a
pseudometric on XN.

THEOREM 2.1. — If the pseudometric Fg and the pseudodistonce dg are admissible
then the pseudometric Fg is weakly integrable and the pseudodistance dg is s in-
tegrated form.

PROOF. ~ Let #* and hy, be respectively the upper and lower integrated forms
of Fg. We shall prove that *<dg and dg <hy.

To establish the first inequality it suffices to prove that A*<d4. Let x and y
in N be arbitrary. We can suppose that d4(#, y) < + oo. Let ¢ > 0. By definition
of dg there exist 2’ and y' in M and fe § such that

d@', y') < A5, ¥+ e
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Since d is the integrated form of F, there exists an admissible curve u: [a, b] — M
joining #' and y' such that
*b
[F(Du) @t < dw', y') + <.

@

We have
*b )

(@, 9) < [F5(D(fou)t) di< [F(Duv) @t < a(@', y') + & < dz(a, ) + 2¢ .

a

The fact that & > 0 is arbitrary implies A*(x, y) < d 4 (2, ¥).

Let G = Fy(dg). In order to prove that d4< &y, by (2) of theorem 4 of gection 1,
it suffices to show that for every £ e I'N we have G(&§)<Fx(§).

Let £ TN and let ¢ > 0 be arbitrary. By definition of Fg there exists ne T M
and fe F such that D(f)(n) = & and F(y) < Fg(§) + s.

Let 4 be a C* curve in M defined in & neighbourhood of 0 such that Du(0) == #.
Then

G(&) = liminf dy(]‘(u(t -+ h)), f(u(t)))/jh] <liminf d(u(t + k), u(t))/|h] =

=0 -0

= F (d)n)<F(n)< Fg(&) + ¢.
Since &> 0 is arbitrary, the assertion follows.

ExaMpPLE. — If 5 = {f}, where f: M - N is a surjective differentiable mapping
such that for every x € M there exist ' € N such that f(»') = » and the mapping f
is open in a neighbourhood of #', then the hypotheses of theorem 1 are satisfied.
In this ease our theorem 1 improves a result of [14].

Let M, N and & be as before. Consider an admissible pseudodistance ¢ on N
and let ¥ = Fy(d).

For every # and y in M put

dz(@, y) = sup{a(f(@), j@))lf e T},
and for every £e ITM

F(§) = sup{F(Df(®)f e T}

Also in this case it is not difficult to prove that, if dz(z, y) and F4(£) are finite,
then they are respectively a pseudodistance and a pseundometric on V.

THEOREM 2.2. — If the pseudometric F° and the pseudodistance d° are admissible
then the pseudometric P s the derivative of the pseudodistance A%, Thus F¥ s strongly
integrable and its integrated form is the inner pseudodistance associoted to 4%,



394 SERGI0O VENTURINI: Pseudodistances and pseudometrics, eto.

Proor. — Let G = F*(d“‘ﬁ‘ ). First we show that for every £e TM we have
FFE)<GE). Let £ TM and let ¢> 0 be arbitrary. By definition of F¥ there
exists fe F such that F(Df(&)) > F¥ (&) — =

Let » be a €1 curve in M defined in a neighbourhood of 0 such that Du(0) = &.
Then

G(&) = linint dF (u(t 4 h), u(?))/|h]>1iminf d’(]‘(u(t + k), f(u(t)))/]h] =
70

>0

= F(Df(§)) > FF{u(&)) —e.

Since &> 0 is arbifrary the assertion follows. Let h be the lower integrated
forms of F¥.

In order to prove that #¥ =@, by (1) of theorem 4 of section, it suffices to show
that for every choice of # and y in M we have h(z, y);d‘*ﬁ (=, ¥).

Let # and y in M be arbitrary and let ¢ > 0. By definition of dg there exist
fe & such that

a(flx), fy)) > dgla, y) — €.

Since # is the lower integrated form of F¥ there exists an admissible curve
u: [a, 8] —> M joining x and y such that

b
h{w, y) > } FT(Du(t)) dt — ¢ .
‘We have
b b
4

h(w, y) > }F?(Du(t)) dt— &> J F(D(fou)(t)) dt — e d(f(®), 1) — e>d” (@, y) — 26 .

g
Since z> 0 is arbitrary we have a(w, y)>ol:‘7 (%, ¥), and the assertion follows.

ExampLE. — Let F be topological vector space and let V ¢ E be a linear subspace
with the topology induced by E. Let M be a manifold modelled on F and let N
be a submanifold of M modelled on V. Let d be an admissible pseudodistance on M.
Let F be the derivative of d, G be the restriction of # to N and h be the restriction
of the psendometric d to N. Then the integrated form of Gt on ¥ coincides with the
inner distance associated to h. Indeed, we have h = dg and G = Fg, where F is
the family containing only the inelusion map ¢: N — M. Since the hypotheses of
theorem 2.2 in this case are clearly satisfied, then the assertion follows.

§ 3. ~ In this section we shall deal with the Kobayashi, Hahn and Carathéodory
pseudodistances and pseundomefrics on complex manifolds.
We recall some definitions. Let A be the open unit dise in C. Consider the
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Poincaré metric

@y, = l/(1—[[*), 2ed, weC,
and the corrisponding distance

(7, w) = §log (1 + |az, w)) /(1 — |a(z, w)]))
where

oz, w) = (& — w)/(1 — 2w) .

Let M be a complex manifold.
The Carathéodory pseudodistance ¢ is defined for every « and y in M by

en(@, y) = sup {w(f(®), f(y))|f € Hol (M, 4)},
and the relative pseudometric y, by

yu() = sup {<DF(E),,lf € Hol (M, A)}

for every & in the tangent space at = in M.

Let P be a family of holomorphic mappings from 4 to M containin all injective
holomorphic mappings.

For & = Hol (4, M), the family of all holomorphic mappings from 4 to M, the
function d4 and Fg4 are respectively the Kobayashi pseudodistance &, and pseudo-
metric %, on M; for 5 the family of all injective holomorphic mappings, the func-
tion dg and Fg are respectively the Hahn pseudodistance h, and pseudemetric 7.

Let 5 c Hol (4, M) be an arbitrary family. Since the family F confains all holo-
morphice injective mappings then

ku<dg<hy
and
ey <Fe<<ny .

We claim that dg is an admissible pseudodistance and that Fg4 is an admissible
pseudometric. By the previous inequalities it is enough to prove this fact for the
Hahn pseudodistance and the Hahn pseudometric respectively. In this case our
claim follows from the following proposition:

Prorosrrion 3.1. — Let D c B be a convex balanced neighbourhood of the origin in K
and let p be its Minkowsky functional. Then

1) no(@, v)<p®)/(1— p@)).
(2) ho(@, y)<p(®— 9)/(1 — max (p(z), p(y)).
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PRrOOF. — For e # and r> 0 put B(x,r) = {yeBlply — #) <r} and B(r) =
== B(0, 7). By an Hahn-Banach type argument, as in [5] (IV.1.8 and V.1.5) we have
for every z € B(r) and ve

Nawl0y v) = r71p(0),
hp(0y @) = (0, 171 p(#)) .

Let # e D. Then D'= B(z,1— p()) c D, and therefore, for every v € F we have

Np(#y V) <Np (8 V) = Npp—pe@s ¥) = p@)/(1 — p@)) 5

and (1) follows.

Let # and y be in D and let § be the segment joining » to y. If a==max (p(®), p(¥)),
then, by the convexity of D, for every z€ § we have B(s,1— a)c D. Fix ¢> 0.
Let w e N be so large that

Trgay(0, (§ — ®)m) < (L + &)p(ly — @)/n)/(L— a) .

It is always possible to find such an », since the derivative of the funection w(0, ¢)
at ¢ =0 is equal to 1.
For k=0, ...,n put &= a2 + k(y — 2)/n. Then we have

hp(@, 4) < U hD(zk7 < U hB(zk,a)(zk7 2y = U hB(a)(()’ (y— 00)/%) =

= U1+ &)p(ly — #)/n)[(L — a) = (L + &)ply — »)/(L — a) .

Sinee ¢ > 0 ig arbitrary the proof is complete.

By theorem 2.1 it follows that for every family & c Hol (4, M) containing all
injective holomorphic mappings the pseudodistance dg is the integrated form of
the pseudometric Fg.

Choosing F = Hol (4, M) (resp. & = {f € Hol (4, M)| f injective} we obtain the
following theorem.:

THEOREM 3.1. — For every complex manifold M the Kobayashi (resp. Hahn) pseudo-
metric is weakly integrable and its integrated form is the Kobayashi (resp. Hahn)
pseudodistance.

REMARK. — This theorem is proved for the Kobayashi case in [17] for finite
dimensional complex manifolds and in [8] for domains in normed spaces. In the cases
considered in [17] and in [8] also the strongly integrability of the Kobayashi pseudo-
metric is proved (as a consequence of the semicontinuity property of the latter),
but only piecewise (! curves are considered as admissible. Moreover, the method
used there cannot be extended in a natural way to the Hahn case, (contrary to what
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is asserted in [6]), since the Royden extension theorems do not hold for injective
holomorphic mappings but only for holomorphic embeddings. Moreover, the upper
semicontinuity of the Hahn pseudometrie is an open question. For results concern-
ing the strong integrability for the Kobayashi and Hahn metric which avoid the
extension theorems of Royden and Siu see the next section.

For every complex manifold the Carathéodory pseudodistance ¢, and pseudo-
metric y, are respectively the pseudometrics a¥ and Fy, where §F = Hol (M, 4),
the family of alli holomorphiec mappings from M to A.

Since the Poincaré metric is the derivative of the corrisponding distance by
theorem 2.2 we have the following:

THEOREM 3.2. — For every complex manifold M the Carathéodory pseudometric vy
is the derivative of the Carathéodory pseudodistance ¢y and hence the pseudometric vy
is strongly integrable and its integrated form is the inner distance associated to cy.

REMARK. — Actually, it can be proved that the Carathéodory pseudodistance is
continuous on TM (and Lipshitzian for Banach manifolds) and the definition (1)
and (2) of section 1 of the derivative of a pseudodistance for the Carathéodory case
coincide with the Carathéodory pseudometric, and theorem 3 can be proved as in [8].
We have given this less precise statement to show the symmetry of this case with
the result stated in theorem 3.1.

Hence, for every complex manifold the Kobayashi pseudodistance is the inte-
grated form of the corresponding pseudometric and the Carathéodory pseudometric
is the derivative of the corresponding pseudodistance. It is known that for the domain

D= {zgeC:1<g|<2, n>1}

the Carathéodory distance is not inner, and hence for such a domain the Carathéodory
distance is not the integrated form of the corresponding pseudometric.

We now give an example of a bounded domain for which the Kobayashi distance
is not the derivative of the corresponding metrie.

Let D= {(z,w) e C%: 2| <1, w| <1, fw|<a?}, 0<a<}.

The domain D is a complete circular pseudoconvex domain. Let p be its Min-
kowsky functional. By [1] the Kobayashi metrie », at 0 coincides together with 2
and is not difficult to prove that », is continuous cn the tangent vectors at 0, More-
over, for (s, w,) and (2, w) With [2,] < a? and |w,| < a2, we have

kD((zn Wy)y (22, Wz)) <kD((zl7 w1)y (2 wl)) + kD((Zza Wy)y (%ay Wz)) = 0(21) 22) + w(wy, wy).

Let f: A — M be the holomorphic mapping defined by

1(8) = (al, al),
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let y: R — A be the Riemannian geodesic such that y(0) = 0 and y'(0) = 1 and let »
be the restriction of f to the real axis.

Since the mapping f preserves the Kobayashi metric at 0, and this mefrie is
continuous at 0, for every ¢ > 0 there exists 6 > 0 such that for every ¢, with |t] < 4,
we have

ap(u(t), w' () >1—e.
Shrinking ¢ if necessary, by the above inequality, we have
F(u(t), w' (1)) <26 — a®1?) < 2a + ¢ .

Hence, having chogen @ <C 3, the Kobayashi metric of the domain D is not the
derivative of the Kobayashi distance.

§4. - In this section we investigate the strongly integrability of Kobayashi
type pseudometrics on complex manifolds.

Recall that a Polish space is a topological space homeomorphic to a separable
complete metric space. A Suslin subset of a Polish space X is a subset of X which
is the image by a continuous mapping of a Polish space.

A subset of a Polish space X is a Polish space for the induced topology if, and
only if, it is a G, set in X (that iy, a countable intersection of open sets in X) (see
e.g., [3]). Hence every open or closed subset of X is a Polish space.

A Hausdorff topological space X with countable base such that every point v € X
has a Polish neighbourhood is a Polish space ([3]).

If 7 is a locally compact Hausdorfl space with countable base and X is a Polish
space then the space C(T, X) of all continuous funections from 7 to X endowed with
with the compact open topology is a Polish space ([9]).

If X is a Polish space the family of the Suslin subsets of X is closed under
countable union and intersection.

If fe X — ¥ is a Borel mapping between Polish spaces, then for every Suslin
subset A c X the set f(4)c Y is a Suslin subset of ¥ and for every Suslin subset
Bc Y the set 4B)c X is o Suslin subset of X.

If X and Y are Polish spaces and A and B are Suslin subsets respectively of X
and Y, then X x ¥ is a Polish space and A X B is a Suslin subset of X X Y.

A Suslin subset of R is Lebesgne measurable ([4]).

For these and other properties of Polish spaces and Suslin sets see [7].

Let B be a complex separable Fréchet space and M a connected E-manifold
with countable base. Then the manifold M is a Polish space and the space Hol (4, M),
being a closed subset of C(d, M) is a Polish space.

THEOREM 4.1. — Let B and M be as above. Let F c Hol (4, M) be a family con-
taining all injective mappings and suppose that F is a Suslin subset of Hol (4, M).



SERGIO VENTURINI: Pseudodistonces and pseudometrios, ete. 399

Then, for every a > 0 the sel
Ae) = {£€ TM|F(f) < a}
ts & Suslin subset of TM ond hence the pseudometric Fg is strongly integrable.

Proor. — Let X = Hol (4, M)xC, let V: X - TM and W:X — R, be the
continuous funetions defined on (f, v) € X respectively by V({(f, v) = f(0){v) and
W(f, v) = [v|. By definition for every £ TM we have

(1) Fgz(é) = inf {W(f, 0)|V(f,v) = & and fe F}.
Let A and B be the epigraphs of the functions Fg and W respectively, that is

A={&)e TM xR, |Fz(&) > 1},
B = {((f, v), 1) e XX R, |W(f, v) > t}.

By (1) A= V*BnN (FxR,)), where V*: X xR, - TM xR, is the function
defined on (f,v)eX and te R, by V*((f,v),t) = (V(f, v),t). Hence the set 4, as
image of a Suslin set under a continuous function, is a Suslin subset of 7M.

For every a> 0 we have

A@)=a({An (TUx{teR,<a}}),

where 7: TM xR, — TM is the natural projection. By the stability properties of
Suslin sets, A(a) is a Suslin subset of T M, and the first part of the theorem is proved.

Let u: [a,0] — M be an admissible curve. Then the function ¢ — Du(t) is a
Borel function (see e.g., [4]) and hence for every a > 0 the seb

{t € [a, b]|F 5(Du(t)) < a} = (Du)-*(A(a))

is a Suslin subset of [a, b], thus Lebesgue measurable.
It follows that the function ¢ Fg(Du(t)) is Lebesgue measurable, that is, by
the arbitrariness of the admissible curve, the pseudometric F4 is strongly integrable.

COROLLARY 4.1. — Let E and M be as above. Then the Kobayashi and the Hahn
pseudometrics of M are strongly integrable pseudometrics.

Proor. ~ For the Kobayashi pseudometric the assertion follows immediatly
from the above theorem. For the Hahn pseudometric it is enought to prove that
the family § of all injective holomorphic mappings is a Suslin subset of Hol (4, M).

We shall even prove that F is a G, set in Hol (4, M). This fact is 2 consequence
of the following general statement:
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PROPORITION 4.1. — Let X and T be Hausdorff spaces and let T be locally compact

with countable base. Then the family S of all continuous injective mappings from T
to X is a G4 set in O(T, X).

PrOOF. —~ Let W= {U,},.v be a countable base of 7 such that U,cc T for
every n e N. Then

§ = (N {4(m, n)|U, N U, = 0}
where

A(m, n) = {fe O(T, X)[{(U,) N {(T,) = 8}
is open for every choice of m and » in N, and the assertion follows.

§ 5. — In this section we apply the results of section 1 to pseudodistances and
pseudometrics generated by projective mappings.

Let M be a connected n-dimensional real differentiable manifold and let I' be
a torsionfree affine connection on M.

Consider on the interval I the Riemannian metric

ds? = du?/(L — u?)*

and let ¢ be the associated distance.

Let & be the family of all projective mappings from I to M (for references
see [19]). The distance p, on M constructed as in section 3 from the family F and
the distance g were introduced in [13], whereas the analogous pseudometric P
was introduced in [19].

By the local existence theorems of geodesics it is not difficult to prove that py
and P, are respectively an admissible pseudodistance and pseudometric on M.
Hence, theorem 2.1 yields:

THEOREM 5.1. — The pseudometric Py is weakly integrable and its integrated
form is py.

REMARK. — In [19] it is proved that the pseudometric P; is upper-semicontinuous,
hence it is actually strongly integrable. In [19] it is also proved theorem 5.1, buf
there only piecewise (! curves are considered admissible.

§ 6. ~ Let M be a real connected manifold, that is a manifold modelled on open
domains of a real topological vector space. In section 1 we have characterized inner
admigsible pseudodistances as the ones which coincides with the integrated form
of their derivatives.

Call inner pseudometric on M a strongly integrable pseudometric F which coin-
cides (up to equivalence) together with the derivative of its integrated form. By
theorem 1.3 the hypothesis of strongly integrability on F' is not restrictive.



SERGIO VENTURINI: Pseudodistances and pseudometrios, eic. 401

By the definition of derivative is not difficult to prove that for an inner pseudo-
metric F there exists a pseudometric # which is conver, that is, for every x € M
and every choice of & and & in TM_we have F'(§ - &)< F' (&) + F'(&,).

ExAMPLES. — Every Riemannian metric on a finite dimensional manifold is inner;
the Carathéodory pseudometric on every complex manifold is inner; there are com-
plex manifold whose Kobayashi metric is not inner (see section 3).

A pseudometric F on M is positive if for & € T M, the condition G(§) = 0 implies
& = 0; if that in the case, we simply call I a metric.

In [2] BusEMANN and MAYER show that on a finite dimensional connected real
manifold every continuous convex metric¢ is inner.

We improve this result weakening the continuity hypothesis.

THEOREM 6.1. — Let M be a finite dimensional real connected manifold. Every
admissible lower semiconfinuous convexr melric is inner.

PrOOF. — Let I be a metric satisfying the hypotheses of the theorem. It is not
difficult to show that there exists a non decreasing sequence of continunous convex
metrics ¥, such that for every e TM we have F (&) = sup F,(&). Then the as-
sertion is a consequence of the following general proposition:

PROPOSITION 6.1. — Let M be an arbitrary manifold and let F, be a sequence of inner
pseudometric. Foy every Ee TM define

F(§) = sup Fy(§) .
If F is an admissible pseudometric then it is an inner pseudometric.

Propr. — Let d, and d be respectively the integrated forms of F, and F, and
let @ be the derivative of d. We have to show that G and F are equivalent.
By theorem 1.4 G<F.

Conversely, for every n we have d>d,. Then it follows that for every », = @G
= F(d)>F(d,) = F,, and hence G>F.
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