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We present an approach to the normal state of cuprate superconductors which is based on a minimal cluster
extension of dynamical mean-field theory. Our approach is based on an effective two-impurity model embed-
ded in a self-consistent bath. The two degrees of freedom of this effective model can be associated to the nodal
and antinodal regions of momentum space. We find a metal-insulator transition which is selective in momen-
tum space. At low doping, quasiparticles are destroyed in the antinodal region, while they remain protected in
the nodal region, leading to the formation of apparent Fermi arcs. We compare our results to tunneling and
angular-resolved photoemission experiments on cuprates. At very low energy, a simple description of this
transition can be given using rotationally invariant slave bosons.
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I. INTRODUCTION AND MOTIVATIONS

The doping of a Mott insulator is a fundamental problem
of condensed-matter physics, which has attracted consider-
able attention in view of its relevance to the physics of cu-
prate superconductors.1 In the simplest Brinkman-Rice2 de-
scription, the doped metallic state is a Fermi liquid in which
quasiparticles are formed with a heavy mass m� /m�1 /� and
a reduced weight Z�� �� is the doping level�. This physical
picture can indeed be rationalized using the modern theoret-
ical framework of dynamical mean-field theory �DMFT�.3–5

DMFT, in its single-site version, is applicable when spatial
correlations are weak, which is favored by high dimension-
ality and strong competing �e.g., orbital� fluctuations.

In cuprates, however, which are quasi-two-dimensional
materials with low orbital degeneracy, it was pointed out
long ago by Anderson in a seminal paper1 that the antiferro-
magnetic superexchange �J� plays a key role, leading to
strong short-range correlations associated with singlet forma-
tion �valence bonds� between nearest-neighbor lattice sites.
Slave boson mean-field theories6–10 as well as projected
variational wave functions11,12 provide simple theoretical
frameworks to incorporate this effect, modifying the
Brinkman-Rice picture at small doping ��J / t and leading in
particular to a finite effective mass of quasiparticles
m� /m�1 / �J / t+��. This is indeed consistent with observa-
tions in cuprates, in which only a moderate enhancement of
the effective mass is observed.

However, both single-site DMFT and simple variational
or slave-boson mean-field theories share a common feature,
namely, that the characteristic energy �or temperature� scale
below which coherent quasiparticles are formed is uniform
along the Fermi surface and of order �t at small doping lev-
els. This is clearly inconsistent with experimental observa-
tions in underdoped cuprates. Indeed, these materials are
characterized by a strong differentiation of quasiparticle
properties in momentum space, a phenomenon which is key
to their unusual normal-state properties. In underdoped cu-

prates, coherent quasiparticle excitations are suppressed in
the antinodal regions, around momenta �0,�� and �� ,0� of
the Brillouin zone �BZ�, and a pseudogap appears below a
characteristic temperature scale �which decreases as the dop-
ing level is increased�. Instead, reasonably coherent quasi-
particles are preserved in the nodal regions around
�� /2,� /2�. The signature of this phenomenon in angular-
resolved photoemission spectroscopy �ARPES� is the forma-
tion of Fermi “arcs” in the underdoped regime, defined as the
regions of momentum space where the spectral function is
intense at low excitation energy �see, e.g., Ref. 13 for a re-
view�. Suppression of quasiparticle coherence in the antin-
odal regions is also apparent from other spectroscopies, such
as electronic Raman scattering14–16 �with the B1g and B2g
channels associated with antinodes and nodes, respectively�
or quasiparticle interference patterns obtained by scanning
tunneling microscopy.17

Momentum-space differentiation and the nodal/antinodal
dichotomy are therefore outstanding challenges for theories
of strongly correlated electrons. Various lines of attack to this
problem have been taken. At intermediate and strong cou-
plings, and apart from the extremely low-doping region, cor-
relation lengths are expected to be short �as also supported
by experimental observations�. Hence, it is appropriate in
this regime to take into account short-range correlations
within cluster extensions of the DMFT framework. Such in-
vestigations have been quite successful �for reviews, see.
e.g., Refs. 4, 18, and 19�. Most studies have considered clus-
ters of at least four sites �a plaquette� �Refs. 20–34� and
numerical efforts have been devoted to increasing the cluster
size in order to improve momentum resolution and to ad-
vance toward an understanding of the two-dimensional
case.35

In this paper, we follow a different route, looking for a
description based on the minimal cluster able to successfully
describe momentum-space differentiation together with Mott
physics.36 We find that a two-site cluster is sufficient to
achieve this goal on a qualitative level and to a large extent
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on a quantitative level when compared to larger cluster cal-
culations. Our approach is based on a division of the BZ into
two patches: one containing in particular the �� /2,� /2� mo-
mentum and the other one in particular the �� ,0� and �0,��
momenta. A mapping onto a two-impurity Anderson model
with self-consistent hybridization functions is made, follow-
ing a generalization of the dynamical cluster-approximation
construction �very similar results are actually obtained within
a cellular-DMFT self-consistency condition�. The self-
energies associated with the “nodal” and “antinodal” patches
are shown to correspond to the bonding �even� and antibond-
ing �odd� orbitals of the self-consistent impurity model, re-
spectively. This allows us to construct a “valence-bond dy-
namical mean-field theory” �VB-DMFT� �Ref. 36� of nodal/
antinodal differentiation, in which this phenomenon is
associated with the distinct properties of the orbitals associ-
ated with different regions of momentum space.

One of our central results is that, below a critical value of
the doping level �c�16%, the antinodal �antibonding� or-
bital displays a pseudogap while the nodal �bonding� orbital
remains metallic. Correspondingly, the scattering rate associ-
ated with the nodal orbital is suppressed in the pseudogap
state, while the antinodal orbital scattering rate increases as
the doping level is reduced. Hence, nodal/antinodal differen-
tiation corresponds in this minimal description to an orbital
differentiation, a momentum-space analog37 of the orbital-
selective Mott transition which has been extensively dis-
cussed recently in the different context of transition-metal
oxides with several active orbitals.38 The suppressed coher-
ence of antinodal quasiparticles clearly originates, in our de-
scription, from Mott physics affecting antinodal regions in a
dramatic manner while nodal regions remain comparatively
protected.

A definite advantage and important motivation for build-
ing a minimal description based on the smallest possible
cluster is to advance our qualitative understanding.39 Since
the theory is based on a two-site Anderson model, results can
be interpreted in terms of valence-bond singlet formation and
linked to the well-documented competition between singlet
formation and individual Kondo screening.40,41 The two-
impurity Kondo �or Anderson� model is the simplest model
which captures this competition. However, our findings show
that, in contrast to the two-impurity model with a fixed hy-
bridization to the conduction-electron bath, the additional
self-consistency of the bath, which is central to dynamical
mean-field constructions, brings in novel aspects. Indeed, the
critical point encountered at a finite doping �c is found only
in the lattice model involving self-consistent baths, while it
is replaced by a crossover in the non-self-consistent two-
impurity Anderson model.

This article is organized as follows. In Sec. II A, we
specify the two-dimensional Hubbard model under consider-
ation and describe the BZ patching and VB-DMFT mapping
onto a self-consistent two-orbital model. Then, we briefly
review the two main techniques that we have used for the
solution of this problem: the strong-coupling continuous-
time quantum Monte Carlo algorithm42,43 �Sec. II B� and the
�semianalytical� rotationally invariant slave-boson
approximation44 �Sec. II C�. Section III is devoted to a de-
tailed presentation of the orbital-selective transition and of

its physical relevance to nodal/antinodal differentiation. In
particular, the frequency dependences of the self-energies
and spectral functions on the real axis are presented and in-
terpreted. In Sec. IV, these results are contrasted to the phys-
ics of a two-impurity problem with non-self-consistent baths,
in connection with the Kondo to Ruderman-Kittel-Kasuya-
Yosida �RKKY� �singlet� crossover observed there. Finally,
in Sec. V, the issue of momentum-space reconstruction is
considered and the connection to the formation of “Fermi
arcs” is discussed. For the sake of clarity and completeness,
some technical aspects of our work are discussed more in
detail in Appendixes A and C.

II. THEORETICAL FRAMEWORK

A. Model and valence-bond dynamical mean-field theory

We study the Hubbard model on a square lattice, with
hopping between nearest-neighbor t and next-nearest-
neighbor sites t�. The corresponding Hamiltonian is given by

H = �
k,�=↑,↓

�kc�k
† c�k + U�

i

ni↓ni↑, �1�

�k = − 2t�cos�kx� + cos�ky�� − 4t� cos�kx�cos�ky� . �2�

In the following, we use U / t=10 and t� / t=−0.3, which are
values commonly used for modeling hole-doped cuprates in
a single-band framework. All energies �and temperatures� are
expressed in units of D=4t=1 and the hole doping is denoted
by �. We restrict ourselves to paramagnetic normal phases.

In this paper, we focus on a two-site dynamical cluster
approximation �DCA�.18 For completeness, we recall the
DCA construction in Appendix A. The principle of the DCA
approximation is to cut the Brillouin zone into patches and
approximate the self-energy as a piecewise constant function
on the patches. The many-body problem can then be solved
using an effective self-consistent multiple quantum impurity
model. A priori, there is some arbitrariness in the choice of
patches in DCA. In this paper, we exploit this freedom in
order to separate the nodal and the antinodal regions into two
patches, so that the properties of each region will be de-
scribed by one orbital of the effective impurity model. More
precisely, we choose the minimal set of two patches of equal
area P+ and P− represented in Fig. 1: P+ is a central square
centered at momentum �0,0� and containing the nodal region;
the complementary region P− extends to the edge of the BZ
and contains in particular the antinodal region and the �� ,��
momentum. On Fig. 2, we also present the partial density of
states of both patches.

It is important to check that the main qualitative results of
our approach are independent of the precise shape of the
patches. We will discuss this point in Sec. III E and show
that indeed our results are qualitatively similar for a family
of patches in which the P+ patch encloses a variable part of
the bare Fermi surface around the nodal point. Moreover, we
have also considered another cluster method, cellular-DMFT
�CDMFT�,4,18 and obtained qualitatively similar results. Be-
cause two-site CDMFT breaks the lattice square symmetry,
we focus here on a generalized DCA approach.
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Following the DCA construction �see also Appendix A�,
we associate a momentum-independent self-energy �	�
� to
each patch of the Brillouin zone. This self-energy is then
identified with the Fourier transform of the cluster self-
energy of a two-site cluster of Anderson impurities embed-
ded in a self-consistent bath. This two-site Anderson impu-
rity model is given by

Seff = −� �
0

�

d�d�� �
a,b=1,2

�=↑,↓

ca�
† ���G0,ab

−1 ��,���cb�����

+ �
0

�

d�U �
a=1,2

na↓na↑��� , �3�

G0ab
−1 �i
n� = �i
n + ��ab − t̄�1 − �ab� − �ab�i
n� , �4�

where a ,b=1,2 is the site index, U is the on-site interaction,
and � is the hybridization function with a local component
�11�i
n�=�22�i
n� and an intersite one �12�i
n�. We choose
a convention in which the hybridization � vanishes at infinite

frequencies and therefore denote the constant term separately
�t̄�. Since we restrict ourselves to paramagnetic solutions, we
dropped the spin dependence of G0, � and t̄. The
self-consistency condition determines both � and t̄ and is
written in the Fourier space of the cluster, which in this case
reduces to the even- and odd-orbital combinations
c	�

† = �c1�
† 	c2�

† � /	2,

�K�i
n� = G0K�i
n�−1 − GK�i
n�−1, �5�

GK�i
n� = �
k�PK

1

i
n +  − �k − �K�i
n�
. �6�

In this expression, momentum summations are normalized to
unity within each patch and the index K=	 refers both to the
inner-/outer-patch index and to the even-/odd-orbital combi-
nations of the two-impurity problem. t̄ is determined by the
1 /
n

2 expansion of the previous equations, leading to

t̄ = �
k�P+

�k = − �
k�P−

�k. �7�

The impurity model has the same local interaction as the
original lattice model. This is a consequence of the fact that
both patches have equal area �see Appendix A�.

As usual in the DMFT problems, the quantum impurity
model �3� can be rewritten in a Hamiltonian form, i.e., as the
Hamiltonian for a dimer coupled to a self-consistent bath

H = Hdimer + Hbath, �8�

where Hdimer can be written in the 1 ,2 basis as

Hdimer 
 �
a,b=1,2

�=↑,↓

ca�
† �t̄�1 − �ab� + �0�ab�cb� + �

a=1,2
Una↓na↑,

�9�

where �0
−. Alternatively, Hdimer can be written in the
even/odd basis where the hybridization is diagonal

Hdimer = �
s=	

�=↑,↓

cs�
† �st̄ + �0�cs� +

U

2 �
s=	

s̄=−s

�ns↑ns↓ + ns↑ns̄↓

+ cs↑
† cs↓

† cs̄↓cs̄↑ + cs↑
† cs̄↓

† cs↓cs̄↑� .

Note that, since we will be solving the quantum impurity
model using continuous-time quantum Monte Carlo and ro-
tationally invariant slave-boson methods, which work within
the action formalism, we will not need the explicit form of
the bath term Hbath.

B. Continuous-time Monte Carlo

A numerically exact solution of the self-consistent two-
impurity problem is obtained using continuous-time quantum
Monte Carlo �CTQMC� �Refs. 42 and 43� which sums the
perturbation theory in �ab�i
n� on the Matsubara axis. The
partition function of the impurity model

(0,π) (π,π)

(π,0)(0,0)

P
+

P
-

FIG. 1. �Color online� The Brillouin zone is divided into two
patches P+ �inside the inner blue square� and P− �between the two
squares�. Dashed line is the free �U=0� Fermi surface at �=0.1 for
t� / t=−0.3. P+ �respectively, P−� encloses the nodal �respectively,
antinodal� region.

-1 -0.5 0 0.5 1 1.5
ε

0

0.5

1

1.5

D
O

S

Total DOS
Central patch P

+
Border patch P

-

FIG. 2. �Color online� Partial density of states of the two
patches P+ �solid blue curve with circles� and P− �solid red curve
with squares� and total density of states �dashed curve�; t� / t=−0.3.
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Z =� Dc†Dc exp�− Seff�

is expanded in powers of the hybridization �, leading to

Z = �
n�0

1

�n ! �2� �
i=1

n

d�id�i� �
ai,bi=	

�i=↑,↓

det
1�k,l�n

��ak,bl
��k − �l���

�Tr�Te−�Hdimer�
k=1

n

cak�k

† ��k�cbk�k
��k�� , �10�

where T is time ordering and Hdimer is given by Eq. �9�.
The partition function is then sampled with the METROPO-

LIS algorithm, where a configuration of size n is given by the
n indices ai, bi, �i and times �i, �i� of the c†, c operators. The
Monte Carlo probability of a configuration is given by the
absolute value of the product of the trace and the determinant
term. The Green’s function is then accumulated using the
formula obtained by differentiating Z with respect to �.42,43

Another quantity of interest is the relative weight of
eigenstates of the dimer problem, which we will discuss in
detail in Sec. IV. It can be measured, following Ref. 43, by
their relative contribution to the trace: if � is an eigenstate of
Hdimer, we define the CTQMC statistical weight of � as

p�
QMC 
� ����Te−�HdimerCn�ai,bi,�i,�i,�i������

�
��

�����Te−�HdimerCn�ai,bi,�i,�i,�i��������
QMC

,

�11�

Cn�ai,bi,�i,�i,�i�� 
 �
k=1

n

cak�k

† ��k�cbk�k
��k�� , �12�

where �A�QMC denotes the Monte Carlo averaging over the
configurations �labeled by n and �ai ,bi ,�i ,�i ,�i���.

In this simple two-impurity model in the paramagnetic
phase, the symmetry between the two sites allows to factor-
ize the determinants:42,43 � is indeed diagonal in the 	 basis.
We also note that the Monte Carlo sign is one in this prob-
lem. Due to the efficiency of this algorithm, we can routinely
do a few millions Monte Carlo sweeps and obtain high-
quality data in imaginary time. We then perform the continu-
ation to the real axis using a simple Padé method45 �see also
Sec. III B and Appendix B�.

C. Rotationally invariant slave bosons

Slave-boson �SB� methods �see, e.g., Refs. 44 and 46–48�
provide a simplified description of the low-energy excita-
tions in strongly correlated electron systems. The general
idea is to enlarge the original Hilbert space to a set of states
which involve both �“slave”� bosonic and �“quasiparticle”�
fermionic variables. The bosonic variables are introduced in
such a way that the interaction term becomes a simple qua-
dratic form in terms of the slave bosons. The physical Hilbert
space is recovered by imposing a �quadratic� constraint re-
lating the slave bosons to the fermions. Mean-field �approxi-
mate� solutions can be obtained by looking for saddle points

at which the bosons are condensed and at which the con-
straint is only satisfied on average. At such a saddle point,
the fermionic variables can be interpreted as the low-energy
quasiparticles of the original problem. A very simple form of
the self-energy is obtained, containing only a constant term
and a term linear in frequency. This should be interpreted as
a simplified low-energy description of the system �i.e., as the
first two terms in a low-frequency expansion of the self-
energy�.

Because of the simplicity of this physical interpretation,
slave-boson methods are a very complementary tool to fully
numerical algorithms such as the one reviewed in Sec. II B.
For this reason, we have also considered a SB mean-field
solution of the VB-DMFT equations, which should be
viewed as a simplified description of the low-energy physics.
The full numerical solution �obtained with CTQMC� has of
course a rich frequency dependence but, as we shall see, the
SB approximation compares very well to the numerical re-
sults at low energy.

To be specific, we use a slave-boson mean-field as an
approximate “impurity solver” of the effective two-impurity
problem coupled to self-consistent baths, within the self-
consistency iterative loop of VB-DMFT. We use the recently
introduced “rotationally invariant” slave-boson formalism44

�RISB�, which generalizes the original construction of Kot-
liar and Ruckenstein48 to multiorbital systems in a way
which respects all symmetries of the Hamiltonian �see also
Refs. 49 and 50�. To define the slave-boson variables, we
consider the �“molecular”� eigenstates ��� of the Hamiltonian
�9� describing the isolated two-site cluster in the absence of
the baths. For definiteness, these 16 states and their quantum
numbers are listed in Table I. In the original formulation of
Kotliar and Ruckenstein,48 a slave boson �� is introduced for
each molecular eigenstate. However, this breaks rotational
invariance in spin and orbital space and results into difficul-
ties when saddle-point solutions are considered. For ex-
ample, nonequivalent saddle-point solutions would be found
depending on whether the Hamiltonian is expressed in the
�1,2� basis �corresponding to sites� or in the �+,−� basis cor-
responding to the even and odd orbitals. To avoid this prob-
lem, the RISB �Ref. 44� formalism introduces a matrix of
slave-boson amplitudes, ������. The first index ��� is asso-
ciated with each molecular eigenstate in the physical Hilbert
space of the dimer. The second index ���� corresponds to a
state of the quasiparticle fermionic variables �with the same
fermionic content as the corresponding physical state�. Sym-
metry considerations allow for a drastic reduction of the
number of bosons to be considered in practice. Only the ����
such that both states have identical quantum numbers take
nonzero values at the saddle point. For the problem at hand,
this leaves 18 boson amplitudes in total, all scalars except for
a 2�2 block in the two-particle sector with total spin S=0
and even parity �Table I�. Other bosons turn out to be zero at
the mean-field level.

To exclude the nonphysical states, we impose the follow-
ing set of constraints:

�
���

����
† ���� = 1, �13�

FERRERO et al. PHYSICAL REVIEW B 80, 064501 �2009�

064501-4



�
��1��2�

�
��1�
†
���2�

��2��f�
† f���1�� = f�

† f�, ∀ �,� , �14�

where f�
† creates a quasiparticle in orbital �. For the dimer,

we have �= �	 ,��, where 	 designates the even or odd
orbital, �= ↑ ,↓ is the spin index, and f	�= 1

	2
�f1�	 f2��. The

molecular eigenstates of the physical Hilbert space of the
dimer have the following representation,44 which satisfies the
constraints �13� and �14�:

��� � 

1

	D�
�
��

�����
† �vac����� , �15�

where D� is a normalization factor and the primed sum is
over states ���� which have the same quantum numbers as
���. The physical electron operators can be expressed at

saddle point as a linear combination of the quasiparticle op-
erators f as

d�
† → d��

† = R��
� f�

† , �16�

where R�� is given by

R�� = �
�1�2�1��2�

�
�

M����1�d���2���1��f���2����1�1�
†
��2�2�

.

�17�

In this expression, M�� is a matrix of normalization factors
which ensure that the exact noninteracting solution is recov-
ered in the saddle-point approximation when U=0. Its ex-
plicit expression in terms of the slave-boson amplitudes can
be found in Ref. 44.

Writing the dimer Hamiltonian as

TABLE I. Eigenstates of the dimer. The quantum numbers for charge, spin, and parity are given. The last
column shows the slave bosons for the description of the eigenstates in the RISB formalism. States 10 and 11
have all their quantum numbers equal and form a 2�2 block. The ground state is number 10 which is the
antiferromagnetic singlet of even parity and has an energy E10=2�0+ 1

2 �U−	16t̄2+U2��2�0−4t̄2 /U. Here,
�	=U		16t̄2+U2 /4t̄ and N	=2+2�	

2 .

No.
Label

�cf. Figs. 15 and 16� Eigenstate n↑ n↓ Parity S Boson

1 E �0,0� 0 0 + 0 �1,1

2 1+ �Sz=+1 /2�
1
	2

��0,↑�+ �↑ ,0�� 1 0 + 1/2 �2,2

3
1
	2

��0,↑�− �↑ ,0�� 1 0 − 1/2 �3,3

4 1+ �Sz=−1 /2�
1
	2

��0,↓�+ �↓ ,0�� 0 1 + 1/2 �4,4

5
1
	2

��0,↓�− �↓ ,0�� 0 1 − 1/2 �5,5

6 T �Sz=+1� �↑ ,↑� 2 0 − 1 �6,6

7 T �Sz=−1� �↓ ,↓� 0 2 − 1 �7,7

8 T �Sz=0�
1
	2

��↑ ,↓�+ �↑ ,↓�� 1 1 − 1 �8,8

9
1
	2

��0, ↑↓�− �↑↓ ,0�� 1 1 − 0 �9,9

10 S
1

	N−
�−�↑ ,↓�+�−�↑↓ ,0�+�−�0, ↑↓�+ �↓ ,↑�� 1 1 + 0 �10,10;�10,11

11
1

	N+
�−�↑ ,↓�+�+�↑↓ ,0�+�+�0, ↑↓�+ �↓ ,↑�� 1 1 + 0 �11,10;�11,11

12
1
	2

��↑↓ ,↑�+ �↑ , ↑↓�� 2 1 + 1/2 �12,12

13 3− �Sz=+1 /2�
1
	2

��↑↓ ,↑�− �↑ , ↑↓�� 2 1 − 1/2 �13,13

14
1
	2

��↑↓ ,↓�+ �↓ , ↑↓�� 1 2 + 1/2 �14,14

15 3− �Sz=−1 /2�
1
	2

��↑↓ ,↓�− �↓ , ↑↓�� 1 2 − 1/2 �15,15

16 �↑↓ , ↑↓� 2 2 + 0 �16,16
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H� dimer = �
�

E��
��

����
† ����, �18�

we obtain the partition function as a functional integral over
coherent Bose and Fermi fields. The constraints of Eq. �13�
are enforced including time-independent Lagrange multipli-
ers �0 and ���. The fermionic fields can be integrated out
and the resulting bosonic action is treated in the saddle-point
approximation. The free energy is finally obtained as

� = −
1

�
�
i
n

Tr ln�− G f
−1�i
n�� − �0

+ �
�1�2�1��2�

�
�1�2�
� ���1��2�

��1�2
��0 + E�1

�

− ��1�2�
��

��1��f�
†���f���2�����2�1�

. �19�

In this expression, ����
������ are saddle-point �c-number�
expectation values of the boson fields and Gf is the quasipar-
ticle �auxiliary fermion� Green’s function of the impurity
model given by

G f
−1�i
n� = i
n1 − � − R†��+�i
n� 0

0 �−�i
n�
R , �20�

with �	 the hybridization function of the even �respectively,
odd� orbital. The saddle-point approximation is obtained by
extremalizing � over the boson amplitudes ���� and the
Lagrange multipliers �0, ���.

Within this approximation, the self-energy for the physi-
cal electron operators consists simply in a constant term and
a term linear in frequency, which are orbital-dependent and
reads44

�d�i
n� = i
n�1 − �RR†�−1� + �R†�−1�R−1 − �01 , �21�

so that the matrix of quasiparticle weights reads

Z = RR† = �Z+ 0

0 Z−
 . �22�

Of course, as mentioned above, this form of the self-energy
should be understood as a low-energy approximation retain-
ing only the constant terms �which renormalize the level po-
sition associated with the even and odd orbitals� and the
quasiparticle weights. Lifetime effects as well as higher-
order terms in frequency are neglected within the SB mean-
field approximation. Accordingly, the physical electron
Green’s function

Gd = RG fR
† �23�

retains only the quasiparticle contribution to the spectral
functions �note in particular that these spectral functions do
not satisfy the normalization sum rule and instead have spec-
tral weights Z	 corresponding to the quasiparticle contribu-
tions�.

From the expression of the intradimer energy at the mean-
field level

�Hdimer� = �
�

E��
��

������
2, �24�

we see that the quantity

p�
SB 
 �

��

������
2 �25�

can be interpreted as the statistical weight associated with the
contribution to the low-energy physics of the multiplet state
�. Because of the constraint �13� on the slave bosons, these
weights are normalized according to ��p�

SB=1. As discussed
later in this paper, they can be directly compared to the sta-
tistical weights computed within the CTQMC algorithm.

III. ORBITAL-SELECTIVE MOTT TRANSITION IN
MOMENTUM SPACE

A. Different regimes of doping and the transition

In this section, we describe the behavior of the system in
the different regimes of doping. First, we focus on a low-
energy analysis which yields a very simple description of the
orbital-selective transition. To this end, we first analyze the
behavior of the real part of the even- and odd-orbital self-
energies extrapolated to zero frequency. This is shown in Fig.
3 using both CTQMC and RISB. Even though the full fre-
quency dependence of the self-energy obtained by CTQMC
is highly nontrivial �see subsequent sections�, its zero-
frequency limit is in remarkable agreement with the RISB
solution, as is clear from Fig. 3.

At large doping ��20%, the real part of the self-energies
�+��0� and �−��0� are very close to each other: Both orbitals
behave in a similar way. In this large doping regime, the
system is a good metal with well-defined quasiparticles ev-
erywhere on the Fermi surface. A single-site DMFT descrip-
tion is quite accurate in this regime, since there is little or-
bital differentiation and hence little momentum dependence.

As the doping level is further reduced ���20%�, the two
orbitals start behaving differently, signaling the onset of mo-
mentum differentiation in the lattice model. The odd-orbital
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FIG. 3. �Color online� Real part of the even and odd self-
energies at 
=0, extrapolated from the results for �=200, U=2.5.
Solid lines are the slave-boson �RISB� solution, while the symbols
are the CTQMC results. The dotted line is the lower-band edge of
the P− patch represented in Fig. 2.
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self-energy �−��0� increases rapidly as the doping level is
reduced, while �+��0� remains much smaller and even de-
creases slightly with doping. At the critical doping level
��16%, the effective chemical potential of the odd orbital
−�−��0� reaches the lower edge �min=−0.38 of the nonin-
teracting partial density of states corresponding to the outer
patch �Fig. 2�, as signaled by the dashed horizontal line in
Fig. 3. Retaining only the real part of the self-energy, this
implies that the pole equation corresponding to the outer
patch 
+−�k−�−��
�=0 no longer has solutions for 
=0,
signaling the disappearance of low-energy quasiparticle ex-
citations from the outer patch. Hence, for ��16%, we have
a strongly momentum-differentiated metal, with quasiparti-
cles present only within the central patch. Only when the
doping eventually reaches �=0 do these quasiparticles in
turn disappear, corresponding to a Mott insulator. Note that
in the above analysis, we neglected the contribution from the
imaginary part of the self-energy �−��0�. Indeed, our data
indicate that �−��0� vanishes as the temperature goes to zero,
so that the transition does exist in this limit. At finite tem-
peratures, the imaginary part of the self-energy gives a small
contribution to the spectral density at the chemical potential,
but still a rapid change of behavior is expected around the
transition.

Further insights into this transition can be obtained by
analyzing the average occupancies in each orbital n+ and n−
obtained by CTQMC and within the RISB calculation �see
Fig. 4�. At large doping, the occupancies obtained by both
methods behave similarly and increase with decreasing dop-
ing. As the doping gets closer to the critical value ��16%,
the RISB solution displays a strong deviation where n+

RISB

increases rapidly and n−
RISB vanishes. Recalling that the

slave-boson approximation only accounts for the low-energy
physics associated with quasiparticles, this indicates that the
odd orbital becomes empty at low energy in the low-doping
phase and that there are no low-energy excitations left in the
outer patch, as discussed above. A change of behavior in n	
at the transition is also present in the CTQMC solution, but it
should be kept in mind that these quantities then include
contributions from the higher-energy features of the spectral

function and hence n−
CTQMC is not expected to vanish in the

low-doping phase because the odd orbital does have spectral
weight at sufficiently negative energies in that phase as well.

In our VB-DMFT approach, the strong differentiation in
momentum space at low doping manifests itself as an
orbital-selective transition. As one approaches the Mott in-
sulator, the odd orbital localizes at a finite doping level,
while the even one only does so at �=0 when reaching the
Mott insulator. This is actually a crude description of the
formation of Fermi arcs. Indeed, for ��16%, quasiparticles
are only present in the inner patch, close to the nodal region.
Instead, in the antinodal region, the Fermi surface is de-
stroyed and the spectral function vanishes at the chemical
potential. A more precise description of the actual formation
of the Fermi arcs requires specifying a procedure for recon-
structing the momentum dependence of the self-energy from
this two-orbital description. This is the topic of Sec. V.

A marked difference of behavior between the two orbitals
at low doping is also found for the quasiparticle residues �see
Fig. 5� defined by

Z	 = �1 − �d�	� �
�
d


�

→0

−1

. �26�

The CTQMC data and RISB approximation for Z	 differ in
absolute value but they both display similar trends. Again, at
high doping, Z+ and Z− are close to each other. As the doping
is reduced, Z− decreases �with roughly a linear dependence
on doping� while Z+ remains essentially constant. Below the
critical doping, Z− cannot be interpreted as the spectral
weight of a quasiparticle �the odd orbital is localized�, but it
does indicate that the correlations continue to affect the odd-
orbital self-energy. Hence, correlations preferentially act on
the antinodal electrons. In contrast, correlations appear to
have little influence on Z+ below �c, indicating that the nodal
quasiparticles appear to be “protected” by the opening of the
�pseudo-� gap in the antinodal regions.

The value of the critical doping �c at which the transition
appears depends on the value of the interaction U. The larger
the U, the larger the �c. To illustrate the effect of U, we plot,
in Fig. 6, the real parts of the self-energies extrapolated to
zero frequency for different values of U at a fixed doping
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�=8%. The difference between the even and the odd orbitals
increases with U. Above U�1.5, the renormalized chemical
potential falls below the lower edge of the partial DOS for
the outer patch and the odd spectral function is vanishing at
the chemical potential. However, when U�1.5, the odd or-
bital is metallic again, showing clearly that the Coulomb
interaction is at the origin of the differentiation in momen-
tum space.

B. Spectral functions and the pseudogap at low doping

In Sec. III A, we have shown that strong orbital differen-
tiation sets in at low-doping levels ��16%. In a simplified
low-energy description, the effective chemical potential for
the odd orbital is pushed below the lower-band edge. This
corresponds to the vanishing of the low-energy spectral
weight of the odd orbital and signals the disappearance of
low-energy quasiparticles in the antinodal regions. In this
section, we go beyond this simple low-energy analysis and
study the full frequency dependence of the spectral functions
of both the even and odd orbitals. One of the main outcomes
of this study, as we shall see, is that the odd orbital does not
have zero spectral weight in a finite frequency range around

=0, but rather develops a pseudogap.

The computation of real-frequency spectral functions is
made possible by the very high quality of the CTQMC re-
sults on the Matsubara axis, allowing for reliable analytical
continuations to the real axis at low and intermediate ener-
gies using simple Padé approximants45 �see Appendix B�.
This is a definite advantage of our simplified two-orbital ap-
proach, in which the statistical noise of Monte Carlo data can
be reduced down to very small values at a reasonable com-
putational cost. In Fig. 7, we plot the spectral function A−�
�
of the odd orbital at a fixed interaction U=2.5. At high en-
ergies, the spectra display the expected lower and upper
Hubbard bands. From now, we focus on the lower energy
range. In this range, the spectra display a central peak. At
high doping, this peak is centered at the Fermi level 
=0. As
the doping level is reduced, this peak shifts toward positive
energies. At the critical doping �c�16%, the chemical po-

tential is at the lower edge of the peak, in agreement with the
low-energy analysis discussed above.

Correspondingly, the spectral weight at 
=0 is strongly
suppressed as the doping is reduced from �c�16%. A
pseudogap is formed at low energy, as clear from the inset of
Fig. 7, which deepens as the doping level is reduced. There is
no coherent spectral weight at the chemical potential. The
finite spectral weight at 
=0 is due to thermal excitations. In
contrast, the finite spectral weight at small but nonzero fre-
quency survives as temperature is reduced, corresponding to
a pseudogap rather than a true gap in A−�
�.

The prominent peak at low energies in A−�
� is associated
with the first coherent excitations at positive energies. By
neglecting the effect of the imaginary part of the self-energy,
it is possible to precisely identify the position of this peak as
the scale � where the first positive-energy poles appear in
the expression of the odd-orbital Green’s function

G−�
� = �
k�P−

1


 +  − �k − �−��
�
. �27�

Hence, � is the solution of

� +  − �min − �−���� = 0, �28�

where �min is the lower-band edge of the outer-patch partial
density of states �DOS�. The solution of this equation is
shown in Fig. 8. The gap � opens below �c and provides a
characteristic energy scale for the position of the peak �see
inset in Fig. 7�. Note that this energy scale is much smaller
than the deviation of the renormalized chemical potential
−�−��0� from the lower outer-patch band edge because of
the nontrivial frequency behavior of the self-energy. Further-
more, the magnitude of � as obtained from Fig. 8 is in the
range of tens of meV’s consistent with the typical magnitude
of the pseudogap in cuprates.

In Fig. 9, we display the spectral function A+�
� of the
even orbital for different doping levels. The dependence of
A+�
� on doping is rather weak. The main feature of the
noninteracting density of states corresponding to the central
patch �Fig. 2� is recovered on these spectra, namely, a broad
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FIG. 6. �Color online� Real parts of the self-energies at 
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patch represented in Fig. 2.
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peak centered at negative energy with a tail leaking above
the Fermi level. The absence of a visible lower Hubbard
band, as well as the relatively small spectral weight of the
upper Hubbard band �at the same position 
�2 as in
A−�
��, indicates that correlations have a much weaker effect
on the even orbital �central patch, nodal regions� than on the
odd �antinodal� one, as already anticipated in Sec. III A. The
spectral function A+�
� is quite asymmetric, with more hole-
like excitations than particlelike excitations �in line with the
fact that the central patch corresponds mainly to filled
states�. At low doping, a small dip appears close to the
chemical potential. The position of this dip is close to that of
the prominent peak in the odd-orbital spectral function.

C. Comparison to tunneling experiments

A direct comparison can be made between our VB-DMFT
cluster calculations and tunneling experiments in the normal
state of cuprate superconductors. Indeed, tunneling directly
probes the momentum-integrated spectral density and hence
the comparison is free of the possible ambiguities associated
with momentum-space reconstruction which influence the
comparison of cluster calculations to momentum-resolved

spectroscopies �as discussed in more detail in Sec. V�. The
tunneling conductance dI /dV as a function of the voltage V
is given by51

dI

dV
� �

−�

+�

d
�− f��
 − eV��Atot�
� . �29�

In this expression, tunneling between a normal metal �with a
featureless density of states� and the correlated sample is
considered, f� designates the derivative of the Fermi func-
tion, e�0 is the absolute value of the electron charge, and
Atot�
� is the local �momentum-integrated� spectral function.
The energy dependence of tunneling matrix elements has
been neglected and the correlated sample is considered to be
homogeneous.

In Fig. 10, we display Atot�
�=A+�
�+A−�
� for different
temperatures T=1 /� at a fixed doping �=8%. In this local
spectral function, we recognize the features discussed above,
namely, the broad band at negative energy originating from
A+�
� and the sharp peak at a small positive energy found in
A−�
�, separated by the pseudogap at low energy.

In Fig. 11, we display the voltage dependence of the tun-
neling conductance obtained using the spectral function
Atot�
� calculated within VB-DMFT. The results are dis-
played at a fixed, low-doping level �=8% in the pseudogap
regime for different temperatures. For comparison, we also
display the experimental data of Renner et al.51,52 for under-
doped Bi2212. When comparing the two set of curves, atten-
tion should be paid to the fact that our calculation applies at
this stage only to the normal state T�Tc. Our calculation
compares quite favorably to the experimental data, in several
respects. At low temperature, both the theoretical and the
experimental conductances display �i� a dip at low voltage
corresponding to the pseudogap, �ii� a peak at a small posi-
tive voltage �corresponding to empty holelike states�, and
�iii� an overall particle-hole asymmetry d2I /dV2�0 at nega-
tive voltage as well as at positive voltage above the peak, as
indeed expected in a doped Mott insulator. Furthermore, we
observe that the temperature dependence reveals the gradual
buildup of the positive-voltage coherence peak as tempera-
ture is lowered, as well as the gradual opening of the
pseudogap at low voltage. One aspect of our theoretical re-
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sults which departs from the experiments is the detailed
shape of the conductance at negative voltage. In experi-
ments, a more pronounced dip is visible, while our results
rather display a gradual, linearlike decrease.

Our results have direct implications for the interpretation
of tunneling experiments and also suggest some further ex-
periments to test these predictions. First, the coherence peak
at small positive voltage must be associated, according to our
theory, mainly with low-energy empty states in the antinodal
regions. Second, the position of this peak is predicted to have
a definite doping dependence, tracking � in Fig. 8 and hence
moving to higher energy as the doping level is reduced from
“optimal” doping.

D. Frequency dependence of the self-energy and the inelastic-
scattering rates

Here, we discuss the frequency dependence of the imagi-
nary part of the self-energies �	� �
�
 Im �	�
+i0+� and its
physical implications for the inelastic-scattering rates of the
nodal and antinodal quasiparticles in the different regimes of
doping. These quantities are displayed on Figs. 12 and 13.
Let us recall that these quantities are directly related to the
quasiparticle lifetimes, which are given by the inverse of
Z	�	� �
�.

Again, we observe that at large doping, these quantities
have rather similar behavior. An approximately quadratic fre-
quency dependence is found at low energy, corresponding to
a Fermi-liquid behavior of both orbitals, and the self-
energies display high-energy peaks corresponding to the
structures in the spectral functions described above. Overall,
the self-energies at large doping are quite similar to those
found in the single-site DMFT description of a correlated
Fermi liquid.

The situation becomes radically different as the doping
level is reduced. The first observation is that the overall scale
for �+��
� and for �−��
� then becomes very different.
Clearly, away from the very low-energy region, �−��
� be-
comes much larger than �+��
�, indicating again a stronger
effect of correlations on the antinodal regions �odd orbital�
than on the nodal ones �even orbital� and a much larger de-
gree of coherence of the nodal quasiparticles.

Focusing on the even orbital �nodes� at low frequency, we

observe that �+��
=0� displays a marked decrease as the
doping level is reduced from the characteristic doping
�c�16% at which orbital differentiation sets in and the
pseudogap opens. Physically, this means that the opening of
the pseudogap leads to a protection of the nodal quasiparti-
cles by increasing their inelastic lifetime at low energy. In-
deed, �+��
� displays a quite remarkable shape at low dop-
ing, with a rather large interval of frequency around 
=0 in
which it is very small and flat, indicating almost free nodal
quasiparticles at low doping.

This is in marked contrast to the behavior of the odd
�antinodal� orbital. In this case, our real-frequency data lack
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the precision required to assess precisely the doping depen-
dence of the very low-frequency rate �−��
=0�. However, as
soon as one focuses on a small but finite frequency �which
indeed is relevant to the lifetime of antinodal quasiparticles
at the edge of the pseudogap�, it is apparent from Fig. 13 that
�−��
� rapidly increases as the doping is reduced from �c.

This corresponds to increasingly incoherent antinodal quasi-
particles at low-doping level. Making contact with experi-
ments, these observations appear to be in good qualitative
agreement with the fact that the in-plane resistivity of cu-
prate superconductors is reduced when the pseudogap opens
and that nodal quasiparticles survive at low doping while the
antinodal ones lose their coherence.

E. Other patches

So far, we have presented results for a particular patching
scheme of the BZ. The motivation behind this choice is
based on the known phenomenology of the cuprates. The
central patch is shaped in such a way as to contain the nodal
point while the outer patch is modeled to contain the inco-
herent antinodal region. Phenomenological patch models us-
ing related patches have been used to parametrize the trans-
port properties of the cuprate superconductors.53 As we saw,
reducing the doping induces a transition in which the outer
patch becomes insulating. Here we address the stability of
this picture with respect to the deformation of the patches.
We consider patches that do not break the lattice point sym-
metry and have equal volume not to incur into problems with
the definition of the cluster Hamiltonian �for details on the
formalism, see Appendix A�.

The main difference between the patching schemes that
we consider �see Fig. 14�d�� is the relative weight given to
the nodal and antinodal regions. Compared to the reference
patching used in the rest of the paper �patching B, also in
Fig. 1�, in patching A, the central patch includes the node
and also large part of the antinode. At the opposite, in patch-
ing C, the outer patch has a larger contribution from the
node.

In Figs. 14�a�–14�c�, we present results for the three
patching schemes of Fig. 14�d�. The results for the self-
energy and the occupations are qualitatively very similar for
the different patching schemes. Most importantly, the dis-
tinctive feature of a selective insulating transition as the dop-
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ing is decreased remains in all the cases. An analysis of
−Re �−�0� allows us to calculate the critical doping as in-
dicated by the arrows in Fig. 14�c�.

We notice how, by increasing the portion of the nodal
region contained in the outer patch, the critical doping shifts
systematically to lower values. This trend is consistent with a
picture in which the quasiparticles are restricted to a fraction
�an arc� of the Fermi surface located near the node. By de-
creasing the doping, the quasiparticles disappear at the sides
of the arc inducing the selective transition in the outer or-
bital. Despite the similarity of the trend with the experimen-
tal behavior in cuprates, the sensitivity of the method is not
sufficient to obtain a quantitative prediction for the size of
the arc as a function of doping.

We also investigated the real-space cluster method
CDMFT.4,18 In this method, the notion of patches in the Bril-
louin zone cannot be introduced because the starting point is
a real-space cluster that breaks translational symmetry. Nev-
ertheless the qualitative picture emerging from CDMFT is
very similar to the one found in DCA. In particular, we find
also in CDMFT a critical doping below which the system is
in a selective Mott-insulating state.

IV. PHYSICS OF THE EFFECTIVE TWO-IMPURITY
MODEL AND THE ROLE OF THE SELF-CONSISTENCY

In this section, we relate and contrast the orbital-selective
transition described above to the physics of the crossover
between a Kondo-dominated and a singlet-dominated regime
in the two-impurity Anderson model.

A. Singlet dominance at low doping

A way to obtain a more transparent physical picture of the
phases encountered as a function of doping is to study the
contribution of the different cluster eigenstates to the density
matrix. We plot in Fig. 15 the statistical contribution of sev-
eral cluster eigenstates ��� �see Sec. II B� from CTQMC
�p�

QMC defined in Eq. �11�� and the RISB method �p�
SB defined

in Eq. �25��.

The agreement between CTQMC and RISB is very good
and even quantitative for the two states with highest weights.
At large doping, the empty state and the two spin-degenerate
states with one electron in the even orbital dominate, as ex-
pected. As doping decreases, these states lose weight and the
intradimer singlet prevails, reflecting the strong tendency to
valence-bond formation. Therefore, the orbital �momentum�
differentiation at low doping is governed by intradimer sin-
glet formation. This situation is strongly reminiscent of the
behavior of the two-impurity Anderson model �2IAM�.54,55

In the following section, we will compare the results for the
2IAM and VB-DMFT to find the extent of this similarity.

B. Role of the self-consistency: From a RKKY/Kondo
crossover to a transition

The 2IAM has been thoroughly studied by many authors
using a variety of methods.54,56–59 Here, we will focus on a
simplified version of the 2IAM where the impurities are
coupled directly through a hopping term t̄. In standard nota-
tion the Hamiltonian is given by

H2IAM = U�n1↑n1↓ + n2↑n2↓� + �0�
��

n�� − t̄�
�

�d1�
† d2� + H.c.�

− V�
k�

�d1�
† ck1� + H.c.� − V�

k�
�d2�

† ck2� + H.c.�

+ �
k��
�kck��

† ck��,

where U is the local repulsion and �0 the level energy. Note
that each impurity is coupled to an independent electronic
bath and that there are no crossed baths that would couple to
both impurities. We choose the baths to have a semielliptic
density of states of half bandwidth D=1 and the hybridiza-
tion V=0.5D. This model corresponds to the impurity model
that is solved in VB-DMFT, with the important difference
that the baths are kept fixed and �12=0.

For t̄=0, the problem reduces to that of two independent
single-impurity Anderson models. The RISB method �as
other slave-boson approaches� provides a description of the
quasiparticles in the Kondo resonance. The impurity spectral
density has a single peak at the Fermi level whose width is of
the order of the Kondo energy TK. The real part of the self-
energy in the electron-hole symmetric situation ��0=−U /2�
is simply Re �	�0�=U /2, while Z decreases monotonously
with increasing U and exponentially for large U �see Fig.
16�. When t̄ is turned on, an antiferromagnetic coupling
I=4t̄2 /U is generated between the impurities. If I�TK �see
Fig. 16 for U�4�, both impurities are in the Kondo regime
as in the t̄=0 case and the behavior of Re �	�0� and Z re-
produces that of uncoupled impurities. In the opposite limit
I�TK �large U in Fig. 16�, there is a large interimpurity
correlation which is signaled by a differentiation between
Re �+�0� and Re �−�0� �i.e., the emergence of a Re �12�0�
term�.

The behavior of the bosonic amplitudes with increasing
interaction U clearly shows the two regimes and the cross-
over region �see Fig. 16�d��. In the Kondo regime, both the
singlet and triplet multiplets have large amplitudes, while in
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FIG. 15. �Color online� Statistical weights of the various dimer
cluster eigenstates �labeled as in Table I�. S is the intradimer singlet,
1+ the �spin-degenerate� state with one electron in the even orbital,
E the empty state, and T the intradimer triplet. �=200.
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the so-called RKKY regime, the singlet dominates the phys-
ics and its associated bosonic amplitude is close to 1. Since
the level occupation is related to the bosonic amplitudes
through the constraints of Eq. �13�, their behavior follows.

In the RKKY regime, the even orbital �where the ground-
state singlet lives� fills up while the odd orbital empties �see
Fig. 16� as in earlier studies of SU�N� two-impurity models
in the large-N limit.57 The RISB method brings a significant
advantage over previous methods since it generates at the
mean-field level the RKKY interaction which in previous
treatments had to be introduced in an ad hoc fashion or by
treating fluctuations in higher orders in 1 /N.60

The crossover can also be observed by changing the im-
purity occupation, i.e., by shifting the local energy �0. In Fig.
17, we present different physical quantities as a function of
the impurity doping level ��=1−��,�n��. At zero doping,
the system is electron-hole symmetric and, for the value of
U=7D in the figure, it is in the RKKY regime. This is clearly
observed in the boson amplitudes, the level occupations, and
the real part of the self-energy at zero frequency. Increasing

the doping increases the charge fluctuations in the impurity
and this enhances the Kondo correlations. At a doping level
���0.1, there is a crossover to the Kondo regime where the
interimpurity correlation is small. For large values of ��, the
impurities enter an empty orbital regime and the effect of
correlations is small.

The behavior observed as a function of doping for the
different quantities of the impurity model closely resembles
that of VB-DMFT. Note however that the 2IAM presents a
crossover between the Kondo and RKKY regimes while in
VB-DMFT, there is an orbital-selective Mott transition. The
origin of the transition can be traced back to the only differ-
ence between VB-DMFT and the 2IAM, namely, the pres-
ence in VB-DMFT of self-consistently determined baths. In-
deed the odd-orbital Green’s function for the 2IAM is

G−�
� =
1


 +  − �−
hybr�
� − �−�
�

, �30�

where �−
hybr�
�=2�V /D�2�d�

	D2−�2


−� . The coarse-grained odd-
patch Green’s function in VB-DMFT is instead
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G−�
� = �
k�P−

1


 +  − �k − �−�
�
. �31�

While in the 2IAM the rigid structure of the baths prevents
the complete removal of spectral weight from the chemical
potential, in VB-DMFT the baths can adjust to allow for such
an effect. When performing the VB-DMFT self-consistency
loop, Re �−�0� acts as a shift of the chemical potential for
the odd band. Entering the RKKY regime, Re �−�0� grows
and can become large enough to push the chemical potential
off the band and make it insulating. In turn, an insulating odd
band enhances the intrasinglet correlations of the dimer mak-
ing the solution self-consistent.

C. Hybridization functions: Properties of the underlying two-
impurity model

To confirm the role of the VB-DMFT hybridization func-
tion in determining the transition, we analyze its behavior at
different dopings. In Figs. 18 and 19, we display �	�
�
which appear in the self-consistent two-impurity Anderson
model solved in VB-DMFT. The hybridization function for
the even orbital �+�
� shows a smooth structure with a broad

peak about the chemical potential and little variation as a
function of doping.

The hybridization of the odd orbital �−�
� �see Fig. 19�
has almost exactly the same behavior as A−�
� �see Fig. 7�
up to a rescaling. At low doping, �−�
� also displays a
pseudogap. Therefore, the self-consistency of the VB-DMFT
equations leads to a very nontrivial two-impurity Anderson
model in the low-doping regime. The even-orbital hybridiza-
tion function is rather smooth but the odd orbital �−�
� is
pseudogapped.

It is interesting to note that around the critical doping, the
low-energy part of �+�
� becomes particle-hole symmetric,
even though this is not the case for A+�
�. This property is
most clearly seen in the real part of �+�i
n� on the Matsub-
ara axis �see Fig. 27� that nearly vanishes for � between 12%
and 16%. This suggests a possible relation between the
orbital-selective transition found in VB-DMFT and the criti-
cal point of the two-impurity Kondo model.40,58 The latter is
known to exist only at particle-hole symmetry, but the self-
consistency can in principle restore dynamically the symme-
try and bring the system close to the critical point.41 These
issues deserve further investigation and are left for future
work.

V. MOMENTUM-SPACE INTERPOLATION
AND FERMI ARCS

A. Momentum-space reconstruction and comparison
to larger clusters

In this section, we address the problem of the reconstruc-
tion of momentum-space information starting from our
valence-bond description. In doing so, we will also address
the reliability of our calculations by comparing our results to
those obtained with larger clusters. This will provide a
benchmark of our approach.

An important issue in theories that use clusters to describe
lattice systems is how to infer quantities for the full lattice,
starting from the information available from the finite-cluster
calculation. In principle, this problem can be approached by
a finite-size scaling study in order to extrapolate quantities in
the thermodynamic limit. However, for cluster-DMFT theo-
ries, this requires a huge computational effort and the size of
the clusters accessible to calculations is relatively small.

In order to obtain momentum-dependent quantities, it is
necessary to employ some form of reconstruction based on
the available cluster quantities. Indeed, DCA methods give
direct access to lattice quantities �e.g., the self-energy� only
for a few special points in the Brillouin zone: the cluster
momenta. In our simple description based on a single bond,
they are k= �0,0� and k= �� ,��. At these momenta, the
lattice quantities can be unambiguously extracted from
their cluster counterparts. For example, in our case
�latt�0,0�=�11+�12=�+ and �latt�� ,��=�11−�12=�−.
From the knowledge at these points, one would like to re-
construct any point in the Brillouin zone using some interpo-
lation procedure in order to avoid unphysical discontinuities
of, e.g., the self-energy in momentum space. Note that a
similar procedure �reperiodization� must be used in the real-
space cluster methods such as CDMFT �Ref. 4� in order to
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restore the broken translation invariance. Clearly, there is
some degree of arbitrariness associated with this procedure.
The most important ingredient is the choice of the quantity to
interpolate. Since cluster quantities describe accurately the
short-range physics, it is expected that observables which are
more local �short range� in real space �hence less k depen-
dent� are better suited for interpolation.

A standard method �� interpolation� in DCA calculation
consists in interpolating the self-energy � �see, e.g., Ref. 61�.
In this paper, we choose a simple interpolation, in which the
lattice self-energy is given by

�latt
����k,
� = �+�
��+�k� + �−�
��−�k� , �32�

with �	�k�= 1
2 �1	 1

2 �cos�kx�+cos�ky���. By rewriting this in
terms of the on-site ��11�
�� and intersite ��12�
�� compo-
nents of the cluster self-energy

�latt
����k,
� = �11�
� +

1

2
�12�
��cos�kx� + cos�ky�� , �33�

it can be viewed as a truncation of the Fourier expansion of
the lattice self-energy to the first two Fourier components.
Note that the nearest-neighbor component of the lattice self-
energy is obtained, according to this formula, as
�nn=�12 /4, which is analogous to the reperiodization proce-
dure of CDMFT �see, e.g., Ref. 4�.

Another method �M interpolation� has been recently in-
troduced in Refs. 62 and 63 in the CDMFT method.
It consists in interpolating the cumulant, defined as
M 
�
+−��−1. The lattice cumulant is obtained as

Mlatt�k,
� = �+�k�
1


 +  − �+�
�
+ �−�k�

1


 +  − �−�
�
.

�34�

From Mlatt�k ,
�, it is then possible to extract a lattice self-
energy by

�latt
�M��k,
� = 
 +  − Mlatt�k,
�−1. �35�

The cumulant is the dual quantity of the self-energy in an
expansion around the atomic limit. It is a natural measure of
how much the hybridization to the self-consistent environ-
ment changes the impurity Green’s function as compared to
an isolated dimer.

The � interpolation is based on the assumption that the
self-energy is sufficiently short range or small enough for all
frequencies. It corresponds to an expansion around the free-
electron limit, hence it is expected to work better at weak
coupling. On the other hand, the M interpolation is expected
to be better close to the atomic limit and more generally at
strong coupling, for example, close to a Mott insulating state
where the cumulant is more local than the self-energy.62

Other methods, such as the periodization of the Green’s
function,25 have also been discussed in the CDMFT context.
In this section, we focus on a quantitative comparison of the
� interpolation and the M interpolation using a plaquette
�four sites� calculation as a benchmark.

Let us emphasize again that for our two-site cluster, the
momenta k= �0,0� and k= �� ,�� are special. At these two
points, lattice quantities are independent of the interpolation

method used �since at those momenta, one of the �’s van-
ishes�, while at all other momenta the quantities recon-
structed with the two methods differ. On the other hand, in a
four-site cluster �plaquette� approach, there are two addi-
tional momenta where the description is unbiased by the in-
terpolation procedure, namely, k= �0,�� and k= �� ,0�,
which are equivalent if rotational symmetry is not broken.
Hence, performing a plaquette calculation gives us the op-
portunity to compare directly cluster self-energies obtained
with the dimer and the plaquette at momenta k= �0,0� and
k= �� ,�� and furthermore provides a test for the interpola-
tion method by comparing self-energies at k= �0,��.

We compare in Fig. 20 the results of VB-DMFT and
plaquette calculations for momenta k= �0,0� and k= �� ,��
for �=8% �upper panel� and �=16% �lower panel� in Mat-
subara frequencies. The agreement between the two cluster
calculations is good. The descriptions of the Hubbard model
given by VB-DMFT and plaquette cluster calculations are
consistent with one another for these momenta. In order to
decide which momentum-interpolation procedure is better
within VB-DMFT, we also compare in Fig. 21 �at �=8% in
the upper panel and �=16% in the lower panel� the self-
energy obtained from the � and M interpolations, at momen-
tum k= �0,��, to the self-energy obtained from a direct
plaquette calculation �for which �0,�� is a cluster momen-
tum�. Comparing the two data sets, we see that the M inter-
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line and red diamond� and k= �� ,�� �orange solid line and blue
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polation is clearly superior to the � interpolation in recon-
structing the self-energy at �0,�� at low doping.

Applying the M interpolation to the VB-DMFT results,
we can qualitatively, and to a large extent quantitatively, re-
produce the larger cluster �plaquette� results, hence providing
a justification to the use of the M interpolation. It is impor-
tant to stress that the plaquette cluster momentum k= �0,��
is not present as an individual orbital in the two-site descrip-
tion. It is entirely reconstructed by interpolation and as such
is the most direct test of the reconstructed momentum depen-
dence.

B. Fermi arcs and momentum differentiation

We can now study momentum differentiation using the M
interpolation. As we shall see, VB-DMFT indeed provides a

simple description of momentum differentiation as observed
in ARPES experiments. This is illustrated by the intensity
maps of the spectral function A�k ,0� displayed in Fig. 22. At
very high doping ��25% �not shown�, cluster corrections to
DMFT are negligible and the spectral intensity is uniform
along the Fermi surface. In contrast, as the doping level is
reduced, momentum differentiation sets in around the char-
acteristic doping at which the localization of the outer orbital
takes place. The intensity maps then display apparent “Fermi
arcs” at finite temperature with higher spectral intensity in
the nodal direction in comparison to antinodes, in qualitative
agreement with experiments �see, e.g., Refs. 13 and 64� and
earlier CDMFT calculations with larger clusters.23,24,29 The
mechanism behind the suppression of spectral weight at the
antinodes at low doping is clearly associated, in our results,
to Mott localization and the importance of singlet correla-
tions. In technical terms, this is associated with the large real
part in �−=��� ,�� �cf. Fig. 3�, which induces a pseudogap
in the antinodal orbital and with the large imaginary part of
the self-energy in the �� ,0� and �� ,�� regions, which also
contribute to the suppression of spectral weight in the antin-
odal region.

In order to compare this momentum-space differentiation
to experiments in a more quantitative manner, we plot in Fig.
23 the contrast of the spectral intensity along the Fermi sur-
face for different doping levels. This plot compares very fa-
vorably to the experimental data of Ref. 64, which are also
reproduced for convenience. In particular, we observe that
the differentiation has a nonmonotonous behavior, reaching a
maximum around ��10%, and then decreasing for lower
dopings.

VB-DMFT is able to capture momentum differentiation
reliably for doping levels between 10% and 20%. For very
low doping ���8%�, the M-interpolated self-energy devel-
ops singularities on lines in momentum space, leading to
lines of zeroes of the Green’s function and to the breakup of
the Fermi surface.62,65–70 It would be very instructive to re-
late this with recent quantum oscillation experiments.71

However, in this regime, a better momentum resolution
�larger clusters� is necessary to obtain reliable results.

VI. CONCLUSION

In this paper, we presented in detail the valence-bond
DMFT approach to correlated electrons36 and used it to treat
the two-dimensional Hubbard model with nearest-neighbor
and next-nearest-neighbor hoppings. The approach reduces
to single-site DMFT when intersite correlations are unimpor-
tant. This is the case at large doping levels. Near the Mott
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transition, at lower doping levels, these correlations domi-
nate the physics and lead to the phenomenon of momentum-
space differentiation.

This phenomenon corresponds to the destruction of coher-
ent quasiparticle excitations in the antinodal regions of the
Brillouin zone. In those regions, a pseudogap opens and qua-
siparticles become increasingly incoherent as the doping
level is reduced. In contrast, in nodal regions, quasiparticles
are protected and their lifetime actually increases as the
pseudogap opens. The physics of the low-doping regime is
dominated by strong singlet correlations between nearest-
neighbor sites.

VB-DMFT is a minimal cluster description of a low-
dimensional strongly correlated system in terms of two ef-
fective degrees of freedom, associated to each of the impor-
tant regions in momentum space �nodal and antinodal�.
These two degrees of freedom are treated as the two orbitals
of an effective dimer impurity model. Momentum-space dif-
ferentiation emerges as an orbital-selective Mott transition in
which a pseudogap opens in the spectrum of the antinodal
degree of freedom, while the nodal one remains a coherent
Fermi liquid. The simplicity of the approach allows for a
highly accurate numerical solution of the VB-DMFT equa-
tions. It also allows for the use of a semianalytical technique,
the rotationally invariant slave-bosons method, as an ap-
proximate impurity solver.

Comparisons of the results of VB-DMFT and plaquette
calculations put the cluster extensions of DMFT on much
firmer footing. It has been known for a while that in the
high-temperature and high-enough doping regime, single-site
DMFT is very accurate and cluster corrections are quantita-
tively small. On the other hand, the validity of cluster exten-
sions of DMFT in the underdoped regime, where
momentum-space differentiation is strong, is not as univer-
sally accepted. Consistency of the results between two-site
calculations and calculations with larger clusters provides
support to the validity of cluster approaches.

The qualitative picture that emerges from VB-DMFT is in
excellent qualitative agreement with photoemission results in

the normal state of the copper-oxide-based high-temperature
superconductors. The selective destruction of quasiparticles
at the antinodes is associated with the “Fermi arcs” observed
in ARPES. Comparison of the evolution of the tunneling
density of states with temperature against experimental data
is also encouraging. Many more detailed comparisons of
VB-DMFT against various other spectroscopies should be
carried out in future work in order to determine the strengths
and the limitations of the method and in order to further
advance our understanding and our ability to capture with
simple models some of the physical properties of cuprates.
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APPENDIX A: DCA WITH BRILLOUIN-ZONE PATCHES
OF ARBITRARY SHAPES

In this appendix, we review for completeness the basic
formalism of DCA �Refs. 18, 72, and 73� and discuss in
particular its extension to Brillouin-zone patches with equal
volume and arbitrary shape.

DCA can be seen as an approximation to the Luttinger-
Ward �LW� functional of a lattice theory. In the LW func-
tional, the conservation of momentum at the vertex of dia-
grams is accounted for by the function

��k1,k2,k3,k4� = N�k1+k2,k3+k4
. �A1�

In single-site DMFT momentum conservation at the internal
vertices of the diagrams is ignored and �
1. DCA attempts
at partially restoring momentum conservation by partitioning
the Brillouin zone into Np patches PK centered around a
subgroup of Np momenta K and approximating the momen-
tum conservation with

��k1,k2,k3,k4� � Np�K1+K2,K3+K4
, �A2�

where Ki is the representative vector of the patch containing
ki. This corresponds to taking into account momentum con-
servation among the patches and discarding momentum con-
servation inside the single patch.

The DCA LW functional contains the same diagrams as
the original lattice functional with all the internal Green’s
functions replaced by the coarse-grained Green’s functions

G�K� =
1

NK
�

k�PK

Glatt�k� , �A3�

where NK is the number of momenta contained in the patch
PK �the volume of the patch�. To see this, we can consider
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FIG. 23. �Color online� �a� Normalized intensity A�� ,0� /A�0,0�
along the Fermi surface vs the angle to the diagonal of the Brillouin
zone in degrees ��=0 is the node, �=	45 the antinode�. The nodal
intensity A�0,0� is 0.045 for �=6%, 1.66 for �=10%, and 4.61 for
�=14%. �=200. �b� Angular dependence of the spectral weight
along the Fermi surface in Ca2−xNaxCuO2Cl2 at x=0.05 �black dia-
monds�, x=0.10 �red squares�, and x=0.12 �blue circles� along with
data from La2−xSrxCuO4 for x=0.05 and x=0.10 �open symbols�.
Figure reprinted from Ref. 64 �Fig. 3�b��. Copyright 2005 by
Science.
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the simplest graph contributing to the LW functional. The
contribution of this graph to the lattice functional is given by

 latt =
1

N4 �
k1k2k3k4

Glatt�k1�Glatt�k2�Glatt�k3�Glatt�k4�

�U2N2�k1+k2,k3+k4
. �A4�

Replacing the original momentum conservation with the
DCA approximation, we obtain

 DCA =
1

N4�
Ki

�
k̃i

Glatt�K1 + k̃1�Glatt�K2 + k̃2�Glatt�K3

+ k̃3�Glatt�K4 + k̃4�U2Np
2�K1+K2,K3+K4

= �
Ki

NK1
NK2

NK3
NK4

N4 � 1

NK1

�
k̃1

Glatt�K1 + k̃1�¯

�� 1

NK4

�
k̃4

Glatt�K4 + k̃4�U2Np
2�K1+K2,K3+K4

= �
Ki

NK1
NK2

NK3
NK4

N4 G�K1� ¯ G�K4�U2Np
2

��K1+K2,K3+K4
. �A5�

It is then clear that if the number of k points �the BZ volume�
is the same for every patch, the prefactor can be simplified
yielding

 DCA =
1

Np
4 �

Ki

G�K1� ¯ G�K4�U2Np
2�K1+K2,K3+K4

.

�A6�

This functional corresponds to the functional of a problem
with Np momenta and hence can be obtained by the solution
of a cluster impurity problem. The crucial observation is that,
as long as the volume is the same for all the patches, the
DCA functional is the functional of a cluster problem which,
once expressed in real-space coordinates, retains purely local
interactions, precisely identical to those of the original Hub-
bard model. This ensures that this procedure does not gener-
ate additional interactions in the cluster.

However, the shape of the patches is not constrained in
this procedure. A possible route to exploit this freedom is to
notice that DCA can also be interpreted as an approximation
to the lattice self-energy �see Sec. II A�. Indeed DCA corre-
sponds to approximating the self-energy by a constant value
in each patch

��Ki + k̃,
� � ��Ki,
� ∀ Ki + k̃ � PKi
. �A7�

Hence, using physical intuition, the patches can be shaped in
such a way to enclose regions with definite properties, such
as nodal and antinodal regions, for example.

APPENDIX B: ANALYTICAL CONTINUATIONS USING
PADÉ APPROXIMANTS

In order to perform the analytical continuations shown
earlier in this paper, we have used N-point Padé
approximants45

CN�z� = AN�z�/BN�z� , �B1�

where AN and BN are polynomials of order �N−1� /2 and
�N−1� /2 if N is odd and �N−2� /2 and N /2 if N is even. The
Padé approximant CN can alternatively be written as a con-
tinued fraction

CN�z� =
a1

1+

a2�z − z1�
1+

¯

aN�z − zN−1�
1

. �B2�

The polynomials AN and BN are then given by a recursion
formula

An+1�z� = An�z� + �z − zn�an+1An−1�z� , �B3�

Bn+1�z� = Bn�z� + �z − zn�an+1Bn−1�z� , �B4�

with

A0 = 0, A1 = a1, B0 = B1 = 1. �B5�

In order to construct the complex function CN�z�, we impose
that it is equal to the function f to be continued on the real
axis at the first N Matsubara frequencies

CN�i
n� = f�i
n� ∀ n = 1, . . . ,N . �B6�

This constraint can be achieved by determining the coeffi-
cients an with the recursion

an = gn,n, g1,n = f�i
n�, n = 1, . . . ,N , �B7�

gp,q =
gp−1,p−1 − gp−1,q

�i
q − i
p−1�gp−1,q
. �B8�

In this paper, the Monte Carlo data on the Matsubara axis
have been averaged over 5�108 measures. A Padé approxi-
mant was computed for �	 imposing that they match over
the first 200 Matsubara frequencies for a temperature
1 /�=1 /200. The self-energies �	�
� obtained on the real-
frequency axis using this procedure were then used to com-
pute the spectral functions through

A	�
� = −
1

�
Im �

k�P	

1


 +  − �k − �	�
�
. �B9�

In order to test the quality of the analytical continuations,
we constructed a Padé approximant for several independent
runs checking that they lead to qualitatively similar results.
Indeed, spurious poles sometimes appear on the real-
frequency axis producing unphysical results. We also com-
pared the Padé approximant to the outcome of a stochastic
maximum entropy method.74,75 A typical outcome is shown
in Fig. 24. Even if both methods lead to results that are
slightly different at a quantitative level, they display the
same main qualitative features. Therefore all our physical
conclusions stated earlier do not depend on the analytical
continuation method.
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APPENDIX C: RAW CTQMC DATA

For completeness, we display the raw CTQMC data on
the Matsubara axis for the Green’s functions G	, the self-
energies �	, and the hybridization functions �	 �Figs.
25–27�. The analytical continuations using Padé approxi-
mants �see Appendix B� have been performed on these data.
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FIG. 24. �Color online� Even self-energy on the real frequency
axis as obtained using Padé approximants �solid line� and by maxi-
mum entropy �dashed line�. �=8% and �=200.
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FIG. 25. �Color online� Even and odd Green’s functions
G	�i
n� on the Matsubara axis for various dopings at �=200.
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FIG. 26. �Color online� Even and odd self-energies �	�i
n� on
the Matsubara axis for various dopings at �=200.
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FIG. 27. �Color online� Even and odd hybridization functions
�	�i
n� on the Matsubara axis for various dopings at �=200.
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