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PSEUDO JUMP OPERATORS. I: THE R. E. CASE
BY

CARL G. JOCKUSCH, JR. AND RICHARD A. SHORE1

Abstract. Call an operator / on the power set of w a pseudo jump operator if J(A)
is uniformly recursively enumerable in A and A is recursive in J(A) for all subsets A
of u. Thus the (Turing) jump operator is a pseudo jump operator, and any existence
proof in the theory of re. degrees yields, when relativized, one or more pseudo jump
operators. Extending well-known results about the jump, we show that for any
pseudo jump operator J, every degree > W has a representative in the range of /,
and that there is a nonrecursive r.e. set A with J(A) of degree 0*. The latter result
yields a finite injury proof in two steps that there is an incomplete high r.e. degree,
and by iteration analogous results for other levels of the Hn, Ln hierarchy of r.e.
degrees. We also establish a result on pairs of pseudo jump operators. This is
combined with Lachlan's result on the impossibility of combining splitting and
density for r.e. degrees to yield a new proof of Harrington's result that 0* does not
split over all lower r.e. degrees.

1. We prove some generalizations of theorems about the Turing jump operator
(denoted A \-+Ä) to theorems about operators of the form A \-> A © W*, for an
arbitrary fixed Gödel number e. (Here A © £ is the recursive join of A and £ and
Wf is the eth set r.e. in A in a fixed standard enumeration.) For instance, Friedberg
(see [25, Theorem 4.1]) showed that there is a nonrecursive r.e. set A with A' =tK
(where £ is a complete r.e. set). We prove by a finite injury priority argument similar
to Friedberg's that for every e there is a nonrecursive r.e. set A with A © W* =tK.
Now Friedberg's argument relative to an arbitrary oracle £ yields a fixed Gödel
number /' such that, for all £, W,B is low over B, i.e. B<TWiB and £' =T iW¡B)'.
Applying our result with /' = e we obtain a set A of incomplete high r.e. degree, i.e.
A <T K and A' =t K'. Of course the existence of such a set has been known for
some time [20], but this is apparently the first proof using only the finite injury
method. (Thus a single infinite injury construction has been replaced by two
successive applications of finite injury arguments.) An iteration of the uniform
relative form of the argument shows in the same way that there are r.e. degrees at all
levels of the high„, lown hierarchy. Then an apphcation of the recursion theorem
yields a finite injury proof of the result of A. H. Lachlan [10] and D. A. Martin [16]
that there is an r.e. degree a not highn or lown for any n (see also Sacks [21]). (A
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600 CG. JOCKUSCH, JR. AND R. A. SHORE

degree a < 0' is called high„ if a(n) = 0("+1) and low„ if a(n) = 0(">.) Of course our
result may be apphed to constructions other than that of a low nonzero r.e. degree,
and we also draw conclusions from its application to the construction of a low
nonbranching degree.

We also prove the following extension of Friedberg's jump theorem [4]: for every e
and every set C with K <rC, there is a set A with A © Wf =T A © K =T C. (The
proof is the same as Friedberg's.)

Our strongest result is that for any r.e. set £ of low degree and every pair of Gödel
numbers e, i there is an r.e. set A such that A © WA has r.e. degree, A © WA © WtA
= t K, and B <T A © WA. Applied to Lachlan's result [13] on the impossibility of
combining splitting and density, this yields Harrington's stronger result [7] that there
is an r.e. degree c < 0' over which 0' cannot be split by any pair of incomparable r.e.
degrees, with the additional embellishment that c may be chosen to he above any
given low r.e. degree. Finally the two Gödel-number result above may be applied to
Harrington's result [6,17] that there is a high r.e. degree c < 0' which cannot be
cupped up to 0' by any incomplete r.e. degree. (This extended a result previously
announced by C. E. M. Yates.) From the application it follows that there are r.e.
degrees h, I with 1 low, h high, 1 < h, such that every r.e. degree which cups h to 0'
also cups 1 to 0', and h is cuppable to 0' by a low r.e. degree.

The work presented here actually began with an attempt to distinguish 0' from the
other (r.e.) degrees by trying to find some special property that it alone might have
inside every cone of degrees in which it hes. Thus we considered briefly whether
within such cones 0' might always (or never) be the sup of an r.e. minimal pair, or
cuppable to everything above it, or branching, or nonbranching, etc. Some such
questions could be answered from known results. For instance, the result of A. H.
Lachlan [14] and R. I. Soare and J. R. Shoenfield (unpublished) that 0' is the sup of
an incomparable pair of r.e. degrees having an inf immediately implies that, relative
to the inf, 0' is the sup of an r.e. minimal pair. On the other hand, most such
questions appeared to be very resistant to direct attack. Theorems 2.1 and 3.1 will
imply that for any property 9 of r.e. degrees such that there is a uniformly
relativizable recursive enumeration of a set whose degree has 9 (including all the
examples just mentioned) there is a degree a relative to which 0' has 9.

The Friedberg jump theorem may be iterated to show that every degree 3* 0(n) is
the nth jump of some degree, and the corresponding result for transfinite iterations
of the jump may be proved using forcing [15]. In a sequel [8] to the current paper,
these results will be extended to show that if £ is an operation which is a
composition of n operations of the form A h+ A © WA, then every degree >0{n)
contains a set in the range of £. This result will also be extended to the transfinite,
and the level u case will be used in combination with the Ershov difference hierarchy
and the Sacks minimal degree construction [19] to show that every degree > 0(u) is a
minimal cover. (This extends the result of Harrington and Kechris [5] that every
degree above that of Kleene's 0 is a minimal cover.) It follows, for instance,
essentially as in Shore [24] that if a'"' > 0(u) for some n, then "i>i> a) (the partial
ordering of degrees > a) is not elementarily equivalent to the partial ordering of all
degrees.
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2. We now prove our extended Friedberg completeness criterion.

Theorem 2.1. If 0'^TC and e is any number, there is a set A such that
A © WeA =TA ©0'=r C.

Proof. We obtain the characteristic function of A as the union of an increasing
sequence of strings (an), precisely as in the Friedberg jump theorem. Let a_x be the
empty string.

Stage 2n. If there exists a string a D a2n with n E W°, let o2n+x be the least such
a. Otherwise let a2n+ x = a2n. (Here n E W° means that n E WA can be computed in
at most | a | steps from the information a E A. We are identifying A with its
characteristic function and writing | o | for the length of the string a.)

Stage2n + 1. Leta2n+2 = a2n+f^<C(n)>.
Since the even stages may be carried out recursively in 0' and the odd stages

recursively in C, the sequence (an) is recursive in C, so A *sr C. Also n E WA iff
n E W¡2"+<, so WA <r C. It follows that A © WA, A@0' are each recursive in C.

Note that C(n) — a2n+2(| o2n+2 \ — 1), so C is recursive in the sequence (an). Thus
to show that C is recursive in each of A © WA, A © 0', it suffices to show that (ct„>
is recursive in each. But this is clear since the even stages can be carried out
recursively in each of 0', WA, and the odd stages may be carried out recursively in A.

This theorem has a number of easy consequences, such as the existence of an
incomplete high degree below 0'. However, we defer discussion of these until the
next section where the case 0' =r C of Theorem 2.1 is improved by requiring A to be
r.e. and nonrecursive.

It would be natural to conjecture that Theorem 2.1 would continue to hold if WA
were replaced by the eth set 22 in A, denoted SA, and 0' were replaced by 0".
However this fails even for the (provably) A°2 in A sets as can be seen by choosing e
so that SA is uniformly A°2 in A and the degree of SA is always minimal over that of
A [19]. In this case the degree of A © SA cannot be 0(n) for any n < u by [9]. On the
other hand, Harrington and Kechris [5] showed that, for any e with SA uniformly A°2
in A and any degree c above that of Kleene's 0, there is a set A such that A © SA has
degree c. Further results along this line will appear in [8].

3. We now prove our extension of Friedberg's result asserting the existence of a
nonzero low r.e. degree.

Theorem 3.1. For any number e there is an r.e. nonrecursive set A such that
A © IVa =t0'.

Proof. The negative aspect of the construction involves ensuring WA <T0'. As in
Soare's presentation [25, Theorem 4.1] of the Friedberg construction, this is accom-
plished by means of negative requirements Nn which attempt to preserve computa-
tions showing n E WA by preventing numbers below the use of such computations
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602 C. G. JOCKUSCH, JR. AND R. A. SHORE

from entering A. Let As be the set of numbers enumerated in A before stage s of the
construction, and let r(n, s) he the use function for computing n E Wf, if « G Wfs,
and r(n,s) — 0 otherwise.

The positive aspect of the construction involves ensuring that A is nonrecursive
and that £<r A © WA. For the former we have positive requirements £2„ that
Wni/= A. For the latter we have a positive requirement £2„+1 asserting that if n is
enumerated in K at s, then a "sufficiently small" number zn is enumerated in A at
stage s as a "trace". To keep the positive requirements from interfering with each
other we insist that any number enumerated in A for the sake of Pn be an element of
£„ (the Hth row). (We assume the sets £0, £,,... are infinite, pairwise disjoint, and
uniformly recursive.) In order to make it possible to bound the possible values of z„
from n with an oracle for A © WA (to show K < T A © WA ) we always choose the
element of £„ entering A for Pn to be as small as possible without injuring negative
requirements Nm of higher priority, i.e. for m < n. For this reason we define v(n, s)
to be the least element z of £„ such that z > r(m, s) for each m < n and impose the
condition

(*) As+X -ASE {vin,s):n E a).

(Remark. This argument may well be visualized in terms of " movable markers" in
which case vin, s) represents the position of the nth marker at the beginning of
stage s.)

Fix a 1-1 recursive enumeration {ks} of K. The construction is as follows.
Stage s. By definition, £2„+1 requires attention at s iff n = ks. Also £2„ requires

attention at s iff W¿ n A" = 0 and v(2n, s) E W*. Let

As+] — As U {vin, s): Pn requires attention at s).

By convention, W* = 0 for »>i so the sets As are finite and uniformly
recursive. It follows that A — UsAs is r.e.

Each positive requirement requires attention at most once. Given n, let s be a
stage after which no Pm, m < n, requires attention. If « G Wf for some t > s, then
no number below rin, t) enters A at or after stage t (because it could only enter for
the sake of Pm, m> n, but would then have to respect the restraint r(n, /)). It
follows in this case that rin, t) — r(n, u) for all m 3= r. If n E WA' holds for no t s* s,
then r(«, t) = 0 for t 3= s. In either case, lims rin, s) exists, and WA *ZT K by the
limit lemma.

The above implies at once the limJ t>(«, s) = vin) exists for each n. If Wn D A =
0, the construction guarantees that t>(2«) G A iff t>(2n) G Wn, so A =£ Wn.

Observe that for each n, at most one element of £„ is in A since each positive
requirement receives attention at most once. Let/(w) be the canonical index of the
finite set A n £„. The constuction guarantees that n G K iff A n £„ ¥= 0, so £ is
recursive in /. To complete the proof it suffices to show that / is recursive in
A © WA. Suppose inductively that flm) has been computed from A © WA for all
m < n. Let s be a stage such that Rm n As = Rm n A for all m < n. Let í > j be a
stage such that m E WA' iff m G WA holds for all m < «. Then, as in the argument
that lim^ rin, s) exists, it follows that rim, u) = rim, t) for all m < «, w 3* i. Thus
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u(w, u) — vin, t) for all u 3= t. If u(n, t) E A, then A H Rn — {vin, t)}. Otherwise
Ar\Rn = A'DRn. In either case fln) has been computed from A © WA and
(flm): m < n). This completes the proof.

As mentioned in the introduction, Theorem 3.1 and the existence of an e such
that, for all A, A <T WA and A' =t iWA)' immediately yields a finite injury proof
(in two steps) of the existence of an incomplete high r.e. degree. To obtain further
results along these lines, we apply the following corollary to the proof of Theorem
3.1. The corollary is obtained by noting that in the proof of Theorem 3.1 an index of
the r.e. set A may be obtained uniformly from e, and that the entire result holds
relative to an arbitrary oracle £. We write Je(B) for £ © WB.

Corollary 3.2. There is a recursive function f such that, for all B and all
e, JeiJf(e)iB)) =T £' and B <TJf(e)iB).

Let Hn, Ln denote the set of highn, respectively low„, degrees.

Corollary 3.3 (Sacks). For each n there exist r.e. degrees in Hn+X — Hn and

L„+\ ~~ Ln.

Proof. To have a strong inductive hypothesis, we prove the result in relativized
form. Let LB be the set of degrees c which are lown over deg(£), i.e. satisfy
b < c < b' and c(n) = U"\ Similarly, HB is the set of degrees high„ over deg(£).
Choose e0 so that JeoiB) =r B' for all B. Let ex = f(e0), where/is as in Corollary
3.2. Then deg( ./(£)) is always in £f — LB. In general let en+x = f(e„). One easily
sees by induction that deg(/ (£)) is in HB — HB_X and deg^ +(£)) is in
Ln+1 ~ Ln■ (The Point is that deg(£') is in Lcn iff deg(C) is in HB, and"deg(£') is in
tf„c iff deg(C) is in LB+X, for £ <r C <TB'.)

Corollary 3.4 (Martin, Lachlan, Sacks). There is an r.e. degree not in Hn or
Ln for any n.

Proof. Let / be as in Corollary 3.2. By the uniform relative version of the
recursion theorem there is a number ê such that WBê) = WB (and hence £-(?)(£) =
/.(£)) for all £. Thus B <r/a(£) and J^(B)) =TB' for all B. (The operation J~
may be thought of as a sort of "half-jump" although we do not know whether it is
degree invariant.) From the above it follows that JÍ2"\B) =7-£<n) for all £ and n,
and also that JJ2n)iB) <TJpn+X)iB) <TJi2n+2\B). The latter inequality may now
be rewritten as £(") <r(/?(£))(n) <r£(n+1), so /-(£) g LB U HB. Thus the degree
of y«( 0 ) satisfies Corollary 3.4.

A form of the Sacks jump theorem asserts that if c > 0' is r.e. in 0' then there is an
r.e. degree d with d' = c. S. B. Cooper [1] thought that d could be chosen below any
high degree. It would then follow that every degree c > 0' r.e. in 0' is r.e. in every
high degree. One of us (Shore) some time ago found a counterexample to a
relativized version of the corollary. This relativized counterexample can now be
transformed by our methods into an outright refutation of the claim. The proof uses
the existence of a low r.e. degree which is not branching, which follows from the fact
that every nonzero r.e. degree bounds a nonbranching r.e. degree [23, p. 106].
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Corollary 3.5. There is a degree c > 0' which is r.e. in 0' and a high r.e.degree a
such that c is not r.e. in a.

Proof. Let e be a Gödel number such that, for every A, deg(l^) is a low,
nonbranching degree relative to degiA). (Thusyl <T WA, A' =TiWA)', and degiWA)
cannot be expressed as the infimum (within the degrees r.e. in A) of an incomparable
pair of degrees r.e. in A.) By Theorem 3.1, choose an r.e. set A with Wf s? 0'. Then
A has high degree because 0' is low over A. By the minimal pair construction relative
to 0' [11], let c0,c, be incomparable degrees r.e. in 0' with infimum 0' (among all
degrees). For contradiction assume that both c0, c, were r.e. in a, where a = degiA).
Then 0' is branching over a, contrary to choice of e. (One should note that if Cq, c,
have inf 07 among all degrees they have inf 0' among degrees r.e. in a.)

A much stronger refutation of Cooper's claim is provided by a recent result of
Soare and Stob [26]: For every nonzero r.e. degree c there is a degree d which is r.e.
in and above c but not r.e. (In fact by relativization this result implies that the degree
a of Corollary 3.5 may be chosen to be any incomplete high degree below 0'.) It is
worth noting that our results combined with a use of the recursion theorem show
that one cannot get d uniformly in the Soare-Stob result, i.e. there is no recursive
function g such that if We is nonrecursive then JgMiWe) is not of r.e. degree. (Recall
that Ja(B) denotes £ © WB.) To see this, assume g were such a recursive function
and let / be a recursive function such that, for all a,W¡^ is nonrecursive and
JaiWf(a))=jK. (The existence of such an/follows from the uniformity of the proof
of Theorem 3.1.) By the recursion theorem, there exists an e such that We = Wf,g<eX).
We fix such an e and let a — g(e). Then Wf(a) is nonrecursive and JaiWRa)) =jK.
On the other hand, Wf(a) = Wf(g(e)) = We, soJg(e)iWe) - JaiWf(a)) does not have r.e.
degree by the assumed property of g. This is a contradiction.

It will be shown by a parallel argument in §4 that a weak uniformity in the
Soare-Stob proof places a limitation on uniform extensions of our results. See also
[26].

It follows from the Friedberg completeness criterion that 0' has the cupping
property, i.e. for any degree c > 0' there exists b < c with b U 0' = c. The following
corollary imphes that it is not true that 0' has the cupping property in all cones in
which it lies.

Corollary 3.6. There is an r.e. degree a < 0' and a degree c > 0' such that every
degree b with a < b < c satisfies b < 07.

Proof. A result of S. B. Cooper [2] asserts that there is a nonzero r.e. degree d
which has a strong minimal cover e (i.e. d < e and every degree < e is < d). By
relativizing his result and applying Theorem 3.1 there is an r.e. degree a < 0' relative
to which 0' has a strong minimal cover c.

4. We now obtain a generalization of Theorem 3.1 which applies to pairs of Gödel
numbers. This will then be combined with constructions of comparable pairs of r.e.
degrees, such as that of Lachlan's "monster paper" [13].
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Theorem 4.1. Let e, i be given Gödel numbers, and let B be a given r.e. set of low
degree. Then there is an r.e. set A such that B <TA © Wf, A © Wf is of r.e. degree,
and A © Wf © Wf =TK.

Proof. We ensure that A © Wf is of r.e. degree using the same negative
requirements Nn as in Theorem 3.1. Specifically, let /•(«, s), vin, s) be defined from
the use of the computation (if any) showing n G Wf's as in the proof of Theorem 3.1.
We will continue to observe the restriction (*) from Theorem 3.1 that As+ ' — As may
contain only numbers of the form u(n, s). Also it will continue to be true that
\A n £„ |< 1 for each n. These restrictions are sufficient to ensure, as in Theorem
3.1, that/is recursive in A © Wf, where f"(«) is the canonical index of the finite set
A D £„. From this we conclude, as in the proof of Theorem 3.1, that there is a
function g <r A © Wf such that, for all 5 > gin), n E Wf iff n E Wf's. (Let gin)
be the least 5 such that £m D As = Rm n A for all m < n and n E Wf's iff n E Wf.)
Thus the modulus of convergence of the recursive approximation As © Wfs to
A © Wf may be computed recursively in A © Wf, so A © Wf has r.e. degree by
[22, Theorem 2].

Let £„ be the positive requirement which asserts that «G£iff£2nDyl^= 0.By
the existence of/as above, the satisfaction of the £„'s imphes that £ is recursive in
A © Wf.

To ensure that Wf <r K we have negative requirements Nn which attempt to
preserve computations of the form n E Wf's. Let rin, s) be the corresponding
restraint function (to be defined more precisely later). The negative requirements Ñn
will not exercise any restraint on the positive requirements Pm (but will restrain
actions for other positive requirements £m to be discussed). Thus Nn may be injured
infinitely often by various £m's and lims rin, s) may not exist. However the set of
numbers put into A by all the requirements Pm will be recursive in £, and this will
suffice to show that Wf <r £' <r K.

In order to ensure K <TA © Wf © Wf we impose positive requirements £„. If n
is in K, according to Pn we must enumerate one or more "appropriate traces" into A.
The requirement £„ is subject to the restraints imposed by Nm for m =s n and also to
the condition (*). To ensure the existence of available traces of the form u(/c, s)
which exceed rim, s) for m < n, infinitely many rows Rk are set aside for Pn
(specifically all rows R2k+X with k E Rn). The requirement £„ then asserts that
n E K iff R2k+X n A ¥= 0 for some k E Rn. The satisfaction of these requirements
does not itself guarantee that K <TA © Wf © Wf, but in fact it will be possible to
bound this quantifier on k recursively in A © Wf. (This suffices since {k: Rk n A ¥=
0} is recursive in A © Wf as remarked.) For this bounding on k to be possible
it is important that liminfs £(«, s) exist, where £(«, s) is defined to be
max{r(w, s): m < n}. For this reason, we use the Lachlan-Soare "hat trick" [25]
and define r(«, s) to be the use function of the computation n E Wf's if n belongs to
both Wfl and Wf's+X by the same computation and rin, s) — 0 otherwise. Also let
kin, s) be the least number k E Rn with v(2k + 1, s) 3= Rin, s). (Such a k exists
because £„ is infinite and vik, s) E Rk is 1-1 as a function of k.)
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Fix recursive enumerations {KS},{BS} of K, B respectively with £° = 0. The
construction is as follows.

Stage s. For each n E Bs+i — Bs, enumerate v(2n, s) into A and say that Pn
receives attention. For each n G Ks, enumerate u(2/c(n, s) + 1, s) into A (and say
that £„ receives attention at s) unless £2y+1 n As ¥= 0 for some j E Rn with
j < Hn, s).

This construction obviously satisfies (*) from Theorem 3.1 and ensures that
\A n R„\< 1 and £„ is satisfied for all n. Thus, by the remarks before the
construction, A © Wf has r.e. degree and B <T A © Wf. It remains to show that
A © Wf © HA =r£.

We estabhsh first that Wf ^TB', from which it follows that Wf <TK. (This is
the only use of the assumption that deg(£) is low.) Note that each requirement Pm
receives attention only finitely often. (If Pm receives attention at stages s0< sx < ■ ■ ■,
then k(n, s0) > kin, sx) > • • • by construction.) A convergent computation n E WA'S
is called £-correct if for every m such that £2m has a member < r(n, s), the
equivalence m E B iff £2m n As ^ 0 holds. (This just says that the computation
will not be destroyed by the action of any requirement £m.) Given n, we now
determine whether n E Wf recursively from £'. First let sin) be a stage such that no
Pm with m < n requires attention at any stage s > sin). This stage exists because
each Pm requires attention only finitely often and it may be computed effectively
from K, hence from £'. We claim now that n E Wf iff there is a £-correct
computation n E Wf¡ for some s ^ sin). Since "£-correctness" is recursive in £ (as
a predicate of n and s), the claim gives a method effective in £' for determining
whether n E Wf. The "only if part of the claim is obvious. Suppose now that there
is a £-correct computation n E Wf's at stage s 3= sin). Then one easily shows by
induction on / that no number below rin, s) enters A at any stage t > s, so n E Wf.
(Briefly, the requirements Pm cannot cause such a number to enter A by £-correct-
ness, the requirements Pm for m < n also cannot because of the choice of sin), and
the requirements Pm for m 3= n must respect the higher priority restraint given by
fin, s) = rin, t).) This completes the proof that Wf <T K. Also A © Wf <r K
since A © Wf has r.e. degree. Therefore^ © Wf © Wf *zTK.

It remains only to show that K <T A © Wf © Wf. It is clear from the construc-
tion that each Pn is satisfied, i.e. « G £ iff R2k+X f~l A ¥= 0 for some k in £,,. Thus,
as remarked before the construction, it suffices to produce a function b, recursive in
A © Wf, such that, for all n, if n E K then Rlk+X n A ^ 0 for some k in £„ with
k *£ bin). Following [25], we call a stage 5 true if every number enumerated in A at
any stage / > s exceeds some number enumerated in A at stage s. (We may assume
without loss of generality that £ is infinite and Bs+] — Bs ¥= 0 for all s, so that
As+] — As ¥^ 0 for all s.) Given n, let /(«) be a true stage s such that, for each
m E Wf with m < n, m is in both Wf's and Wf's+X via the same computation. Then /
is a total function because the set T of true stages is infinite, and t is recursive in
A ffi Wf because T is recursive in A. Since computations which survive true stages
are permanent [25,(2.3)], £(n, s) = £(«, tin)) whenever j is a true stage 3= tin).
Let bin) be the least number k in £„ such that min(£2k+x) 3s £(«, i(«)). Then
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b <T t <r A © Wf and bin) > kin, s) whenever s is a true stage > tin). (The
latter follows from the definition of kin, s) and the inequalities
ü(2Z)(«) + 1, s) > min(£2/,(,l)+1) > £(«, tin)) = £(«, s).) Now suppose « G £and
s is a true stage > /(«) with « G £s. Then kin, s) < bin) and so by construction
either R2j+X Ci As ¥= 0 for some y G Rn with y < kin, s) or v(2kin, s) + \, s) is
enumerated in A at s. In either case A D £2/t+, ^= 0 holds for some /c in £„ with
k < bin), so the proof is complete.

The above proof actually shows that for any numbers e, i and any r.e. set £ (not
necessarily of low degree), there is an r.e. set A such that A © Wf has r.e. degree,
£ <TA © Wf, and K<TA © Wf © HA <r5'. However it is not known whether
the condition £ < T A © W^4 can be strengthened to £ < T A even with the hypothe-
sis that £ is low.

We mention in passing some alternate proofs of Theorem 4.1. The proof just given
could of course be done with movable markers. There would be two infinite sets of
movable markers, the "e-markers" and the "/-markers". The «th e-marker moves so
that its position exceeds the use function for n E Wf's and the position of the
(n — l)st e-marker. The /-markers behave analogously for Wfl except that the
/'-markers must move within the e-marker positions. The e-marker positions are used
to code B and the /'-marker positions are used to code K. Another approach
ehminates the " infinite injury" aspects of the argument in favor of a stronger use of
the lowness of deg(£). Specifically the question of whether there is a £-correct
computation n E Wf's for some s> t, for given n and t, is recursive in £' and hence
recursively approximable. The recursion theorem allows recursive approximations to
the answer to be used during the construction and thus ensure convergence with s of
a modified rin, s). This is known as the Robinson trick (see [18]). When carried out
in detail it is a bit more complicated than the argument presented here and does not
yield the strong form of the theorem for arbitrary r.e. £ mentioned in the last
paragraph.

The following corollary is just the special case of Theorem 4.1 obtained by
choosing e so that Wf = 0 for all A.

Corollary 4.2. For any Gödel number i and low r.e. set B, there is an r.e. set A
with B <T A and A © Wf =T0'.

Using Corollary 4.2 (appropriately relativized) in place of Theorem 3.1 one may
readily see that the r.e. degrees asserted to exist in Corollaries 3.3-3.5 exist above
any given low r.e. degree.

A. H. Lachlan showed [13] that there are r.e. degrees a, c such that a > c and a
cannot be split over c by r.e. degrees (i.e. there do not exist incomparable r.e. degrees
d0,d, > c with d0 U d, = a.) L. Harrington [7] then showed that one may choose
a = 0' in Lachlan's theorem. Here we use Lachlan's result (in relativized form) to
give a simpler proof of Harrington's generalization, with the slight further improve-
ment that c may be chosen above any given low r.e. degree.

Corollary 4.3. //b is any low r.e. degree, there is an r.e. degree c > b such that
c < 0' and 0' cannot be split over c by r.e. degrees.
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Proof. By the relativized form of Lachlan's theorem [13], there exist numbers e
and /' such that, for all A, A <TWf <T Wf and degiWf) cannot be split over
deg( Wf) by degrees r.e. in A. Apply Theorem 4.1 to e, / and B, where B is an r.e. set
of degree b. Let c = degiWf), where A is from Theorem 4.1.

Lachlan [12] defined an r.e. set A to be a major subset of an r.e. set £ if
A E B, B — A is infinite, and A U C is cofinite for every r.e. set C with £ U C
cofinite. Also he has informally suggested the study of the corresponding concept for
r.e. degrees. Specifically, if a, b are r.e. degrees, we call a a major subdegree of b if
a < b and a U c = 0' for every r.e. degree c with b U c = 0'. An r.e. degree b is
called cuppable if there is an r.e. degree c < 0' with b U c = 0'. The existence of a
noncuppable, nonzero r.e. degree was announced by C. E. M. Yates, and proofs of
this result and extensions thereof have been given by S. B. Cooper [3], L. Harrington
[6], and D. Miller [17]. Of course, if b is a noncuppable r.e. degree, then every r.e.
degree a < b is a major subdegree of b. The following corollary shows that it is also
possible for a cuppable degree to have a major subdegree. It is not known whether
every nonzero r.e. degree has a major subdegree.

Corollary 4.4. There is a cuppable high degree h and a low degree 1 such that I is a
major subdegree of h.

Proof. Harrington [6] has shown the existence of a high, noncuppable r.e. degree.
A proof is also given by Miller in [17]. Relativizing this result yields a number e such
that for every A, A <T Wf, iWf)' =t A", and degiWf) cannot be cupped to
degiA') by any degree above deg(v4) and r.e. in A. Let B be an r.e. set such that
deg(£) is low and cuppable. (The Sacks sphtting theorem yields low r.e. degrees
b0,b, with b0 U b, = 0'.) Let /' be a number such that Wf =t A' for all A. Apply
Theorem 4.1 to obtain an r.e. set A with A © Wf of r.e. degree, £ <TA © Wf, and
A © Wf © Wf =r0'. Let 1 = deg(yl), h = deg(/l © Wf) = deg(W^). Clearly I < h,
and h is cuppable because deg(£) is cuppable. (Indeed h is cuppable by a low degree
if £ is chosen as indicated above.) Also A' =T A © Wf © Wf =r 0' so 1 is low. In
addition (Wf)' =t A" =T 0" so h is high. Finally suppose c is an r.e. degree with
h U c = 0' in order to prove 1 U c = 0'. Then h U (1 U c) = 0', so 1 U c is a degree
which is r.e. in 1, > 1, and cups degiWf) to 0' (= deg A © Wf © Wf). Therefore
1 U c = 1' = 0' by choice of e and i.

In Theorem 4.1 it would have been a routine matter to insert additional require-
ments Wn¥= A to ensure that the constructed set A is nonrecursive. It thus follows
that for every pair e, / of Gödel numbers there is a nonrecursive r.e. set A such that
A © Wf and A © Wf © Wf each have r.e. degree. It is then natural to ask whether
for every pair e, i there is a nonrecursive r.e. set A such that A © Wf, A © Wf each
have r.e. degree. (A positive solution would allow the existence of a nonzero
branching degree to be deduced from the construction of an r.e. minimal pair.)
Although the question for two Gödel numbers just raised is still open, Soare and
Stob have pointed out that, in contrast to the case where Je(A) <TJ¡(A), a positive
answer may not be obtained by a uniform construction (see [26]). More precisely,
they have shown that there is no binary recursive function / such that, for all e and
/', Wf(eJ) is nonrecursive and Je(Wf(eJ)), J,iWf(e()) each have r.e. degree. (Here, as in
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§3, JeiB) denotes £ © Wf.) (The proof uses the fact that the proof of the main
result of [26] is semiuniform in the sense that there are recursive functions g,, g2
such that, for every e, if We is nonrecursive then either g,(e) or g2(e) is an index k
such thatT^W^) is not of r.e. degree. Given/as above, the recursion theorem yields
an index j such that W} = Wf(gxU)giU)). It follows that / fails to have its assumed
property when e = gx(j), i = g2(j). This argument is precisely analogous to the
proof given in §3 that the Soare-Stob result cannot hold uniformly.) It seems
conceivable that the methods of Soare and Stob may eventually lead to a negative
answer to the question raised above.
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