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PSEUDOMOMENTS OF THE RIEMANN ZETA FUNCTION

ANDRIY BONDARENKO, OLE FREDRIK BREVIG, EERO SAKSMAN, KRISTIAN SEIP, AND JING ZHAO

ABSTRACT. The 2kth pseudomoments of the Riemann zeta function ζ(s) are, following Conrey

and Gamburd, the 2kth integral moments of the partial sums of ζ(s) on the critical line. For fixed

k > 1/2, these moments are known to grow like (log N )k2
, where N is the length of the partial

sum, but the true order of magnitude remains unknown when k ≤ 1/2. We deduce new Hardy–

Littlewood inequalities and apply one of them to improve on an earlier asymptotic estimate when

k →∞. In the case k < 1/2, we consider pseudomoments of ζα(s) for α > 1 and the question of

whether the lower bound (log N )k2α2
known from earlier work yields the true growth rate. Using

ideas from recent work of Harper, Nikeghbali, and Radziwiłł and some probabilistic estimates

of Harper, we obtain the somewhat unexpected result that these pseudomements are bounded

below by log N to a power larger than k2α2 when k < 1/e and N is sufficiently large.

1. INTRODUCTION

An important and longstanding problem in the theory of the Riemann zeta function ζ(s) is to

compute the moments

Mk (T ) :=
1

T

∫2T

T
|ζ(1/2+ i t )|2k d t

for large T and all k > 0. One expects that

Mk (T ) ∼ Ak (logT )k2

for some constant Ak for which one even has precise predictions [21]. This asymptotic behavior

is only known to hold when k = 1,2 by results of respectively Hardy and Littlewood [10] and

Ingham [20]. An unconditional lower bound Mk (T ) ≫ (logT )k2
is known in the range k ≥ 1

[22], and this holds conditionally for all k > 0 by work of Ramachandra (see [23, 24]) and Heath-

Brown [16]. The optimal upper bound Mk (T ) ≪ (logT )k2
has been established unconditionally

for k = 1/n,1+1/n (n a positive integer) by results of respectively Heath-Brown [16] and Bettin,

Chandee, and Radziwiłł [3]. Harper [12], building and improving on work of Soundararajan [28],

showed that the upper bound of optimal order holds conditionally for all k > 0.

By the classical approximation

ζ(σ+ i t ) =
∑

n≤x

n−σ−i t −
x1−σ−i t

1−σ− i t
+O

(
x−σ)

,

which holds uniformly in the range σ ≥ σ0 > 0, |t | ≤ x (see [30, Thm. 4.11]), the problem of

computing Mk (T ) can be recast as the problem of computing

1

T

∫2T

T
|ZN (i t )|2k d t ,
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where ZN (s) :=
∑

n≤N n−1/2−s and N = ⌊2T ⌋. By the Bohr correspondence, which for every prime

p allows us to associate p−i t with an independent Steinhaus random variable, we may think of

the interval [T,2T ] as a subset of T∞. An interesting question is then to understand the distri-

bution of ZN (i t ) for fixed N on the entire torus T∞ and, in particular, to compare with what we

have on the subset [T,2T ]. Following Conrey and Gamburd [8], we refer to the corresponding

integral moments

Ψk (N ) := lim
T→∞

1

T

∫T

0
|ZN (i t )|2k d t

for k > 0 as the 2kth pseudomoments of the Riemann zeta function ζ(s).

Conrey and Gamburd found that

(1) Ψk (N ) =Ck (log N )k2

+O
(
(log N )k2−1

)

when k is an integer. Here Ck = akγk , with ak an arithmetic factor defined by

ak :=
∏

p

(
1−

1

p

)k2 ∞∑

j=0

( j+k−1
j

)2

p j

and γk the volume of a convex polytope. In the non-integer case, it is known from [5] that

(2) Ψk (N ) ≍k (log N )k2

, k > 1/2,

and that

(3) Ψk (N ) ≫k (log N )k2

, k > 0.

In the range k ≤ 1/2, however, the results of [5] imply only that Ψ1/2(N ) ≪ (loglog N )(log N )1/4

and that

Ψk(N ) ≪k (log N )k/2, 0 < k < 1/2.

The upper bounds of [5] were established by means of Helson’s generalization of the M. Riesz

theorem on the conjugation operator [18], while the lower bounds were deduced from certain

Hardy–Littlewood inequalities established in [5]. Recently, by replacing the use of Helson’s the-

orem by a method involving an appropriate mollifying of ZN (s), Heap [15] was able to get the

much improved bound

Ψk(N ) ≪ (log N )αk (loglog N )1/2−αk , 0 < k ≤ 1/2,

with αk = k/(4(1−k)).

The methods of [5] produced a lower bound of super-exponential decay and an upper bound

of super-exponential growth for Ψk (N )/(log N )k2
when k → ∞. In view of (1), and the well-

known asymptotic expansion

log ak =−k2 log(2eγ logk)+O

(
k2

logk

)

one suspects that super-exponential decay is correct, and this was conjectured in [5, Sec. 5]. We

will demonstrate that this is true, by replacing the estimates coming from Helson’s theorem [18]

with a new Hardy–Littlewood inequality. We also include additional details in the computation

of the lower estimate from [5] to obtain an explicit lower bound for comparison.
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Theorem 1. Suppose that k ≥ 1. Then

lim sup
N→∞

Ψk (N )

(log N )k2
≤

1

Γ(k +1)k

∏

p

(
1−

1

p

)k2 (
1−

k

⌊k⌋
1

p

)−k⌊k⌋
,

lim inf
N→∞

Ψk (N )

(log N )k2
≥

1

Γ (⌊2k⌋k +1)
k

⌊2k⌋

∏

p

(
1−

1

p

)k2 (
1+⌊2k⌋k

1

p

) k
⌊2k⌋

.

In particular, as k →∞, we get that

(4) exp
(
(−2+o(1))k2 logk

)
≪

Ψk (N )

(log N )k2
≪ exp

(
(−1+o(1))k2 logk

)
.

It is interesting to observe the similarity between the lower bound in (4) and the uncondi-

tional bound
Mk (T )

(logT )k2
≫ exp

(
(−2+o(1))k2 logk

)

obtained by Radziwiłł and Soundararajan [22]. Likewise, we observe that the upper bound in

(4) is in agreement with the expected behavior

Mk (T )

(logT )k2
≍ exp

(
(−1+o(1))k2 logk

)

conjectured by Keating and Snaith [21] (see also [9]).

The range 0 < k ≤ 1/2 remains unsettled. In this paper, we consider the closely related prob-

lem of computing the pseudomoments of ζα(s) for α> 1. The somewhat surprising conclusion

is that, in this case, the lower bound obtained from the Hardy–Littlewood inequality of [5] does

not give the right asymptotic order for small k. To state this result, we start from the Dirichlet

series

ζα(s) =
∞∑

n=1

dα(n)n−s

and the corresponding partial sums ZN ,α(s) :=
∑

n≤N dα(n)n−s−1/2, and define the pseudomo-

ments of ζα(s) as

Ψk,α(N ) := lim
T→∞

1

T

∫T

0
|ZN ,α(i t )|2k d t .

We know1 from [5] that

(5) Ψk,α(N ) ≍ (log N )k2α2

when k > 1/2. However, for small k this asymptotic relation fails.

Theorem 2. Suppose that α≥ 1. For every 0 < k < 1/2, there exists a positive constant c(k,α) such

that

Ψk,α(N ) ≫ (log N )k logα2

exp
(
−c(k,α)

√
loglog N logloglog N

)

holds for arbitrarily large N.

1The techniques used in the proof of Theorem 1 can also be used to improve the estimates for the constants in

(5) and other examples from [5] when k > 1/2. We omit the details.
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This is incompatible with (5) when α> 1 and k < (logα2)/α2. Indeed, we observe that, when-

ever k < 1/e , we can find α > 1 such that (5) fails. Hence, while our results for k > 1/2 shows

a striking similarity between Ψk (N ) and the conjectured asymptotics of Mk (N ), Theorem 2 re-

veals a different situation for small k. If we agree that the moments of ζα(s) are just the moments

of |ζ(s)|α, then we may phrase this state of affairs in the following way: Theorem 2 reveals that

there is a discrepancy between the behavior of the pseudomoments and the moments of ζα(s)

for small k when α> 1. (Here we compare with Heath-Brown’s unconditional result for k = 1/n

[16] or Harper’s conditional result for all k > 0 [12].)

We may think of the problem of computing the pseudomoments Ψk (N ) in at least two dif-

ferent ways. From a functional analytic point of view, the underlying operator is that of partial

sums acting on Hardy spaces of Dirichlet series:

SN

( ∞∑

n=1

ann−s

)
:=

N∑

n=1

ann−s .

Following Bayart [2], we define the Hardy space H
q for 0 < q <∞ by taking the closure of all

Dirichlet polynomials f with respect to the norm (or quasi-norm when 0 < q < 1)

‖ f ‖q :=
(

lim
T→∞

1

T

∫T

0
| f (i t )|q d t

)1/q

.

The aforementioned theorem of Helson [18] shows that when 1 < q < ∞, there is a uniform

bound on the norm of SN when it acts on H
q . We refer to the forthcoming paper [4] for some

new estimates on the growth of the norm of SN in the interesting range 0 < q ≤ 1. The compu-

tation of the pseudomoments deals with the special situation when SN acts on functions with a

strong multiplicative structure. Specifically, we may write

(6) ZN (s)= SN

(
∏

p≤N

(
1−p−1/2−s

)−1

)
;

the H
2k norm of the finite Euler product on which SN acts, can be estimated plainly, and hence

the problem of computing Ψk (N ) and, in particular, the question of whether (2) holds, can be

thought of as: How much does the “additive” operator SN distort the norm of the finite Euler

product in (6)? Theorem 2 indicates that the distortion becomes severe for small k.

Alternatively, we may think of our problem in probabilistic terms. We then associate with

every prime p a Steinhaus random variable z(p), i.e., z(p) is a random variable that is equidis-

tributed on the unit circle. Assuming the random variables z(p) to be independent, we define

z(n) by requiring it to be a completely multiplicative function for every point in our probabil-

ity space. The relation to our problem of computing Ψk (N ) is given by the well-known norm

identity

E

(∣∣∣∣∣
∑

n≤N

z(n)
p

n

∣∣∣∣∣

q)
= lim

T→∞

1

T

∫T

0
|ZN (i t )|q d t ,

valid for all q > 0 (see [25, Sec. 3]). Using this terminology, we may think of ZN as a sum of

random multiplicative functions. A probabilistic approach to problems of computing integral

moments, based on this viewpoint, can be found in recent work of Harper [11, 13] and Harper,

Nikeghbali, and Radziwiłł [14].

In many situations, both approaches apply equally well, but sometimes one viewpoint is

more illuminating and profitable than the other, and occasionally it is useful to combine them.
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The reader may notice that we take the functional analytic point of view in our proof of Theo-

rem 1. Here the main point is to find appropriate substitutes for conventional results such as

Helson’s version of the M. Riesz theorem and Riesz–Thorin interpolation, adapted to the multi-

plicative structure of our problem. The basic tool to be used, called Hardy–Littlewood inequal-

ities, will be developed in the next section; the proof of Theorem 1 then follows in Section 3.

The proof of Theorem 2, on the other hand, to be found Section 4, relies on the probabilistic

approach and ideas found in [11] and [14].

2. HARDY–LITTLEWOOD INEQUALITIES

The canonical example of the type of inequality we are interested in is Helson’s inequality

[19], which states that

(7)

(
N∑

n=1

|an |2

d(n)

) 1
2

≤ ‖ f ‖1,

for Dirichlet polynomials f (s) =
∑N

n=1 ann−s . Here d(n) denotes the divisor function. We may

define the general divisor function dα(n) for α≥ 1 by the rule

(8) ζα(s) =
∞∑

n=1

dα(n)n−s , σ> 1,

which was tacitly assumed in the introduction. If k is an integer, then it is clear that dk(n)

denotes the number of ways we may write n as a product of k positive integers, since

(9) dk(n) =
∑

n1···nk=n

1.

In particular, d(n) = d2(n). Another basic observation is that dα(n) is a multiplicative function,

which means that it is completely determined by its values at powers of the prime numbers.

The Euler product formula for ζα(s) shows that, in fact,

(10) dα(p j ) =
(

j +α−1

j

)

for every prime p and every nonnegative integer j . The submultiplicative estimate

(11) dα(mn)≤ dα(m)dα(n)

follows at once from (10). Our starting point is the following extension of Helson’s inequality

(7), which corresponds to the case k = 2 in (12).

Lemma 3. Let f (s)=
∑N

n=1 ann−s and let k be a positive integer. Then

(
N∑

n=1

|an |2

dk(n)

) 1
2

≤ ‖ f ‖2/k ,(12)

‖ f ‖2k ≤
(

N∑

n=1

|an |2dk (n)

) 1
2

.(13)
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Proof. As noted in [5, pp. 203–204], the inequality (12) follows from [7, Cor. 3.4] and the argu-

ment used in [5, 19]. The inequality (13) is an improved version of [26, Lem. 8], which we now

deduce. Adopting the notational convention an = 0 if n ≥ N , we expand to find that

‖ f ‖2k
2k = ‖ f k‖2

2 =
Nk∑

n=1

∣∣∣∣∣
∑

n1···nk=n

an1 · · ·ank

∣∣∣∣∣

2

≤
Nk∑

n=1

dk(n)
∑

n1···nk=n

|an1 |
2 · · · |ank

|2

by the Cauchy–Schwarz inequality and (9). We then apply (11) and obtain

‖ f ‖2k
2k ≤

Nk∑

n=1

∑

n1···nk=n

dk (n1)|an1 |
2 · · ·dk (nk)|ank

|2 =
(

N∑

n=1

|an |2dk (n)

)k

. �

It seems likely that Lemma 3 holds for any k ≥ 1, but as far as we know this is still an open

problem. In [5, 26], different techniques were used to circumvent this.2 Specifically, it is proved

in [5] that (12) holds if we only consider square-free integers in the lower bound. Using the

Möbius function µ(n), which is the multiplicative function that is 0 if n is not square-free and

−1 at each prime number, the Hardy–Littlewood inequality of [5] can be written as

(14)

(
N∑

n=1

|an |2
|µ(n)|

d2/q (n)

) 1
2

≤ ‖ f ‖q ,

for 0 < q ≤ 2. In [26], Riesz–Thorin interpolation between the integers k in (13) is used to the

prove that

‖ f ‖q ≤
(

N∑

n=1

|an |2dα(n)

) 1
2

,

for q ≥ 2, where α=α(q) > q/2 (unless q/2 is an integer).

Our novel approach is to interpolate between the results in Lemma 3 using instead a com-

pletely multiplicative weight. The interpolation will be facilitated by a version of Weissler’s in-

equality [31] for Dirichlet polynomials. For f (s) =
∑N

n=1 ann−s , define

W̺ f (s) :=
N∑

n=1

̺Ω(n)ann−s .

The following result is deduced in [2, Sec. 3].

Lemma 4. Suppose that 0< q1 ≤ q2 <∞ and let 0 < ̺≤
√

q1/q2. Then

‖W̺ f ‖q2 ≤ ‖ f ‖q1 ,

for every Dirichlet polynomial f (s) =
∑N

n=1 ann−s .

Our replacement for dα(n) will be the multiplicative function

(15) Φα(n) := d⌊α⌋(n)

(
α

⌊α⌋

)
Ω(n)

,

where Ω(n) denotes the number of prime factors in n, counting multiplicity. Observe that

Φα(n) = dα(n) whenever α is an integer. Note also that Φα(n) = dα(n) if n is square-free. We

will prove that Φα(n) has the same average order as dα(n), a fact that for our purposes makes

2The Hardy–Littlewood inequalities in [5, 26] are stated with a weight of the form [d(n)]β, where d(n) = d2(n)

denotes the usual divisor function. The difference between [d(n)]β and dα(n) is marginal, but we have found it

more natural to use dα(n).
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it a satisfactory substitute. Only the bound for q ≥ 2 in the following theorem will be used in

the proof of Theorem 1. Since the proofs are similar, and both bounds are of intrinsic inter-

est, we have found it natural to treat the whole range 0 < q <∞; the bound for q ≤ 2 will find

applications in [4].

Theorem 5. If f (s)=
∑N

n=1 ann−s , then

(
N∑

n=1

|an |2

Φ2/q (n)

) 1
2

≤ ‖ f ‖q , q ≤ 2,(16)

‖ f ‖q ≤
(

N∑

n=1

|an |2Φq/2(n)

) 1
2

, q ≥ 2.(17)

Proof. We begin with (16). In light of Lemma 3, we may assume there is some positive integer k

such that
2

k +1
< q <

2

k
.

In particular, k = ⌊2/q⌋. We therefore apply Lemma 4 with

̺=
√

q/(2/k) =

√
q

2

⌊
2

q

⌋

and (12) to obtain

‖ f ‖q ≥ ‖W̺ f ‖2/k ≥
(

N∑

n=1

|an |2̺2Ω(n)

dk (n)

) 1
2

=
(

N∑

n=1

|an |2

Φ2/q (n)

) 1
2

.

For the proof of (17), we may assume that 2k < q < 2(k +1) since q ≥ 2. We use Lemma 4 (in

reverse) with ̺=
√

2k/q and (13) to conclude that

‖ f ‖q ≤ ‖W −1
̺ f ‖2k ≤

(
N∑

n=1

|an |2̺−2Ω(n)dk (n)

) 1
2

=
(

N∑

n=1

|an |2Φq/2(n)

) 1
2

. �

From (8) it follows by the Selberg–Delange method (see e.g. [29, Ch. II.5]) that the average

order of dα(n) is given by

(18)
1

N

N∑

n=1

dα(n) =
1

Γ(α)
(log N )α−1 +O

(
(log N )α−2

)
.

We will now show that Φα(n) has the same average order, up to a bounded factor. To that end,

we consider the associated Dirichlet series and factor out a suitable power of ζ(s) from the Euler

product, to obtain

Fα(s) :=
∞∑

n=1

Φα(n)n−s = ζα(s)
∏

p

(
1−p−s

)α
(

∞∑

j=0

Φα(p j ) p− j s

)
.

For |z| < ⌊α⌋/α, it is now convenient to set

(19) Gα(z) := (1− z)α
∞∑

j=0

Φα(p j )z j = (1− z)α
(
1−

α

⌊α⌋
z

)−⌊α⌋
,
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so that Fα(s) = ζα(s)Gα(s), where

Gα(s) :=
∏

p

Gα(p−s ).

To prove the desired average order result for Φα(n), we require the following simple estimates.

Lemma 6. If α≥ 1 and 0≤ x < ⌊α⌋/α, then

(20) Gα+1(x) ≤Gα(x).

Moreover, Gα enjoys uniform estimates for 0≤ x ≤ 1/2,

1≤Gα(x) ≤ 1+x2

{
16(α−1)/(2−α)3, 1≤α< 2,

384, α≥ 2.

Proof. To prove (20), we look at the Taylor expansion of the logarithm

log(Gα(x)) =
∞∑

j=2

x j

j

(
⌊α⌋

(
α

⌊α⌋

) j

−α

)
.

It is sufficient to show that C j (α+1) ≤C j (α), where

C j (α) := ⌊α⌋
(
α

⌊α⌋

) j

−α.

Clearly C j (⌊α⌋) =C j ([α+1]) = 0. We set α= ⌊α⌋+ t for 0 ≤ t < 1, and differentiate to find that

d

d t
C j (α) = j

(
α

⌊α⌋

) j−1

−1 ≥ j

(
α+1

⌊α+1⌋

) j−1

−1 =
d

d t
C j (α+1).

The lower bound in the second statement is just Bernoulli’s inequality,

(
1−

α

⌊α⌋
x

)⌊α⌋/α

≤ 1−x.

The upper bounds can be computed with Taylor’s theorem. By (20), we only need to consider

1 ≤α< 2 and α≥ 2. The precise value of the constants are unimportant; we have obtained ours

by rather coarse estimates. �

From (19) and Lemma 6, we get that the Dirichlet series representing Gα(s) is absolutely con-

vergent for

Re s > max
(
1/2, log2(α/⌊α⌋)

)
.

Hence we apply the Selberg–Delange method (see e.g. [29, Ch. II.5]) to deduce that the average

order of Φα(n) is the same as the average order of dα(n) given by (18).

Lemma 7. Let Φα(n) denote the weight (15) for fixed α≥ 1. Then

1

x

∑

n≤x

Φα(n)=
Gα(1)

Γ(α)
(log x)α−1 +O

(
(log x)α−2

)
.

Theorem 5 and Lemma 7 have applications in the theory of Hardy spaces of Dirichlet series,

as will be exhibited in the forthcoming paper [4].
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3. PROOF OF THEOREM 1

Proof of the upper estimate in Theorem 1. Inserting ZN into (17), we get

Ψk(N ) = ‖ZN‖2k
2k ≤

(
N∑

n=1

d⌊k⌋(n)

n

(
k

⌊k⌋

)
Ω(n)

)k

.

Using Lemma 7 and Abel summation, we find that

N∑

n=1

d⌊k⌋(n)

n

(
k

⌊k ⌋

)
Ω(n)

=
Gk (1)

Γ(k +1)
(log N )k +O

(
(log N )k−1

)
.

We complete the proof by inspecting the Euler product for Gk (1) and (19). For the asymptotic

estimate, we may safely assume k ≥ 2, in which case Lemma 6 gives Gk (1) ≍ 1. Hence the main

contribution to the decay comes from the Gamma function, and the desired result follows from

Stirling’s formula:

Γ(k +1)k = exp
(
(1+o(1))k2 logk

)
. �

The following argument can be extracted from [5, pp. 201–202], but we include some details

here for the reader’s benefit.

Proof of the lower estimate in Theorem 1. We want to use (14), but k = q/2 ≥ 1. To remedy this,

we write 2k = ℓr where ℓ ≥ ⌊2k⌋ is an integer to be chosen later that ensures that r < 2. Note

that if n ≤ N , then

|µ(n)|
d2/r (n)

∣∣∣∣∣∣∣

∑
n1···nℓ=n

n1,...,nℓ≤N

1
p

n1
· · ·

1
p

nℓ

∣∣∣∣∣∣∣

2

=
|µ(n)|

d2/r (n)

d 2
ℓ

(n)

n
=

|µ(n)|
n

dℓk (n).

Using (14) and removing all terms in the sum for which N < n ≤ Nℓ, we get the lower bound

‖ZN‖2k
2k = ‖Z ℓ

N‖r
r ≥

(
N∑

n=1

|µ(n)|
n

dℓk (n)

) k
ℓ

.

As above, one checks that

N∑

n=1

|µ(n)|
n

dℓk (n) = C̃k(log N )ℓk +O
(
(log N )ℓk−1

)

with

(21) C̃k =
1

Γ(ℓk +1)

∏

p

(
1−

1

p

)ℓk (
1+

ℓk

p

)
.

The asymptotic behavior of the Euler product in (21) has been estimated in [5, p. 202], where it

was found that
∏

p

(
1−

1

p

)ℓk (
1+

ℓk

p

)
= exp

(
(−1+o(1))ℓk loglog(ℓk)

)
.

Therefore the decay is again controlled by Γ(ℓk +1)k/ℓ. Clearly, choosing ℓ as small as possible

is optimal, and we therefore set ℓ = ⌊2k⌋. The proof is completed by similar considerations as

in the preceding argument. �
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4. PROOF OF THEOREM 2

We prepare for the proof of Theorem 2 by establishing two lemmas.

Lemma 8. Suppose that α≥ 1. Then

E

∣∣∣∣∣
∑

M/2<n≤M

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣≫ (loglog M)−3+o(1),

where the o(1) term depends only on M.

Here we applied the probabilistic notation of the introduction. We defer the proof of Lemma 8

until the end of this subsection. Our second lemma is a result on the distribution of

N (x,m) :=
∑

n≤x
Ω(n)=m

1,

similar in spirit to the Erdős–Kac theorem, saying that N (x,m) is mainly concentrated on

IC :=
[

loglog x −C
√

loglog x logloglog x, loglog x +C
√

loglog x logloglog x
]

when x is large and C is a suitable positive constant. To deduce this result, we rely on an esti-

mate of Sathe (see [27]) saying that

(22) N (x,m) ≪
x

log x

(loglog x)m−1

(m −1)!

whenever x > 10 and 1 ≤ m ≤ (3/2) loglog x. Now suppose ξ is a fixed positive number. Then

choosing C large enough and using Stirling’s formula in (22), we find that

(23)
∑

m≤(3/2)log log x
m 6∈IC

N (x,m) ≤
x

2(loglog x)ξ

when x is sufficiently large. Using instead of (22) the main result of [1], we deduce that

(24)
∑

m≥(3/2)log log x

N (x,m) ≤
x

(log x)1/100

for x large enough. Combining (23) and (24), we obtain the following.

Lemma 9. Suppose ξ is a given positive number. Then there exists a constant C > 0 such that

∑

m 6∈IC

N (x,m) ≤
x

(loglog x)ξ

for all sufficiently large x.

We also require the following result, which is [6, Lem. 3].

Lemma 10. For m ≥ 0, define

Pm

( ∞∑

n=1

ann−s

)
:=

∑

Ω(n)=m

ann−s .

Let 0 < q < 1. Then ‖Pm f ‖q ≪ m1/q−1‖ f ‖q for every Dirichlet polynomial f .
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Proof of Theorem 2. We write

DN ,α(s) :=
∑

N/2<n≤N

dα(n)α−Ω(n)n−s−1/2

so that

ZN ,α(s)−ZN/2,α(s)=
∑

m≥0

αmPmDN ,α(s).

By Lemma 10, we have for every m and 0 < q < 1

(25) ‖ZN ,α−ZN/2,α‖q ≫αmm1−1/q‖PmDN ,α‖q .

We will combine (25) with an estimate that we obtain from the two lemmas above.

In what follows, we will use that the L2 norm of DN ,α can be estimated in a trivial way because

dα(n)α−Ω(n) ≤ 1. First, applying Hölder’s inequality in the form

‖ f ‖2−q
1 ≤ ‖ f ‖q

q‖ f ‖2−2q
2

along with Lemma 8 and a trivial L2 estimate, we find that
∥∥∥∥

∑

m≥0

PmDN ,α

∥∥∥∥
q

q

≫ (loglog N )−6+o(1)

whenever 0 < q < 1. Using the triangle inequality for the Lq quasi-norm and the trivial bound

‖ f ‖q ≤ ‖ f ‖2, we obtain from this that

∑

m∈IC

∥∥PmDN ,α

∥∥q

q +

∥∥∥∥∥
∑

m 6∈IC

PmDN ,α

∥∥∥∥∥

q

2

≫ (loglog N )−6+o(1).

Hence, by a trivial L2 bound and an application of Lemma 9 with ξ = 16/q , there exists a con-

stant C such that ∑

m∈IC

∥∥PmDN ,α

∥∥q

q ≫ (loglog N )−6+o(1).

Thus, since |IC | =O
(√

loglog N logloglog N
)
, there exists an m satisfying

loglog N −C
√

loglog N logloglog N ≤ m ≤ loglog N +C
√

loglog N logloglog N

such that

(26) ‖PmDN ,α‖
q
q ≥ (loglog N )−6.5+o(1) .

We now set q = 2k. Combining (25) and (26), we find that

‖ZN ,α−ZN/2,α‖2k
2k ≫ (log N )k logα2

exp
(
−c(k,α)

√
loglog N logloglog N

)

for some positive constant c(k,α). Since

‖ZN ,α−ZN/2,α‖2k
2k ≤ ‖ZN ,α‖2k

2k +‖ZN/2,α‖2k
2k ,

this means that at least one of the pseudomoments Ψk,α(N/2) or Ψk,α(N ) satisfies the lower

bound asserted by the theorem. �

In the following proof, we have adapted the method of [14, Sec. 2] which relies crucially on

Harper’s work [13]. We refer to [14, pp. 150–152] for an illuminating outline of the method.
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Proof of Lemma 8. Let Sx be the set of x-smooth numbers, i.e.,

Sx :=
{
n ∈N : p a prime such that p|n =⇒ p ≤ x

}
.

We start with the following identity which holds for every real t :
∫∞

1

∑

y/2<n≤y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2 d y

y1+1/log x+i t

=
(

1−2−1/log x−i t

1/log x + i t

) ∑

n∈Sx

dα(n)α−Ω(n)z(n)n−1/2−1/log x−i t .

(27)

Our first goal is to estimate the supremum of the right hand side in (27) for t from a reasonably

short interval. We have∣∣∣∣∣
∑

n∈Sx

dα(n)α−Ω(n)z(n)n−1/2−1/log x−i t

∣∣∣∣∣=
∏

p≤x

∣∣∣∣∣1+
∞∑

j=1

dα(p j )α− j z(p) j p− j (1/2+1/log x+i t)

∣∣∣∣∣

≍ exp

(
Re

(
∑

p≤x

z(p)p−1/2−1/log x−i t

)
+

1

2α
Re

(
∑

p≤x

z(p)2p−1−2/log x−2i t

))(28)

for all points of the configuration space (z(p))p≤x . As in [14, Lem. 1], we can modify the proof

of [13, Cor. 2] to show that

sup
1≤t≤2(log log x)2

|1−2−i t |≥1/4

(
Re

(
∑

p≤x

z(p)p−1/2−1/log x−i t

)
+

1

2α
Re

(
∑

p≤x

z(p)2p−1−2/log x−2i t

))

≥ loglog x − logloglog x +O
(
(logloglog x)3/4

)

with probability 1−o(1) as x →∞. To achieve this, we add a minor technical detail: In the part

of the argument that follows [13, Sec. 6], we only take into account integers 1 ≤ n ≤ (loglog x)2,

such that

min
2n+1≤t≤2n+2

|1−2−i t | ≥ 1/4,

noting that the number of such n is bounded below by a constant times (loglog x)2. Combining

the latter inequality with (28), we obtain that with probability 1−o(1)

sup
1≤t≤2(log log x)2

|1−2−i t |≥1/4

∣∣∣∣∣
∑

n∈Sx

dα(n)α−Ω(n)z(n)n−1/2−1/log x−i t

∣∣∣∣∣≥
log x

(loglog x)1+o(1)
.

Now taking the supremum of the absolute value of both sides in (27), we find that

∫∞

1

∣∣∣∣∣∣∣∣

∑

y/2<n≤y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

d y

y1+1/log x
≥

log x

(loglog x)3+o(1)

with probability 1 − o(1). Hence taking the expectation over the entire configuration space

(z(p))p≤x , we finally obtain that, say for all x > 3,

(29)

∫∞

1
E

∣∣∣∣∣∣∣∣

∑

y/2<n≤y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

d y

y1+1/log x
≥

log x

(loglog x)3+o(1)
.
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Now we will show that the assertion of the lemma follows from (29). To this end, we begin by

fixing a positive integer M . We will use (29) for x such that M = x10log loglog x . Applying the

Cauchy–Schwarz inequality in the form (E|X |)2 ≤ E|X |2 and recalling that dα(n)α−Ω(n) ≤ 1, we

find that

∫∞
p

M
E

∣∣∣∣∣∣∣∣

∑

y/2<n≤y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

d y

y1+1/log x
≤

∫∞
p

M

1

y1+1/log x
d y =

log x

(loglog x)5
.

Combining this bound with (29), we find that

(30)

∫p
M

1
E

∣∣∣∣∣∣∣∣

∑

y/2<n≤y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

d y

y1+1/log x
≥

log x

(loglog x)3+o(1)
,

which is the relation to be used below.

Set SM ,α(z) :=
∑

M/2<n≤M dα(n)α−Ω(n)z(n)n−1/2, and let S
⊥

x be the set of integers with prime

divisors that are all larger than x. Set

RM ,x :=
{

n2 ∈S
⊥

x :
M

2
≤ n1n2 ≤ M for some n1 ∈Sx

}

and decompose

SM ,α(z) =
∑

n2∈RM ,x

dα(n2)α−Ω(n2)z(n2)n−1/2
2 cn2

where

cn2 :=
∑

M/(2n2)≤n1≤M/n2
n1∈Sx

dα(n1)α−Ω(n1)z(n1)n−1/2
1 .

By using Helson’s inequality (7) with respect to the variables z(n2) for n2 in RM ,x , we find that

(31) E|SM ,α| ≥
(

∑

n2∈Rm,x

|cn2 |2dα(n2)2α−2Ω(n2)

d(n2)n2

) 1
2

≥
(

∑

x<p≤M

|cp |2

2p

)1/2

.

We now want to relate the right-hand side of (31) to the integral

∫M

x

∣∣∣∣∣∣∣∣

∑

M/(2y)≤n≤M/y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

2

d y

y
=

∫M

x
|cy |2

d y

y
.

To this end, we begin by considering a short interval [ξ,ξ+ξδ] ⊂ [x, M], where 7/12 < δ< 1 is a

fixed parameter. If ξ is sufficiently large, then by [17], this interval contains at least ξδ/(2 logξ)

primes. We partition accordingly the interval into ⌊ξδ/(2 logξ)⌋ subintervals of equal length

ξδ/⌊ξδ/(2 logξ)⌋. We make a one-to-one correspondence between these subintervals and the

first ⌊ξδ/(2 logξ)⌋ primes in [ξ,ξ+ξδ], and hence we associate with every y in [ξ,ξ+ξδ] a prime

p = p(y) that is also in [ξ,ξ+ξδ]. We write c̃y := cy −cp(y) and notice that

|cy |2 ≤ 2
(
|cp(y)|2 +|c̃y |2

)
.

A trivial estimate shows that

(32) E|c̃y |2 ≪ max
(

yδ−1,
y

M

)
.
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Using this construction, we get that

∫ξ+ξδ

ξ

∣∣∣∣∣∣∣∣

∑

M/(2y)≤n≤M/y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

2

d y

y
≪ logξ

∑

ξ≤p≤ξ+ξδ

|cp |2

p
+

∫ξ+ξδ

ξ

|c̃y |2

y
d y

≤ log M
∑

ξ≤p≤ξ+ξδ

|cp |2

p
+

∫ξ+ξδ

ξ

|c̃y |2

y
d y.

Repeating this construction and summing over a suitable collection of intervals [ξ,ξ+ξδ], we

then obtain

∑

x<p≤M

|cp |2

p
+

1

log M

∫M

x

|c̃y |2

y
d y ≫

1

log M

∫M

x

∣∣∣∣∣∣∣∣

∑

M/(2y)≤n≤M/y
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣∣

2

d y

y
.

By the change of variables u = M/y in the integral on the right-hand side and using that log M =
10 log x logloglog x, we now deduce that

(
∑

x<p≤M

|cp |2

p
+

1

log M

∫M

x

|c̃y |2

y
d y

)1/2

≫




1

log x logloglog x

∫M/x

1

∣∣∣∣∣∣∣

∑

u/2≤n≤u
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣

2

du

u




1/2

.

(33)

We are now ready to finish the proof by putting our three basic estimates (30), (31), and (33)

together. First, by the Cauchy–Schwarz inequality, we have


∫M/x

1

∣∣∣∣∣∣∣

∑

u/2≤n≤u
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣

2

du

u




1/2
(∫M/x

1

du

u1+2/log x

)1/2

≥
∫p

M

1

∣∣∣∣∣∣∣

∑

u/2≤n≤u
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣

du

u1+1/log x
.

Therefore, taking expectation in (33) and applying (31) together with (30) and (32), we find that

E|SM |≫ E

∣∣∣∣∣

(
∑

x<p≤M

|cp |2

p
+

1

log M

∫M

x

|c̃y |2

y
d y

)1/2∣∣∣∣∣−E

∣∣∣∣∣

(
1

log M

∫M

x

|c̃y |2

y
d y

)1/2∣∣∣∣∣

≫ E

∣∣∣∣∣

(
∑

x<p≤M

|cp |2

p
+

1

log M

∫M

x

|c̃y |2

y
d y

)1/2∣∣∣∣∣−O
(
(log M)−1/2

)

≫
1

log x(logloglog x)1/2

∫p
M

1
E

∣∣∣∣∣∣∣

∑

u/2≤n≤u
n∈Sx

dα(n)α−Ω(n)z(n)n−1/2

∣∣∣∣∣∣∣

du

u1+1/log x
−O

(
(log M)−1/2

)

≥ (loglog x)−3+o(1) ≥ (loglog M)−3+o(1) ,
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and hence the desired estimate has been established. �
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