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linkage and LD in a powerful and robust manner have been 
lacking. Most algorithms cannot jointly analyze datasets 
 involving families of varying structures in a statistically or 
computationally efficient manner. We have implemented 
previously proposed statistical algorithms in a user-friendly 
software package, PSEUDOMARKER. This paper is an an-
nouncement of this software package. We describe the mo-
tivation behind the approach, the statistical methods, and 
software, and we briefly demonstrate PSEUDOMARKER’s ad-
vantages over other packages by example. 

 Copyright © 2011 S. Karger AG, Basel 

 Introduction 

 There has been an ongoing debate among gene map-
pers about the most efficient study design for identifying 
genetic variants that influence phenotypic variation re-
lated to complex traits in humans. The debate has been 
between those who favor the traditional approach of col-
lecting large families from less genetically diverse popu-
lations, and those who suggest that although large fami-
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 Abstract 

 A decade ago, there was widespread enthusiasm for the 
prospects of genome-wide association studies to identify 
common variants related to common chronic diseases using 
samples of unrelated individuals from populations. Although 
technological advancements allow us to query more than a 
million SNPs across the genome at low cost, a disappoint-
ingly small fraction of the genetic portion of common dis-
ease etiology has been uncovered. This has led to the hy-
pothesis that less frequent variants might be involved, stim-
ulating a renaissance of the traditional approach of seeking 
genes using multiplex families from less diverse popula-
tions. However, by using the modern genotyping and se-
quencing technology, we can now look not just at linkage, 
but jointly at linkage and linkage disequilibrium (LD) in such 
samples. Software methods that can look simultaneously at 
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lies are more powerful on a per individual basis  [1] , it is 
easier to collect much larger datasets of unrelated indi-
viduals that share some trait  [2] , with the relative loss of 
power being compensated for by much larger potential 
sample sizes. The first substantial efforts to study the ge-
netics of complex disease in the late 1980s took an inter-
mediate approach of collecting nuclear families with at 
least two affected siblings, and using allele-sharing statis-
tics to detect linkage, following similar arguments about 
power loss being compensated for by increased sample 
sizes. The shift from sibships to a case-control design 
started in the late 1990s, stimulated by the influential 
commentary of Risch and Merikangas  [3] . As time went 
on, investigators ended up collecting data from a variety 
of relationship structures, sampling whatever was most 
easily available. However, statistical geneticists had often 
designed algorithms and software based on homoge-
neous relationship structures (case-control, trios, sib-
pairs, etc.) because that allowed them to perform ‘model-
free’ analyses with manageable degrees of freedom  [4, 5] . 
As a consequence, even leading biologists seeking to find 
genes often ended up analyzing only homogeneous sub-
sets of their data (e.g.  [6] ), or letting the available analysis 
methods inform their study design a priori.

  Realizing there was a problem, some statistical geneti-
cists began trying to extend methods designed for simple, 
homogeneous relationship structures so that they could 
analyze data from more complex relationship structures, 
in order to make this square peg fit more easily into a 
round hole. Such methods include those implemented in 
the software packages FBAT  [7, 8] , QTDT  [9, 10] , TRANS-
MIT  [11] , UNPHASED  [12] , and PedGenie  [13] . These ap-
proaches, however, were not designed to maximize the 
use of all the information from larger pedigrees. Power 
and statistical behavior proved suboptimal, as was the 
case when similar approaches were taken in ‘model-free’ 
linkage analysis to extend sib-pair analysis to larger sib-
ships  [4] . Other investigators began to address the ascer-
tainment/analysis conundrum from the opposite direc-
tion, starting from general likelihood models for large 
pedigrees, parameterizing linkage disequilibrium (LD) 
in terms of haplotype frequencies between families, and 
linkage in terms of the recombination fraction within 
families, in a model-based manner. Such methods were 
used already early on in segregation analysis packages, 
such as PAP  [14]  (applied for example in  [15] ), and linkage 
analysis software, such as LINKAGE  [16]  (applied for ex-
ample in  [17, 18] ). Later programs that implemented sim-
ilar likelihood-based linkage and LD pedigree analyses 
include LAMP  [19, 20]  and MENDEL  [21] . However, each 

of these has certain properties that can lead to inefficient 
statistical behavior and unnecessarily low power, as illus-
trated below. None of the most commonly used family-
based association methods are fully satisfactory when it 
comes to: (1) using full information of multiplex pedi-
grees; (2) allowing for missing data; (3) combining single-
tons, sib-pairs, larger nuclear pedigrees and multiplex 
pedigrees in one analysis, and/or (4) the null hypothesis 
actually being tested ( table 1 ). 

  We have earlier proposed an algorithm based on com-
bining aspects of both ‘model-based’ likelihood methods 
and ‘model-free’ methods that was shown to have better 
statistical properties in general, based on the use of ‘pseu-
domarkers’  [4] . Such methods were shown to lead to sta-
tistics with properties that were: (1) identical to the af-
fected sib-pair linkage analysis mean test (ASP) on sib-
pair structures; (2) identical to case-control association 
analysis (CC) when applied to singletons; (3) identical to 
TDT and HHRR statistics when applied to trios consist-
ing of affected individuals and their parents, and (4) ex-
tensible to general pedigrees and heterogeneous relation-
ship structures in a manner that left the type I error rates 
unaffected and allowed for joint analysis of all relation-
ship structures in a single analysis using methods analo-
gous to the likelihood methods described for parametric 
linkage analysis below. Despite our demonstration of rel-
atively high power and robustness  [4] , the methods have 
not been widely used outside our group and our collabo-
rators for several reasons: (1) these methods can be com-
putationally intensive; (2) there was no user-friendly soft-
ware, and (3) the proofs of the statistical equivalence of 

Table 1. P rograms and test types

Program 
[reference]

T est type
linkage LD 

gi ven 
linkage

linkage 
given
LD

joint test 
of linkage 
and LD

FBAT [7, 8] x x
TRANSMIT [11] x x
GENEHUNTER TDT [52] x
PLINK [53] x
QTDT [9, 10] x x
UNPHASED [12] x x
HHRR [29] x
MENDEL [21] x x x x
LAMP [19, 20] x x
PSEUDOMARKER x x x x
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these test procedures relied on complex-valued recombi-
nation fractions  [22, 23] , discouraging some potential us-
ers. 

  To address this problem of analyzing heterogeneous re-
lationship structures ( table 2 ), we have polished our set of 
programs, made them more user friendly, and incorpo-
rated an intelligent interface for two-stage SNP chip anal-
ysis that first looks for marginal evidence of linkage and/
or association before choosing a subset of markers for the 
computationally intensive joint analyses. We also present 
some simulated data comparing the statistical properties 
of PSEUDOMARKER to the existing programs using re-
lationship structures for which we have ongoing studies 
testing linkage and LD jointly, to make the case for the 
wider application of our approach to joint linkage and as-
sociation analysis using PSEUDOMARKER.

  Materials and Methods 

 PSEUDOMARKER Analysis Method 
 Linkage Analysis 
 There is an equivalence between the affected sib-pair mean 

test  [24–26]  and traditional parametric lod score analysis on a
sib-pair under a rare recessive parametric model with no pheno-
copies. In other words, the equivalence holds assuming that 
P(Affected  �  D+) = P(Affected  �  ++) = 0; and P(Affected  �  DD) = 
 �   1  0, and P(D) =  �   1  0, where  �  and  �  are both very small. In 
practice, we typically set  �  and  �  to 0.00001, for reasons described 
in  [4]  (hereafter, this model is referred to as the ‘pseudomarker 

model’). Performing the linkage analysis using this likelihood-
based parametric approach allows one to analyze all meioses 
jointly in larger nuclear pedigrees without the need to break them 
into multiple ‘quasi-independent’ sib-pairs. We further showed 
that, under all models we considered, the power was superior to 
such ‘pairs-based’ approaches and the type I error rates were bet-
ter predicted by asymptotic theory (‘pairs-based’ approaches lead 
to inflated type I error rates and loss of power)  [4] . In the PSEU-
DOMARKER program, we also treat the allele frequencies of the 
marker locus as a nuisance parameter for reasons described in 
Göring and Terwilliger [ 4  and  27 ], estimating them separately un-
der the null hypothesis of no linkage (and no association) L( �  = 
0.5,  �  = 0), and the alternative of linkage (and no association) L( � , 
 �  = 0) ( table 3 ).

  Linkage Disequilibrium (Case-Control Data) 
 We further demonstrated that there is an equivalence between 

testing for allele frequency differences between randomly sam-
pled cases and controls from the population and an analysis of LD 
under the same parametric model described above  [4] . Under that 
parametric model, all affected individuals would be inferred to 
have genotype DD at the trait locus, and all unaffected individu-
als would be inferred to have genotype ++ at the trait locus (be-
cause of the very small allele frequency assumed for the disease 
allele), so that contrasting allele frequencies in cases and controls 
would be equivalent to contrasting conditional allele frequencies 
on haplotypes with + or D alleles inferred. In PSEUDOMARKER, 
we parameterize LD in terms of marker allele frequencies condi-
tional on the trait locus allele found on the same haplotype. The 
conditioning in this direction is critical because marker allele fre-
quencies in the population are unconstrained nuisance parame-
ters, while in model-based analysis, the disease allele frequencies 
are highly constrained. Thus, we are testing whether P(1  �  D) = 

Table 2. P rograms and relationship structures

Program 
[reference]

R elationship structure

singleto ns trios sib-pairs larger nuclear 
families

extended families

FBAT [7, 8] x x decomposed into nuclear families and treated as 
independent

TRANSMIT [11] x x decomposed into nuclear families and treated as 
independent

GENEHUNTER TDT [52] x
PLINK [53] x x x
QTDT [9, 10] x x
UNPHASED [12] x x x decomposed into nuclear families and treated as 

independent
HHRR [29] x x
MENDEL [21] x x x x x
LAMP [19, 20] x x x x small pedigrees only*
PSEUDOMARKER x x x x x

* L AMP uses the Lander-Green-algorithm and it can only analyze small extended families in feasible time.
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P(1  �  +), and so on for the other marker locus alleles for markers 
with  1 2 alleles. The null hypothesis likelihood is then estimated 
by maximizing the likelihood of the entire dataset of the allele 
frequency L( � ,  �  = 0), and the alternative hypothesis likelihood 
would be estimated by maximizing the likelihood over allele fre-
quencies conditional on the trait allele on the same haplotype L( � , 
 � ). For singleton data, the  �  term is included only to show the sym-
metry across relationship structures – though it is essential to be 
aware that the likelihood is not a function of  �  in that case.

  LD Analysis Conditional on Linkage (Trios – HHRR) 
 Under the same penetrance model, in a trio consisting of an 

affected child and two unaffected parents, the child would be in-
ferred to be DD as in sib-pair analysis or case-control analysis 
above. The parents under this model would both be inferred to be 
D+. If we assume that there is complete linkage between marker 
and disease loci, then the transmitted alleles would be on the 
chromosomes in the parents containing the D alleles, and the 
non-transmitted alleles would be inferred to be on the chromo-
somes containing the + alleles. Thus, contrasting transmitted and 
non-transmitted alleles (as in the HHRR statistic  [28, 29] ) is 
equivalent to the estimation of conditional allele frequencies con-
ditional on the trait locus alleles under this extreme parametric 
model. Comparing the null hypothesis likelihood under which 
both linkage and the marker allele frequencies assuming no LD 
are estimated, L( �  = 0,  �  = 0), with the alternative hypothesis like-
lihood under which both linkage and conditional allele frequen-
cies are estimated, L( �  = 0,  � ) provides a test equivalent mathe-
matically to the HHRR for reasons described in Göring and Ter-
williger  [4] . Note that under the null hypothesis, if one has  only  
trios (and singletons), the likelihood is  not  a function of  � .

  Linkage Conditional on LD (Trios – TDT) 
 While not formally something one would often be interested 

in testing (why test for linkage once a genetic association has been 
established?), this is the null hypothesis of the transmission/dis-
equilibrium test when applied to multiple individuals from a sin-
gle pedigree as proposed by Spielman et al.  [30] . As we previously 
pointed out  [4] , this same symmetry applies also to the TDT test 
if one has a sample of trios and computes the likelihood under the 
identical model maximized over conditional allele frequencies in 
both null and alternative hypotheses, but with no linkage under 
the null hypothesis as L( �  = 0.5,  � ) and with linkage under the al-

ternative as L( � ,  � ). By computing such a test using a full likeli-
hood model, one can analyze large pedigrees without confound-
ing linkage and LD. For example, one can obtain statistically sig-
nificant TDT results from the analysis of large multiplex pedigrees 
even when there is no association because the TDT is formally a 
test of linkage. Analyzing data in the PSEUDOMARKER frame-
work allows one to see this formally and explicitly. 

  Joint Analysis of Heterogeneous Relationship Structures 
 In our exposition above, each pedigree structure was analyzed 

under the same model to compute test statistics equivalent to the 
commonly used ‘model-free’ statistics. We can combine all the 
pedigree structures together and do the same analyses using all 
the data jointly, to provide an easy way to analyze heterogeneous 
relationship structures together. Under the null hypothesis of no 
linkage and no association, L 0  = L( �  = 0.5,  �  = 0), the likelihood is 
maximized solely over allele frequencies of the marker, assuming 
it is independent of the trait. Under the simplest alternative, of 
linkage and no association, the marker allele frequencies are esti-
mated from all the data jointly, and only in families with multiple 
affected individuals does the recombination fraction parameter 
influence the likelihood, L 1  = L( � ,  �  = 0). One could also compute 
the likelihood, L 2  = L( �  = 0.5,  � ), though testing for association 
without linkage is not a particularly meaningful hypothesis. The 
most general likelihood is that of linkage in families where there 
are multiple affected individuals (i.e., the correlation in marker 
genotypes due to linkage among individuals who share a common 
ancestor within the pedigree), and LD (i.e., the allele frequencies 
in the unrelated individuals from our families and singletons con-
ditional on the trait locus allele found on the same haplotype),
L 3  = L( � ,  � ). Based on these three likelihoods, we can test for link-
age by the statistic

1

0
Λ 2ln ,L

L

  we can test for LD in the presence of linkage with the statistic  
 

3

1
2ln ,

L
L�

  and we can test jointly for LD and/or linkage with the statistic  
 

3

0
Ξ 2ln ,

L
L

Table 3. L ikelihoods

Hypothesis Linkage Linkage
disequilibrium

Likelihood What is estimated from the data

H0 no no L(� = 0.5, � = 0) Marker allele frequencies
H1 yes no max L(�, � = 0)

  �
Marker allele frequencies and recombination fraction

H2 no yes max L(� = 0.5, �)
  �

Conditional marker allele frequencies (on disease)

H3 yes yes max L(�, �)
  �, �

Conditional marker allele frequencies (on disease) and 
recombination fraction
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  where  Ξ  =  �  +  � . The statistical distributions and properties of 
these test statistics have been analyzed from a theoretical perspec-
tive in Göring and Terwilliger  [4] . It is important to note that un-
less there are at least some multiplex pedigrees in the sample, con-
ditional testing of LD given linkage is not meaningful or appro-
priate because the null hypothesis likelihood would not be a 
function of the recombination fraction! 

 While use of this extreme parametric model may seem illogical 
to those used to working with parametric linkage analysis, we have 
demonstrated that, in general, this approach is more powerful than 
even linkage analysis under a ‘correct’ model  [4, 31] , if one were to 
exist, so long as one allows for ‘complex-valued recombination 
fractions’  [23]  in conceptually thinking about how to interpret the 
resulting recombination fraction parameters. PSEUDOMARKER 
also allows the user to perform these joint linkage and LD analyses 
under any user-specified model in addition to the ‘pseudomarker 
model’ we advocate as generally most powerful and robust. 

  PSEUDOMARKER Software 
 The likelihood method described above has been implement-

ed in our PSEUDOMARKER program, which uses a specially 
modified version of the ILINK program derived from the 
FASTLINK 4.1P package  [16, 32–35]  for likelihood calculation 
under various assumptions. 

  A key feature of the PSEUDOMARKER program is that it es-
timates marker allele frequencies, LD (i.e., marker allele frequen-
cies conditional on disease-locus alleles), and recombination frac-
tions jointly. PSEUDOMARKER uses the modified ILINK to 
model LD through ‘conditional allele frequencies’, meaning that 
rather than specifying haplotype frequencies as is conventionally 
implemented, this approach allows one to specify the marker al-
lele frequencies conditional on the disease-locus alleles (as was 
done manually in a few studies such as  [36] ). For traversing the 
pedigrees, FASTLINK, like LINKAGE from which it was derived 
 [16] , uses a peeling method  [37]  that generalizes the Elston-Stew-
art algorithm  [38] . Thus, the PSEUDOMARKER likelihood com-
putation uses all family relationships correctly and could theo-
retically analyze any size pedigree, though one must constrain the 
number of loops, markers, and alleles per marker for computa-
tional efficiency. 

  The ILINK program finds the recombination fraction(s) that 
yield a local optimum for the likelihood function, while the more 
commonly used MLINK and LINKMAP programs compute the 
likelihood at a user-specified grid of points. ILINK can also opti-
mize other parameters, including allele frequencies at either the 
trait locus or marker loci, and it is this feature that makes ILINK 
useful as a subroutine for PSEUDOMARKER. LINKAGE/ILINK 
uses the GEMINI optimization procedure  [39]  to compute the 
sequence of parameter values converging to a local optimum; 
GEMINI is retained in the standard version of FASTLINK/IL-
INK. The variant of ILINK in PSEUDOMARKER uses an imple-
mentation of ‘direct-search’ or ‘pattern search’  [40] , which gener-
ally takes more iterations to converge than GEMINI but, in prac-
tice, is more likely to find a better local optimum, if not the 
global optimum (see below).

  Any user-specified mode of inheritance model can be applied, 
while by default dominant and recessive models that mimic mod-
el-free analyses are applied (i.e., infinitesimal disease allele fre-
quency and penetrance, with no phenocopies  [4] ). Additional cas-
es and controls can be included in PSEUDOMARKER analysis by 

creating artificial trio pedigrees by setting singletons as parents 
of an imaginary child, which allows ILINK to treat them as unre-
lated founders – this is necessary as the FASTLINK 4.1P software 
package is not designed to analyze unrelated singletons.

  PSEUDOMARKER Analysis Work Flow 
 The PSEUDOMARKER program analysis work flow is de-

scribed in  figure 1 , and the program requires standard input file 
formats: LINKAGE format ‘pedigree file’  [41]  (defining the pedi-
gree structure, affection status phenotype, if any, and marker lo-
cus genotypes) and MEGA2  [42]  format ‘map file’ (chromosome 
number, marker positions in Haldane cM, and marker names). 
Additional optional input files include a model file (defining 
parametric disease locus models), a phenotype file (including ad-
ditional phenotypes) and a singleton file (genotypes from cases 
and/or controls).

  After input files are read successfully, and dummy pedigrees 
are created from the singleton files, the next step is to check the 
integrity of the pedigree data. We have implemented the following 
algorithms: (a) check for family connectedness; (b) check for 
Mendelian inconsistencies and (c) processing of loops. Detection 
of loops in preprocessing is essential because ILINK requires 
breaking of the loops in the input pedigree file. Loop breaking 
could be done manually with the MAKEPED program  [41] , but it 
can be difficult in complex pedigrees, and this additional user 
intervention is unnecessary. If loops are detected, PSEUDO-
MARKER uses the UNKNOWN program (-l option) from the 
FASTLINK 4.1P package to automatically and optimally select 
loop breakers  [43] . In some cases, this loop breaker selection can 
save considerable computation time.

  If there are no errors in the pedigree data, the additionally re-
quired data columns are added to the pedigree file with the 
MAKEPED program, and allele frequencies are crudely estimated 
from the data for each marker by simple allele counting.

  Modifications to the Optimization Procedure in FASTLINK’s 
ILINK Program 
 The ILINK program used as a subroutine within PSEUDO-

MARKER has two major differences from the version distributed 
as part of FASTLINK 4.1P. The first difference is engineering sup-
port for conditional allele frequencies as a command line option. 
The second difference is the use of a more robust optimization 
procedure called ‘direct search’ to maximize the likelihood. This 
subsection concerns the direct search optimization procedure 
and how it differs from the default procedure GEMINI.

  LINKAGE’s ILINK has always used the GEMINI procedure. 
This procedure was originally coded in FORTRAN  [39] , then re-
coded in PASCAL for LINKAGE, and then translated to C auto-
matically with p2c for FASTLINK. During the development of 
FASTLINK, a few bugs in the GEMINI implementation were 
fixed. GEMINI is a ‘quasi-Newton’ method that uses estimated 
gradient information to converge from a single starting point to a 
local optimum. The starting point is chosen by the user, typically 
via the LINKAGE auxiliary program LCP. Decades of experience 
have shown that GEMINI performs well when: (a) only recombi-
nation fractions, but not allele frequencies, are varied; (b) the 
LCP-default starting value of 0.1 is used for each recombination 
fraction, and (c) there is linkage, so that the globally optimal re-
combination fractions are far below 0.5. Under these conditions, 
there is often only a single local optimum, which GEMINI finds. 
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  The problem of jointly estimating recombination fractions 
and allele frequencies is harder because of the higher dimension-
ality. When allele frequencies are estimated unconditional on dis-
ease status and the number of founders is large, then counting 
alleles in the founders can lead to a good initial estimate. How-
ever, problems can arise when there is a local, but not global, op-
timum that has one of the allele frequencies mistakenly close to 0. 
Once a GEMINI iterate sets this value too close to 0, it gets trapped 
for the rest of the search. Because the allele frequencies must sum 

to 1.0, GEMINI estimates m-1 frequencies at a marker with m al-
leles directly and estimates the frequency of the highest numbered 
allele indirectly using the sum constraint. This works especially 
poorly when the frequency of the highest numbered allele is close 
to 0 at a local optimum that differs substantially from the global 
optimum. 

  The optimization problems that ensue when using condition-
al allele frequencies are much harder for GEMINI because the 
number of frequency dimensions is doubled and it is hard to get 

10. H2: Maximize the likelihood under
       assumption of no linkage (θ = 0.5) and linkage
       disequilibrium (� = 0) over conditional allele
       frequencies on disease

(i) Conditional allele frequency starting values
       from step 4

(ii) Conditional allele frequency starting values
       from step 7

(iii) Only if marker is diallelic. Conditional allele
       frequency starting values from step 9

11. H3: Maximize the likelihood under
       assumption of linkage (θ < 0.5) and linkage
       disequilibrium (� ≠ 0) jointly over conditional 
       allele frequencies on disease and θ 
 
(i) Conditional allele frequency starting values
        from step 4 and θ starting value fron step 8

(ii) Conditional allele frequency starting values
        from step 8 and θ starting value set to 0.05

(iii) Latest conditional allele frequency and θ
        estimates as starting values from steps H3 i–ii

(iv) Conditional frequency starting values
        from step 10 and current best θ from steps H3 i–iii

(v) Latest conditional allele frequency and θ
        estimates as starting values from steps H3 i–iv

(vi) Latest conditional allele frequency and θ
        estimates as starting values from steps H3 i–v
        and θ starting value set to 0.05.

(vii) Only if marker is diallelic. Conditional allele
        frequency starting values and θ from step 9

12. Calculate statistics for all the markers
13. Write statistics and detail information from
      maximization steps to text format output file
14. Write postscript format output files

9. Grid search for maximization starting values
    for H2 and H3 jointly over θ and D' (i.e. 0 ≤ θ ≤ 0.5
    and –1 ≤ D' ≤ 1.0)

only if marker
is diallelic

8. H1: Maximize the likelihood under
    assumption of linkage (θ < 0.5) and no linkage
    disequilibrium (� = 0) jointly over allele
    frequencies and θ
 
(i)   Allele frequencies fixed from step 4, θ
       starting value 0.05

(ii)  Allele frequencies fixed from step 4, θ
       fixed from step H1 i

(iii) Allele frequency starting values from
       step 4, θ starting value set to 0.05

7. H0: Maximize the likelihood under
    assumption of no linkage (θ = 0.5) and no
    linkage disequilibrium (� = 0) over allele
    frequencies. Allele frequency starting values
    from step 4

6. Create LINKAGE-formatted pedigree
    and data files

1. Check for family connectedness
2. Check for Mendelian inconsistencies
3. Check for marriage and/or consanguinity loops
4. Estimate initial allele frequencies by counting
5. Assign pseudomarker genotypes

Pedigree file, Map file
(model file, phenotype file,
singleton file and data file)

  Fig. 1.  PSEUDOMARKER analysis work 
flow. Steps 6–11 are repeated for each 
marker locus.   
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good initial estimates. Therefore, we sought an alternative opti-
mization method that is robust, easy to implement, and not as 
likely to get trapped at local optima. We chose to implement ‘di-
rect search’ (sometimes called ‘pattern search’) as described by 
Dennis and Torczon  [44] . Direct search methods were developed 
for situations in which the gradient was not available or too ex-
pensive to compute, which is appropriate for the ILINK setting in 
which the gradient can only be estimated.

  The basic idea of direct search methods is to poll the objec-
tive function value at a set of points defined geometrically with 
respect to the current best point. Then, the new best point is 
chosen by moving to the vertex of the simplex that has the best 
function value. Dennis and Torczon showed that when the pat-
tern of polled points forms a simplex around the current best 
point, then the iterates converge. In contrast to some previous, 
similar methods, the Dennis/Torczon method polls a point for 
each direction of  the simplex in a single iteration, and this all-
dimension polling  is essential to proving that the method con-
verges to a local optimum  [40] . The dimension of the simplex 
equals the number of variables in the objective function (in our 
setting the variables are the recombination fractions and allele 
frequencies). Later research has suggested replacing the simplex 
with other geometric ‘patterns’ for the sampled points, leading 
to the alternative name ‘pattern search’. The simplex-based pat-
tern search is encoded in ilink.c in the procedures direct_search, 
initialize_simplex, and evaluate_point. Using this information, 
experts in numerical optimization may substitute alternative di-
rect search methods, without needing to understand the rest of 
the ILINK source code.

  Experience with the problems in GEMINI and test cases for 
PSEUDOMARKER led us to add two heuristics to the direct 
search implementation in ILINK. First, we try a defined set of 
multiple starting points for the recombination fraction to reduce 
the risk of getting trapped in a local, not global optimum. Second, 
for the allele frequencies, we make the (dimension of) the initial-
ly largest allele frequency to be the one whose value is determined 
indirectly by the sum constraint. For conditional allele frequen-
cies, the allele that has the highest allele frequency for + at the 
trait locus may differ from the allele that has the highest frequen-
cy for D.

  Results 

 We examined the statistical properties of PSEUDO-
MARKER and compared its performance with that of all 
software packages mentioned above, using real-life mix-
tures of families and singletons. We chose two datasets 
taken from Finnish migraine  [45, 46]  and schizophrenia 
 [47]  studies. The migraine dataset consisted of large mul-
tigenerational pedigrees, while the schizophrenia dataset 
was primarily nuclear pedigrees (see details in  [48  ] ). In 
addition, we simulated data for an entire population un-
der complex oligogenic models using our phenogenetic 
evolutionary simulator, ForSim  [49] .

  Type I Error Rate 
 Empirical type I error rates were compared to their 

theoretical predictions (i.e., they were compared to what 
the program claimed) for each of the programs and anal-
ysis options (except PedGenie  [13] , which requires a Java 
runtime library that was unavailable on our supercom-
puter). To examine properties of each test when there was 
neither linkage nor association, we simulated randomly 
segregating markers in each dataset, independent of the 
trait. Under these conditions, as seen in  table 4 , all the 
programs provided valid tests, with the exception of 
LAMP that gave a slightly elevated type I error rate when 
there was neither linkage nor association. Results are 
shown for p values of 0.05, based on 1,000 replicates. The 
picture remained the same at p value 0.01. Unfortunately, 
it was impossible to do enough replicates to evaluate more 
stringent p values because certain programs (LAMP in 
particular) are extremely computationally intensive and, 
thus, to analyze a sufficient number of replicates would 
have taken years.

  Since most of these programs purport to also be able 
to test for LD conditional on linkage, we also did a simu-
lation in the same pedigree structures of a marker that 
was completely linked to the trait locus but which had no 
allelic association under the assumption of autosomal re-
cessive and dominant traits with no phenocopies to ex-
amine the validity of these various statistics in the pres-
ence of linkage. These empirical null distributions were 
estimated from 1,000 replicates of the migraine (domi-
nant) and schizophrenia (recessive) pedigree sets under 
each model. Replicates were simulated with the (Fast)
SLINK program  [50, 51] , which was especially modified 
for this simulation study to use a more sophisticated ran-
dom number generator to allow for a more diverse collec-
tion of unique replicates. The empirical type I error rates 
were again estimated for the theoretical 0.05 significance 
level, with results shown in  table 4 . As shown, GENEHUN-
TER TDT, PLINK (Sib-TDT option), and LAMP had ex-
cessively elevated type I error rates, though GENEHUN-
TER TDT does not purport to control for linkage, so that 
is not surprising.

  Power 
 The power was estimated for each combination of pro-

gram and analysis options under the assumption of com-
plete linkage between marker and trait locus, with LD 
and fixed-genotype relative risk. In each simulation, the 
disease allele frequency (diallelic disease locus) and the 
minor allele frequency at the diallelic marker locus were 
both 0.1 (i.e.,  p  1  =  p  D  = 0.1). Note that the power is esti-
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mated for a p value of 0.0001 in contrast to the type I er-
ror rates estimated above, though the same pattern ap-
plies over the entire range.

  We first simulated data in the schizophrenia family set 
(mostly nuclear families) under a recessive model, as-
suming a prevalence of 0.01 in the population, complete 
linkage ( �  = 0), complete LD (D’ = 1), and a recessive risk 
allele with frequency of 0.1 in the population conferring 
a relative risk of disease of 5 (for demonstration that the 
same pattern holds across models, see  [48  ] ). In this simu-
lation, we compared the power of each method to detect 
a genotyped functional variant. As can be seen in  table 4 , 
PSEUDOMARKER was the most powerful approach, 
followed by FBAT, HHRR, and MENDEL. Interestingly, 
HHRR did quite well in the schizophrenia dataset, even 
though it only analyzes one randomly selected offspring 

per pedigree and therefore had significantly less power 
than PSEUDOMARKER.

  Next, we examined the effects of the strength of LD 
on the relative power of each test, this time using the 
migraine families (largely multi-generational pedigrees 
with intergenerational transmission), assuming a preva-
lence of 0.1, completely linked disease and marker loci 
each with a minor allele frequency of 0.1, and a dominant 
risk allele conferring a relative risk of 1.8, and complete 
LD. In  table  4 , the results of this analysis are shown. 
PSEUDOMARKER again was the most powerful ap-
proach, followed by HHRR and MENDEL. Because 
LAMP was anticonservative throughout, we omitted that 
program from the power analyses presented, though the 
‘reported’ p values from LAMP performed similarly with 
MENDEL and PSEUDOMARKER, although the ‘report-

Table 4.  Empirical estimates of the type-I error rate (� ≤ 0.05) and power (� ≤ 0.0001) using schizophrenia (1,000 replicates), migraine 
(1,000 replicates), and ForSim simulated data sets (500 replicates)

Program Schizophrenia (recessive) Migraine (dominant) F orSim

no linkage, 
no
association
(� ≤ 0.05)

complete 
linkage, no 
association
(� ≤ 0.05)

complete linkage 
and association, 
RR = 5 
(� ≤ 0.0001)

no linkage, 
no 
association
(� ≤ 0.05)

complete 
linkage, no 
association
(� ≤ 0.05)

complete linkage 
and association, 
RR = 1.8 
(� ≤ 0.0001)

300 pedigrees  
(� ≤ 0.0001)

PSEUDOMARKER 0.06 0.04 1.00 0.05 0.05 0.98 0.99
FBAT 0.04 0.06 0.96 0.03 0.03 0.02 0.06
GENEHUNTER TDT 0.04 0.17 –* 0.06 0.12 –* –*
PLINK 0.05 0.17 –* 0.05 0.13 –* –*
MENDEL 0.00 0.01 0.54 0.03 0.03 0.91 0.85
HHRR 0.04 0.05 0.68 0.06 0.05 0.96 0.93
TRANSMIT 0.05 0.06 0.36 0.06 0.07 0.13 0.78
QTDT 0.06 0.05 0.25 0.04 0.04 0.01 0.05
LAMP 0.08 0.18 –* 0.08 0.11 –* –*
UNPHASED 0.04 0.06 0.25 0.06 0.07 0.35 0.01

Simulation parameters for no linkage and no association were 
P(D) = 0.00001 and P(1) = 0.1. For complete linkage and no asso-
ciation simulations, recessive (schizophrenia) and dominant (mi-
graine) ‘pseudomarker’ models were used. In power simulations, 
with complete linkage and complete LD, disease prevalence for 
recessive schizophrenia was 1% and for dominant migraine 10%. 
In ForSim simulations, 5 genes on 5 different chromosomes were 
contributing to the disease phenotype in an additive manner. Each 
program’s analysis option(s) selection was based on results from 
complete linkage and no association simulation, the option with 
the most accurate type I error rate (� ≤ 0.05) from our simulations 
was used, or if the program allowed for a recessive or dominant 
analysis model. The statistics presented for the schizophrenia data 
are as follows: PSEUDOMARKER: recessive LD given Linkage; 
FBAT: recessive and robust variance estimator; PLINK: sib-TDT; 
MENDEL: recessive ‘pseudomarker’ model and association given 

linkage; HHRR: allele-based randomized; TRANSMIT: one af-
fected per nuclear family; LAMP: recessive; GENEHUNTER 
TDT, QTDT and UNPHASED: no additional options. The statis-
tics presented for the migraine data are as follows: PSEUDO-
MARKER: dominant LD given linkage; FBAT: dominant and ro-
bust variance estimator; PLINK: sib-TDT; MENDEL: dominant 
‘pseudomarker’ model association given linkage; HHRR: allele-
based randomized; TRANSMIT: one nuclear family and robust 
estimator; LAMP: dominant; GENEHUNTER TDT, QTDT and 
UNPHASED: no additional options. ForSim data were analyzed 
with the same models and options as for the schizophrenia data. 

* Power of GENEHUNTER TDT, PLINK, and LAMP is not 
reported because of excessive type-I error rates in complete link-
age and no association analysis, though despite this, power re-
mained lower than for the statistically valid tests in PSEUDO-
MARKER (data not shown).
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ed’ p values are anti-conservative. Note that the migraine 
families are multigenerational, and the software packag-
es that break complex pedigrees into ‘quasi-independent’ 
nuclear families for analysis perform poorly on this data-
set compared with schizophrenia families that are pre-
dominately nuclear.

  Lastly, we used a ForSim  [49]  simulated population 
which contained full sequence data simulated over evo-
lutionary time on a total of 10,000 pedigrees. From this 
pool of pedigrees, we randomly sampled w/o replacement 
300 three-generation pedigrees with at least two affected 
individuals and additional controls with a SNP linked to 
and associated with the trait. Results were similar with 
those from the migraine dataset, except that the power of 
UNPHASED was reduced and that of TRANSMIT was 
higher. A more detailed analysis comparing power and 
type I error rates among the several programs is in prog-
ress  [48] .

  Conclusions 

 We announce the availability of the software package 
PSEUDOMARKER for linkage and LD analysis of het-
erogeneous relationship structures. We and some collabo-
rators have been using parts of PSEUDOMARKER for 
many years; now, the software engineering is robust 
enough for widespread usage. However, PSEUDOMARK-
ER is a computationally intensive program, which maxi-
mizes the likelihood of large datasets over many param-
eters – allele frequencies, allele frequencies conditional on 
trait locus genotypes, recombination fractions and so on, 
and these likelihood surfaces are highly complex. For this 
reason, it would be computationally prohibitive to use this 
method as a first-pass analysis of one’s genome-wide SNP 
data. In practice, we typically perform a standard linkage 
analysis and assess preliminary evidence for LD condi-
tional on linkage using the HHRR program, which was 
shown in these simulations to have high power, even com-
pared to methods purporting to test LD conditional on 
linkage using all the available data, to our surprise, as it 
samples one affected per pedigree only. As a rule of thumb, 
we would then follow up our most interesting findings 
with either linkage or association, or preferentially both 
linkage and association, with a full and robust analysis 
with PSEUDOMARKER. We tend to focus as well on the 
statistic that tests for LD conditional on linkage (meaning 
that linkage is treated as a nuisance parameter), so that we 
are sure that what we are detecting is due to allelic asso-
ciation and not merely due to linkage which extends over 

a much larger genomic region, so long as there are some 
multiplex families in the dataset from which to glean link-
age information. Note that PSEUDOMARKER does not 
deal with population stratification, but assumes the user 
has cleaned the data and tested for such problems a priori. 
The main application of this method is to studies within 
a given population where the user has sampled pedigrees 
with care.

  PSEUDOMARKER provides a powerful way to ana-
lyze linkage and LD jointly on a mixture of family and 
singleton samples, using the pedigree relationships as 
they actually exist without the need for approximations 
to correct for linkage based on rather contrived assump-
tions about the effects of linkage on the statistics. We have 
shown that it has higher power than other existing meth-
ods in standard usage, while retaining validity over a 
wide range of pathological assumptions regarding link-
age and etiology.
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