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We present the explicit expressions of different pseudo-gauge transformations for Dirac and Proca
fields considering a general interaction term. The particular case of the interaction of Dirac and
Proca fields with a background electromagnetic field is also studied. Starting from the quantum
kinetic theory with collisions derived from the Wigner-function formalism for massive spin-1/2 and
spin-1 particles, we establish a connection between different pseudo-gauges and relativistic spin
hydrodynamics. The physical implications of the various decompositions of orbital and spin angular
momentum are discussed.

I. INTRODUCTION

The derivation of relativistic spin hydrodynamics, i.e., the theory of relativistic hydrodynamics when spin degrees
of freedom are dynamical variables, has recently been the subject of intense research [1–37]. Such effort is mainly
motivated by the phenomenology of noncentral heavy-ion collisions, where the vorticity of the hot and dense matter
induces hadron spin polarization of the final state [38–41]. Polarization phenomena for spin-1/2 particles have been
observed in the case of Lambda hyperons in Refs. [42–44]. The polarization of Λ-hyperons along the global angular
momentum, i.e. the global polarization, was found to be in good agreement with hydrodynamic models assuming local
thermodynamic equilibrium [41, 45–51]. However, the same models cannot describe the momentum dependence of the
polarization along the beam direction, i.e., the longitudinal polarization [52]. This mismatch between experimental
data and theoretical calculations is often referred to as “polarization sign problem” and triggered many important
developments, see, e.g., [52–64]. Recently, promising progress towards a restoration of the agreement between theory
and experiments has been made in Refs. [65–69]. Nevertheless, the polarization sign problem remains an open question.
Furthermore, measurements of polarization observables have been also carried out for vector particles. In particular,
the global spin alignment has been measured for φ and K⋆0 mesons [70, 71]. Interestingly, the experimental results
for the magnitude of the spin alignment turns out to be much larger compared to the theoretical predictions based
on the assumption of local equilibrium of spin degrees of freedom [72–77].
In order to resolve the disagreements between theory and experiments, it has been proposed to consider out-of-

equilibrium spin effects in kinetic theory and include spin degrees of freedom as new dynamical variables in the
hydrodynamic description of the hot and dense matter. In relativistic spin hydrodynamics, together with the conser-
vation of the energy-momentum tensor T µν , one also solves the conservation of the total angular momentum tensor

Jλ,µν ≡ xµT λν − xνT λµ + ~Sλ,µν , (1)

where Sλ,µν is the so-called spin tensor. The macroscopic hydrodynamic quantities are given by the expectation values
of the quantum operators over some (not necessarily equilibrium) state, i.e., T µν = 〈: T̂ µν :〉 and Sλ,µν = 〈: Ŝλ,µν :〉,
where the colon denotes normal ordering. Thus, the equations of motion for relativistic spin hydrodynamics read

∂µT
µν = 0 , (2a)

~ ∂λS
λ,µν = T νµ − T µν . (2b)

Over the past few years, such a theory has been developed from many different perspectives: kinetic theory [1–21], an
effective action [22–26], an entropy-current analysis [27–33], holographic duality [34–36], and linear-response theory
[24, 37]. An important issue concerning the relativistic decomposition of the total angular momentum into an orbital
and spin part is that the definition of the energy-momentum and spin tensors is not unique. In fact, one can perform
a so-called pseudo-gauge transformation which is a redefinition of the densities of the form [78]

T̂ µν
pgt = T̂ µν +

~

2
∂λ(Φ̂

λ,µν + Φ̂ν,µλ + Φ̂µ,νλ) , (3a)

Ŝλ,µν
pgt = Ŝλ,µν − Φ̂λ,µν + ~ ∂ρẐ

µνλρ , (3b)
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where Φ̂λ,µν and Ẑµνλρ are arbitrary differentiable tensors such that Φ̂λ,µν = −Φ̂λ,νµ and Ẑµν,λρ = −Ẑνµ,λρ =

−Ẑµν,ρλ. For convenience, in this work T̂ µν
pgt and Ŝ

λ,µν
pgt will always be constructed starting from the canonical tensors.

The pseudo-gauge transformations have the properties to leave invariant the form of Eqs. (2), the global energy and

momentum P̂µ, and the global total angular momentum Ĵµν defined as

P̂µ ≡
∫

dΣλT̂
λµ , (4a)

Ĵµν ≡
∫

dΣλĴ
λ,µν , (4b)

where dΣλ denotes the integration over a space-like hypersurface. Note that the global spin defined as

Ŝµν ≡
∫

dΣλŜ
λ,µν (5)

transforms as a rank-2 tensor if and only if the antisymmetric part of the energy-momentum tensor vanishes and the
spin tensor is conserved [9]. Recently, different choices of pseudo-gauges and their possible physical implications have
been discussed in different contexts [9, 28, 29, 33, 79–85]. However, this topic still remains highly debated. While for
free spin-1/2 particles pseudo-gauge transformations have been discussed in depth in the literature, see, e.g., Ref. [9],
only little work has been devoted to studying pseudo-gauges for spin-1 particles and interacting spin-1/2 or spin-1
particles. In this paper, we aim at filling this gap.
In previous works [7, 14, 20], relativistic dissipative spin hydrodynamics was derived from quantum kinetic theory

for massive spin-1/2 particles with nonlocal collisions in the so-called Hilgevoord-Wouthuysen pseudo-gauge. In this
paper, we provide a detailed derivation of the various sets of tensors (including the Hilgevoord-Wouthuysen ones used
in [7, 14, 20]) by generalizing the pseudo-gauge transformations of free Dirac fields to the case of nonlocal interactions.
Furthermore, we present for the first time the pseudo-gauge transformations for Proca fields, considering both the
free and the interacting case. We find a form of the spin tensor analogous to the Hilgevoord-Wouthuysen one for
spin-1/2 particles, which is conserved for free fields, but not in the presence of nonlocal collisions. Finally, we discuss
pseudo-gauge transformations in the presence of electromagnetic fields for both massive spin-1/2 and spin-1 particles,
obtaining a gauge-invariant splitting of the total angular-momentum tensor. This angular-momentum decomposition
is such that the spin tensor is not conserved, but follows equations of motion analogous to the classical spin precession
in electromagnetic fields [86, 87].
This paper is organized as follows. In Section II, we briefly review the quantum kinetic theory for Dirac particles

[7, 9] and perform the pseudo-gauge transformations for Dirac fields interacting through a nonlocal collision term. In
Section III, we introduce the energy-momentum and spin tensors for free Proca fields in various pseudo-gauges. As
a next step, we generalize these pseudo-gauge transformations to the interacting case in Section IV. In Section V,
we provide the equations of motion for relativistic spin hydrodynamics in the Hilgevoord-Wouthuysen pseudo-gauge.
Such equations of motion are formally identical for spin-1 and spin-1/2 fields. Finally, in Section VI, we discuss the
particular case of the pseudo-gauge transformations in the presence of a background electromagnetic field.
We use the following notation and conventions: a · b ≡ aµbµ, a[µbν] ≡ aµbν − aνbµ, a(µbν) ≡ aµbν + aνbµ, gµν =

diag(+,−,−,−), ǫ0123 = −ǫ0123 = 1, and repeated indices are summed over. Furthermore, we indicate operators by a
hat, except for spinor and vector-field operators which are denoted by ψ and V µ, respectively. Throughout the paper,
in order to distinguish quantities for Dirac and Proca fields, we will use the index D or P , respectively.

II. INTERACTING DIRAC FIELDS

A. Quantum transport for Dirac fields

In this section we will briefly summarize the Wigner-function formalism derived in Refs. [7, 14] [see related work
in Refs. [88–94]]. The Wigner function for spin-1/2 particles is defined as [95–97],

WD,αβ(x, p) =

∫

d4y

(2π~)4
e−

i

~
p·y

〈

: ψ̄β (x1)ψα (x2) :
〉

, (6)

with x1,2 = x± y/2 and ψ(x) being the spinor field. The Lagrangian density for Dirac fields is given by

LD = ψ̄

(

i~

2
γ · ←→∂ −m

)

ψ + LI , (7)
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with
←→
∂ ≡ −→∂ −←−∂ and LI being a general interaction Lagrangian, assumed to be a function only of spinors and their

adjoints, but not of their derivatives, LI = LI(ψ, ψ̄). The equations of motion derived from the Lagrangian (7) read

(i~γ · ∂ −m)ψ(x) = ~ρ(x) , (8a)

ψ̄(x)
(

i~γ · ←−∂ +m
)

= −~ρ̄(x) , (8b)

where ρ ≡ −(1/~)∂LI/∂ψ̄. From Eqs. (8) one obtains the transport equation for the Wigner function [95],
[

γ ·
(

p+
i~

2
∂

)

−m
]

WD = ~ C , (9)

where

Cαβ ≡
∫

d4y

(2π~)4
e−

i

~
p·y

〈

: ψ̄β(x1)ρα(x2) :
〉

. (10)

We decompose the Wigner function in terms of a basis of the generators of the Clifford algebra

WD =
1

4

(

F + iγ5P + γ · V + γ5γ · A+
1

2
σµνSµν

)

, (11)

and substitute it into Eq. (9) to obtain the equations of motion for the coefficient functions [7]. From the real part
we find

p · V −mF = ~DF , (12a)

~

2
∂ · A+mP = −~DP , (12b)

pµF − ~

2
∂νSνµ −mVµ = ~Dµ

V , (12c)

−~

2
∂µP +

1

2
ǫµναβpνSαβ +mAµ = −~Dµ

A , (12d)

~

2
∂[µVν] − ǫµναβpαAβ −mSµν = ~Dµν

S , (12e)

and from the imaginary part

~∂ · V = 2~CF , (13a)

p · A = ~CP , (13b)

~

2
∂µF + pνSνµ = ~Cµ

V , (13c)

pµP +
~

4
ǫµναβ∂νSαβ = −~Cµ

A , (13d)

p[µVν] +
~

2
ǫµναβ∂αAβ = −~Cµν

S . (13e)

Here we defined Di = ReTr (Γ̃iC), Ci = ImTr (Γ̃iC), i = F ,P ,V ,A,S, Γ̃F = 1, Γ̃P = −iγ5, Γ̃V = γµ, Γ̃A = γµγ5,

Γ̃S = σµν . The equations of motion (12) and (13) are solved employing an ~-gradient expansion [5, 14].
In quantum kinetic theory, it is convenient to introduce the phase-space spin variable sµ and define the distribution

function as [7]

f(x, p, s) ≡ 1

2
[F(x, p)− ~δV (x, p)− s · A(x, p)] , (14)

where δV is determined by

Dµ
V = pµδV +O(~) . (15)

Equation (15) holds if spin effects are considered to be of order O(~), see Refs. [7, 14] for details. Using the properties
of the sµ-integration

∫

dS = 2 ,

∫

dSsµsν = −2Pµν , (16)
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with Pµν ≡ gµν − pµpν/p2 and dS ≡ (
√

p2/
√
3π)d4s δ(s · s+ 3)δ(p · s), one can prove that the functions F , δV and

Aµ are given by

∫

dS f = F − ~δV ,

∫

dS sµf = Aµ . (17)

The equation of motion for the distribution function has the form of a Boltzmann equation

p · ∂f = C[f] , (18)

where the collision term C contains both local and nonlocal contributions [7, 14]. In general, the distribution function
f is not on-shell. However, it was shown in Refs. [7, 14] that off-shell terms cancel on both sides of the Boltzmann
equation (18), and one is left with

δ(p2 −m2)p · ∂f = δ(p2 −m2)C[f ] , (19)

where f is defined through

f = mδ(p2 −M2)f , (20)

with M being an effective mass containing interaction contributions.
In order to solve the equations of motion (12) and (13), we employ an expansion in powers of ~ for the functions
F ,P ,Vµ,Aµ,Sµν and the collision terms Di, Ci [see, e.g., Refs. [5, 7, 90, 91]], e.g., for the scalar part

F = F (0) + ~F (1) +O(~2) . (21)

Since gradients are always accompanied by factors of ~, this is effectively a gradient expansion.

B. Canonical currents

The so-called canonical energy-momentum and spin tensors are obtained from the interacting Dirac Lagrangian in
Eq. (7) using Noether’s theorem [9]. The canonical tensors are on the operator level given by

T̂ µν
D,C =

i~

2
ψ̄γµ
←→
∂ νψ − gµνLD , (22a)

~Ŝλ,µν
D,C =

~

4
ψ̄{γλ, σµν}ψ

= −~

2
ǫλµναψ̄γαγ5ψ . (22b)

The normal-ordered ensemble averages

T µν
D,C ≡ 〈: T̂

µν
D,C :〉 , Sλ,µν

D,C ≡ 〈: Ŝ
λ,µν
D,C :〉 (23)

can be expressed in terms of the Wigner function as [9]

T µν
D,C =

∫

d4p pνVµ , (24a)

Sλ,µν
D,C = −1

2
ǫλµνα

∫

d4pAα . (24b)

Plugging Eq. (12e) into Eq. (12c) and then Eq. (12c) into Eq. (24a) we obtain, after considering spin effects to be of
O(~) [7, 14],

T µν
D,C =

∫

dΓ pν
[

pµ +
~

2
Σµλ

s
∂λ +

~
2

4m2
∂λ(∂

µpλ − ∂λpµ)
]

f(x, p, s) +
~
2

m

∫

d4p pνD
(1)µ
V +O(~3) , (25a)

Sλ,µν
D,C =

m2

2

∫

dΓ
1

p2
(

pλΣµν
s

+ pµΣνλ
s

+ pνΣλµ
s

)

f(x, p, s) , (25b)
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where we performed an expansion in ~ and defined dΓ ≡ d4p δ(p2 −m2) dS as well as the dipole-moment tensor

Σµν
s
≡ − 1

m
ǫµναβpαsβ . (26)

Note that Eq. (25b) is exact at any order in the Planck constant 1. With the help of Eq. (18), we derive the following
equations of motion,

∂µT
µν
D,C =

∫

dΓ pν C[f ] +O(~2) = 0 , (27a)

~ ∂λS
λ,µν
D,C =

∫

dΓ
~

2

{

Σµν
s

C[f ] + p[µΣ
ν]λ
s ∂λf(x, p, s)

}

= T
[νµ]
D,C . (27b)

One can see from Eq. (27a) that the fact that pµ is a collisional invariant leads to the conservation of the energy-
momentum tensor. Using Eq. (27a) in Eq. (25a), we can express the canonical energy-momentum tensor as

T µν
D,C =

∫

dΓ pν
[

pµ
(

1− ~
2

4m2
∂2

)

+
~

2
Σµλ

s
∂λ

]

f(x, p, s) +
~
2

m

∫

d4p pνD
(1)µ
V +O(~3) . (28)

Taking the antisymmetric part of Eq. (28) and inserting it into Eq. (27b), one can see that Σµν
s is not conserved in a

collision if and only if the interaction term Dµ
V is nonzero. However, it can be seen from Eq. (27b) that the canonical

spin tensor is not conserved even if Σµν
s is a collisional invariant, and even if there are no interactions. Furthermore,

in the case of rigidly rotating global equilibrium, the canonical energy-momentum tensor is not symmetric either [9],
cf. Section V. Therefore, the canonical spin tensor does not have a clear interpretation as a spin density, since the
latter, in a physical picture, should change only through particle scatterings until the system is globally equilibrated.
At this point, we note that one can make use of the pseudo-gauge freedom in Eq. (3) to obtain a set of energy-
momentum and spin tensors with a clearer physical interpretation than the canonical ones. In the next sections,
we will derive the so-called Hilgevoord-Wouthuysen, de-Groot-van-Leeuwen-van-Weert, and alternative Klein-Gordon
currents, respectively, in the presence a general interaction term.

C. Hilgevoord-Wouthuysen currents

A pseudo-gauge in which the energy-momentum tensor is symmetric for free fields, implying the conservation of
the spin tensor, has been introduced by Hilgevoord and Wouthuysen (HW) in Refs. [98, 99]. The main idea of those
works is to apply Noether’s theorem to the Klein-Gordon Lagrangian for spinors, and then impose the Dirac equation
as a subsidiary condition. The pseudo-gauge potentials for the HW tensors in the free case read [9]

Φ̂λ,µν
HW,free = M̂ [µν]λ − gλ[µM̂ ν]ρ

ρ , (29a)

Ẑµνλρ
HW,free = −

1

8m
ψ̄(σµνσλρ + σλρσµν)ψ , (29b)

where

M̂λµν ≡ i~

4m
ψ̄σµν←→∂ λψ . (30)

For the interacting case, we consider the modifications of the potentials in Eqs. (29) as follows

Φ̂λ,µν
HW = M̂ [µν]λ − gλ[µM̂ ν]ρ

ρ + Q̂λµν , (31a)

Ẑµνλρ
HW = − 1

8m
ψ̄(σµνσλρ + σλρσµν )ψ , (31b)

with

Q̂λµν ≡ − ~

4m
ρ̄γλσµνψ − ~

4m
ψ̄σµνγλρ . (32)

1 In Eqs. (25) we do not take into account mass-shell corrections or the term proportional to g
µν in the energy-momentum tensor. In

general, such contributions can be nonvanishing in the presence of interactions, however, they can be neglected under the assumption
of low density [95], which is employed in this work.
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In order to compute the interacting HW energy-momentum tensor T µν
D,HW from Eq. (3), we first consider the following

part

T µν
D,C − ~∂λ

(

Mνµλ + gν[µM λ]ρ
ρ

)

=

∫

d4p pνVµ − ~

2m

∫

d4p ∂λ

(

pνSµλ + gν[µSλ]ρpρ
)

=
1

m

∫

d4p

[

pν (pµF − ~Dµ
V) +

~
2

4
∂ν (∂µF − 2Cµ

V)−
~
2

4
gµν

(

∂2F − 2 ∂ · CV

)

]

, (33)

where Eqs. (12c) and (13c) were inserted. The contribution due to the tensor Qλµν to the energy-momentum tensor
is given by

∂λ(Q
λµν +Qνµλ +Qµνλ) =− ~

4m
∂λ

〈

:
[

ρ̄
(

2igν[µγλ] + ǫλµναγ5γα

)

ψ + ψ̄
(

−2igν[µγλ] + ǫλµναγ5γα

)

ρ
]

:
〉

=− ~

m
∂λg

ν[µIm
〈

: ψ̄γλ]ρ :
〉

+
~

2m
ǫλµνα∂λRe

〈

: ψ̄γαγ
5ρ :

〉

=− ~

m

∫

d4p

(

gµν∂ · CV − ∂νCµ
V −

1

2
ǫλµνα∂λDAα

)

, (34)

where we used the relation γλσµν = igλ[µγν] + ǫλµνργ5γρ. Summing up Eqs. (33) and (34) we find

T µν
D,HW =

1

m

∫

d4p

[

pν (pµF − ~Dµ
V) +

~
2

4
(∂ν∂µ − gµν∂2)F +

~
2

4
ǫλµνα∂λDAα

]

+O(~3) . (35)

We note that the antisymmetric part of the HW energy-momentum tensor arises solely from interactions. Considering
Eq. (15), one can see that this antisymmetric part is of second order in ~. This implies that the HW spin tensor is
conserved in the absence of interactions.
We now give the explicit form of the HW spin tensor. Making use of the relation γλγµ = gλµ − iσλµ, we can write

the interacting Dirac equation and its adjoint (8) in the following form

i~∂λψ =− ~σλµ∂µψ +mγλψ + ~γλρ , (36a)

−i~∂λψ̄ =− ~∂µψ̄σ
λµ +mψ̄γλ + ~ρ̄γλ . (36b)

With the help of Eqs. (36) we obtain a generalization of the Gordon decomposition [100] in the presence of a general
interaction term, i.e.,

ψ̄γµψ =
i~

2m

[

ψ̄
←→
∂ µψ − i

(

ψ̄σµν∂νψ + ∂ν ψ̄σ
µνψ

)

]

− ~

2m

(

ψ̄γλρ+ ρ̄γλψ
)

. (37)

The HW spin tensor is then found by applying a pseudo-gauge transformation with the potentials in Eq. (31) to the
canonical spin tensor (22b) and using Eq. (37):

Ŝλ,µν
D,HW =

1

4
ψ̄{γλ, σµν}ψ +

i~

4m

(

ψ̄
←→
∂ [νσµ]λψ − gλ[νσµ]ρ←→∂ ρψ

)

− ~

4m

[

(∂ρψ̄σ
λρ − ρ̄γλ)σµνψ + ψ̄σµν(σλρ∂ρψ − γλρ)

]

+
~

8m
ψ̄[σµν , σλρ]

←→
∂ ρψ

=
i~

4m
ψ̄σµν←→∂ λψ , (38)

where also the identity

[σµν , σλρ] = 2i(gµρσνλ + gνλσµρ − gµλσνρ − gνρσµλ) (39)

was used. Performing the ensemble average and expressing the result in terms of the Wigner function we have

Sλ,µν
D,HW =

1

2m

∫

d4p pλSµν . (40)
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Putting everything together, we arrive at the HW tensors used in Ref. [7], which read up to first order in ~

T µν
D,HW =

∫

dΓ pµpνf(x, p, s) +O(~2) , (41a)

Sλ,µν
D,HW =

∫

dΓ pλ
(

1

2
Σµν

s
− ~

4m2
p[µ∂ν]

)

f(x, p, s) +O(~2) , (41b)

where, in order to get Eq. (41b), we made use of Eq. (12e). As shown in Refs. [7, 14], the HW spin tensor is not
conserved only in the presence of nonlocal particle scatterings.

D. de Groot-van Leeuwen-van Weert and alternative Klein-Gordon currents

The energy-momentum and spin tensors used by de Groot, van Leeuwen and van Weert (GLW) in Ref. [95] are
equivalent to the HW currents up to first order in ~. They are derived from the canonical currents in the fully
interacting case using a pseudo-gauge transformation with

Φλ,µν
GLW =

1

2m

∫

d4p p[µSν]λ , (42a)

Zµνλρ
GLW = 0 . (42b)

Following similar steps as in the HW case, we obtain from Eq. (3)

T µν
D,GLW =

∫

d4p pν
(

Vµ +
~

2
∂λSµλ

)

=
1

m

∫

d4p pν (pµF − ~Dµ
V) , (43a)

Sλ,µν
D,GLW = − 1

2
ǫλµνα

∫

d4pAα −
1

2m

∫

d4p p[νSµ]λ

=
1

2m

∫

d4p

[

pλSµν − ~ǫλµνα
(

1

2
∂αP −DAα

)]

, (43b)

where in the last equality we used Eq. (12d). We see that, since P and Dα
A have contributions starting at first order in

~ [7], the HW and GLW currents differ only at second and higher orders in ~. Note that, unlike in the HW spin tensor
(40), the GLW spin tensor is not expressed only by the flux of Sµν . Furthermore, the term with ∂αP is separately
conserved and hence does not enter the equation of motion for the spin tensor. Modifying the GLW pseudo-gauge
transformations (42) by only adding

Zµνλρ
KG =

1

4m
ǫµνλρ

∫

d4pP (44)

to Eq. (42b), we can remove the term containing ∂αP from the GLW spin tensor without affecting the GLW energy-
momentum tensor (43a) [alternatively, we could also add −~/(2m)ǫλµνα∂αP to Φλ,µν ]. In this case, we obtain the
currents corresponding to the alternative Klein-Gordon (KG) pseudo-gauge [9] with the spin tensor given by

Ŝλ,µν
D,KG =

i~

4m
ψ̄σµν←→∂ λψ +

~

2m
ǫλµνρRe ψ̄γργ

5ρ , (45)

which can be expressed in terms of the components of the Wigner function as

Sλ,µν
D,KG =

1

2m

∫

d4p
(

pλSµν + ~ǫλµνρDAρ

)

. (46)

III. FREE PROCA FIELDS

In contrast to the case of spin-1/2 particles, there has been only little work on the spin tensor for Proca fields up
to now. For this reason, we start with a general discussion of different pseudo-gauges for free, massive spin-1 fields,
pointing out the analogies to Dirac fields.
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A. Canonical currents

We consider the Lagrangian of a free complex Proca field V µ given as

LP0 = ~

(

−1

2
V †µνVµν +

m2

~2
V †µVµ

)

, (47)

where V µν ≡ ∂[µV ν] is the field-strength tensor. This Lagrangian generates the following equations of motion for the
Proca fields

~
2∂µV

µν +m2V ν = 0 , (48)

from which the constraint equation

∂ · V = 0 (49)

follows by taking the divergence.
The invariance of the action associated to the Lagrangian (47) under spacetime translations and Lorentz transfor-

mations implies the conservation of the canonical energy-momentum and total angular momentum tensors T̂ µν
P,C and

Ĵλ,µν
P,C , respectively. These quantities read

T̂ µν
P,C = −~

(

V †µρ∂νVρ + V µρ∂νV †
ρ

)

− gµνLP0 , (50a)

Ĵλ,µν
P,C = xµT̂ λν

P,C − xν T̂ λµ
P,C + ~ Ŝλ,µν

P,C , (50b)

with

Ŝλ,µν
P,C ≡ V †λ[νV µ] + V λ[νV †µ] . (51)

As for the spin-1/2 case, the canonical spin tensor for free spin-1 particles is not conserved, as the energy-momentum
tensor (50a) is not symmetric, leading to the same problems as discussed above.
Following Refs. [97, 101–104], we define the massive spin-1 Wigner function as

Wµν
P (x, p) ≡ − 2

~(2π~)4

∫

d4v e−ip·v/~
〈

: V †µ
(

x+
v

2

)

V ν
(

x− v

2

)

:
〉

. (52)

In terms of the Wigner function (52) we can express Eqs. (50) as

T µν
P,C =

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP −
(

pνpρ +
~
2

4
∂ν∂ρ

)

W ρµ
P,S −

i~

2
p[ν∂ρ]W

ρµ
P,A

]

− gµν 〈: LP0 :〉 , (53)

Sλ,µν
P,C = i

∫

d4p
(

2pλWµν
P,A + p[µW

ν]λ
P,A −

i~

2
∂[νW

µ]λ
P,S

)

, (54)

where we defined the symmetric part Wµν
P,S ≡ (1/2)W

(µν)
P as well as the antisymmetric part Wµν

P,A ≡ (1/2)W
[µν]
P of

the Wigner function.
Using the Proca equation (48) and the constraints on the Wigner function

pµW
µν
P,S −

i~

2
∂µW

µν
P,A = pµW

µν
P,A −

i~

2
∂µW

µν
P,S = 0 , (55)

which follow from Eq. (49), one can rewrite the canonical energy-momentum as

T µν
P,C =

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP − ~
2 1

2
∂ν∂ρW

ρµ
P,S − i~pν∂ρW

ρµ
P,A − gµν

~
2

4

(

∂2TrWP − ∂λ∂ρWλρ
P

)

]

. (56)

As expected, T µν
P,C approaches the classical symmetric form in the limit ~→ 0.

The definition of the energy-momentum and spin tensors can be changed by applying the pseudo-gauge transfor-

mations (3). For instance, applying a Belinfante pseudo-gauge transformation [105] with Φλ,µν
B = Sλ,µν

P,C , Zµνλρ
B = 0
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yields

T µν
P,B = ~

〈

:

[

V µρV † ν
ρ + V †µρV ν

ρ +
m2c2

~2

(

V †µV ν + V µV †ν
)

]

:

〉

− gµν 〈: LP0 :〉

=

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP − ~
2 1

2
∂(ν∂ρW

µ)ρ
P,S + i~p(ν∂ρW

µ)ρ
P,A +

1

2
~
2∂2Wµν

P,S

−gµν ~
2

4

(

∂2TrWP − ∂λ∂ρWλρ
P

)

]

, (57a)

Sλ,µν
P,B = 0 , (57b)

where we also made use of the equations of motion.

B. Hilgevoord-Wouthuysen currents

Following the idea by Hilgevoord and Wouthuysen [98], we find a set of symmetric energy-momentum tensor and
conserved spin tensor for free fields by deriving the conserved currents from the Lagrangian

L′P ≡ −~
[

(

∂µV
†
ν

)

∂µV ν − (∂ · V †)∂ · V − m2

~2
V †µVµ

]

, (58)

which differs from LP0 by a total divergence and thus yields the same equations of motion. Applying Noether’s
theorem to the Lagrangian (58) we obtain

T̂ µν
P,HW = −~

[

(

∂µV λ
)

∂νV †
λ +

(

∂µV †λ
)

∂νVλ

]

− gµνL′P , (59a)

Ŝλ,µν
P,HW = −

[(

∂λV †[µ
)

V ν] +
(

∂λV [µ
)

V †ν]
]

. (59b)

The spin tensor Ŝλ,µν
P,HW is conserved since the energy-momentum tensor is symmetric, implying that the global spin

Ŝµν
P,HW transforms as a tensor [9].

In analogy to the spin-1/2 case, we can relate the HW currents to the pseudo-gauge transformation

Φ̂λµν
HW,free = M̂ [µν]λ − gλ[µM̂ ν]ρ

ρ , (60a)

Ẑµν,λρ
HW,free = −1

2

(

V †[µgν][λV ρ] + h.c.
)

, (60b)

where h.c. stands for the hermitian conjugate and

M̂λµν ≡ 1

2

(

V †µ←→∂ λV ν + h.c.
)

=
1

2

(

V †µ∂λV ν − V †ν∂λV µ + h.c.
)

. (61)

When performing the pseudo-gauge transformation, one also makes use of the equations of motion.
The HW currents in terms of the Wigner function are given by

T µν
P,HW =

∫

d4p

[

pµpν +
~
2

4

(

∂µ∂ν − gµν∂2
)

]

TrWP , (62a)

Sλ,µν
P,HW = i

∫

d4p pλW
[µν]
P . (62b)

Identifying TrWP with the scalar distribution F andW
[µν]
P with the dipole moment Sµν , these expressions are formally

equivalent to the HW currents in terms of the Wigner function for spin 1/2 in the free case [9] [cf. Eqs. (35) and (40)].

C. Alternative Klein-Gordon currents

One can also obtain a set of symmetric energy-momentum tensor and conserved spin tensor considering the alter-
native Klein-Gordon Lagrangian analogously to the case of spin-1/2 particles,

L′P,KG = −~
[

−1

2

(

V µ∂2V †
µ + V †

µ ∂
2V µ

)

− (∂ · V †)∂ · V − m2

~2
V †µVµ

]

, (63)
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which differs from Eq. (58) by a total divergence and hence also yields the same equations of motion. The resulting
set of tensors reads

T̂ µν
P,KG =

~

2
V λ←→∂ µ←→∂ νV †

λ , (64a)

Ŝλ,µν
P,KG = Ŝλ,µν

P,HW , (64b)

where we used L′P,KG = 0 after imposing the equations of motion. One can obtain these currents from the canonical
ones by employing a pseudo-gauge transformation with

Φ̂λ,µν
KG,free = gλ[νV µ]ρV †

ρ − V †λV µν − V †[µ∂ν]V λ + h.c. , (65a)

Ẑµνλρ
KG,free = −

1

2

(

V †[µgν][λV ρ] + h.c.+
1

2
V †βVβg

[ν
α g

µ][λgρ]α
)

(65b)

and using the equations of motion. We can express the KG energy-momentum tensor in terms of the Wigner function
as

T µν
P,KG =

∫

d4p pµpνTrWP . (66)

Thus, we have found a pair of spin and energy-momentum tensors that can be represented as moments of the scalar

distribution function TrWP and the antisymmetric part W
[µν]
P , closely mimicking the Klein-Gordon currents in the

spin-1/2 theory, see Section IID and Ref. [9].

IV. INTERACTING PROCA FIELDS

A. Quantum transport for Proca fields

In the interacting case, we consider a Lagrangian which is given as the sum of the free Proca Lagrangian (47) and
a general interaction term Lint, which we assume to be independent of the derivatives of the Proca field,

LP = −~
(

1

2
V †µνVµν −

m2

~2
V †µVµ

)

+ Lint . (67)

The equations of motion now read

(

∂2 +
m2

~2

)

V µ − ∂µ∂ · V = ρµ , (68)

where we defined ρµ ≡ −(1/~)∂Lint/∂V †
µ . Taking the divergence of Eq. (68) we obtain the new constraint equation

∂ · V =
~
2

m2
∂ · ρ . (69)

In this section, we consider a general interaction which does not involve gauge fields so that we can stick to the definition
of the Wigner function in Eq. (68). In the case where the massive vector particles interact with an electromagnetic
field the Wigner function has to be defined in a gauge-invariant way, see Section VI. The equations of motion take
the form

(

p2 −m2 − ~
2

4
∂2 + i~p · ∂

)

Wµν
P − ~

m2

(

pνpα −
~
2

4
∂ν∂α +

i~

2
p(ν∂α)

)

Cµα = −~Cµν , (70)

while from Eq. (69) we derive the constraint equations

(

pµ +
i~

2
∂µ

)

W νµ
P =

~

m2

(

pµ +
i~

2
∂µ

)

Cνµ , (71a)

(

pµ −
i~

2
∂µ

)

Wµν
P =

~

m2

(

pµ −
i~

2
∂µ

)

C∗νµ . (71b)
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Here we employed the relations

(

pµ +
i~

2
∂µ

)

Wαβ
P (x, p) = −2i 1

(2π~)4

∫

d4ve−ip·v/~
〈

: V †α(x1)∂
µV β(x2) :

〉

, (72a)

(

pµ − i~

2
∂µ

)

Wαβ
P (x, p) = 2i

1

(2π~)4

∫

d4ve−ip·v/~
〈

: [∂µV †α(x1)]V
β(x2) :

〉

, (72b)

used the fact that the Wigner function is hermitian, and defined

Cµν ≡ − 2

(2π~)4

∫

d4y e−ip·y/~
〈

: V †µ(x1)ρ
ν(x2) :

〉

. (73)

Similarly, we define the hermitian objects

δMµν ≡ −1

2
(Cµν + C∗νµ) , Cµν ≡ i

2
(Cµν − C∗νµ) . (74)

Splitting both the Wigner function Wµν
P and the collision terms δMµν , Cµν into symmetric and antisymmetric parts,

we can add and subtract the constraint equations (71) to obtain

pµW
µν
P,S −

i~

2
∂µW

µν
P,A =

~

m2

[

pµ (iCµνA − δM
µν
S ) +

~

2
∂µ (CµνS + iδMµν

A )

]

, (75a)

pµW
µν
P,A −

i~

2
∂µW

µν
P,S =

~

m2

[

pµ (iCµνS − δM
µν
A ) +

~

2
∂µ (CµνA + iδMµν

S )

]

. (75b)

It should be noted that the symmetric parts of δMµν and Cµν are real, while their antisymmetric parts are imaginary.
Furthermore, from Eq. (70) we derive the Boltzmann-like equation for the Wigner function

p · ∂Wµν
P = Cµν − 1

2m2

[(

pνpα −
~
2

4
∂ν∂α +

i~

2
p(ν∂α)

)

(Cµα − iδMµα) + h.c.

]

. (76)

Splitting into symmetric and antisymmetric part, we find

p · ∂Wµν
P,S = CµνS −

1

2m2

[(

pαp
(µ − ~

2

4
∂α∂

(µ

)

(

Cν)αS − iδMν)α
A

)

+
~

2

(

pα∂
(µ + ∂αp

(µ
)(

iCν)αA + δM
ν)α
S

)

]

, (77a)

p · ∂Wµν
P,A = CµνA −

1

2m2

[(

pαp
[µ − ~

2

4
∂α∂

[µ

)

(

iδM
ν]α
S − Cν]αA

)

− ~

2

(

pα∂
[µ + ∂αp

[µ
)(

iCν]αS + δM
ν]α
A

)

]

. (77b)

In the following we decompose the Wigner function and all related quantities with respect to the four-momentum
pµ,

Wµν
P,S = EµνfE +

p(µ

2p
F

ν)
S + Fµν

P + PµνfP , (78a)

Wµν
P,A = i

p[µ

2p
F

ν]
A + iǫµναβ

pα
m
Gβ , (78b)

CµνS = EµνCE +
p(µ

2
Cν)S + CµνP + PµνCP , (78c)

CµνA = i
p[µ

2p
Cν]A + iǫµναβ

pα
m
CG,β , (78d)

δMµν
S = EµνDE +

p(µ

2p
Dν)

S +Dµν
P + PµνDP , (78e)

δMµν
A = i

p[µ

2p
Dν]

A + iǫµναβ
pα
m
DG,β , (78f)

with p ≡
√

p2, Eµν ≡ pµpν/p2, and FS · p = FA · p = G · p = 0, Fµν
P pν = 0, with Fµν

P symmetric and traceless.
Analogous proporties hold for the components of the collision terms Cµν , δMµν . The constraint equations (75) then
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determine the Wigner-function components fE , F
µ
S , and F

µ
A in terms of fP , F

µν
P , and Gµ. Using the definition of the

collision term (73) and the constraint (69), we obtain

(

pµ −
i~

2
∂µ

)

Cµν = O(~) ,
(

pµ +
i~

2
∂µ

)

C∗µν = O(~) , (79)

from which it follows that C(0)E = D(0)
E = 0. As done in the spin-1/2 case, we consider a situation in which polarization

effects arise only at first or higher order in ~. This implies that we do not have any vector or tensor anisotropy at

zeroth order, i.e., G
(0)
µ = 0 and F

(0)µν
P = 0. Following the same logic as explained in Ref. [7] and considering the

quantum numbers, vectors and tensors at our disposal, we conclude C(0)µS = C(0)µA = D(0)µ
S = D(0)µ

A = 0. Under this
assumption, we obtain from the real parts of Eqs. (75)

fE =
~
2

4p2
Pαβ∂α∂βf

(0)
P − ~

m2
DE +O(~3) , (80a)

F ν
S = O(~2) , (80b)

pF ν
A = ~P νµ∂µf

(0)
P +O(~2) . (80c)

Furthermore, we derive from Eq. (76) the following Boltzmann-like equations of motion for the independent compo-
nents,

p · ∂fP = CP +O(~2) , (81a)

p · ∂Fµν
P = CµνP +O(~2) , (81b)

p · ∂Gµ = CµG +O(~2) . (81c)

Analogously to the distribution function (14) in extended phase space for spin-1/2 particles, we define the spin-1
distribution function as

f(x, p, s) ≡ fP − s ·G+
5

4
sµsνFP,µν . (82)

We note that for massive spin-1 particles, the number of degrees of freedom determining the spin state is larger than
that for spin-1/2 particles. In fact, in addition to the usual vector polarization, we also have spin degrees of freedom
which are called tensor polarization [106]. The last term in Eq. (82), which is absent for Dirac particles, precisely
describes the additional degrees of freedom due to tensor polarization [106]. In the spin-1 case, it is convenient to

define the measure in spin space as dS ≡ (3
√

p2/2
√
2π)d4sδ(s · s+ 2)δ(p · s), such that

∫

dS = 3 ,

∫

dSsµsν = −2Pµν ,

∫

dSPµν
ρσ sρsσsαsβ =

8

5
Pµν
αβ , (83)

where we defined Pµν
αβ ≡ [(1/2)P

(µ
α P

ν)
β − (1/3)PµνPαβ ], cf. the spin-1/2 case in Eq. (16). Using Eq. (83), we obtain

the independent components of the Wigner function from the distribution function as

∫

dS f = 3fP ,

∫

dS sµf = 2Gµ ,

∫

dS Pµν
αβ s

αsβf = 2Fµν
P . (84)

Making use of Eqs. (81), we find the Boltzmann equation for the spin-1 Wigner function to be

p · ∂f = C[f] , (85)

where

C[f] ≡ CP − s · CG +
5

4
sµsνCµνP . (86)

In the presence of interactions, Eq. (70) implies that the Wigner-function is not on-shell. However, as in the spin-1/2
case, one can show that only the on-shell parts contribute to the Boltzmann equation, so that we can write it in the
form of Eq. (19) with f formally given by Eq. (20). This will be shown in a forthcoming publication [107]. The explicit
form of the mass-shell correction of the spin-1 Wigner function does not play any role in the following discussion,
since we will neglect off-shell effects in the conserved currents, as we did in Section III.
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B. Canonical currents

Since we assume that Lint does not depend on derivatives of the fields, the canonical currents in the interacting
case are formally still given by Eqs. (54). Using the constraint equations (80) and relations (84) we can write them
in terms of the distribution function as

T µν
P,C =

∫

dΓ pµpνf +O(~2) , (87a)

Sλµν
P,C =

∫

dΓ

[

pλ
(

Σµν
s
− ~

6m2
p[µ∂ν]

)

+
1

2
p[µΣ

ν]λ
s +

~

6
Pλ[µ∂ν]

]

f . (87b)

The canonical spin tensor for Proca fields is hence not formally equivalent to the one for Dirac fields in Eq. (24b). In
particular, as expected, it is not totally antisymmetric.

C. Hilgevoord-Wouthuysen currents

In order to obtain the HW pseudo-gauge transformations in the interacting case, we modify Eqs. (60) as

Φ̂λ,µν
HW = M̂ [µν]λ − gλ[µM̂ ν]ρ

ρ +
~
2

m2
gλ[µ

(

V ν]∂ · ρ† + h.c.
)

, (88a)

Ẑµνλρ
HW = −1

2

(

V †[µgν][λV ρ] + h.c.
)

. (88b)

In terms of the Wigner function, these pseudo-gauge potentials read

Φλ,µν
HW =

∫

d4p

(

~

2
∂ρW

ρ[µ
P,Sg

ν]λ + ip[µW
ν]λ
P,A

)

, (89a)

Zµνλρ
HW =

1

2

∫

d4p
(

gν[λW
ρ]µ
P,S − gµ[λW

ρ]ν
P,S

)

, (89b)

where we have made use of the constraint equations (71). Note that the dependence of the pseudo-gauge potentials on
the Wigner function in Eq. (89) is identical to the noninteracting case. Equations (89) imply the following relations,

~ ∂ρZ
µνλρ
HW =

1

2

∫

d4p
(

~∂ρW
ρ[µ
P,Sg

ν]λ + ~∂[µW
ν]λ
S

)

, (90a)

Φλ,µν
HW +Φµ,νλ

HW +Φν,µλ
HW = 2

∫

d4p

(

~

2
∂ρW

ρ[µ
P,Sg

λ]ν + ipνWλµ
P,A

)

, (90b)

from which, after using the equations of motion, the HW energy-momentum tensor in the interacting case is obtained
as

T µν
P,HW =

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP −
(

pρp
ν − ~

2

4
∂ρ∂

ν

)

W ρµ
P,S +

i~

2
p(ν∂ρ)W

ρµ
P,A

]

+ ~gµν
〈

:

[

(∂αV
†
β )∂

αV β − m2

~2
V †αVα

]

:

〉

. (91)

Making use of the constraint equations (75), Eq. (91) becomes

T µν
P,HW =

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP − pν
~

2m2
(−pCµA − pD

µ
S − 2pµDE + ~∂αP

αµCP + ~∂αE
µνCE)

− gµν

2

(

p2 −m2 +
~
2

4
∂2

)

TrWP

]

+O(~3)

=

∫

d4p

[

pµpν
(

3fP +
~
2

4m2
Pαβ∂α∂βf

(0)
P

)

+
3~2

4
∂µ∂νf

(0)
P + pν

~
2

2m2

(

pC(1)µA + pD(1)µ
S + ∂αP

αµC(0)P

)

− gµν

2

(

p2 −m2 +
~
2

4
∂2

)

3fP

]

+O(~3) , (92)
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where we used C(0)E = D(0)
E = 0, see Sec. IVA. Up to first order in ~, the energy-momentum tensor is symmetric and

formally equivalent to Eq. (41a),

T µν
P,HW =

∫

dΓ pµpνf(x, p, s) +O(~2) . (93)

Furthermore, the spin tensor up to first order is obtained by using Eq. (80c) as

Sλ,µν
P,HW = 2i

∫

d4p pλWµν
P,A

=

∫

dΓ pλ
(

Σµν
s
− ~

6m2
p[µ∂ν]

)

f(x, p, s) +O(~2) . (94)

Note that the HW spin tensor for Proca fields has the same structure as the one for Dirac fields in Eq. (41b). The
difference in the factors of the last terms of Eqs. (41b) and (94), respectively, is due to the different normalizations
of the phase-space volume. After performing the integrations over dS the factor in both expressions will be 1/2. At
second order in ~, the energy-momentum tensor acquires an antisymmetric contribution due to interactions,

T
[µν]
P,HW = ~

2

∫

d4p
p[ν

2m2

(

p C(1)µ]A + pD(1)µ]
S + ∂µ]C(0)P

)

+O(~3) , (95)

leading to the nonconservation of the spin tensor (94).

D. Alternative Klein-Gordon currents

In the interacting case, we modify the KG pseudo-gauge transformations in Eqs. (65) according to

Φ̂λ,µν
KG = M̂ [µν]λ − gλ[µM̂ ν]ρ

ρ +
~
2

m2
gλ[µ

(

V ν]∂ · ρ† + h.c.
)

− 1

2
gλ[µ∂ν]V †βVβ , (96a)

Ẑµνλρ
KG = −1

2

(

V †[µgν][λV ρ] + h.c.
)

− 1

4
δ[να g

µ][λgρ]αV †βVβ . (96b)

These pseudo-gauge potentials differ from Eqs. (88) by the addition of the last terms in each equation.
The KG energy-momentum tensor in the interacting case will consequently be given by

T µν
P,KG =

∫

d4p

[

pµpνTrWP −
(

pρp
ν − ~

2

4
∂ρ∂

ν

)

W ρµ
P,S +

i~

2
p(ν∂ρ)W

ρµ
P,A

]

− ~gµν

2

〈

:

[

V †
α

(

∂2 +
m2

~2

)

V α + h.c.

]

:

〉

. (97)

Using the constraint equations (75), Eq. (97) becomes

T µν
P,KG =

∫

d4p

[

pµpν
(

3fP +
~
2

4m2
Pαβ∂α∂βf

(0)
P

)

+ pν
~
2

2m2

(

pC(1)µA + pD(1)µ
S + ∂αP

αµC(0)P

)

− gµν

2

(

p2 −m2 − ~
2

4
∂2

)

3fP

]

+O(~3), (98)

which is manifestly symmetric up to order O(~). As in the free case, Sλ,µν
P,KG = Sλ,µν

P,HW at any order in ~. Consequently,

the antisymmetric part of the KG energy-momentum tensor takes on the same form as in the HW pseudo-gauge (95).

V. EQUATIONS OF MOTION

Since the HW and KG energy-momentum and spin tensors for spin-1/2 and spin-1 particles are given by the
same expressions, they formally follow the same equations of motion, although the explicit forms of the distribution
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functions and collision terms differ between the two cases [14, 107]. Using the Boltzmann equation (19) we obtain the
equations of motion presented in Ref. [7],

∂µT
µν
HW =

∫

dΓ pν C[f ] = 0 , (99a)

~ ∂λS
λ,µν
HW =

∫

dΓ ~σΣµν
s

C[f ] = T
[νµ]
HW , (99b)

where σ = 1/2 or σ = 1 for spin-1/2 and spin-1 particles, respectively. As pointed out in Ref. [7], the energy-
momentum tensor is conserved as pµ is a collisional invariant, while in general the spin tensor is not conserved due to
the mutual conversion between spin and orbital angular momentum in nonlocal collisions. In the presence of nonlocal
collisions, the HW spin tensor is conserved only in global equilibrium, when the process of aligning spin with vorticity
has stopped and the collision term vanishes. In global equilibrium the distribution function up to first order in ~ is
given by

feq(x, p, s) =
1

(2π~)3
exp

[

−β(x) · p+ ~

2
σ̟µνΣ

µν
s

]

, (100)

where βµ ≡ uµ/T , with uµ being the fluid velocity and T the temperature, and ̟µν ≡ −(1/2)∂[µβν] [1, 4, 81]. For a
derivation of an exact solution for the Wigner function in global equilibrium see Ref. [108]. Note that βµ satisfies the
Killing condition ∂(µβν) = 0. The equilibrium distribution function (100) is obtained from the requirement that the
collision term vanishes [7, 14]. Inserting Eq. (100) into Eqs. (41b) or (94) we obtain the expression for the HW spin
tensor in equilibrium to leading order in ~,

Sλ,µν
HW,eq =

~

g
σ n(0)uλ̟µν , (101)

where n(0) ≡ g
∫

dP p ·u f (0)
eq (x, p) is the zeroth-order particle density and g ≡

∫

dS is the number of internal degrees of
freedom. The spin tensor (101) has the same form as that used in the formulation of relativistic spin hydrodynamics
in Ref. [1].
In contrast to the physical interpretation of Eq. (99b), which relates the divergence of the spin tensor directly to the

nonconservation of Σµν
s in collisions and vanishes in global equilibrium, the equations of motion for the canonical spin

tensor acquire additional terms. In particular, the canonical spin tensor is not conserved even in global equilibrium.
Using Eq. (100) in Eq. (25b), or Eq. (100) in Eq. (87b), respectively, we obtain, cf. Ref. [9],

∂λS
λ,µν
C,eq =

1

(2π~)3
~σ

∫

dPp[µ̟ν]λpρ̟λρe
−β·p +O(~2) , (102)

where it has been used that C[feq] = 0.

VI. INCLUDING ELECTROMAGNETIC FIELDS

So far, we have discussed the effects of a general collision term on the conserved currents without considering
the interaction with gauge fields. In this section, we include electromagnetic fields and study their impact on the
energy-momentum and spin tensors. In this case, a further complication arises since gauge invariance of the theory
has to be guaranteed. The relativistic decomposition of orbital and spin angular momentum in the presence of gauge
fields is a long-standing problem with consequences in different fields such as hadron and chiral physics, see, e.g.,
Refs. [84, 85] for reviews. In the following, we will introduce a pseudo-gauge which combines a KG transformation for
the matter parts of the currents with a Belinfante transformation for the electromagnetic parts. In this way, we obtain
a gauge-invariant splitting of the total angular momentum with a vanishing gauge-field spin tensor. For the sake of
simplicity, we neglect particle collisions and treat the electromagnetic fields as classical. Furthermore, we absorb the
electromagnetic charge e in the definition of the gauge potential. The currents and equations of motion derived in this
section provide the starting point for the formulation of spin magnetohydrodynamics for Dirac and Proca particles.
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A. Dirac fields

The gauge-invariant Wigner function for fermions interacting with the electromagnetic potential Aµ(x) is defined
as [96, 97],

WD,αβ(x, p) =

∫

d4y

(2π~)4
e−

i

~
p·y

〈

: ψ̄β (x1)U(x1, x2)ψα (x2) :
〉

, (103)

where the gauge link

U(x1, x2) ≡ exp

[

− i
~
yµ

∫ 1/2

−1/2

dtAµ (x+ ty)

]

(104)

ensures gauge invariance of the Wigner function. The equations of motion read

[

γ ·
(

Π+
i~

2
∇
)

−m
]

WD = 0 , (105)

with

∇µ ≡ ∂µ − j0
(

~

2
∂ · ∂p

)

Fµν∂pν (106)

and

Πµ ≡ pµ − ~

2
j1

(

~

2
∂ · ∂p

)

Fµν∂pν , (107)

where j0(x) ≡ sinx/x and j1(x) ≡ (sinx − x cosx)/x2 are spherical Bessel functions and Fµν ≡ ∂[µAν] is the
electromagnetic field-strength tensor. The spacetime derivatives in the arguments of the spherical Bessel functions
act only on the field-strength tensor, but not on the Wigner function. The equations of motion for the Wigner-function
components can be found in Refs. [5, 97]. Here, we only display those which will be used in the following, namely

ΠµF −
1

2
~∇νSνµ −mVµ = 0 , (108a)

−1

2
~∇µP +

1

2
ǫµβνσΠ

βSνσ +mAµ = 0 , (108b)

1

2
~(∇µVν −∇νVµ)− ǫµναβΠαAβ −mSµν = 0 , (108c)

1

2
~∇µF +ΠνSνµ = 0 . (108d)

The canonical energy-momentum and spin tensors of both matter and gauge fields were found to be [5]

T µν
D,C =

∫

d4pVµ (pν + A
ν)− Fµλ∂νAλ +

1

4
gµνFαβFαβ , (109a)

Sλ,µν
D,C = −1

2
ǫλµνρ

∫

d4pAρ −
1

~
Fλ[µ

A
ν] , (109b)

which are gauge-dependent quantities. In the following, we will perform a pseudo-gauge transformation which leads
to a gauge-invariant splitting between spin and orbital angular momentum of the matter and gauge-field parts. This
is achieved by generalizing the KG transformation for spin-1/2 particles which leads to formally the same pseudo-
gauge potentials in terms of the Wigner function as in the free case. Furthermore, we use a Belinfante pseudo-gauge
transformation for the gauge fields in order the obtain a gauge-invariant result [85]. The pseudo-gauge potentials for
such a transformation read

Φλ,µν
KG,B =

1

2m

∫

d4p p[µSν]λ − 1

~
Fλ[µ

A
ν] , (110a)

Zµνλρ
KG,B =

1

4m
ǫµνλρ

∫

d4pP . (110b)
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Therefore, the spin tensor is given by

Sλ,µν
D,KG =

1

2m
ǫλµνρ

∫

d4p

(

1

2
ǫραβγΠ

αSβγ − ~

2
∇ρP

)

− 1

2m

∫

d4pSλ[µpν] + ~

4m
ǫµνλρ∂ρ

∫

d4pP

=
1

2m

∫

d4p pλSµν , (111)

where we made use of Eq. (108b) and assumed that boundary terms vanish. Moreover, we obtain the energy-
momentum tensor

T µν
D,KG =

∫

d4pVµ (pν + A
ν)− Fµλ∂νAλ +

1

4
gµνFαβFαβ +

~

2
∂λ

(

1

2m

∫

d4pSλ[µpν] − 1

~
Fλ[µ

A
ν]

+
1

2m

∫

d4pSν[µpλ] − 1

~
F ν[µ

A
λ] +

1

2m

∫

d4pSµ[νpλ] − 1

~
Fµ[ν

A
λ]

)

=
1

m

∫

d4p

(

pµpνF +
~

2
F ν

λSλµ
)

− FµλF ν
λ +

1

4
gµνFαβFαβ (112)

with the antisymmetric part

T
[µν]
D,KG =

~

2m

∫

d4pSλ[µF ν]
λ. (113)

When deriving Eq. (112), we inserted Eq. (108a) and the Maxwell equation ∂µF
µν = Jν , where

Jµ ≡
∫

d4pVµ (114)

is the charge current, and again made use of the assumption of vanishing boundary terms. We see that both the
energy-momentum and spin tensors are gauge invariant.
The above currents are now separated into fluid and electromagnetic parts according to

T µν
D,f =

1

m

∫

d4p

(

pµpνF +
~

2
F ν

λSλµ
)

,

T µν
em = −FµλF ν

λ +
1

4
gµνFαβFαβ ,

Sλ,µν
D,f =

1

2m

∫

d4p pλSµν ,

Sλ,µν
em = 0 . (115)

In this case, the spin tensor for the electromagnetic fields vanishes and only fermionic spin degrees of freedom are
treated as dynamical, while the electromagnetic ones are absorbed into the orbital angular momentum from the
energy-momentum tensor. We find the following equation of motion for the fluid energy-momentum tensor,

∂µT
µν
D,f =

1

m

∫

d4p pµpνFµλ∂
λ
pF +

~

6m

∫

d4p pµpν(∂αF ρλ)∂pλ∂pαSρµ

+
~

2m
(∂µF

ν
λ)

∫

d4p Sλµ +
~

2m

∫

d4pF ν
λ∂µSλµ

=− FµνJµ, (116)

where we used Eqs. (108d), (108a), and the Maxwell relation ∂µF νλ + ∂νFλµ + ∂λFµν = 0. Since

∂µT
µν
em = FµνJµ = −∂µT µν

D,f , (117)

the total energy-momentum tensor is conserved. On the other hand, the spin tensor is not conserved but follows the
equations of motion

~ ∂λS
λ,µν
D,f = − ~

2m

∫

d4pSλ[µF ν]
λ = T

[νµ]
D,f . (118)
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We remark that the results of this section are similar to those of Ref. [109] for fluids with polarization when
identifying Sµν with the dipole moment [5], although the former are exact in ~ and the latter purely classical. In
particular, as can be seen from Eq. (118), the equations of motion for sµνHW , defined through

∫

dΣλ S
λ,µν
D,HW =

∫

d4p sµνD,HW , (119)

where dΣλ denotes the integration over a spacelike hypersurface, are the Matthison-Papapetrou-Dixon (MPD) equa-
tions [87, 109]

m
d

dτ
sµνD,HW =

1

2m

∫

dΣλp
λpρ∂ρSµν

=− 1

2m

∫

dΣλp
λSρ[µF ν]

ρ

=− sρ[µD,HWF ν]
ρ , (120)

where τ ≡ x · p/m is the proper time.

B. Proca fields

In order to describe Proca fields interacting with electromagnetic fields we use a Lagrangian of the form [110]

LP,em = ~

(

−1

2
V †µνVµν +

m2

~2
V †µVµ

)

− 1

4
FµνFµν − iFµνV

µV †ν , (121)

where in the presence of gauge fields

V µν ≡
(

∂[µ +
i

~
A

[µ

)

V ν] (122)

is defined with a covariant instead of a partial derivative. The Wigner function in this case is given by Eq. (52)
supplemented with a gauge link U(x1, x2) which is identical to Eq. (104),

Wµν
P ≡ − 2

~(2π~)4

∫

d4v e−ip·v/~
〈

: V †µ (x1)U(x1, x2)V
ν (x2) :

〉

. (123)

The detailed derivation of the equations of motion in this case will be presented in a future work [107]. The canonical
energy-momentum tensor reads

T̂ µν
P,C = −~

(

V µρ∂νV †
ρ + V †µρ∂νVρ

)

− Fµρ∂νAρ − iV [µV †ρ]∂νAρ − gµνLP,em , (124a)

T µν
P,C =

∫

d4p

[(

pµpν +
~
2

4
∂µ∂ν

)

TrWP −
(

pνpρ +
~
2

4
∂ν∂ρ

)

W ρµ
P,S −

i~

2

(

p[ν∂ρ] − F ν
ρ

)

W ρµ
P,A

]

+ jµAν

+i~

∫

d4pW ρµ
P,A ∂

ν
Aρ − Fµρ∂νAρ − gµν〈: LP,em :〉 , (124b)

where we dropped boundary terms and defined

jµ ≡
∫

d4p

(

pµTrWP − pαWαµ
P,S −

i~

2
∂αW

αµ
P,A

)

. (125)

Furthermore, the spin tensor is given by

Ŝλ,µν
P,C = −

(

V λ[µV †ν] + V †λ[µV ν]
)

− 1

~
Fλ[µ

A
ν] − i

(

V λV †[µ − V †λV [µ
)

A
ν] , (126a)

Sλ,µν
P,C = −i

∫

d4p

[

2pλW νµ
A − p[µW ν]λ

A +
i~

2
∂[µW

ν]λ
S

]

+ iA[ν

∫

d4pW
µ]λ
P,A −

1

~
Fλ[µ

A
ν] . (126b)

Also here the canonical currents are not gauge invariant.
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Now we perform a suitable pseudo-gauge transformation to obtain Klein-Gordon currents in the interacting case.
Analogously to the previous discussion, we perform a Belinfante transformation for the gauge-field part and hence
use the following pseudo-gauge potentials,

Φλ,µν
KG,B =

∫

d4p

(

~

2
∂ρW

ρ[µ
P,Sg

ν]λ + ip[µW
ν]λ
P,A +

~

4
∂[νgµ]λW β

P β

)

− 1

~
Fλ[µ

A
ν] − i

∫

d4pW
λ[µ
P,AA

ν] , (127a)

Zµνλρ
KG,B =

1

2

∫

d4p

(

gν[λW
ρ]µ
P,S − gµ[λW

ρ]ν
P,S +

1

2
δ[να g

µ][λgρ]αTrWP

)

. (127b)

Employing

~ ∂ρZ
µνλρ
KG,B =

∫

d4p

(

~

2
∂ρW

ρ[µ
P,Sg

ν]λ +
~

2
∂[µW

ν]λ
P,S +

~

4
∂[νgµ]λTrWP

)

, (128)

we find for the KG spin tensor

Sλ,µν
P,KG = 2i

∫

d4p pλWµν
P,A , (129)

coinciding with our earlier results. In order to obtain the energy-momentum tensor, we compute

~

2

(

Φλ,µν
KG,B +Φµ,νλ

KG,B +Φν,µλ
KG,B

)

=

∫

d4p

(

~
2

2
∂ρW

ρ[µ
P,Sg

λ]ν + i~pνWλµ
A +

~
2

4
∂[λgµ]νTrWP

)

−Fλµ
A

ν − i~
∫

d4pWλµ
P,AA

ν . (130)

Considering the derivative of the last line of the above equation, we find

∂λ

(

−Fλµ
A

ν − i~
∫

d4pWλµ
P,AA

ν

)

= −jµAν − Fλµ∂λA
ν − i~

∫

d4pWλµ
P,A∂λA

ν , (131)

where we used Maxwell’s equations

∂λF
λµ = jµ + i~ ∂λ

∫

d4pWµλ
P,A , (132)

see Ref. [107] for details. Putting everything together, we obtain the KG energy-momentum tensor

T µν
P,KG =

∫

d4p

[

pµpνTrWP −
(

pνpρ −
~
2

4
∂ν∂ρ

)

W ρµ
P,S +

i~

2

(

p(ν∂ρ) + F ν
ρ

)

W ρµ
P,A

]

+ FµλF ν
λ

+i~

∫

d4pWµλ
P,AF

ν
λ − gµν

(

〈: LP,em :〉 − ~
2

4
∂2

∫

d4pTrWP

)

=

∫

d4p

[

pµpνTrWP −
~
2

m2
pν(∂γFγδ)W

δµ
P,S −

i~3

m2
(∂γFγδ)∂

νW δµ
P,A

]

+ FµλF ν
λ

+2i~

∫

d4pWµλ
P,AF

ν
λ − gµν

(

〈: LP,em :〉 − ~
2

4
∂2

∫

d4pTrWP

)

, (133)

where in the last step we inserted the constraint equations [107]

ΠαW
µα
P,S +

i~

2
∇αW

µα
P,A =

~
2

m2

[

cos

(

~

2
∂ · ∂p

)

(∂γFγδ)W
δµ
P,S + i sin

(

~

2
∂ · ∂p

)

(∂γFγδ)W
δµ
P,A

]

, (134a)

i~

2
∇αW

µα
P,S + ΠαW

µα
P,A =

~
2

m2

[

i sin

(

~

2
∂ · ∂p

)

(∂γFγδ)W
δµ
P,S + cos

(

~

2
∂ · ∂p

)

(∂γFγδ)W
δµ
P,A

]

, (134b)

integrated by parts and neglected boundary terms. The form of the KG currents resembles the one obtained in the
previous section, where for Proca fields the antisymmetric part of the Wigner function plays the role of the dipole
moment. While the equations of motion for the energy-momentum tensor are equivalent to those for spin 1/2, the
equation of motion for the spin-1 tensor contains additional terms at quantum level, and the MPD equations are
recovered only at the leading order,

~ ∂λS
λ,µν
P,f = 2i~F

[µ
λ

∫

d4pW
ν]λ
P,A +

∫

d4p

[

~
2

m2
(∂γFγδ)W

δ[µ
P,Sp

ν] − i~3

m2
(∂γFγδ)∂

[νW
µ]δ
P,A

]

. (135)

This result is to be expected, as spin-1 particles not only possess an intrinsic magnetic dipole moment, but also an
electric quadrupole moment, which influences the spin dynamics at higher order in ~.
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VII. CONCLUSIONS

In this paper, we provided the explicit expressions of the pseudo-gauge transformations for the HW, GLW, and
KG currents for interacting Dirac and Proca fields. For both spin-1/2 and spin-1 particles the spin tensor in such
pseudo-gauges is conserved for free fields or for local interactions, but in general it is not in the presence of nonlocal
collisions. Under a suitable definition of the enlarged phase space, the form of these currents for spin-1/2 and spin-1
particles differs only by degeneracy or spin-magnitude factors. Considering electromagnetic interactions, we found
a gauge-invariant splitting of the total angular momentum by performing a KG pseudo-gauge transformation for
the matter fields and a Belinfante pseudo-gauge transformation for the gauge fields. The equations of motion of
the spin tensor can then be related to the MPD equations. The energy-momentum and spin tensors for interacting
systems derived in this work have a natural physical interpretation and provide the starting point to formulate spin
(magneto-)hydrodynamics for Dirac [7, 14, 20] and Proca fields.
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