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Abstract. Building on the work by J. Jost and C.-J. Xu [32], and E.

Barletta et al. [3], we study smooth pseudoharmonic maps from a compact strictly

pseudoconvex CR manifold and their generalizations e.g. pseudoharmonic unit

tangent vector fields.

Introduction.

The purpose of this paper is to study several analogs to differential geometric

objects appearing in Riemannian geometry and admitting a treatment based on

elliptic theory e.g. the Laplace-Beltrami operator (cf. [40]), harmonic maps

among Riemannian manifolds (cf. [49]), and harmonic vector fields (regarded as

smooth maps of a Riemannian manifold into the total space of the tangent bundle

endowed with the Sasaki metric, cf. [51] and [52]). We obtain the following

results. Boundary values of Bergman-harmonic maps � : � ! S from a smoothly

bounded strictly pseudoconvex domain � � Cn into a Riemannian manifold S are

shown to be pseudoharmonic maps, provided their normal derivatives vanish. We

prove that @b-pluriharmonic maps are pseudoharmonic maps. A pseudoharmonic

map � :M ! S� from a compact strictly pseudoconvex CR manifold into a sphere

is shown either to link or to meet any codimension 2 totally geodesic sphere in S�.

Also we prove that a smooth vector field X :M ! T ðMÞ from a strictly

pseudoconvex CR manifold M is a pseudoharmonic map if and only if X is

parallel (with respect to the Tanaka-Webster connection) along the maximally

complex, or Levi, distribution. We start a theory of pseudoharmonic vector fields

i.e. unit vector fields X 2 U ðM; �Þ which are critical points of the energy

functional EðXÞ ¼ 1
2

R
M traceG�

ð�HX�S�Þ � ^ ðd�Þn relative to variations through

unit vector fields. Any such critical point X is shown to satisfy the nonlinear

subelliptic system �bX þ krHXk2X ¼ 0. Also infX2U ðM;�Þ EðXÞ ¼ nVolðM; �Þ yet
E is unbounded from above. We establish first and second variation formulae for

E : U ðM; �Þ ! ½0;þ1Þ and give applications.
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1. Boundary values of Bergman-harmonic maps.

In their seminal 1998 paper J. Jost and C.-J. Xu studied (cf. [32]) the

existence and regularity of weak solutions � : � ! ðS; hÞ to the nonlinear

subelliptic system

H�i þ
Xm
a¼1

�ijk � �
� �

Xað�jÞXað�kÞ ¼ 0; 1 � i � �; ð1Þ

where H ¼ �
Pm

a¼1X
�
aXa is the Hörmander operator associated to a system X ¼

fX1; . . . ; Xmg of smooth vector fields on a open set � � Rn, verifying the

Hörmander condition on �, ðS; hÞ is a Riemannian manifold and �ijk are the

Christoffel symbols associated to the Riemannian metric h. Their study is part of

a larger program aiming to the study of hypoelliptic nonlinear systems of

variational origin similar to the harmonic maps system, although but degenerate

elliptic. Indeed, if X ¼ bAa ðxÞ @=@xA then X�
af ¼ �@ðbAa ðxÞfÞ=@xA for any f 2

C1
0ð�Þ hence

Hu ¼
X
A;B

@

@xA
aABðxÞ

@u

@xB

� �

where aABðxÞ ¼
Pm

a¼1 b
A
a ðxÞbBa ðxÞ so that in general ½aAB� is only semi positive

definite. Hence H is degenerate elliptic (in the sense of J.M. Bony [7]). As

successively observed (cf. E. Barletta et al. [3]) solutions of systems of the form

(1) may be built within CR geometry as S1-invariant harmonic maps � : CðMÞ !
S where S1 ! CðMÞ �!� M is the canonical circle bundle over a strictly

pseudoconvex CR manifold M and harmonicity is meant with respect to the

Fefferman metric F� (associated to a choice of contact form � on M, cf. J.M. Lee

[36]). Base maps � :M ! S corresponding (i.e. � ¼ � � �) to such � were termed

pseudoharmonic maps and shown to satisfy

�b�
i þ
X2n
a¼1

�ijk � �
� �

Xað�jÞXað�kÞ ¼ 0; 1 � i � �; ð2Þ

where �b is the sublaplacian associated to ðM; �Þ and fXa : 1 � a � 2ng is a local

orthonormal frame of the maximal complex, or Levi, distribution HðMÞ of M.

The sublaplacian may be locally written �b ¼ �
P2n

a¼1X
�
aXa hence the similarity

among the systems (1) and (2). The formal adjoint X�
a of Xa is however meant

with respect to the L2 inner product ðu; vÞ ¼
R
uv � ^ ðd�Þn, while in [32] one
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integrates with respect to the Lebesgue measure on � (the precise quantitative

relationship among the two notions is explained in the next section).

The derivation of (1) by analogy to the harmonic map system (replacing the

Laplace-Beltrami operator with the Hörmander operator) is nevertheless rather

formal. Indeed CRmanifolds appear mainly as boundaries of smooth domains � in

Cn and it is not known so far whether boundary values of harmonic maps from �

extending smoothly up to @� are pseudoharmonic. One of the results in this paper

is the following

THEOREM 1. Let � � Cn ðn � 2Þ be a smoothly bounded strictly pseudo-

convex domain and g the Bergman metric on �. Let S be a complete �-dimensional

ð� � 2Þ Riemannian manifold of sectional curvature SectðSÞ � �2 for some � > 0.

Assume that S may be covered by one coordinate chart � ¼ ðy1; . . . ; y�Þ : S ! R�.

Let f 2 W 1;2ð�; SÞ \ C0ð�; SÞ be a map such that fð�Þ � Bðp; �Þ for some p 2 S

and some 0 < � < minf�=ð2�Þ; iðpÞg where iðpÞ is the injectivity radius of p. Let

� ¼ �f : � ! S be the solution to the Dirichlet problem

�gð�Þ ¼ 0 in �; � ¼ f on @�: ð3Þ

If f 2 C1ð@�; SÞ then

NðfiÞ ¼ �
1

2ðn� 1Þ
Hbfð Þi; 1 � i � �; ð4Þ

for any local coordinate system ð!; yiÞ on S such that �ð�Þ \ ! 6¼ ; ðfi ¼ yi � fÞ.
Also N ¼ �JT and T is the characteristic direction of @�. In particular if NðfiÞ ¼
0 then f : @� ! S is a pseudoharmonic map.

Here �gð�Þ 2 �1ð��1TSÞ is the tension field of � as a map among the

Riemannian manifolds ð�; gÞ and S (cf. Section 3 for definitions). The key idea in

the proof of Theorem 1 is (as first observed by A. Korányi and H.M. Reimann

[34]) that the Kählerian geometry of the interior of � and the contact geometry of

the boundary @�may be effectively related through the use of the Bergman kernel

Kðz; 	Þ of �. The main technical ingredient in the proof is an ambient linear

connection r (the Graham-Lee connection, cf. R. Graham et al. [22], or

Appendix A in [4]) defined on a neighborhood of @� in � and inducing the

Tanaka-Webster connection (cf. [47], [50]) on each level set of ’ðzÞ ¼
�Kðz; zÞ�1=ðnþ1Þ (z 2 �). See also Section 5.3 in [5, pp. 87–95]. The proof of

Theorem 1 is relegated to Section 3 of this paper.
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2. Pseudoharmonic maps.

Let ðM;T1;0ðMÞÞ be a ð2nþ 1Þ-dimensional orientable CR manifold, of CR

dimension n. The maximally complex distribution is HðMÞ ¼ RefT1;0ðMÞ 	
T0;1ðMÞg. It carries the complex structure J : HðMÞ ! HðMÞ given by JðZ þ
ZÞ ¼ iðZ � ZÞ for any Z 2 T1;0ðMÞ. A pseudohermitian structure is a globally

defined nowhere zero C1 section � in the conormal bundle HðMÞ? � T �ðMÞ. The
Levi form is G�ðX; Y Þ ¼ ðd�ÞðX; JY Þ for any X; Y 2 HðMÞ. Throughout

ðM;T1;0ðMÞÞ is assumed to be strictly pseudoconvex i.e. G� is positive definite

for some pseudohermitian structure �. Then � is a contact form, that is to say

� ¼ � ^ ðd�Þn is a volume form on M. Let T be the characteristic direction of d�

i.e. the globally defined nowhere zero tangent vector field on M, everywhere

transverse to HðMÞ, determined by �ðT Þ ¼ 1 and T c d� ¼ 0. Strictly pseudocon-

vex CR manifolds are equipped with a natural second order differential operator

(similar to the Laplace-Beltrami operator on a Riemannian manifold)

�bu ¼ div rHu
� �

; u 2 C2ðMÞ; ð5Þ

the sublaplacian of ðM; �Þ. Here div is the divergence with respect to � i.e.LX� ¼
divðXÞ� where LX is the Lie derivative, and rHu ¼ �Hru (the horizontal

gradient of u). Also ru is the gradient of u with respect to the Riemannian metric

g� given by

g�ðX; Y Þ ¼ G�ðX; Y Þ; g�ðX;T Þ ¼ 0; g�ðT ; T Þ ¼ 1; ð6Þ

for any X; Y 2 HðMÞ (the Webster metric of ðM; �Þ) and �H : T ðMÞ ! HðMÞ is

the projection relative to the decomposition T ðMÞ ¼ HðMÞ 	RT . The sublapla-

cian is degenerate elliptic (in the sense of J.M. Bony [7]) and subelliptic of order

1/2 (cf. G. B. Folland [16]) hence hypoelliptic (cf. L. Hörmander [29]). Let us

assume that M is compact and consider the energy functional

Eð�Þ ¼ 1

2

Z
M

traceG�
ð�H��hÞ � ð7Þ

where �HB denotes the restriction to HðMÞ of the bilinear form B. Here E is

defined on the set of all C1 maps � :M ! S from M into a �-dimensional

Riemannian manifold ðS; hÞ. A pseudoharmonic map is a C1 map � :M ! S such

that fdEð�tÞ=dtgt¼0 ¼ 0 for any smooth 1-parameter variation �t :M ! S of � i.e.

�0 ¼ �. Let us set
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Hb�ð Þi
 �b�
i þ
X2n
a¼1

�ijk � �
� �

Xað�jÞXað�kÞ; 1 � i � �:

The Euler-Lagrange equations of the variational principle 
Eð�Þ ¼ 0 are Hbð�Þ ¼
0 (cf. [3]). Let � :M ! S be a pseudoharmonic map. Let ðU; xAÞ and ðV ; yiÞ be a

local coordinate systems on M and S such that �ðUÞ � V . Let fXa : 1 � a � 2ng
be a local G�-orthonormal frame in HðMÞ defined on the open set U . As a

consequence of the nondegeneracy of M the vector fields fðd’ÞXa : 1 � a � 2ng
form a Hörmander system on � ¼ ’ðUÞ � R2nþ1 where ’ ¼ ðx1; . . . ; x2nþ1Þ. As the

formal adjoint of Xa ¼ bAa @=@x
A with respect to � is given by X�

au ¼
�@ðbAa uÞ=@xA � bBa �

A
ABu one may conclude that f 
 � � ’�1 : � ! S is a sub-

elliptic harmonic map if and only if Lfi ¼ 0 in � where L is the (purely local) first

order differential operator Lu ¼
P2n

a¼1 b
B
a �

A
ABXau and �ABC are the local coefficients

of the Tanaka-Webster connection of ðM; �Þ with respect to ðU; xAÞ. If for instance
M ¼ Hn (the Heisenberg group, cf. e.g. [14, pp. 11–12]) then L 
 0 and the two

notions coincide.

To demonstrate a class of pseudoharmonic maps we look at @b-pluriharmonic

maps of a nondegenerate CRmanifold into a Riemannian manifold. We need a few

additional notions of pseudohermitian geometry (cf. e.g. [14, Chapter 1]). The

tangential Cauchy-Riemann operator is the first order differential operator

@b : C
1ðMÞ ! �1ðT0;1ðMÞ�Þ

defined by ð@bfÞZ ¼ ZðfÞ for any C1 function f :M ! C and any Z 2 T1;0ðMÞ. A
ð0; 1Þ-form is a C-valued differential 1-form � on M such that T1;0ðMÞ c � ¼ 0 and

T c � ¼ 0. Also a ð1; 1Þ-form is a C-valued differential 2-form ! on M such that

!ðZ;W Þ ¼ !ðZ;WÞ ¼ 0; T c! ¼ 0;

for any Z;W 2 T1;0ðMÞ. Let �0;1ðMÞ !M and �1;1ðMÞ !M be the correspond-

ing vector bundles. Besides from @b we need the differential operator

@b : �
1ð�0;1ðMÞÞ ! �1ð�1;1ðMÞÞ

defined as follows. Let � be a ð0; 1Þ-form. Then @b� is the unique ð1; 1Þ-form on M

coinciding with d� on T1;0ðMÞ � T0;1ðMÞ.
A C2 function u :M ! R is said to be @b-pluriharmonic if @b@bu ¼ 0 (cf. [11]

or Section 5.6 in [5, p. 112]).
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The notion of a @b-pluriharmonic function admits a natural generalization to

smooth maps � :M ! S with values in a Riemannian manifold. The second

fundamental form of � is given by (cf. R. Petit [45])

��ðX; Y Þ ¼ ð��1rhÞX��Y � ��rXY ; X; Y 2 X ðMÞ: ð8Þ

As to the notation adopted in (8), rh is the Levi-Civita connection of ðS; hÞ, r is

the Tanaka-Webster connection of ðM; �Þ, and ��X is the cross-section in the

pullback bundle ��1TS !M given by ð��XÞx ¼ ðdx�ÞXx for any x 2M. Also

��1rh is the connection in ��1TS !M induced by rh i.e. locally

ð��1rhÞ@AXk ¼
@�j

@xA
�ijk � �
� �

Xi:

Here ðU; xAÞ and ð!; yiÞ are local coordinate systems on M and S respectively

(with �ðUÞ � !), @A is short for @=@xA, �i ¼ yi � �, and Xi is the natural lift of

@=@yi i.e. XiðxÞ ¼ ð@=@yiÞ�ðxÞ (so that fXi : 1 � i � �g is a local frame in ��1TS !
M defined on the open set ��1ðV Þ). We say � :M ! S is @b-pluriharmonic if

��ðX; Y Þ þ ��ðJX; JY Þ ¼ 0; X; Y 2 HðMÞ: ð9Þ

Equivalently ��ðZ;W Þ ¼ 0 for any Z;W 2 T1;0ðMÞ. This may be locally written

ð@b@b�iÞðZ;W Þ þ Zð�jÞW ð�kÞ �ijk � � ¼ 0

hence if S ¼ R� then @b@b�
i ¼ 0 i.e. each �i is a @b-pluriharmonic function.

PROPOSITION 1. Let M be a strictly pseudoconvex CR manifold and S a

Riemannian manifold. Every @b-pluriharmonic map � :M ! S is a pseudohar-

monic map.

PROOF. Let fW : 1 �  � ng be a local orthonormal (that is G�ðW;WÞ ¼

�) frame of T1;0ðMÞ so that locally

�bu ¼
Xn
¼1

fWWuþWWu� ðrW
WÞu� ðrW

WÞug

for any u 2 C2ðMÞ. As � is @b-pluriharmonic
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WW�
�i � ðrW

W
�
Þ�i þWð�jÞW�

ð�kÞ�ijk � � ¼ 0

hence

�b�
i þ 2

Xn
¼1

Wð�jÞWð�kÞ�ijk � � ¼ 0

which is easily seen to be equivalent to (2). �

A theory of harmonic vector fields on a Riemannian manifold M was started

by G. Wiegmink [51], and C.M. Wood [52], starting from the observation that

the total space T ðMÞ of the tangent bundle over a Riemannian manifold ðM; gÞ
carries a Riemannian metric gS naturally associated to g (the Sasaki metric, cf.

e.g. D. E. Blair [6]). Then one may consider the ordinary Dirichlet energy

functional EðXÞ ¼ 1
2

R
M tracegðX�gSÞ d volðgÞ defined on C1ðM;T ðMÞÞ. As it

turns out a vector field X :M ! T ðMÞ is a harmonic map, i.e. a critical point of E

for arbitrary smooth 1-parameter variations of X if and only if X is absolutely

parallel. Hence the space C1ðM;T ðMÞÞ is intuitively too ‘‘large’’ for ones

purposes. The same result is got however when looking for critical points of E

restricted to the space of all smooth vector fields X ðMÞ.
A new and wider notion of harmonicity is however obtained by looking at

unit vector fields X and restricting oneself to variations of X through unit vector

fields. Precisely, let UðM; gÞx ¼ fv 2 TxðMÞ : gxðv; vÞ ¼ 1g (x 2M). A unit vector

field X :M ! UðM; gÞ is harmonic if fdEðXtÞ=dtgt¼0 ¼ 0 for any smooth 1-

parameter family of smooth unit vector fields Xt :M ! UðM; gÞ such that

X0 ¼ X. The corresponding Euler-Lagrange equations are

�X þ krgXk2X ¼ 0; ð10Þ

where � ¼ �ðrgÞ�rg is the rough Laplacian and rg is the Levi-Civita connection

of ðM; gÞ. A rather different theory (of harmonic vector fields) arises, aspects of

which (e.g. stability of Hopf vector fields on spheres, the interplay with contact

geometry) were subsequently investigated by many authors (cf. F. C. Brito [8],

D.-S. Han et al. [23], A. Higuchi et al. [26], C. Oniciuc [39], D. Perrone [42]–[44],

A. Yampolsky [54]). A similar approach also led to the more general theory

of harmonic sections in vector bundles (cf. K. Hasegawa [24], J. J. Konderak [33],

O. Gil-Medrano [18]).

Inspired by the geometric interpretation of subelliptic harmonic maps (in

terms of the Fefferman metric, cf. [3]) together with the extension of the harmonic
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vector field theory to semi-Riemannian geometry (cf. O. Gil-Medrano et al. [19])

D. Perrone et al. studied (cf. [13]) a subelliptic analog to harmonic vector fields.

There one considers vector fields X 2 HðMÞ on a strictly pseudoconvex CR

manifold M endowed with a contact form � (with G� positive definite) such that

G�ðX;XÞ ¼ 1 and the horizontal lift X" : CðMÞ ! T ðCðMÞÞ (with respect to the

connection 1-form � 2 �1ðT �ðCðMÞÞ � LðS1ÞÞ in C.R. Graham [21]) is harmonic

with respect to the Fefferman metric F� (which is a Lorentzian metric on CðMÞ,
cf. [36]). By a result in [13] any such X satisfies

�bX þ 4rTJX þ 2�JX þ 6�JX ¼ �ðXÞ X ð11Þ

where

�ðXÞ ¼ �k�HrXk2 þ 4g�ðrTJX;XÞ
þ 2g�ð�JX;XÞ þ 6g�ð�JX;XÞ:

This is a nonlinear subelliptic system of variational origin (actually (11) are the

Euler-Lagrange equations associated to the functional BðXÞ ¼ �
R
M �ðXÞ � ^

ðd�Þn=2) yet formally rather dissimilar from the harmonic vector fields system

(10) in Riemannian geometry. In the present paper we build (cf. Section 6)

another subelliptic analog to the theory of harmonic vector fields, starting from

the functional (7) restricted to the space of all unit vector fields (with respect to

the Webster metric g�) and allowing only for variations through unit vector fields.

3. The Graham-Lee connection and C1 regularity up to the

boundary of Bergman-harmonic maps.

Let � � Cn (n � 2) be a bounded domain and g its Bergman metric (cf. e.g.

S. Helgason [25, p. 369]). A smooth map � : � ! S into a Riemannian manifold S

is Bergman-harmonic if it is a critical point of the energy functional

Eð�Þ ¼
1

2

Z
�

kd�k2 d volðgÞ

where kd�k is the Hilbert-Schmidt norm of d�. The Euler-Lagrange system of the

variational principle 
Eð�Þ ¼ 0 is �gð�Þ ¼ 0 where �gð�Þ 2 �1ð��1TSÞ is locally

given by

�gð�Þi ¼ �g�
i þ �ijk � �
� � @�j

@xA
@�k

@xB
GAB; 1 � i � �;
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where ðx1; . . . ; x2nÞ are the Cartesian coordinates in R2n and ½GAB� ¼ ½GAB��1,

GAB ¼ gð@A; @BÞ, @A 
 @=@xA. Also �g is the Laplace-Beltrami operator of ð�; gÞ.
For instance if � is the unit ball Bn ¼ fz 2 Cn : jzj < 1g then

�gu ¼ 4ð1� jzj2Þ
Xn
i;j¼1

ð
ij � zizjÞ
@2u

@zi@zj

hence �g is elliptic in Bn yet its coefficients vanish at @Bn (also the second order

differential operator
Pn

i;j¼1ð
ij � zizjÞ @2=@zi@zj is not elliptic at @Bn). The

degeneracy of the ellipticity of �g at @B
n is responsible for pathologies such as the

failure of C1 regularity up to the boundary of the solution to the Dirichlet

problem for Bergman-harmonic functions.

From now on we assume that the Riemannian manifold S satisfies the

requirements adopted in Theorem 1. As S is covered by one coordinate chart

� ¼ ðy1; . . . ; y�Þ : S ! R� the Sobolev space W 1;2ð�; SÞ is unambiguously defined

as

W 1;2ð�; SÞ ¼ f� : � ! S : �i 
 yi � � 2W 1;2ð�Þ; 1 � i � �g:

Let p 2 S and � > 0 be chosen as in Theorem 1. Let d be the distance function on

S associated to the given Riemannian metric. The metric ball Bðp; �Þ ¼ fq 2 S :

dðp; qÞ < �g is usually referred to as a regular ball and maps f : � ! S satisfying a

convexity condition fð�Þ � Bðp; �Þ behave very much like maps with values in

R� . Indeed, by a classical result of S. Hildebrand, H. Kaul and K. Widman [27],

for any f 2W 1;2ð�; SÞ \ C0ð�; SÞ with values in a regular ball Bðp; �Þ, by

exploiting the variational origin of �gð�Þ ¼ 0 the Dirichlet problem (3) may be

solved i.e. there is a unique �f 2W 1;2ð�; SÞ \ L1ð�; SÞ such that �f j@� ¼ f (that

is �if � fi 2W 1;2
0 ð�Þ, 1 � i � �), �fð�Þ � Bðp; �Þ, �f minimizes E among all such

maps, and �f is a weak solution to �gð�Þ ¼ 0 that is

Z
�

g�ðd�if ; d’Þ � �ijk � �f
� � @�jf

@xA

@�kf

@xB
GAB’

( )
d volðgÞ ¼ 0

for any ’ 2 C1
0 ð�Þ. It is also well known (cf. S. Hildebrand and K. Widman [28])

that �f 2 C0ð�; SÞ. Moreover continuous solutions to a class of quasilinear elliptic

systems including �gð�Þ ¼ 0 are known (cf. e.g. S. Campanato [9], M. Giaquinta

[17]) to be smooth hence �f 2 C1ð�; SÞ.
Assuming additionally that f 2 C1ð�; SÞ it is a natural question whether

�f 2 C1ð�; SÞ. As we shall briefly recall, due to the fact that the ellipticity of the

system �gð�Þ ¼ 0 degenerates at @�, the C1 regularity of �f up to the boundary
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fails in general. For instance if � ¼ Bn and S ¼ R then (by a result of C. R.

Graham [20]) �f 2 C1ð�;RÞ implies that f must be the boundary values of a

pluriharmonic function. Therefore, in general one expects that whenever �f 2
C1ð�; SÞ the datum f must satisfy additional compatibility relations which one

may indicate formally as C ðfÞ ¼ 0 on @�. A differential geometric approach to

deriving C ðfÞ ¼ 0 in the scalar case (i.e. S ¼ R) was proposed by C. R. Graham

and J.M. Lee [22], and relies on the construction of a canonical ambient

connection (the Graham-Lee connection, cf. Theorem 2 below). It is then natural

to ask 1) what is the geometric nature of the compatibility conditions C ðfÞ ¼ 0

and of course 2) are C ðfÞ ¼ 0 sufficient (to conclude that �f is C1 up to @�)?

Theorem 1 gives a partial answer to the first question while the second is an open

problem (except for the scalar case, cf. [20], [22]).

The remainder of this section is devoted to the proof of Theorem 1. Let � be a

smoothly bounded strictly pseudoconvex domain in Cn and Kðz; 	Þ its Bergman

kernel (cf. e.g. [25, pp. 364–371]). By a result of C. Fefferman [15], ’ðzÞ ¼
�Kðz; zÞ�1=ðnþ1Þ is a defining function for � (and � ¼ f’ < 0g). Let us set � ¼
i
2 ð@ � @Þ’. Then

LEMMA 1 (E. Barletta [1]). For any smoothly bounded strictly pseudocon-

vex domain � � Cn the Bergman metric g is given by

gðX; Y Þ ¼ nþ 1

’

i

’
ð@’ ^ @’ÞðX; JY Þ � d�ðX; JY Þ

� �
; ð12Þ

for any X; Y 2 X ð�Þ, where J is the complex structure on Cn.

For each � > 0 we set M� ¼ fz 2 � : ’ðzÞ ¼ ��g. There is �0 > 0 such thatM�

is a strictly pseudoconvex CR manifold of CR dimension n� 1 for any 0 � � � �0.

Hence there is a one-sided neighborhood V of @� carrying a tangentially CR

foliation F (cf. also S. Nishikawa et al. [12]) by level sets of ’ such that

V =F ¼ fM� : 0 < � < �0g:

Let HðFÞ ! V (respectively T1;0ðFÞ ! V ) be the bundle whose portion over M�

is the Levi distribution HðM�Þ (respectively the CR structure T1;0ðM�Þ) of M�.

Note that

T1;0ðFÞ \ T0;1ðFÞ ¼ ð0Þ;
½�1ðT1;0ðFÞÞ;�1ðT1;0ðFÞÞ� � �1ðT1;0ðFÞÞ:

Here T0;1ðFÞ ¼ T1;0ðFÞ. We need the following
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LEMMA 2 (J. M. Lee and R. Melrose [35]). There is a unique complex vector

field � on V , of type ð1; 0Þ, such that @’ð�Þ ¼ 1 and � is orthogonal to T1;0ðFÞ with
respect to @@’ i.e. @@’ð�; ZÞ ¼ 0 for any Z 2 T1;0ðFÞ. Let r ¼ 2 @@’ð�; �Þ be the

transverse curvature of ’. Then r 2 C1ð�Þ i.e. r is smooth up to the boundary.

Let � ¼ ðN � iT Þ=2 be the real and imaginary parts of �. Then

ðd’ÞðNÞ ¼ 2; �ðNÞ ¼ 0; @’ðNÞ ¼ 1;

ðd’ÞðT Þ ¼ 0; �ðT Þ ¼ 1; @’ðT Þ ¼ i:

In particular T is tangent to F . Let g� be given by

g�ðX; Y Þ ¼ ðd�ÞðX; JY Þ; g�ðX;T Þ ¼ 0; g�ðT ; T Þ ¼ 1; ð13Þ

for any X; Y 2 HðFÞ. Then g� is a tangential Riemannian metric for the foliation

F i.e. a Riemannian metric in T ðFÞ ! V . As a consequence of (12) we may state

LEMMA 3. The Bergman metric g of � � Cn is given by

gðX; Y Þ ¼ � nþ 1

’
g�ðX; Y Þ; X; Y 2 HðFÞ: ð14Þ

gðX;T Þ ¼ 0; gðX;NÞ ¼ 0; X 2 HðFÞ; ð15Þ

gðT;NÞ ¼ 0; gðT; T Þ ¼ gðN;NÞ ¼
nþ 1

’

1

’
� r

� �
: ð16Þ

In particular 1� r’ > 0 everywhere in �.

Using (14)–(16) one may relate the Levi-Civita connection rg of ðV ; gÞ to the

Graham-Lee connection of ðV ; ’Þ. The latter has the advantage of staying finite at

the boundary (in the limit it gives the Tanaka-Webster connection of @�).

Let us recall the Graham-Lee connection. Let r be a linear connection on V .

Let us consider the T ðV Þ-valued 1-form � on V defined by

�ðXÞ ¼ TrðT;XÞ; X 2 T ðV Þ;

where Tr is the torsion tensor field of r. We say Tr is pure if

TrðZ;W Þ ¼ 0; TrðZ;W Þ ¼ 2ig�ðZ;W ÞT; ð17Þ
TrðN;W Þ ¼ rW þ i �ðW Þ; ð18Þ
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for any Z;W 2 T1;0ðFÞ, and

�ðT1;0ðFÞÞ � T0;1ðFÞ; ð19Þ
�ðNÞ ¼ �J rHr� 2r T : ð20Þ

Here rHr is defined by rHr ¼ �Hrr and g�ðrr;XÞ ¼ XðrÞ, X 2 T ðFÞ. Also �H :

T ðFÞ ! HðFÞ is the projection associated to the direct sum decomposition

T ðFÞ ¼ HðFÞ 	RT . We recall

THEOREM 2 (C. R. Graham and J. M. Lee [22]). There is a unique linear

connection r on V such that i) T1;0ðFÞ is parallel with respect to r, ii) rg� ¼ 0,

rT ¼ 0, rN ¼ 0, and iii) Tr is pure.

r given by Theorem 2 is the Graham-Lee connection of ðV ; ’Þ. The proof of

Theorem 2 follows from (cf. also [4])

LEMMA 4. Let � : T ðFÞ ! T ðFÞ be the bundle morphism given by �ðXÞ ¼
JX, for any X 2 HðFÞ, and �ðT Þ ¼ 0. Then

�2 ¼ �I þ �� T;

g�ðX;T Þ ¼ �ðXÞ;
g�ð�X; �Y Þ ¼ g�ðX; Y Þ � �ðXÞ�ðY Þ;

for any X; Y 2 T ðFÞ. Moreover, if r is a linear connection on V satisfying the

axioms (i)–(iii) in Theorem 2 then

� � � þ � � � ¼ 0 ð21Þ

along T ðFÞ. Consequently � may be computed as

�ðXÞ ¼ � 1

2
�ðL T�ÞX; ð22Þ

for any X 2 HðFÞ.

A calculation (relying on Lemma 3) leads to

THEOREM 3. Let � � Cn be a smoothly bounded strictly pseudoconvex

domain, Kðz; 	Þ its Bergman kernel, and ’ðzÞ ¼ �Kðz; zÞ�1=ðnþ1Þ. Then the Levi-

Civita connection rg of the Bergman metric g and the Graham-Lee connection of

ðV ; ’Þ are related by
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rg
XY ¼ rXY þ

’

1� ’r
g�ð�X; Y Þ þ g�ðX;�Y Þ

� �
T

� g�ðX; Y Þ þ
’

1� ’r
g�ðX;� � Y Þ

� �
N; ð23Þ

rg
XT ¼ �X �

1

’
� r

� �
�X �

’

2ð1� r’Þ XðrÞT þ ð�XÞðrÞNf g; ð24Þ

rg
XN ¼ �

1

’
� r

� �
X þ � �X þ

’

2ð1� r’Þ fð�XÞðrÞT �XðrÞNg; ð25Þ

rg
TX ¼ rTX �

1

’
� r

� �
�X �

’

2ð1� r’Þ fXðrÞT þ ð�XÞðrÞNg; ð26Þ

rg
NX ¼ rNX �

1

’
X þ ’

2ð1� r’Þ
fð�XÞðrÞT �XðrÞNg; ð27Þ

rg
NT ¼ �

1

2
�rHr�

’

2ð1� r’Þ
NðrÞ þ 4

’2
�

2r

’

� �
T þ T ðrÞN

� �
: ð28Þ

rg
TN ¼

1

2
�rHr�

’

2ð1� r’Þ
NðrÞ þ 4

’2
�

6r

’
þ 4r2

� �
T þ T ðrÞN

� �
; ð29Þ

rg
TT ¼ �

1

2
rHr�

’

2ð1� r’Þ
T ðrÞT � NðrÞ þ 4

’2
�

6r

’
þ 4r2

� �
N

� �
; ð30Þ

rg
NN ¼ �

1

2
rHrþ

’

2ð1� r’Þ T ðrÞT � NðrÞ þ
4

’2
�

2r

’

� �
N

� �
; ð31Þ

for any X; Y 2 HðFÞ.

Using Theorem 3 we may attack the proof of Theorem 1 (a similar technique

was used in [2]). To this end let fW : 1 �  � n� 1g be a local orthonormal

frame of T1;0ðFÞ i.e. g�ðW;W�Þ ¼ 
�. Here W ¼W. Let us set  ¼ ’=ð1� r’Þ
for simplicity. Then

E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�

’

nþ 1

r
W; En ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ’

nþ 1

r
�;

is a local orthonormal frame of T 1;0ðV Þ i.e. gðEj; EkÞ ¼ 
jk. For any u 2 C2ð�Þ
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�gu ¼
Xn
j¼1

EjEjuþ EjEju� rg
Ej
Ej

� �
u� rg

E
j
Ej

� �
u

n o
¼ �

’

nþ 1

Xn�1

¼1

WWuþWWu� rg
W
W

� �
u� rg

W
W

� �
u

n o
þ 2 ’

nþ 1
��uþ ��u� rg

��
� �

u� rg

�
�

� �
u

n o
:

On the other hand (by (28)–(31) in Theorem 3)

rg
�� ¼ �

1

4
rHr�

r

2
ðN þ iT Þ

hence

�� þ �� �rg
�� �rg

�
� ¼

1

2
N2 þ T 2
� �

þ
1

2
rHrþ rN: ð32Þ

Moreover (by (23) in Theorem 3)

rg
W
W ¼ rW

W � ðN þ iT Þ ð33Þ

for any 1 �  � n� 1. Let us substitute from (32)–(33) so that to obtain

�g ¼ �
’

nþ 1
�b �

2’ðn� 1Þ
nþ 1

N þ
 ’

nþ 1
N2 þ T 2 þrHrþ 2rN

 �

ð34Þ

where �b is given by

�bu ¼
Xn�1

¼1

WW þWW �rW
W �rW

W

� �
u:

For each z 2 V the definition of ð�buÞðzÞ doesn’t depend upon the choice of local

orthonormal frame fW : 1 �  � n� 1g of T1;0ðFÞ at z. Also �b restricts to each

leaf of F as the sublaplacian of the leaf.

Let gjk ¼ gð@j; @kÞ where @j ¼ @=@zj and @k ¼ @=@zk. If ½gjk� ¼ ½gjk�
�1 then

½GAB� ¼
1
4 gjk þ gjk
� �

� 1
4i gjk � gjk
� �

1
4i

gjk � gjk
� �

1
4
gjk þ gjk
� �

0B@
1CA:
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Consequently

�abc � �
� � @�b

@xA
@�c

@xB
GAB ¼ 2 �abc � �

� � @�b
@zj

@�c

@zk
gjk

¼ 2
Xn
j¼1

�abc � �
� �

Ejð�bÞEjð�
cÞ:

The last equality follows from @=@zj ¼ �kjEk and gjk ¼
Pn

‘¼1 �
j
‘�

k
‘
where � ¼ ��1.

We may conclude that

�ijk � �
� � @�j

@xA
@�k

@xB
GAB

¼ �
2’

nþ 1
�ijk � �
� � Xn�1

¼1

Wð�jÞWð�kÞ � 2 �ð�jÞ�ð�kÞ
( )

: ð35Þ

Taking into account (34)–(35) the system �gð�Þi ¼ 0 may be written

�b�
i þ 2ðn� 1ÞN�i �  N2 þ T 2 þrHrþ 2rN

� �
�i

þ 2 �ijk � �
� � Xn�1

¼1

Wð�jÞWð�kÞ � 2 �ð�jÞ�ð�kÞ
( )

¼ 0: ð36Þ

Let � ¼ �f be the solution to the Dirichlet problem (3) with f 2 C1ð@�; SÞ. Let us
assume that � 2 C1ð�; SÞ. Note that  ¼ Oð’Þ. Therefore as ’! 0 the equation

(36) leads to

Hbfð Þiþ2ðn� 1ÞNfi ¼ 0; 1 � i � �;

which is (4) in Theorem 1. Note that, in opposition to the elliptic case, the normal

derivatives of the map f : @� ! S may be determined in terms of purely

tangential quantities.

4. An alternative expression for the first variation.

Let � :M ! S be a smooth map of a compact strictly pseudoconvex CR

manifoldM of CR dimension n endowed with a contact form � (such that the Levi

form G� is positive definite) into a �-dimensional Riemannian manifold ðS; hÞ. Let
�t :M ! S, jtj < �, be a smooth 1-parameter variation of � (with �0 ¼ �). By a

result in [3] the first variation formula is
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d

dt
Eð�tÞf gt¼0¼ �

Z
M

ĥðV ;Hbð�ÞÞ � ^ ðd�Þn

where V 2 �1ð��1TSÞ is the infinitesimal variation associated to f�tgjtj<� and ĥ is

the Riemannian bundle metric in ��1TS !M induced by h and Hbð�Þ ¼
traceG�

ð�H��Þ. In this section we derive an alternative expression for the first

variation formula which is imitative of the approach in [49, pp. 132–139]. By a

classical result of J. C. Nash [37], there is an isometric immersion � : S ! RK for

some K > �, hence h ¼ ��g0 where g0 is the Euclidean metric on RK. Let � ¼ � � �.
If f�tgjtj<� is a 1-parameter variation as above we set �t ¼ � � �t. Also let us

consider

 :M � ð��; �Þ ! S;  ðx; tÞ ¼ �tðxÞ; x 2M; jtj < �;

and � ¼ � �  . We wish to compute eð�Þ ¼ 1=2 traceG�
ð�H��hÞ. To this end let

fEa : 1 � a � 2ng be a local G�-orthonormal frame of HðMÞ, defined on an open

set U �M. Then

eð�Þx ¼
1

2

X2n
a¼1

g0;�ðxÞ ðdx�ÞEa;x; ðdx�ÞEa;x

� �
; x 2 U:

If we adopt the customary identifications Fv : TvðRKÞ ! RK given by

Fvð@=@uAÞv ¼ eA for 1 � A � K (so that g0;vðF�1
v ð�Þ; F�1

v ð�ÞÞ ¼ h�; �i for any

�; � 2 RK) then

eð�Þx ¼
1

2

X
a;A

uA F�ðxÞðdx�ÞEa;x

� �� 2
:

Here ðu1; . . . ; uKÞ and feA : 1 � A � Kg are the Cartesian coordinates and

canonical basis of RK . Let �A ¼ uA � � and let BA
j ¼ @�A=@yj be the Jacobian of

the given immersion, where ðV ; yiÞ are local coordinates on S such that

��1ðV Þ � U . We may assume without loss of generality that U is the domain of

a local coordinate chart ðx1; . . . ; x2nþ1Þ : U ! R2nþ1 onM. If Ea ¼
P2nþ1

p¼1 Up
a @=@x

p

for some Up
a 2 C1ðUÞ then

eð�Þ ¼
1

2

X
a;A

Up
a ðBA

i � �Þ
@�i

@xp

� �2
ð37Þ
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on U . Then (by (37))

eð�tÞx ¼
1

2

X
a;A

fAa ðx; tÞ
2

where fAa ðx; tÞ ¼ Up
a ðxÞBA

i ð ðx; tÞÞð@ i=@xpÞðx; tÞ. Let E ðtÞ ¼ Eð�tÞ hence

E 0ð0Þ ¼
X
a;A

Z
fAa ðx; 0Þ

@fAa
@t

ðx; 0Þ dx

where dx ¼ ð� ^ ðd�ÞnÞðxÞ. Also fAa ðx; 0Þ ¼ BA
i ð�ðxÞÞðEa�

iÞx and

@fAa
@t

¼ Up
a � �

� �
BA
ij �  

� � @ j
@t

@ i

@xp
þ BA

i �  
� � @2 i

@xp@t

� �
: ð38Þ

Here � :M � ð��; �Þ !M is the natural projection and BA
ij ¼ @BA

i =@y
j. Let W 2

�1ð��1TSÞ be given by

Wx ¼ ðdðx;0Þ Þ
@

@t

����
ðx;0Þ

¼
@ i

@t
ðx; 0Þ

@

@yi

����
�ðxÞ

:

Let us consider the functions WA : U ! R, 1 � A � K, given by

WAðxÞ ¼ uAðF�ðxÞðd�ðxÞ�ÞWxÞ; x 2 U:

We shall need the following

LEMMA 5. Let �A ¼ �A � �. Then

E 0ð0Þ ¼ �
Z X

A

WA ð�b�
AÞ dx: ð39Þ

PROOF. Note that ð@ i=@xpÞðx; 0Þ ¼ ð@�i=@xpÞðxÞ. Similarly if we set

giðxÞ ¼ ð@ i=@tÞðx; 0Þ then ð@2 i=@xp@tÞðx; 0Þ ¼ ð@gi=@xpÞðxÞ. Next (by (38))

@fAa
@t

����
t¼0

¼ Up
a

@

@xp
ðBA

i � �Þ gi
� �
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so that

E 0ð0Þ ¼
X
a;A

Z
ðBA

i � �ÞEað�iÞEaðWAÞdx ð40Þ

due to WA ¼ giðBA
i � �Þ. Let us consider the tangent vector field X 2 X ðUÞ given

by

X ¼
X
A

WAðBA
i � �ÞrH�i:

By taking into account the identityX
a

EaðG�ðX;EaÞÞ ¼ divðXÞ þ
X
a

G�ðX;rEaEaÞ

we may integrate by parts in (40)

E 0ð0Þ ¼
X
a;A

Z
fEaðWAðBA

i � �ÞEa�
iÞ

�WA EaððBA
i � �ÞEa�

iÞg dx ¼
Z �X

a

EaðG�ðX;EaÞÞ

�
X
a;A

WA ðBA
i � �ÞE2

a�
i þ ðBA

ij � �Þ ðEa�
iÞðEa�

jÞ
h i�

dx

so that to get

E 0ð0Þ ¼ �
Z X

A

WA

�
ðBA

i � �Þ�b�
i þ
X
a

ðBA
ij � �Þ ðEa�

iÞðEa�
jÞ
�
dx: ð41Þ

Since Eað�AÞ ¼ ðBA
i � �ÞEa�

i the identity (5) yields

�b�
A ¼ ðBA

i � �Þ�b�
i þ
X
a

ðBA
ij � �Þ ðEa�

iÞðEa�
jÞ ð42Þ

and (39) follows from (41). Lemma 5 is proved. �

At this point we need to recall the Gauss formula for the immersion � : S !
RK (cf. e.g. [10])

286 S. DRAGOMIR and Y. KAMISHIMA



BA
ij ¼ BA

k �kij þ AA
ij ð43Þ

where �ijk are the coefficients of the induced connection, Að@i; @jÞ ¼ AA
ij @=@u

A is

the second fundamental form of �, and @i is short for @=@y
i. By (43) one may write

(42) as

�b�
A

� �
ðxÞ @

@uA

����
�ðxÞ

¼ ðd�ðxÞ�Þ �b�
i

� �
ðxÞ

@

@yi

����
�ðxÞ

þ ð��1rNÞEa��Ea

� �
x

" #
þ
X
a

A�ðxÞ ð��EaÞx; ð��EaÞx
� �

ð44Þ

for any x 2 U. We may state

THEOREM 4. Let � :M ! S be a smooth map of a strictly pseudoconvex CR

manifold M into a Riemannian manifold S. Let � : S ! RK be an isometric

immersion of S in some Euclidean space RK. Then � is a pseudoharmonic map if

and only if

�b�ð ÞðxÞ ¼ F�ðxÞ traceG�
�H ��Að Þð Þx ð45Þ

for any x 2M, where �b� ¼ ð�b�
1; . . . ;�b�

KÞ and A is the second fundamental

form of �.

PROOF. We may choose a variation f�tgjtj<� such that

Wx ¼ tan�ðxÞ �b�
A

� �
ðxÞ

@

@uA

����
�ðxÞ

; x 2M;

where tany : T�ðyÞðRKÞ ! TyðSÞ, is the projection associated with the direct sum

decomposition

T�ðyÞðRKÞ ¼ ½ðdy�ÞTyðSÞ� 	 Eð�Þy; y 2 S;

and Eð�Þ ! S is the normal bundle of �. Then (by (39) in Lemma 5)W ¼ 0 so that

(44) yields (45). �

COROLLARY 1. Let M be a compact connected strictly pseudoconvex CR

manifold. Then any pseudoharmonic map � :M ! RL is constant.
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PROOF. We may embed RL as a totally geodesic submanifold into some

Euclidean space RK hence (by (45)) �b�
A ¼ 0. Then �bð�AÞ2 ¼ 2krH�Ak2 so

that (by integrating over M and applying Green’s lemma) rH�A ¼ 0. In

particular @b�
A ¼ 0 i.e. �A is a R-valued CR function. �

On the other hand

LEMMA 6. On a nondegenerate connected CR manifold any real valued CR

function is constant.

PROOF. Let fT : 1 �  � ng be a local frame of T1;0ðMÞ defined on the

open set U �M. Let u :M ! R be a CR function i.e. a C1 solution to TðuÞ ¼ 0

where T ¼ T. By complex conjugation TðuÞ ¼ 0 as well. Finally by the purity

axiom satisfied by the torsion of the Tanaka-Webster connection of ðM; �Þ (cf.

(1.37) in [14, p. 25])

2g�T ðuÞ ¼ ��
�
T�ðuÞ � ��

�
T�ðuÞ � ½T; T��ðuÞ ¼ 0

for any local frame fT : 1 �  � ng of T1;0ðMÞ. Here g� ¼ G�ðT; T�Þ and �abc
are the local coefficients of the Tanaka-Webster connection (a; b; c 2
f1; . . . ; n; 1; . . . ; ng). Hence T ðuÞ ¼ 0 so that u is locally constant. �

5. Pseudoharmonic maps into spheres.

Let S� ¼ fx ¼ ðx1; . . . ; x�þ1Þ 2 R�þ1 : x21 þ    þ x2�þ1 ¼ 1g and let � ¼
fx 2 S� : x1 ¼ x2 ¼ 0g. Let M be a topological space. A continuous map � :M !
S� meets � if �ðMÞ \ � 6¼ ;. Let � :M ! S� be a map that doesn’t meet �. We

say � links � if the map � :M ! S� n � is not null-homotopic. Our purpose in this

section is to establish the following

THEOREM 5. A nonconstant pseudoharmonic map � :M ! S� of a compact

strictly pseudoconvex CR manifold M into a sphere S� either links or meets �.

Theorem 5 is the subelliptic counterpart of a result by B. Solomon [46]. As in

[46] the proof relies on the observation that S� n � is isometric to the warped

product S��1
þ �v S

1 where v : S��1
þ � S1 ! ð0;þ1Þ is given by vðy; zÞ ¼ y� for any

y 2 S��1
þ and any z 2 S1 � C where S��1

þ ¼ fy ¼ ðy0; y�Þ 2 R� : y 2 S�; y� > 0g.
Indeed Iðy; uþ ivÞ ¼ ðy�u; y�v; y0Þ is an isometry of S��1

þ � S1 endowed with the

warped product metric ��1g��1 þ v2 ��2g1 into S� n �. Here �1 : S
��1
þ � S1 ! S��1

þ
and �2 : S

��1
þ � S1 ! S1 are the natural projections. Also we denote by gk the

standard metric on Sk � Rkþ1. The first step is to establish
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LEMMA 7. Let � :M ! S be a pseudoharmonic map of a compact strictly

pseudoconvex CR manifold into a Riemannian warped product S ¼ L�w R with

w 2 C1ðLÞ. Then �ðMÞ � L� ft�g for some t� 2 R.

PROOF. We set F ¼ p1 � � and u ¼ p2 � � where p1 : S ! L and p2 : S ! R

are the natural projections. The target manifold carries the Riemannian metric

h ¼ p�1 gL þ ðw � p1Þ2 dt� dt where gL is a Riemannian metric on L and t ¼ p2. Let

’ 2 C1ðMÞ and let �t :M ! S be given by �tðxÞ ¼ ðF ðxÞ; uðxÞ þ t’ðxÞÞ for any

x 2M and any jtj < �. Then f�tgjtj<� is a smooth 1-parameter variation of � and

traceG�
�H�

�
t h

� �
¼ traceG�

�HF
�gLð Þ þ ðw � F Þ2 krHutk2;

where ut ¼ p2 � �t, so that

Eð�tÞ ¼ EðF Þ þ
1

2

Z
M

ðw � F Þ2krHutk2 � ^ ðd�Þn:

As � is pseudoharmonic (integrating by parts)

0 ¼ d

dt
Eð�tÞf gt¼0 ¼

Z
M

ðw � F Þ2G�ðrHu;rH’Þ � ^ ðd�Þn

¼ �
Z
M

’div ðw � F Þ2 rHu
� �

� ^ ðd�Þn

hence u satisfies the subelliptic equation

div ðw � F Þ2 rHu
� �

¼ 0: ð46Þ

Finally (by (46)) divððw � F Þ2 rHu2Þ ¼ 2ðw � F Þ2 krHuk2 and then (by Green’s

lemma)
R
Mðw2 � F Þ krHuk2 � ^ ðd�Þn ¼ 0 so that u is a R-valued CR function and

hence u ¼ constant. Lemma 7 is proved. �

We shall apply Lemma 7 for L ¼ S��1
þ and w 2 C1ðS��1

þ Þ given by wðyÞ ¼ y�.

The proof of Theorem 5 is by contradiction. Precisely we assume that � :M !
S� n � is a null-homotopic pseudoharmonic map and show that � must be

constant.

Let p : R ! S1 be the exponential map pðtÞ ¼ eit. Also let us consider the

warped product metric p�1g��1 þ ðw � p1Þ2 dt� dt on S��1
þ �R. Then � ¼ ðid; pÞ is a

local isometry of S��1
þ �w R onto S��1

þ �v S
1. Let F ¼ �1 �  and u ¼ �2 �  where
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 ¼ I�1 � �. Let x0 2M and z0 ¼ uðx0Þ 2 S1. Let t0 2 R such that pðt0Þ ¼ z0. As

 :M ! S��1
þ � S1 is null-homotopic it follows that u� �1ðM;x0Þ ¼ 0 hence by

standard homotopy theory (cf. e.g. Proposition 5.3 in [30, p. 43]) there is a unique

function ~u :M ! R such that ~uðx0Þ ¼ t0 and p � ~u ¼ u. As u is smooth it follows

that ~u 2 C1ðMÞ as well. The following result is immediate

LEMMA 8. Let � :M ! S be a pseudoharmonic map from a compact strictly

pseudoconvex CR manifold into a Riemannian manifold S. If � : ~S ! S is a local

isometry then any smooth map ~� :M ! ~S such that � � ~� ¼ � is pseudoharmonic.

By Lemma 8 it follows that ~ ¼ ðF; ~uÞ :M ! S��1
þ �w R is a pseudoharmonic

map. Then (by Lemma 7) ~ ðMÞ � S��1
þ � ftg for some t 2 R. We may conclude

the proof of Theorem 5 by using

LEMMA 9. Any pseudoharmonic map � :M ! S��1
þ of a compact strictly

pseudoconvex CR manifold M into an open upper hemisphere S��1
þ is constant.

PROOF. Let � : S��1 ! R� be the inclusion and � ¼ � � �. It is a standard

matter to compute the second fundamental form of �. As a corollary of (45) in

Theorem 4

�b�
A ¼ jE�j2 �A; 1 � A � �; ð47Þ

where jE�j2 ¼
P

a;AðEa�
AÞ2 with respect to a local G�-orthonormal frame

fEa : 1 � a � 2ng of HðMÞ. Cf. also (4.52) in [14, p. 257]. As �ðMÞ � S��1
þ one

has �� > 0. Let us set A ¼ � in (47), integrate over M and use Green’s lemma. It

follows that
R
M �� jE�j2 � ^ ðd�Þn ¼ 0 hence � is a R�-valued CR function on M.

As M is nondegenerate � must be constant. �

6. Pseudoharmonic vector fields.

6.1. Total bending.

Related to (5) we consider the sublaplacian on vector fields. Let M be a

strictly pseudoconvex CR manifold and � a contact form on M such that G� is

positive definite. If X is a C2 vector field onM then �bX is the vector field locally

given by

ð�bXÞi ¼ �bX
i þ 2ajk�ij‘

@X‘

@xk
þ ajk

@�ij‘
@xk

þ �sj‘�
i
ks � �sjk�

i
s‘

 !
X‘ ð48Þ
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where X ¼ Xi @=@xi and �ijk are the coefficients of the Tanaka-Webster

connection r of ðM; �Þ with respect to the local coordinate system ðU; xiÞ on

M. Also aij ¼ gij � TiT j and ½gij� ¼ ½gij��1 where gij ¼ g�ð@i; @jÞ, @i ¼ @=@xi. Let

U ðM; �Þ ¼ fX 2 X1ðMÞ : g�ðX;XÞ ¼ 1g

be the set of all C1 unit vector fields on ðM; g�Þ. The pseudohermitian biegung, or

total bending, is the functional B : U ðM; �Þ ! ½0;þ1Þ given by

BðXÞ ¼
1

2

Z
M

krHXk2 �; X 2 U ðM; �Þ: ð49Þ

Here rHX 2 �1ðHðMÞ� � T ðMÞÞ is the restriction of rX to HðMÞ. The biegung

(49) is a pseudohermitian analog to R. Wiegmink’s total bending (cf. [51]) of a

vector field on a Riemannian manifold (and BðXÞ measures the failure of X to

satisfy rY X ¼ 0 for any Y 2 HðMÞ). We adopt the following definition. A

pseudoharmonic vector field is a C1 unit vector field X 2 U ðM; �Þ which is a

critical point of B with respect to 1-parameter variations of X through unit

vector fields. For simplicity we assume that M is compact (otherwise we may

modify the definition (49) by integrating over a relatively compact domain � �M

and consider only variations supported in �). Pseudoharmonic vector fields will

be shown to satisfy the nonlinear subelliptic system

�bX þ krHXk2X ¼ 0; ð50Þ

(the Euler-Lagrange equations of the variational principle associated to (49)).

The pseudohermitian biegung (49) is related to the functional (7). To see this we

need the CR analog to the Sasaki metric (on the total space of the tangent bundle

of a Riemannian manifold).

6.2. Geometry of the tangent bundle over a CR manifold.

Let ��1TM ! T ðMÞ be the pullback of the tangent bundle, where � :

T ðMÞ !M is the projection. If X is a vector field on M then X̂ ¼ X � � is its

natural lift (a cross section in ��1TM ! T ðMÞ). Let � be a contact form on M

with G� is positive definite. The Tanaka-Webster connectionr of ðM; �Þ induces a
connection r̂ in ��1TM ! T ðMÞ which is easiest to describe in local coordinates.

Let ðU; ~xiÞ be a local coordinate system on M and ð��1ðUÞ; xi; yiÞ the naturally

induced local coordinates on T ðMÞ. Let Xi be the natural lifts of @=@~xi (a local

frame in ��1TM ! T ðMÞ defined on the open set ��1ðUÞ). Let �ijk be the local

coefficients of r with respect to ðU; ~xiÞ. Then r̂ is locally given by
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r̂@jXk ¼ ð�ijk � �ÞXi; r̂ _@j
Xk ¼ 0; ð51Þ

where @i ¼ @=@xi and _@i ¼ @=@yi for simplicity. Let L be the Liouville vector i.e.

locally L ¼ yiXi. A tangent vector field X on T ðMÞ is horizontal if r̂XL ¼ 0. A

calculation based on (51) shows that X ¼ X i@i þX iþm _@i is horizontal if and

only if X iþm ¼ �Ni
jX

j. Here Ni
j ¼ �ijky

k and m ¼ 2nþ 1. Let

H u ¼ fX u : X horizontalg; u 2 T ðMÞ:

Then


i ¼ @i �Ni
j
_@j; 1 � i � m; ð52Þ

is a local frame of H ! T ðMÞ on ��1ðUÞ hence H is a C1 distribution of rank m

on T ðMÞ and

T ðT ðMÞÞ ¼ H 	Kerðd�Þ: ð53Þ

Thus the restriction to H of

L : T ðT ðMÞÞ ! ��1TM; LuX ¼ ðdu�ÞX ;

X 2 TuðT ðMÞÞ; u 2 T ðMÞ;

is a bundle isomorphism whose inverse is denoted by � : ��1TM ! H (the

horizontal lift associated to r). Let � : ��1TM ! Kerðd�Þ be the vertical lift i.e.

locally �Xi ¼ _@i. The Dombrowski map is the bundle morphism

K : T ðT ðMÞÞ ! ��1TM; K ¼ ��1 �Q;

where Q : T ðT ðMÞÞ ! Kerðd�Þ is the projection associated to the decomposition

(53). The given data induces a Riemannian metric S� on T ðMÞ given by

S�ðX ;Y Þ ¼ g�ðLX ; LY Þ þ g�ðKX ; KY Þ; X ;Y 2 T ðT ðMÞÞ:

As well as in Riemannian geometry (cf. D. E. Blair [6]) S� is referred to as the

Sasaki metric of ðM;�Þ. The total space of the tangent bundle of a strictly

pseudoconvex CR manifold possesses a rich geometric structure whose inves-

tigation is (as opposed to the Riemannian case, cf. [6] and references therein) far
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from being complete. For instance, note that the Riemannian manifold ðT ðMÞ; S�Þ
carries the compatible almost complex structure

Jð�XÞ ¼ �X; Jð�XÞ ¼ ��X; X 2 ��1TM:

A simple calculation shows that the Nijenhuis tensor field of J is given by

NJð�X; �Y Þ ¼ �RðX; Y ÞL þ �T ðX; Y Þ;
NJð�X; �Y Þ ¼ �RðX; Y ÞL � �T ðX; Y Þ;
NJð�X; �Y Þ ¼ ��RðX; Y ÞL � �T ðX; Y Þ;

for any X; Y 2 ��1TM. Here

RðX; Y ÞZ ¼ Rr̂ð�X; �Y ÞZ; T ðX; Y Þ ¼ T r̂ð�X; �Y Þ:

Also Rr̂ is the curvature tensor field of r̂ and T r̂ is defined by

T r̂ðX ;Y Þ ¼ r̂XLY � r̂Y LX � L½X ;Y �

for any tangent vector fields X ;Y on T ðMÞ. As the Tanaka-Webster connection

has torsion J is never integrable.

6.3. The first variation formula.

Let us consider the functional E : C1ðM;T ðMÞÞ ! R given by

Eð�Þ ¼
1

2

Z
M

traceG�
�H�

�S�ð Þ �

where �H�
�S� denotes the restriction of the bilinear form ��S� to HðMÞ �HðMÞ.

We shall show that

THEOREM 6. Let M be a compact strictly pseudoconvex CR manifold and �

a contact form with G� positive definite. Let X be a smooth vector field onM. Then

EðXÞ ¼ nVolðM; �Þ þBðXÞ; ð54Þ

where VolðM; �Þ ¼
R
M �. Consequently i) EðXÞ � nVolðM; �Þ with equality if

and only if rHX ¼ 0. Also ii) X : ðM; �Þ ! ðT ðMÞ; S�Þ is a pseudoharmonic map if

and only if rHX ¼ 0. Let us assume additionally that X 2 U ðM; �Þ and let
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X :M � ð�
; 
Þ ! T ðMÞ be a smooth 1-parameter variation of X through unit

vector fields ðX ðx; 0Þ ¼ XðxÞ, x 2MÞ and let us set V ¼ ð@Xt=@tÞt¼0 where

XtðxÞ ¼ X ðx; tÞ, x 2M, jtj < 
. Then iii) g�ðV ;XÞ ¼ 0 and

d

dt
EðXtÞf gt¼0¼ �

Z
M

g�ðV ;�bXÞ�: ð55Þ

Consequently iv) a C1 unit vector field X onM is a pseudoharmonic vector field if

and only if X is a C1 solution to (50).

Statement (ii) extends a result by T. Ishihara [31], and O. Nouhaud [38], to

the subelliptic case.

PROOF OF THEOREM 6. Let x 2 M and fEa : 1 � a � 2ng be a local

orthonormal (with respect to G�) frame of HðMÞ, defined on an open neighbor-

hood of x. If Ea ¼ �ja @=@~x
j then

ðdxXÞEa;x ¼ �jaðxÞf
j þ ½ðrjX
iÞ � �� _@igXðxÞ

where 
j are given by (52) and rjX
i ¼ @Xi=@~xj þ �ijkX

k. Then

traceG�
�HX

�S�ð Þx ¼
X2n
a¼1

ðX�S�ÞðEa;EaÞx

¼
X
a

S�;XðxÞððdxXÞEa;x; ðdxXÞEa;xÞ

¼
X
a

�jaðxÞ�kaðxÞfS�ð
j; 
kÞ þ ðrjX
rÞðrkX

sÞS�ð _@r; _@sÞgXðxÞ

¼
X
a

fg�ðEa;EaÞ þ �ja�
k
aðrjX

rÞðrkX
sÞgrsgx:

Let T ¼ T i @=@~xi. As
P2n

a¼1 �
i
a�

j
a ¼ gij � TiT j it follows that

traceG�
ð�HX�S�Þ ¼ 2nþ krXk2 � krTXk2

where krXk2 ¼ gijðriX
kÞðrjX

‘Þgk‘. As fEj : 0 � j � 2ng (with E0 ¼ T ) is a local

g�-orthonormal frame of T ðMÞ one also has krXk2 ¼
P2n

j¼0 g�ðrEjX; rEjXÞ hence
(54). Clearly (54) yields statement (i) in Theorem 6.

Let us prove (ii). If rHX ¼ 0 then X is a pseudoharmonic map and an

absolute minimum for E in �1ðM;T ðMÞÞ. Viceversa let us assume X is a
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pseudoharmonic map of M into the Riemannian manifold ðT ðMÞ; S�Þ. Thus

fdEðXtÞ=dtgt¼0 ¼ 0 for any smooth 1-parameter variation Xt :M ! T ðMÞ of X

(X0 ¼ X). In particular for the variation XtðxÞ ¼ ð1� tÞXx, x 2M, jtj < � (by

(54))

0 ¼
dEðXtÞ
dt

����
t¼0

¼
d

dt
nVolðM; �Þ þBðXtÞf gt¼0

¼
d

dt

ð1� tÞ2

2

Z
M

krHXk2�
( )

t¼0

¼ �
Z
M

krHXk2�:

Let X 2 U ðM; �Þ. To prove the first variation formula (55) we need some

preparation. Let N ¼M � ð�
; 
Þ and let p : N !M be the projection. Let

p�1TM ! N be the pullback of the tangent bundle T ðMÞ !M by p. Then X

may be thought of as a C1 section in p�1TM ! N . If Y is a tangent vector field on

M we set Ŷ ¼ Y � p. The Webster metric g� induces a bundle metric ĝ� in

p�1TM ! N uniquely determined by ĝ�ðŶ ; ẐÞ ¼ g�ðY ;ZÞ � p. Also let D be the

connection in p�1TM ! N induced by the Tanaka-Webster connection r.

Precisely let ~Y be the tangent vector field on T ðMÞ given by

~Yðx;tÞ ¼ ðdxitÞYx; x 2M; jtj < 
;

where it :M ! N , itðxÞ ¼ ðx; tÞ. Then D is determined by

D ~Y Ẑ ¼ drY Z ; D@=@tẐ ¼ 0; Y ; Z 2 T ðMÞ:

Moreover a simple calculation shows that Dĝ� ¼ 0 and

ðD ~YX Þðx;tÞ ¼ ðrY XtÞx; ðx; tÞ 2 N:

Then

BðXtÞ ¼
1

2

Z
M

X2n
a¼1

ĝ�ðrEaXt; rEaXtÞx �ðxÞ

¼
1

2

Z
M

X
a

ĝ�ðD ~Ea
X ; D ~Ea

X Þðx;tÞ �ðxÞ

hence
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d

dt
BðXtÞ ¼

Z
M

X
a

ĝ�ðD@=@tD ~Ea
X ; D ~Ea

X Þðx;tÞ �ðxÞ

¼
Z
M

X
a

ĝ�ðD ~Ea
D@=@tX ; D ~Ea

X Þðx;tÞ �ðxÞ

as RDð@=@t; ~EaÞX ¼ 0 and ½@=@t; ~Ea� ¼ 0. Moreover (by Dĝ� ¼ 0)

d

dt
BðXtÞ ¼

Z
M

X
a

f ~Eaðĝ�ðD@=@tX ; D ~Ea
X ÞÞ

� ĝ�ðD@=@tX ; D ~Ea
D ~Ea

X Þgðx;tÞ �ðxÞ:

For each fixed jtj < 
 we define Yt 2 HðMÞ by setting

G�ðYt; Y Þx ¼ ĝ�ðD@=@tX ; D ~YX Þðx;tÞ

for any Y 2 HðMÞ and any x 2M. Then (by rg� ¼ 0)

~Eaðĝ�ðD@=@tX ; D ~Ea
X ÞÞ ¼ Eaðg�ðYt; EaÞÞ

¼ g�ðrEaYt; EaÞ þ g�ðYt;rEaEaÞ:

As r� ¼ 0 the divergence operator (see Section 2) is also given by

divðY Þ ¼ tracefZ 7! rZY g ¼
X2n
j¼0

g�ðrEjY ; EjÞ:

Finally (by Green’s lemma)

d

dt
fEðXtÞgt¼0

¼ �
Z
M

ĝ� D@=@tX ;
X
a

fD ~Ea
D ~Ea

X �DgrEaEa
X g

 !
ðx;0Þ

�ðxÞ

¼ �
Z
M

g�ðV ;�bXÞx�ðxÞ

and (55) is proved. If X is a critical point i.e. fdEðXtÞ=dtgt¼0 ¼ 0 then (55)

together with the constraint g�ðV ;XÞ ¼ 0 (obtained by differentiating

g�ðXt;XtÞ ¼ 1 at t ¼ 0) imply that �bX ¼ �X for some � 2 C1ðMÞ and taking
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the inner product with X shows that � ¼ g�ð�bX;XÞ ¼ �krHXk2. Theorem 6 is

proved. �

6.4. Unboundedness of the energy functional.

Under the assumptions of Theorem 6 we may prove the following

COROLLARY 2. The characteristic direction T of d� is a pseudoharmonic

vector field and an absolute minimum of the energy functional E : U ðM; �Þ !
½0;þ1Þ. Moreover, for any nonempty open subset � �M and any unit vector field

X on M such that X 2 HðMÞ there is a sequence fY�g��1 of unit vector fields such

that each Y� coincides with X outside � and EðY�Þ ! 1 for � ! 1. In particular

the energy functional E is unbounded from above.

PROOF. The first statement in Corollary 2 follows from rT ¼ 0 (and then

EðT Þ ¼ infX2U ðM;�Þ EðXÞ ¼ nVolðM; �Þ). To prove the second statement let

h ¼ ðx1; . . . ; xmÞ : U ! Rm be a local coordinate system on M such that U � �,

hðUÞ � ½�2�; 2��m and X ¼ @=@x1 on U (cf. the proof of the classical Frobenius

theorem, e.g. [41, pp. 91–92]). Moreover let ’ 2 C1
0 ðMÞ be a test function such

that i) 0 � ’ðxÞ � 1 for any x 2M, ii) ’ ¼ 1 in a neighborhood V of the compact

set K ¼ h�1ð½��; ��mÞ such that V � U, and iii) ’ ¼ 0 outside h�1ð½�2�; 2��mÞ.
For each � 2 Z, � � 1, let f� be the C1 extension to M of the function sinð�x1Þ
(thought of as defined on the closed set V ) and let us set � ¼ ’f�. Next let us

consider the C1 vector field

Y� ¼ ðcos�ÞX þ ðsin�ÞT ; � � 1:

Then Y� is a unit vector field coinciding with X outside �. As we may complete X

to a local frame of HðMÞ (and rT ¼ 0, �ðrXXÞ ¼ 0)

krHY�k2 � g�ðrXY�;rXY�Þ ¼ Xð�Þ2 þ ðcos2 �ÞkrXXk2 � Xð�Þ2:

On the other hand Xð�Þ ¼ Xð’Þf� þ ’�ðcos �x1Þ on U so that Xð�Þ ¼ � cos �x1

on V � K. Hence

2EðY�Þ �
Z
K

krHY�k2 � �
Z
K

Xð�Þ2 � ¼ �2
Z
K

cos2ð�x1Þ�:

If d volðg�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
GðxÞ

p
dx1 ^    ^ dxm is the Riemannian volume form of ðM; g�Þ

(with GðxÞ ¼ det½gijðxÞ�) there is a constant cn > 0 such that � ¼ cn d volðg�Þ (and
cn ¼ 2nn!, cf. [48]). Let us set a ¼ infx2K

ffiffiffiffiffiffiffiffiffiffiffi
GðxÞ

p
. Then a > 0 and
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Z
K

cos2ð�x1Þ� � acn

Z
½��;��m

cos2ð�t1Þ dt1    dtm ¼ a2n�1n!ð2�Þm

Hence EðY�Þ � a2n�2n!ð2�Þm� ! 1 for � ! 1. �

6.5. The second variation formula.

Let X 2 U ðM; �Þ and let us consider a smooth 2-parameter variation of X

Y :M � I2
 ! T ðMÞ; I
 ¼ ð�
; 
Þ; 
 > 0;

Xt;s ¼ Y � it;s; t; s 2 I
; X0;0 ¼ X:

Here we set N ¼M � I2
 and it;s :M ! N , it;sðxÞ ¼ ðx; t; sÞ for any x 2M. We

shall prove the following

THEOREM 7. Let V ¼ ð@Xt;s=@tÞt¼s¼0 and W ¼ ð@Xt;s=@sÞt¼s¼0. Let us

assume that Xt;s 2 U ðM; �Þ for any t; s 2 I
. If X 2 U ðM; �Þ is a smooth

pseudoharmonic vector field then

@2

@t@s
BðXt;sÞ

 �

t¼s¼0
¼ �

Z
M

g�ðV ; �bW þ krHXk2W Þ�: ð56Þ

In particular for any smooth 1-parameter variation of X

d2

dt2
BðXtÞf gt¼0¼

Z
M

fkrHV k2 � krHXk2kV k2g�: ð57Þ

The identity (56) is the second variation formula (of the pseudohermitian

biegung). To prove Theorem 7 let p : N !M be the projection and p�1TM ! N

the pullback of T ðMÞ by p. Then Y is a C1 section in ��1TM ! N. Let ĝ� and D

be respectively the Riemannian bundle metric induced by g� and the connection

induced by the Tanaka-Webster connection r in ��1TM ! N. Similar to the

conventions adopted in the proof of Theorem 6 we set

~Yðx;t;sÞ ¼ ðdxit;sÞYx; x 2M; t; s 2 I
:

For simplicity we set T ¼ @=@t and S ¼ @=@s (T ;S 2 X1ðNÞ). Then (by

Dĝ� ¼ 0)
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@

@t
BðXt;sÞ ¼

Z
M

X2n
a¼1

ĝ�ðDTD ~Ea
Y ; D ~Ea

Y Þ�

¼
Z
M

X
a

ĝ�ðD ~Ea
DTY ; D ~Ea

Y Þ

due to

½T ; ~Ea� ¼ 0; RDðT; ~EaÞY ¼ 0:

Then

@2

@s@t
BðXt;sÞ ¼

Z
M

X
a

@

@s
ĝ�ðD ~Ea

DTY ; D ~Ea
Y Þ�

¼
Z
M

X
a

fĝ�ðDSD ~Ea
DTY ; D ~Ea

Y Þ þ ĝ�ðD ~Ea
DTY ; DSD ~Ea

Y Þg�

(as ½S; ~Ea� ¼ 0 and RDðS; ~EaÞY ¼ 0)

¼
Z
M

X
a

fĝ�ðD ~Ea
DSDTY ; D ~Ea

Y Þ þ ĝ�ðD ~Ea
DTY ; D ~Ea

DSY Þg�

¼
Z
M

X
a

f ~Eaðĝ�ðDSDTY ; D ~Ea
Y ÞÞ � ĝ�ðDSDTY ; D ~Ea

D ~Ea
Y Þ

þ ~Eaðĝ�ðDTY ; D ~Ea
DSY ÞÞ � ĝ�ðDTY ; D ~Ea

D ~Ea
DSY Þg�: ð58Þ

For each fixed ðt; sÞ 2 I2
 we define Yt;s 2 HðMÞ by

G�ðYt;s; ZÞx ¼ ĝ�ðDSDTY ; D ~ZY Þðx;t;sÞ; Z 2 HðMÞ:

Then X
a

~Eaðĝ�ðDSDTY ; D ~Ea
Y ÞÞ ¼

X
a

Eaðg�ðYt;s; EaÞÞ � p

¼
X
a

fg�ðrEaYt;s; EaÞ þ g�ðYt;s; rEaEaÞg � p

¼ divðYt;sÞ � pþ ĝ�ðDSDTY ;
X
a

DgrEaEa
Y Þ:

Similarly, given Zt;s 2 HðMÞ determined by
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G�ðZt;s; ZÞx ¼ ĝ�ðDTY ; D ~ZDSY Þðx;t;sÞ

one has X
a

~Eaðĝ�ðDTY ; D ~Ea
DSY ÞÞ

¼ divðZt;sÞ � pþ ĝ�

�
DTY ;

X
a

DgrEaEa
DSY

�
:

Going back to (58) one has (by Green’s lemma)

@2

@s@t
BðXt;sÞ

 �

t¼s¼0

¼
Z
M

�
ĝ�

�
DSDTY ;

X
a

fDgrEaEa
Y �D ~Ea

D ~Ea
Y g
�

þ ĝ�

�
DTY ;

X
a

fDgrEaEa
DSY �D ~Ea

D ~Ea
DSY g

��
t¼s¼0

�

¼ �
Z
M

fg�ðU; �bXÞ þ g�ðV ; �bW Þg�

where we have set U ¼ ð@2Xt;s=@t@sÞt¼s¼0. Moreover (by differentiating

ĝ�ðY ;Y Þ ¼ 1)

g�ðU;XÞx ¼ ĝ�ðDSDTY ; Y Þðx;0;0Þ
¼ fSðĝ�ðDTY ; Y ÞÞ � ĝ�ðDTY ; DSY Þgðx;0;0Þ ¼ �g�ðV ;W Þx

and (as X is pseudoharmonic i.e. a smooth solution to (50))

@2

@t@s
BðXt;sÞ

 �

t¼s¼0
¼
Z
M

fkrHXk2g�ðU;XÞ � g�ðV ;�bW Þg�

¼ �
Z
M

g�ðV ; �bW þ krHXk2W Þ�

and (56) is proved. Finally given an arbitrary smooth 1-parameter variation X :

M � I
 ! T ðMÞ of X through unit vector fields the identity (57) follows from (56)

for the particular 2-parameter variation Y :M � I
=2 ! T ðMÞ given by

Y ðx; t; sÞ ¼ X ðx; tþ sÞ for any x 2M and any t; s 2 I
=2. Indeed
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d2

dt2
BðXtÞf gt¼0¼ �

Z
M

g�ðV ; �bV þ krHXk2V Þ�: ð59Þ

On the other hand, for any smooth vector field V on M

�bkV k2 ¼
X2n
a¼1

fEaEakV k2 � ðrEaEaÞkV k2g

¼ 2
X
a

fEaðg�ðrEaV ; V ÞÞ � g�ðrrEaEaV ; V Þg

¼ 2
X
a

fg�ðrEarEaV ; V Þ þ g�ðrEaV ; rEaV Þ � g�ðrrEaEaV ; V Þg

hence

�bkV k2 ¼ 2fg�ð�bV ; V Þ þ krHV k2g: ð60Þ

Now (57) follows from (59)–(60) and Green’s lemma.
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