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Abstract

Background: Recent studies have shown that some pseudogenes are transcribed and contribute to cancer when
dysregulated. In particular, pseudogene transcripts can function as competing endogenous RNAs (ceRNAs). The
high similarity of gene and pseudogene nucleotide sequence has hindered experimental investigation of these
mechanisms using RNA-seq. Furthermore, previous studies of pseudogenes in breast cancer have not integrated
miRNA expression data in order to perform large-scale analysis of ceRNA potential. Thus, knowledge of both
pseudogene ceRNA function and the role of pseudogene expression in cancer are restricted to isolated examples.

Results: To investigate whether transcribed pseudogenes play a pervasive regulatory role in cancer, we developed
a novel bioinformatic method for measuring pseudogene transcription from RNA-seq data. We applied this method
to 819 breast cancer samples from The Cancer Genome Atlas (TCGA) project. We then clustered the samples using
pseudogene expression levels and integrated sample-paired pseudogene, gene and miRNA expression data with
miRNA target prediction to determine whether more pseudogenes have ceRNA potential than expected by chance.

Conclusions: Our analysis identifies with high confidence a set of 440 pseudogenes that are transcribed in breast
cancer tissue. Of this set, 309 pseudogenes exhibit significant differential expression among breast cancer subtypes.
Hierarchical clustering using only pseudogene expression levels accurately separates tumor samples from normal
samples and discriminates the Basal subtype from the Luminal and Her2 subtypes. Correlation analysis shows more
positively correlated pseudogene-parent gene pairs and negatively correlated pseudogene-miRNA pairs than
expected by chance. Furthermore, 177 transcribed pseudogenes possess binding sites for co-expressed miRNAs
that are also predicted to target their parent genes. Taken together, these results increase the catalog of putative
pseudogene ceRNAs and suggest that pseudogene transcription in breast cancer may play a larger role than previously
appreciated.

Background

Pseudogenes are genomic sequences sharing consider-

able sequence identity with protein-coding genes yet

possessing features such as premature stop codons, dele-

tions/insertions, or frameshift mutations that prevent

them from producing functional proteins. There are

three classes of pseudogenes: processed, duplicated, and

unitary. A processed pseudogene lacks introns, resem-

bling a spliced transcript that was inserted into the gen-

ome. A duplicated pseudogene is essentially a partial or

complete copy of a protein-coding gene, including in-

trons and sometimes even upstream regulatory elements.

Thus, for any processed or duplicated pseudogene, there

is an associated protein-coding gene called its parent

gene that is highly similar in sequence. The third type of

pseudogene is the unitary pseudogene, which arises

when a protein-coding gene loses its coding potential

through the accumulation of mutations. Unitary pseudo-

genes therefore do not have parent genes.

According to the GENCODE pseudogene annotations

(v.17), there are nearly 15,000 human pseudogenes.

Since their discovery in 1977, pseudogenes have gen-

erally been considered “biologically inconsequential”

and non-functional [1]. Therefore, the discovery that a
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number of pseudogenes, such as PTENP1 [2], are tran-

scribed was somewhat surprising. The ENCODE project

recently performed a survey of publicly available expres-

sion data to identify transcribed pseudogenes, and found

over 800 pseudogenes with strong evidence of transcrip-

tion [3]. These transcribed pseudogenes showed both tissue-

specific and constitutive expression profiles. In addition,

many of the pseudogenes not found to be transcribed by EN-

CODE possessed properties indicative of transcription poten-

tial, including open chromatin, histone modifications that

indicate transcriptional activity, transcription factor binding,

and RNA polymerase II occupancy. Another recent study

found evidence for over 2000 expressed pseudogenes in 13

different cancer and normal tissue types [4].

Although some pseudogenes are transcribed, this fact

does not necessarily imply that pseudogene transcripts

perform biologically important functions. However, re-

cent research has revealed several mechanisms by which

pseudogenes regulate gene expression. For example, in

snail neurons, translation of the neural nitric oxide syn-

thase mRNA is blocked by an antisense pseudogene

transcript that binds to the mRNA [5]. Pseudogenes in

mouse can form double-stranded RNA by base-pairing

with their corresponding protein-coding genes and gen-

erate siRNAs to silence the expression of these genes

[6]. Pseudogenes may also compete with mRNAs for

transcript stability factors, as in the case of the human

HMGA1-p pseudogene [7].

The most recent function identified for pseudogenes is

post-transcriptional regulation of mRNA levels by com-

peting for miRNAs. This mechanism was first discovered

in animals when it was shown that two human pseudo-

genes, PTENP1 and KRASP1, are transcribed and harbor

miRNA response elements (MREs) for some of the same

miRNAs that target their corresponding protein-coding

genes, PTEN and KRAS, respectively [8]. By binding and

sequestering miRNAs that would otherwise bind and

regulate PTEN or KRAS, the corresponding pseudogenes

free the protein-coding genes from miRNA target re-

pression. Thus, if the pseudogene is transcribed at a low

level, more miRNAs will be able to target the parent

gene transcripts, whereas an increase in pseudogene

transcription will cause fewer miRNAs to target the par-

ent gene. In this way, pseudogene RNA can compete

with the parent gene RNA for miRNAs and thereby in-

fluence gene expression. This mechanism of regulation

was first characterized in plants, where it was termed

“target mimicry” [9]. Competition for miRNAs had also

been used to create exogenous “miRNA sponges” con-

taining specific MREs designed to soak up micro-

ribonucleoprotein complexes and de-repress natural

miRNA targets [10]. Salmena et al. coined the term com-

peting endogenous RNA (ceRNA) to describe the function

of PTENP1 and KRASP1 [11]. In theory, any type of

RNA molecule, including mRNA, transcribed pseudo-

genes, and long non-coding RNA (lncRNA), can func-

tion as a ceRNA, provided the molecule shares at least

one MRE with another RNA [12]. A number of ceRNAs

have been identified since the initial discovery of

PTENP1 and KRASP1, including mRNAs [13-15], and

lncRNAs [16]. Non-coding transcripts may serve as

more effective ceRNAs than mRNAs, since they are sub-

strates for miRNA binding but are not translated. The

absence of bound ribosomes on a non-coding transcript

allows miRNAs to bind freely along the entire transcript

rather than primarily in the regions that are outside the

ribosome footprint as on mRNAs [17]. Transcribed

pseudogenes are especially strong ceRNA candidates be-

cause pseudogenes are identified by alignment with

protein-coding genes, so by definition, they possess

strong sequence similarity with their corresponding par-

ent genes. This suggests that pseudogenes are likely to

share MREs with their parent protein-coding genes. In

fact, the sequence similarity between the PTEN coding

gene and the PTENP1 pseudogene was one of the initial

observations that led to the discovery of the ceRNA

function of the PTENP1 pseudogene [8].

Interestingly, several transcribed pseudogenes play a

key role in the development of cancer. PTENP1, KRASP1,

and OCT4-pg4 are known to promote tumor progression

through their roles as ceRNAs [8,18]. The pseudogenes

SUMO1P3 [19], ATP8A2-Ψ [4], and Nanog-p8 [20] have

each been shown to enable cancer progression, but the

mechanisms by which they do this are unknown. Ψ-PPM1K

was shown to suppress oncogenic cell growth in hepatocel-

lular carcinoma by generating endogenous siRNAs [21].

ATP8A2-Ψ is an especially interesting case, because it is the

first published example of a pseudogene that is differentially

expressed among cancer subtypes, showing high expression

in breast cancer samples with luminal histology but very lit-

tle expression in basal samples [4]. Also, ATP8A2-Ψ was

shown to induce tumor progression when overexpressed in

breast cancer cell lines [4].

Recently, a survey of RNA-seq data from The Cancer

Genome Atlas project spanning seven cancer types

showed that pseudogenes can be used to classify cancer

samples into clinically relevant subtypes [22]. In particu-

lar, this study found that pseudogene expression alone

separates endometrial cancer samples into groups corre-

sponding to the major histological subtypes. Another in-

teresting result from this study is that pseudogene-

defined subtypes in kidney cancer show different patient

survival rates. In addition, 547 pseudogenes with subtype-

specific expression in breast cancer were identified. Fi-

nally, using miRNA expression data in conjunction with

gene and pseudogene expression levels, they identified 38

pseudogenes with potential to function as ceRNAs in kid-

ney cancer.
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The pseudogenes that have been shown to participate

in ceRNA interactions or play a role in cancer certainly

represent provocative examples. However, the difficulty

of reliably quantifying pseudogene expression and the

lack of suitable datasets have hindered attempts to study

these phenomena on a large scale. Therefore, it is not

known whether pseudogenes like PTENP1 and ATP8A2-

Ψ represent a few anomalous cases or point to a perva-

sive regulatory mechanism.

To begin to address this open and important question,

we performed an investigation of the expression, subtype

specificity, and ceRNA potential of transcribed pseudo-

genes in breast cancer using data from The Cancer Gen-

ome Atlas project (TCGA). The data include RNA-seq

results for a total of 819 tumor and adjacent normal

samples, along with sample-paired small RNA-seq. The

dataset contains a representative sampling of breast can-

cer subtype, including 123 samples from the basal sub-

type, 60 her2 samples, 371 luminal A samples, and 170

luminal B samples. To the best of our knowledge, this

study is the first to make use of sample-paired pseudo-

gene and miRNA expression data to investigate the

ceRNA mechanism in breast cancer.

Results
Reliable quantification of pseudogene expression

Reliable quantification of pseudogene expression re-

mains a challenging problem for a number of reasons.

First, since parent genes and pseudogenes are highly

similar in nucleotide sequence, short RNA-seq reads de-

rived from one may align equally well to the other one.

Such reads are fundamentally ambiguous in terms of

their origin. Second, some reads may have nearly identi-

cal alignment to locations in the gene and pseudogene,

and their mapping is often determined by the location

with the least error in alignment. However, this strategy

is unreliable in the presence of subject-specific variation

with respect to the reference genome, or in the event of

base call errors during sequencing, since these can result

in an incorrect assignment of the read. Third, some

aligners may follow a parsimony strategy in which a

“simple” alignment is preferred to a complex (e.g.

spliced) alignment. In the case of a processed pseudo-

gene that lacks splices, this approach may erroneously

bias the alignments to the pseudogene rather than the

parent gene. Finally, in some cases, aligners report only

a subset of possible alignments as a result of the heuris-

tics used. For all of these reasons, studies of gene and

pseudogene expression using existing tools are likely in-

accurate without additional considerations.

A first approach to reliably studying pseudogene ex-

pression is to consider only the reads that are assigned

to a single location by an aligner. However, the above

confounding factors can result in reads that are uniquely

aligned to the wrong positions (Figure 1A). Any conclu-

sions drawn from such reads in downstream analyses

will be unreliable. One approach to addressing this prob-

lem is to identify and discard from the analysis reads

that map to regions in the genome that are especially

sensitive to these confounding factors. We have adopted

this approach using the concept of transcriptome mapp-

ability, which we describe below.

Our approach for computing transcriptome mappabil-

ity builds on the notion of genomic mappability. Mapp-

ability is a measure of the inherent distinctiveness of a

genomic region; the more frequently a genomic region

occurs, the less mappable it is. Although mappability

can be defined as a continuous quantity (the reciprocal

of k-mer frequencies, for example, as in [23]), it is gener-

ally not very useful to know the degree to which a region

is unmappable. If a k-mer occurs more than once in the

genome, a read aligned there will be ambiguous. For this

reason, we compute mappability as a discrete quantity –

that is, a region is either mappable (unambiguous) or

not mappable (ambiguous). Our notion of mappability

also includes a “safety margin”, so that a mappable re-

gion guarantees not only a unique alignment for the

reads matching the sequence, but also that no read with

one or two base call errors or SNPs relative to the refer-

ence genome could be uniquely mismapped to this re-

gion. Mappability is important even if an aligner does

not use heuristics and exhaustively enumerates read

alignments. As demonstrated by Figure 1A, highly simi-

lar regions can produce uniquely mismapped reads as a

result of genome variation and read errors in a way that

no aligner can recognize (see Methods section for

details).

If we restrict our attention to alignments in mappable

regions, we ensure that the downstream analysis results

are robust, even if the reference genome does not match

the subject genome or the reads contain sequencing er-

rors. Mappability is thus inversely related with sensitivity

to genome variation and read errors.

Since RNA-seq reads may span multiple exons, the

transcriptome contains additional k-mers beyond those

found in the genome. To compute transcriptome mapp-

ability, we can align k-mers to the genome sequences

crossing splice junctions. This transcriptome mappability

scheme allows the computation of pseudogene expres-

sion levels using only reads uniquely aligned to map-

pable regions. Using these reliable reads, we compute

pseudogene expression levels in units of Reads per Kilo-

base of Uniquely mappable transcript per Million reads

(RPKUM). See the Methods section for a detailed de-

scription of the transcriptome mappability and RPKUM

calculations.

We tested our RPKUM metric by comparing expres-

sion levels for protein coding genes computed with both
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Figure 1 Reliable quantification of pseudogene expression. (A) Example showing that even an ideal aligner may produce uniquely
misaligned reads in the presence of mutations and read errors if alignments to unmappable regions are considered trustworthy. In this example,
the gene and pseudogene differ in one nucleotide so the regions are not identical. Now the gene in the subject genome being sequenced has

undergone mutation so it differs from the reference genome in 3 positions. RNA-seq produces reads from this gene reflecting the mutations in
the subject genome. If the reads are then mapped back to the genome allowing 2 mismatches, they map only to a pseudogene of the gene that

produced the reads. The problem arises because the sequences of the gene and pseudogene are sufficiently similar that unique misalignment
cannot be ruled out. (B) If a read has at least two alignments that are at distance δ1 and δ2 from the reference genome, respectively, then the
true position of the read should be considered ambiguous unless |δ1-δ2| > ε for some integer safety margin ε > 0. (C) Pipeline for computing

RPKUM expression levels for pseudogenes. (D) “Synthetic regions” around splice junctions are used to extend mappability to the transcriptome. A
synthetic region is constructed by concatenating k–1 nucleotides from the donor and acceptor exons on either side of a splice junction. Any k-mer that

crosses the splice junction thus occurs in the synthetic region.
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RPKUM and RSEM [24], a commonly used transcript

quantification method. We computed the mean expres-

sion level across the TCGA dataset for each protein-

coding gene using both methods, then calculated the

correlation between the expression levels from the two

methods. The result showed good agreement between

RPKUM and RSEM values (Spearman correlation > 0.85),

indicating that RPKUM values provide a reliable method

for quantifying expression levels.

An important question is whether RPKUM values

computed from few mappable bases are trustworthy. To

investigate the robustness of the RPKUM metric, we

simulated RPKUM values by randomly sampling posi-

tions of genes that are completely mappable and then

using these sampled bases as the only mappable bases of

a gene in an RPKUM calculation. Genes spanning a wide

range of expression levels from 1 to 200 RPKMs were

used in the simulation. We performed the simulations

with 500, 100, and 50 mappable bases per gene. RPKUM

values computed from genes with as few as 50 simulated

mappable bases showed very strong agreement with the

true RPKM expression levels across the range of expres-

sion levels (ρ = 0.95). In addition, increasing the number

of mappable bases slightly increases the correlation be-

tween RPKUM and RPKM levels (ρ = 0.97 for 100 map-

pable bases and ρ = 0.99 for 500 mappable bases).

Figure 2A shows the distribution of transcriptome

mappability for protein coding genes and GENCODE v.

17 pseudogenes. As expected, pseudogenes are much

less mappable than protein-coding genes; the median

protein-coding gene mappability value is nearly 100% of

gene length, and the vast majority of genes are almost

completely mappable. In contrast, the median pseudo-

gene mappability value is around 80% of pseudogene

length. The distribution of pseudogene mappability is

approximately bimodal, with peaks near 10% and 90%. A

Aligned to Pseudogenes

Not Aligned to Pseudogenes Unspliced Unique

Unmappable

Mappable

Spliced Unique

0
20

40
60

80
1

0
0

Genes Pseudogenes

%
M

a
p
p
a
b
le

A

B

161225013, 94% 7108439, 72% 

9809987, 6% 
2701548, 27% 

2701548, 87% 

80869, 1% 
3774, 0% 

362622, 13%
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sizable fraction of pseudogenes are completely unmappable

(2169 out of 14942). Nonetheless, the majority of pseudo-

genes possess a significant fraction of mappable bases and

are thus accurately detectable using RPKUM expression

levels.

As expected, restricting the set of reads aligned to

pseudogenes to only those in mappable regions leads to

a dramatic reduction in the number of reads (Figure 2B).

On average, each sample contains nearly 10 million

reads mapped to pseudogenes, but our filtering process

leaves a set of just over 360,000 pseudogene reads per

sample. The surviving reads comprise a high-confidence

set that can be used to assess pseudogene transcription.

High-confidence breast cancer pseudogene transcripts

Using the GENCODE v. 17 pseudogene annotations, we

identified 2012 pseudogenes with evidence of transcription,

defined as genes with at least 50 mappable bases, 50 reads,

and 1 RPKUM in at least 1 sample (Additional file 1). The

majority of these pseudogenes occurred in only a small

number of samples (Figure 3A). However, a subset of the

pseudogene transcripts occurs in a large number of sam-

ples, including 94 pseudogenes that are transcribed in over

95% (n = 780) of the samples. To investigate the pseudo-

genes that are most likely to play a role in cancer biology,

we chose to focus the remainder of our analysis on pseudo-

genes that exhibited evidence of transcription in at least

10% (n = 80) of the samples; this set consists of 440

pseudogenes.

The GENCODE pseudogene decoration resource

(psiDR v. 0), assembled from a recent genome-wide

survey of pseudogenes using ENCODE data [3], pro-

vides useful information for an initial assessment of

the transcriptional potential of our pseudogene set.

Out of the set of 440 transcribed pseudogenes we

identified, 287 pseudogenes are annotated in psiDR

for a number of attributes, including pseudogene type,

parent gene, transcription evidence, open chromatin,
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occur in fewer than 20 samples. Roughly 25% of the pseudogenes occur in at least 80 samples. (B) Bar chart comparing the set of 287
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histone modifications that indicate activity, transcrip-

tion factor binding, RNA polymerase II occupancy,

and evolutionary constraint [3]. Although the func-

tional genomics annotations come from the ENCODE

cell lines, not from breast cancer tissue, they nonethe-

less serve as a reasonable starting point for assessing

the transcriptional activity of the pseudogenes we

identified.

Examining the collection of psiDR annotations for

these 287 transcribed pseudogenes shows that they pos-

sess a number of properties that indicate transcriptional

activity (Figure 3B). Nearly half (n = 125) of the 287

pseudogenes were reported by psiDR to be transcribed.

The remainder (n = 162) represent potentially novel

pseudogene transcripts not annotated in psiDR. The

pseudogenes producing these unannotated transcripts

show strong evidence of transcriptional activity. Com-

pared to the full set of more than 11,000 pseudogenes

annotated by psiDR, the set of 287 is significantly

enriched for active chromatin, Pol II occupancy, and

transcription factor binding (p<0.002,χ2test). In addition,

20 of these pseudogenes display fewer substitutions

compared to chimp and mouse orthologs than expected

by chance. Interestingly, duplicated and unitary pseudo-

genes are also enriched within the set of 287. This may

be due in part to the fact that duplicated pseudogenes

are thought to be more likely to possess upstream regu-

latory elements similar to those of the parent genes.

Also, unitary pseudogenes are likely to be more map-

pable, and thus are easier to detect from short-read

RNA-seq data. In short, the diverse data types from the

ENCODE project provide strong support for the tran-

scriptional activity of the pseudogenes that we have de-

tected in breast cancer tissue.

It is worth noting that PTENP1 and KRASP1, the two

initial examples of pseudogene ceRNAs, are present

(though at low levels) in the breast cancer samples we

study here. Our method of computing RPKUM expres-

sion levels is thus capable of detecting these important

pseudogenes, but their expression levels fall below the

cutoff that we used to define our set of highly-expressed

pseudogene transcripts, and therefore they were not

considered for further analysis. The set of 748 breast-

cancer pseudogene transcripts provided by Han et al.

[22] does not contain PTENP1 or KRASP1, confirming

the low expression of these pseudogenes in breast

cancer.

Hierarchical clustering shows association with known

cancer subtypes

The four molecular subtypes of breast cancer possess a

number of distinguishing characteristics, including

estrogen/progesterone receptor status, response to

chemotherapy drugs, and gene expression profile

[25]. A common method of studying the differences

among these subtypes is to use unsupervised cluster-

ing techniques to group samples together based on

their gene expression patterns. Unsupervised cluster-

ing using protein-coding genes results in four dis-

tinct clusters corresponding to the subtypes [25]. To

investigate the relationship between pseudogene transcrip-

tion and breast cancer disease state, we performed hier-

archical clustering using the high-confidence set of 440

pseudogenes. Unsupervised clustering based solely on

these pseudogene expression levels effectively separates

tumor and normal samples (Figure 4A). However, since

the normal samples are extracted from tumor adjacent

breast tissue that contains a different cell type composition

than the tumor itself, the ability to distinguish tumor from

normal is likely due in large part to tissue specificity rather

than tumor biology. Nonetheless, this result shows that

pseudogene expression varies considerably between the

cell types that make up the tumor and adjacent normal

samples.

We also removed the adjacent normal samples and

clustered solely on the tumor samples. As Figure 4B

shows, the unsupervised clustering algorithm success-

fully separates the basal samples from the other sub-

types. However, the pseudogene expression profiles for

the luminal and Her2 subtypes are not sufficiently distinct

to consistently separate samples from these subtypes.

Basal tumors grow more rapidly and have significantly dif-

ferent histology than the other subtypes [25], and this may

be why basal/luminal and basal/Her2 separation stands

out more clearly than the luminal/Her2 separation. The

fact that pseudogene expression alone can identify the

basal subtype shows that pseudogene expression has a

strong, non-random association with specific pathways

and cellular environments. This suggests that previous

findings, such as the pseudogene ATP8A2, which is more

highly expressed in luminal compared to basal samples

[4], are not isolated examples.

Pseudogenes are differentially expressed among cancer

subtypes

To identify the pseudogenes with the most strong

subtype-specific expression profiles, we performed a

multi-class differential expression analysis using the

SAM tool [26]. This analysis yielded 309 pseudogenes

with significant subtype-specific expression (FDR < 1%;

Additional file 2). Several interesting pseudogenes are at

the top of this list. For example, the second pseudogene

on the list is ATP8A2-Ψ, a pseudogene that has been

found to be upregulated in luminal subtypes and shown

to induce tumor progression [4]. The expression profile

found here reflects this pattern, showing strong upregu-

lation in luminal samples compared to basal.
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Three other interesting examples are shown in Figure 5.

A pseudogene of CASP4, a member of the caspase family

known to initiate apoptosis under certain conditions [27],

is expressed at higher levels in basal samples and down-

regulated in luminal A samples (Figure 5A). Interestingly,

the expression of the CASP4 pseudogene is lower in

tumor samples than normal, which is the expression pro-

file expected for a ceRNA that promotes CASP4 expres-

sion. Additionally, the CASP4 pseudogene was found to

be transcribed in the ENCODE analysis [3]. Another inter-

esting property of this unprocessed pseudogene is that it

shows alternative splicing—there appear to be multiple

isoforms represented in the reads covering the pseudogene

locus. Intriguingly, our analysis of potential ceRNA inter-

actions also indicated that the CASP4 pseudogene is posi-

tively correlated (ρ = 0.3) with expression of its parent

gene and shares a miRNA target site for hsa-mir-203 (see

next section for detailed summary of ceRNA investigation).

The CYP2F1 pseudogene is expressed at quite high

levels compared to most pseudogenes in the dataset, and

the average expression level in the luminal B subtype is

nearly five times the average expression in the basal sub-

type. The pseudogene is a unitary pseudogene, with no

clear parent protein-coding gene. However, it possesses

strong sequence similarity with the cytochrome P450

family of genes. It was previously demonstrated that

CYP2F1 is expressed in colorectal cancer and that ex-

pression in primary tumors correlated with correspond-

ing metastatic tumors in lymph nodes [28]. Like the

CASP4 pseudogene, the CYP2F1 pseudogene shows evi-

dence for multiple isoforms.

A pseudogene of the MSL3 gene shows nearly twice

the expression level in basal compared to luminal A

(Figure 5C). The processed pseudogene was found to be

transcribed in the ENCODE analysis. The MSL3 protein

is thought to play a function in chromatin remodeling

and transcriptional regulation, and it has been reported

as part of a complex that is responsible for histone H4

lysine-16 acetylation [29]. Furthermore, expression of

this pseudogene is correlated with the expression of its

parent gene (ρ = 0.3), and it is predicted to share target

sites for six different miRNAs (see next section for de-

tailed summary of ceRNA investigation).

A

B

Figure 4 Hierarchical clustering based on pseudogene

expression shows pseudogene association with breast cancer

subtypes. (A) Heatmap showing pseudogene expression profiles in
tumor and adjacent normal samples. High expression levels are

shown in light green, and low expression levels are shown in light
blue. Tumor samples are highlighted in red along the top of the
plot; adjacent normal samples are highlighted in green. (B) Heatmap

of pseudogene expression profiles in tumor samples. Samples
belonging to the basal subtype are highlighted in yellow along the

top of the plot.
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C

Figure 5 (See legend on next page.)
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Analysis incorporating miRNA and gene expression levels

reveals pseudogenes with ceRNA potential

A common hypothesis about ceRNA interactions is that

if transcript A sequesters miRNA C away from transcript

B, the expression levels of A and B will be positively cor-

related, while both A and B will be negatively correlated

with C. To assess the possibility that the transcribed

pseudogenes identified may function as ceRNAs for their

parent genes, we performed an analysis integrating

miRNA target prediction with pseudogene, gene, and

miRNA expression levels. The miRNA expression levels

(Additional file 3) were computed from sample-paired

TCGA small RNA-seq data using a previously described

small RNA-seq analysis pipeline [30]. We computed ex-

pression levels for the parent genes of the pseudogenes

using the same RPKUM method as for the pseudogenes.

Since pseudogenes are non-coding RNAs and are not

densely bound by ribosomes, the vast majority of the

transcribed region of a pseudogene is likely accessible

for miRNA binding. However, if a pseudogene serves as

a miRNA sponge for its parent gene, it is more likely

that the shared miRNA binding site occurs in the 3′

UTR of the parent gene than in the coding region. In

addition, using a restricted region for prediction some-

what ameliorates the lack of specificity common to

miRNA target prediction algorithms [31]. We therefore

chose to restrict our target prediction analysis to the

portion of the pseudogene with sequence similarity to

the 3′ UTR of the parent gene—what might be termed

the “pseudo-3′ UTR”. During the process of performing

miRNA target prediction on pseudogenes, we noticed

that the GENCODE pseudogene annotations often did

not span the pseudo-3′ UTR. Therefore, we used

BLAST to identify the pseudo-3′ UTRs of pseudogenes

by aligning the GENCODE annotation and surrounding

genomic context with the annotated 3′ UTRs of the par-

ent gene (see Methods section for details). TargetScan

version 7 [32] was used to predict target sites for only

the top 100 miRNAs expressed in the TCGA breast can-

cer dataset. This analysis revealed 177 transcribed pseu-

dogenes that are predicted to share at least one miRNA

target site with their corresponding parent genes.

We computed Pearson correlation coefficients for each

pseudogene-parent gene pair. As the plot in Figure 6

shows, the majority of pseudogene-parent gene pairs are

uncorrelated. However, there is a positive skew to the

distribution of correlations. To test whether the distribu-

tion of correlations differs significantly from expectation,

we performed a permutation test. We constructed 5000

sets of gene-pseudogene pairs in which the genes and

pseudogenes were randomly paired. The sets were of the

same size as the set of pseudogene-parent gene pairs.

For each random set, we computed the number of pairs

with Pearson correlation above 0.3. In the 5000 random

sets we generated, there were never more than 15 such

pairs per set (Figure 6C). However, the set of correla-

tions resulting from pairing pseudogenes and parent

genes contains 55 pairs with correlation above 0.3. This

indicates that the positive skew to the distribution of

correlations shown in Figure 6A is very unlikely to be

due to chance. We also tested an additional correlation

threshold of 0.5 and observed a similar result, indicating

that our findings are robust to the choice of correlation

threshold.

We also computed the correlation between the expres-

sion level of each pseudogene and the miRNAs predicted

to target it. The correlations observed for these

pseudogene-miRNA pairs closely approximate a nor-

mal distribution, but show a slight negative trend

(Figure 6B). A total of 180 pseudogene-miRNA pairs

show strong negative correlation of less than −0.3.

To test whether this number of pairs is significant,

we approximated a null distribution of pseudogene-miRNA

correlations using the same permutation method we ap-

plied to the pseudogene-parent gene pairs. Randomly shuf-

fling the pseudogene-miRNA pairs to create 5000 random

sets (Figure 6D) showed only 5 permutations with at least

as many strongly anti-correlated pairs as we observed in

the data, which corresponds to an empirical p-value of

0.001. This supports the conclusion that the extent of nega-

tive correlations observed in the data cannot be attributed

solely to chance, and is likely due to genuine miRNA target

repression.

Next we sought to identify the pseudogene-parent

gene-miRNA triples with the strongest ceRNA potential.

To do this, we first identified expressed miRNAs pre-

dicted to target both a pseudogene and its parent gene.

For each such triple, we computed the correlation be-

tween pseudogene and parent gene, pseudogene and

miRNA, and parent gene and miRNA (Additional file 4).

We also computed p-values with Benjamini-Hochberg

FDR correction for the miRNA correlations. In this way,

we identified 17 pseudogene-gene pairs with strong

ceRNA potential, which we defined as pseudogene-gene

correlation greater than 0.3 and statistically significant

miRNA anti-correlation.

(See figure on previous page.)
Figure 5 Read coverage, mappability, and tumor expression profile for (A) CASP4 pseudogene, (B) CYP2F1 pseudogene, and (C) MSL3

pseudogene. The light green bars in the top track of indicate regions that are mappable. Read coverage is shown by the height of the gray
regions. Average expression level for each cancer subtype is shown to the right; pink indicates high expression, and light blue indicates

low expression.
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Two of these pseudogenes stand out as especially in-

teresting examples. A pseudogene of GBP1 and its par-

ent gene show statistically significant anti-correlation

with hsa-mir-199a, which has been shown to regulate

autophagy in breast cancer cells [33]. This pseudogene

was also found to be transcribed in the ENCODE ana-

lysis [3]. The parent gene GBP1 is known to be the me-

diator of the anti-proliferative effect of inflammatory

cytokines in endothelial cells [34], and is implicated in

several types of cancer according to GeneCards. In

addition, the GBP1 pseudogene shows strong positive

correlation with the expression of its parent gene across

the TCGA dataset (ρ = 0.82). Another interesting pseudo-

gene is SUZ12P1. This pseudogene and its parent gene

both show strong anti-correlation to hsa-mir-28. SUZ12P1

also shows moderate positive correlation with its parent

gene (ρ = 0.41). The parent gene, SUZ12, is a polycomb

group protein and part of the PRC2/EED-EZH2 complex,

an important epigenetic regulator that performs histone

methylation [35]. This gene is also frequently translocated

in endometrial stromal tumors, where it forms the JAZF1-

SUZ12 oncogene [36].

An interesting question is whether the genes that have

pseudogenes with ceRNA potential are functionally re-

lated. To investigate this question, we performed a Gene

Ontology (GO) term enrichment analysis using three

different sets of parent genes. The sets of genes used

were parent genes strongly correlated with a pseudo-

gene, parent genes whose pseudogenes was strongly

anti-correlated with a shared miRNA, and parent genes

participating in a putative gene-pseudogene-miRNA

ceRNA interaction as defined above. For each of these

sets of parent genes, we used the GOrilla tool with de-

fault settings to look for GO terms enriched in the set

compared to the background list of all parent genes. No

significantly enriched GO terms were found for any of

the 3 sets of interest, indicating that there is no clear

functional relationship among the parent genes in the

sets that we have identified.

Discussion
The recent paper by Han et al. that investigated pseudo-

gene expression in cancer [22] identified 748 pseudo-

genes transcribed in breast cancer, 547 of which showed

subtype-specific expression. Although the results of Han

et al. partially overlap with our own, our study is distinct

in two key ways: (1) we investigate the ceRNA potential

of pseudogenes transcribed in breast cancer, but Han

et al. do not and (2) we use a more detailed method for

measuring pseudogene transcription, designed to maximize

specificity. In an effort to avoid the artifacts that plague

pseudogene transcription detection, we designed our
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analysis to be as conservative as possible. Consequently, the

set of pseudogenes detected by our method is somewhat

smaller. However, our set of pseudogenes is not simply a

subset of theirs. Out of the 440 pseudogenes we detect, only

174 were also found by Han et al. (Figure 7B). The

remaining 266 represent novel pseudogene transcripts. In

addition, 103 of the subtype-specific pseudogenes we identi-

fied overlap with the set of subtype-specific pseudogenes

presented in Han et al. (Figure 7C).

To understand why our set of pseudogenes is substan-

tively different from that of Han et al., we carefully ana-

lyzed how they computed pseudogene expression levels.

They used 75-mers to compute mappability, and decided

for each exon whether to include or exclude reads for

the entire exon. One shortcoming of this approach is

that it either includes or excludes reads for entire exons,

rather than making decisions for individual reads. In our

experience, small islands of similarity within an other-

wise distinct exon are often enough to promote false

positive read alignments. Conversely, small islands of

distinct sequence within an exon can be used to detect

the presence of pseudogene transcripts. As a result, our

approach detected 266 pseudogenes with strong evidence

of transcription that were overlooked in Han et al. [22].

Another limitation is that the analysis in [22] did not ac-

count for the presence of splice junctions inserted into the

genome. Processed pseudogenes containing concatenated

exons are a major source of error in pseudogene RNA-seq

alignments because RNA-seq aligners sometimes prefer

unspliced alignments to spliced, particularly in the pres-

ence of SNPs. However, genomic mappability as used in

[22] cannot detect such artifacts.

A more serious problem is that although the RNA-seq

reads from the TCGA BRCA data are 50 bases long,

Han et al. use mappability based on 75-mers to decide

which pseudogenes are mappable. Given that longer se-

quences are more likely to be distinct in the genome,

this mismatch between read length and the k-mer size

used to compute mappability means that an exon that

appears completely mappable may nonetheless have

many misaligned reads. Figure 7A shows the difference

in mappability obtained from 75-mers without accounting

for splice junctions inserted in the genome and 50-

mers. In the first case, the median mappability as a
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percentage of gene length is 94%, but in the second

case it is 74%. The use of 75-mers as in [22] rather than

50-mers results in a loss of specificity. Thus, it is pos-

sible that some of the pseudogenes transcripts detected

in this way are not actually transcribed, but are simply

read alignment artifacts.

In summary, two major differences between the ap-

proach of Han et al. and our own method for computing

pseudogene expression explain the differing lists of pseu-

dogenes that were obtained. First, Han et al. either kept

or removed entire pseudogene exons, while we made the

decision for each individual read; this explains why we

detected some pseudogenes that they did not. Second,

Han et al. used 75-mers to compute genome mappabil-

ity, but we used 50-mers and accounted for processed

pseudogenes containing splice junctions; consequently,

our list of pseudogenes did not include some of theirs.

We emphasized specificity in our algorithm in order to

facilitate the identification of the highest confidence

pseudogenes and candidate ceRNAs for further analysis.

If the methods used to derive pseudogene expression

levels do not properly account for misaligned reads, it

is difficult to exclude the possibility that apparent

pseudogene-based classification of subtypes are actually

driven by improperly aligned reads from protein-coding

genes with subtype-specific expression. Furthermore, such

misaligned reads could bias toward stronger positive cor-

relations between parent genes and pseudogenes.

In this paper, we undertook an initial investigation to

address the important questions of how pervasive the

pseudogene ceRNA mechanism is and how pseudogene

transcription relates to breast cancer subtype. Careful

scrutiny of RNA-seq evidence yielded a high-confidence

set of pseudogene transcripts, a subset of which exhibit

strong subtype-specific expression and are candidates

for ceRNA function. Further experimental work is

needed to examine these candidates; in particular, assays

for miRNA binding and siRNA knockdown experiments

can provide more conclusive evidence for ceRNA inter-

actions in individual gene-pseudogene pairs. Follow-up

studies are also needed to determine the nature of the

relationship between pseudogene expression and subtype.

Many of the subtype-specific pseudogene transcripts are

likely passengers rather than drivers. However, some of

these may play a role in the tumor progression of individual

subtypes, as was demonstrated in the case of ATP8A2-Ψ.

The integration of pseudogene, gene, and miRNA ex-

pression data demonstrates that while not all pseudo-

genes may function as ceRNAs, the phenomenon is

likely more pervasive than currently appreciated. One

limitation of our approach is that ceRNA activity may

not always be indicated by positive correlation between

a pseudogene and its parent gene or negative correlation

between a pseudogene and its targeting miRNA. For

example, if the miRNA regulation of a pseudogene

is very strong, leading to rapid and robust degradation

of the pseudogene, this could produce a negative

correlation between pseudogene and parent gene. Fur-

thermore, it is well-known that regulatory network

structures such as incoherent feed-forward loops can

produce positive correlation between an mRNA and a

targeting miRNA [37]. Even with this limitation, our

results suggest that more pseudogenes than currently

known likely function as ceRNAs, and more detailed

experimental work is required to determine the physio-

logical significance of this function.

Methods

Computing transcriptome mappability

A first approach to reliably studying pseudogene expres-

sion is to consider only reads that are assigned to a sin-

gle location by an aligner. However, the confounding

factors of SNPs, read errors and aligner heuristics can

result in reads that are uniquely aligned to the wrong

positions (Figure 1A). We refer to such reads as uniquely

misaligned reads. Any conclusions drawn in the pres-

ence of uniquely misaligned reads in downstream ana-

lyses will be unreliable. In order to guard against this

problem, we should distrust any reads for which there

exist multiple possible alignments whose distance from

the genome is less than some safety margin ε (Figure 1B).

In such cases, there is sufficient ambiguity that we can-

not rule out the possibility of unique misalignment.

To address the problem of read mismapping between

genes and pseudogenes, we developed an approach

based on the concept of mappability. Since RNA-seq

reads may span multiple exons, the transcriptome con-

tains additional k -mers beyond those found in the gen-

ome. In considering transcriptome k -mers, two cases

arise that are particularly problematic for pseudogenes:

processed pseudogenes with integrated splice junctions

and duplicated pseudogenes that may have highly similar

splice junctions to their parent genes. The former case is

particularly problematic because RNA-seq aligners

sometimes prefer direct alignments to spliced align-

ments, causing spuriously aligned reads to accumulate

on processed pseudogenes. To compute transcriptome

mappability, we consider k -mers from the genome and

“synthetic regions” surrounding splice junctions (Figure 1D).

The synthetic region around a splice junction is the concat-

enation of the immediately adjacent k–1 bases from donor

and acceptor exons. These regions thus contain any k

-mers that span annotated splice junctions. For a

given genome G, transcriptome T (represented as k

-mers from synthetic regions), position i, read length k

and error tolerance ε, we define the mappability of

position i as a Boolean quantity:
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M G;T ; i; k; εð Þ ¼

0 if Gi …Giþk−1 is within Hamming distance

ε of any other k‐mer in G or T
1 otherwise

8

<

:

Finding transcribed pseudogenes

We filtered reads by requiring that either (1) the read

has a unique, direct alignment to the genome starting at

position i and this position is mappable or (2) the read

has a unique, spliced alignment and the spliced k -mer

to which the read is aligned occurs exactly once in the

genome and transcriptome. We refer to reads surviving

this filtering as “mappable reads”. Ensembl protein-

coding gene annotations and GENCODE pseudogene v.

14 annotations were used to compute synthetic regions

around splice junctions.

The number of mappable bases for each pseudogene

was computed by constructing a “consensus pseudogene

model” in which all annotated exons are merged into a

nonredundant set of positions including all potentially

transcribed regions from the gene model. We count a

position within the resulting nonredundant set of tran-

script positions as mappable if either (1) the correspond-

ing position in the genome is mappable or (2) a

mappable spliced read occurs at that position.

Using the reliably mapped reads and mappable bases,

compute pseudogene expression levels in units of Reads

per Kilobase of Uniquely mappable transcript per Mil-

lion reads (RPKUM):

Expression level in RPKUM

¼
Mappable reads from pseudogene � 109

Mappable bases in pseudogene � total reads

The justification for computing expression levels in

units of RPKUM instead of RPKM is that reads aligned

to unmappable regions are not considered in the expres-

sion level calculation, so counting the total number of

bases in the transcript would underestimate the expres-

sion level. One limitation of the RPKUM metric is when

the regions used to determine pseudogene transcription

are disjoint from a transcript isoform. In such a case the

RPKUM expression measurement does not include the

expression of the unmappable isoform. Out of 14,943

pseudogenes annotated by GENCODE v.17, only 89

pseudogenes have one or more unmappable transcript

isoform (defined as < 50 mappable bases). Only 17 of

these occur in the set of 440 that we analyze in the

paper, and of this set of 17, only 5 have parent genes.

Figure 1C summarizes our pipeline for computing

pseudogene expression levels. Our approach improves

on the strategy used in [3] and [4]. In [38] a method was

proposed that, as ours, tries to avoid uniquely misaligned

reads and also included a measure of mappability.

However, the method developed in [38] applied only to

processed pseudogenes and could not be used for dupli-

cated pseudogenes. Our method also accounts for the

possibility of reads that cross splice alignments in defin-

ing mappability.

Hierarchical clustering and differential expression analysis

Tumor subtype classification was determined using the

PAM50 score [39]. Unsupervised hierarchical clustering

was performed using the R function hclust. Expression

levels were log transformed and normalized using the R

scale function before clustering. We first performed

clustering using both tumor and adjacent normal sam-

ples. Next, we omitted the adjacent normal samples and

clustered only the tumor samples. To determine which

pseudogenes showed significant subtype-specific expres-

sion, we used the Significance Analysis of Microarrays R

package (samr) [26]. This approach uses a nonparamet-

ric test based on the Kruskal-Wallis statistic to assess

the evidence for rejecting the null hypothesis that the

expression levels do not differ among subtypes. The

multiclass differential expression option of the samr

package was used.

Prediction of miRNAs targeting pseudogenes and genes

Since pseudogenes are thought to be non-coding and

thus not densely bound by ribosomes, the entire tran-

script can be targeted by miRNAs. Also, since pseudo-

genes are non-coding, 3′ UTRs are not annotated for

pseudogenes. However, if a miRNA targets both a

pseudogene and its parent gene, the shared miRNA

binding site is likely to be located in the 3’ UTR of the

parent gene and the corresponding “pseudo-3′ UTR” of

the pseudogene. In order to be more conservative and in

an effort to reduce the number of false positives arising

from the lack of specificity in miRNA target prediction

algorithms, we chose to restrict our analysis to the

pseudo-3′ UTRs of pseudogenes; we therefore had to

annotate these regions. Pseudo-3′ UTRs were annotated

by BLAST alignment to the 3′ UTRs of the parent

genes.

For each parent gene-pseudogene pair, we downloaded

all annotated 3′ UTRs for the parent gene. Next, we ex-

tracted the pseudogene locus according to GENCODE

and 10 kb of genomic context on either side of the

pseudogene. BLAST was then used to align the parent

gene 3′ UTRs against the pseudogene plus genomic con-

text. The longest statistically significant alignment (based

on the BLAST E-value) was taken to be the pseudo-3′

UTR. Target prediction was performed on pseudo-3′

UTRs and annotated gene 3′ UTRs using TargetScan ver-

sion 7 [32]. Only miRNA target seeds from the top 100

expressed miRNAs by average expression level across the

samples were used in the target prediction. Isomirs
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(mature miRNAs resulting from a shift in the annotated

transcription start site of the same miRNA locus) were

considered to be different miRNAs in this analysis. A

miRNA was considered to be “shared” between a pseudo-

gene and parent gene if TargetScan predicted that the

miRNA could target both of them.

Correlation with protein-coding gene and miRNA expression

levels

We computed Pearson correlation coefficients on log-

transformed gene and pseudogene expression levels

using the parent gene annotations from the ENCODE

pseudogene decoration resource (psiDR v. 0). To avoid

detecting spurious correlations due to predominantly

low expression, we required at least 20 samples in which

gene and pseudogene are present at 1 RPKUM or

greater. Gene-pseudogene pairs with fewer than 20 such

samples were omitted from the analysis. We used the

miRNA targeting predictions from TargetScan (see “Pre-

diction of miRNAs targeting pseudogenes and genes”) to

compute correlations between pseudogene and miRNA

expression levels. Only the top 100 miRNAs by average

expression level were used for this analysis. The pipeline

described in Baran-Gale et al. [30] was used to compute

miRNA expression levels from the TCGA small RNA-

seq data. Correlations with miRNAs were assessed by

computing p-values using a T-statistic for the null hy-

pothesis that the correlation is no smaller than 0. False

discovery rate correction using the method of Benjamini

and Hochberg was performed with the R function p.

adjust.

Additional files

Additional file: 1. Pseudogenes transcribed in at least 1 breast

cancer sample.

Additional file: 2. Pseudogenes showing significant subtype-

specific expression.

Additional file: 3. Top 100 Expressed miRNAs.

Additional file: 4. Pearson Correlation Coefficients for

Pseudogenes, Parent Genes, and shared miRNAs.
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