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Many reports have demonstrated the great potential of 
microbial inoculants for bioremediation, biofertilization 
and biocontrol applications1–4. However, the lab-to-field 

transition remains a major limiting factor since good in vitro per-
formance is rarely reproduced in field trials. Microbial survival, 
establishment and colonization are key features for biocontrol 
agents and applied microorganisms are often unable to persist in 
the environment or are rapidly outcompeted5–8. One important rea-
son for the failure of a strain to colonize a desired niche is that the 
planktonic inoculants are unable to invade and persist in indigenous 
microbial consortia, which live within biofilms5,9,10. Biofilm cells 
are embedded in an extracellular matrix that protects them from 
external stresses, such as nutrient limitation, predation and the host 
immune response. The extracellular matrix also restricts the entry 
of invaders into the biofilm interior, and while bacteria can colonize 
and grow on the biofilm exterior, they are readily removed by shear 
forces11–14. Additionally, members of the indigenous biofilm consor-
tium have evolved an arsenal of defence strategies that limit the suc-
cessful establishment of inoculants in the rhizosphere15–17. Bacteria 
display two main strategies to antagonize invaders: the release of 
small molecules with antimicrobial activity into their surroundings 
and the delivery of toxic effector proteins through diverse secretion 
systems into neighbouring opponents, which relies on cell-to-cell 
contact18–21. The most recent type is homologous to type IVA secre-
tion systems (T4ASS) in Xanthomonas citri and Stenotrophomonas 
maltophilia, which deliver toxic effectors that cause lysis of suscep-
tible competitor cells22–24. There are two main classes of T4SS: (1) 
type IVA secretion systems (T4ASS), mostly used for DNA delivery 
and exemplified by the VirB/D4 system of Agrobacterium tume-
faciens and (2) type IVB secretion systems (T4BSS), mostly used 
to deliver effector proteins into eukaryotic hosts as exemplified 

by the Dot/Icm system found in intracellular pathogens such as  
Legionella pneumophila25,26. The two classes are only distantly 
related and T4BSS assemblies are larger than T4ASSs, comprising 
27 components for the L. pneumophilla Dot/Icm system compared 
with 12 components for the VirB/D4 system26.

In this study, we identified a T4BSS that can deliver toxic effec-
tors into bacterial competitors, breaking the paradigm that T4BSSs 
are only used for effector transfer into eukaryotic cells25–27. This bac-
terial killing machine is encoded by a rare genomic island in the 
plant beneficial bacterium Pseudomonas putida IsoF28,29 and allows 
the strain not only to invade existing biofilms but also to protect 
tomato plants against the pathogen R. solanacearum.

Results
IsoF kills a wide range of Gram-negative bacteria. When P. 
putida IsoF (marked with green fluorescent protein (Gfp)) and P. 
putida KT2442 (marked with mCherry) were co-inoculated in a 
1:1 ratio on a minimal medium plate, no red fluorescence could be 
observed from the microcolony after 24 h, indicating that KT2442 
had been killed (Fig. 1a). We determined the colony forming units 
(c.f.u.s) of the two strains and found that after 2 d, IsoF had com-
pletely eliminated KT2442 (Fig. 1a). No adverse effect was seen 
when the two strains were separated by a 0.2 μm pore size filter, 
suggesting that killing depends on cell-to-cell contact (Extended 
Data Fig. 1). To obtain further insight into the underlying molecu-
lar mechanism, we performed contact-dependent killing (CDK) 
experiments on plates supplemented with propidium iodide (PI) 
to visualize dead cells. After 24 h, PI staining was observed where 
the two inoculated cultures overlapped, whereas dead cells were 
absent from the pure culture regions (Fig. 1b). Time-lapse confo-
cal laser scanning microscopy (CLSM) was used to demonstrate 
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that KT2442 cells were killed after they had been in direct contact 
with IsoF::Gfp (Fig. 1c and Supplementary Video 1). We noticed 
that dead cells did not lyse or change their morphology. To deter-
mine the range of target species antagonized by IsoF, we fluores-
cently marked several soil- and plant-associated bacteria as well as 
some phytopathogens, and tested their susceptibility to killing by 
IsoF. All tested strains were killed after 24 h of co-culture with IsoF 
(Fig. 1d,e), suggesting that IsoF possesses a highly efficient, broad 
host-range, CDK machinery.

IsoF utilizes a rare T4BSS for bacterial killing. To identify the 
mechanism responsible for contact-dependent killing by IsoF, 
we constructed a mini-Tn5 transposon insertion library of this 
strain and tested about 5,000 mutants for their ability to kill P. 
aureofaciens::mCherry, a strain that is easy to cultivate and is highly 
susceptible to IsoF-mediated killing, when grown as mixed macro-
colonies (Fig. 2a). The analysis of eight mini-Tn5 insertion mutants 
defective in killing P. aureofaciens::mCherry identified four genes 
within a large gene cluster (designated kib for killing, invasion, 
biocontrol, see below) that encodes several elements of a T4BSS 
(Fig. 2a,b and Extended Data Fig. 2a). While T4BSSs of intracel-
lular pathogens are known for their capacity to deliver effectors 
to their eukaryotic hosts26,30, they have so far not been reported to 
be involved in interbacterial killing. To validate the results of the 
mutant screen, we constructed defined T4BSS mutants: ΔdotHGF, 
which lacks the main structural components of the secretion chan-
nel, was unable to kill P. aureofaciens or KT2442. Likewise, inac-
tivating the region spanning PisoF_02323 to PisoF_02325, which 

encodes hypothetical proteins, TrbN and DotD, prevented IsoF 
from killing other bacteria (Fig. 2c,d and Extended Data Fig. 2b).

The web-based tool ICEfinder31 identified the kib cluster as part 
of a genomic island and defined its borders with genes PisoF_02313 
and intA_3, in agreement with the lower guanine-cytosine (GC) 
content of the kib locus (58.8%) compared with the average GC 
content of the IsoF genome (62.6 %) (Supplementary Table 3). This 
island has a size of 66,917 bp and encodes 61 genes, 17 of which 
share homology with described T4BSS structural genes, 37 were 
defined as hypothetical proteins, and 4 encode a type I restriction 
modification (RM) system and an integrase at the 3’-end (Fig. 2b,c 
and Supplementary Table 4). A BLAST search revealed that kib 
genes are present in 11 Pseudomonas strains, 8 of which were classi-
fied as P. putida (Supplementary Table 3). Interestingly, all ortholo-
gous kib gene clusters showed conserved synteny and were located 
at the same chromosomal position, suggesting a common ancestor 
(Extended Data Figs. 3 and 4). Notably, the orthologous clusters 
showed deletions at the 3’-end of the island, including the RM sys-
tem and the flanking integrase. In conclusion, while the kib island 
is found in few Pseudomonas strains, it is highly conserved and 
appears to encode all components of the bacterial killing machine, 
suggesting that it was recently acquired via horizontal gene transfer.

The kib gene cluster encodes an effector-immunity (E-I) pair. 
Contact-dependent killing systems deliver toxic effector molecules 
into bacterial competitors. To avoid self-killing, the attacking bac-
terium produces a cognate immunity protein that neutralizes the 
toxin. The immunity and toxin genes form a so-called E-I pair and 

cba

d

IsoF::Gfp + KT2442::mCherry KT2442IsoF::Gfp

20 µm

PI

KT2442IsoF::Gfp

Time (h)

KT2442IsoF

5 mm

IsoF::GfpKT2442::mCherry

M
ix

ed
 c

ul
tu

re
M

on
oc

ul
tu

re

e

5 mm

M
on

oc
ul

tu
re

M
ix

ed
 c

ul
tu

re

P. aureofaciens P. entomophila P. chlororaphis P. fluorescens P. carotovorum R. solanacearumP. syringae 

5 mm

PI (dead cells)

Bright fieldMerge

IsoF::Gfp

CompetitorIsoF

P. aureofaciens

P. entomophila

P. chlororaphis

P. fluorescens

P. syringae

P. carotovorum

R. solanacearum

100

102

104

106

108

1010

c.
f.u

.

0 min 15 min

30 min 45 min

0 24 48
0

20

40

60

80

100

c.
f.u

. (
%

)

****

Fig. 1 | IsoF displays contact-dependent antagonism against a wide range of Gram-negative bacteria. a, Left: IsoF::Gfp kills KT2442::mCherry after 
co-inoculation on ABC agar plates. Fluorescence is indicative of viable bacteria. right: the percentage of the c.f.u.s of each bacterial population in the mixed 
culture at 0 h, 24 h and 48 h. Data are mean ± s.d. from 3 biological replicates (n = 3). Unpaired t-test, ****P < 0.0001. b, IsoF antagonism is restricted to 
areas where IsoF::Gfp and KT2442 colonies are in direct contact. The medium was supplemented with PI to visualize dead cells. c, IsoF::Gfp kills KT2442 
cells in a contact-dependent manner. Cell death was monitored by PI staining (cells shown in magenta). d, IsoF kills a wide range of Gram-negative 
plant-associated bacteria, including P. aureofaciens, P. entomophila, P. chlororaphis, P. fluorescens, P. syringae, P. carotovorum and R. solanacearum. All 
competitors were tagged with mCherry. e, C.f.u.s were determined after 24 h of co-inoculation. Data are mean ± s.d. from 3 independent biological 
replicates (n = 3). representative fluorescence images of 3 independent experiments are shown.
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are often co-transcribed18,22–24,32. To investigate whether an E-I pair 
was present within the kib region, we deleted 49.5 kb of the genomic 
island containing all kib genes (PisoF_02313 to PisoF_02360, 
Extended Data Fig. 4). The resulting mutant, ΔT4B, no longer killed 
P. aureofaciens or KT2442 and formed mixed macrocolonies with 
both strains (Fig. 2d and Extended Data Fig. 2b). We hypothesized 
that the absence of an E-I pair would render the ΔT4B mutant sen-
sitive to the wild-type strain, while its presence would confer resis-
tance. CDK assays revealed that the mutant strain was killed, while it 
co-existed with the ΔdotHGF mutant (Fig. 3a), demonstrating that 
the genes required for killing and self-protection are present within 
the kib cluster. Moreover, IsoF was unable to kill mutants ΔdotHGF 
and Δ23-trbN-dotD, indicating that genes conferring immunity are 
not located within the deleted regions (Extended Data Fig. 5).

Identification of an immunity gene by transposon sequencing. 
Immunity genes are essential since cells lacking an immunity pro-
tein would either be killed by neighbouring bacteria or die due to 
self-intoxication32,33. Hence, it is possible to identify potential E-I 
pairs by transposon sequencing (Tn-seq)33,34. We generated a satu-
rated transposon insertion library in IsoF and subjected the library 
to three different growth regimes: (1) growth in liquid medium with 
shaking to prevent cell-to-cell contact, (2) growth on an agar surface 
either alone or (3) in the presence of the competitor P. aureofaciens 
to promote killing (Fig. 3b and Supplementary Table 5). Our analy-
sis revealed that PisoF_02332 was virtually devoid of transposon 

insertions in all three treatments (Fig. 3c and Supplementary Table 
6). This gene appears to be co-transcribed with PisoF_02333, pos-
sibly constituting an E-I pair. In silico analysis of PisoF_02332 and 
PisoF_02333 predicted the subcellular location of both proteins to 
be the cytosol. In agreement with this prediction, but in contrast 
to the finding that the X-T4ASS immunity proteins of X. citri and 
S. maltophilia are localized in the periplasm22,23, we were not able 
to identify either a signal peptide sequence at the N terminus of 
PisoF_02332 or translocation signals of known Legionella effec-
tors in the C-terminal region of the protein22,23,26,35 (Extended Data 
Fig. 6a). Interestingly, we found that PisoF_02332 has a C-terminal 
FxxxLxxxK motif, which is a known recognition sequence of the 
Legionella T4BSS35, suggesting that the immunity protein may be 
transferred together with its cognate effector. Comparison of phy-
logenetic trees constructed using (1) the PisoF_02332-33 genes, (2) 
all orthologues of the kib cluster and (3) eight housekeeping genes 
from the strains carrying the kib locus, revealed congruent tree 
topology, suggesting that these strains form a defined lineage that 
originated from a common ancestor (Extended Data Fig. 7).

To assess the role of this putative E-I pair in bacterial killing, 
we deleted both genes (PisoF_02332 and PisoF_02333) in IsoF to 
generate Δ32-33. We were also able to delete the putative effec-
tor gene alone, giving rise to mutant Δ33. We noticed that Δ32-33 
grew slower on ABC minimal media relative to the parental strain 
or mutant Δ33 (Supplementary Fig. 1). To establish a fair competi-
tion situation despite the growth difference, the CDK assays with 
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Δ32-33 were performed on ABC medium supplemented with casa-
mino acids and the c.f.u.s were normalized to the number of cells 
recovered from the monoculture of Δ32-33 after 24 h. Importantly, 
Δ33 was unable to compete with P. aureofaciens or KT2442 and 
complementation partially rescued the killing phenotype, suggest-
ing that PisoF_02333 encodes a toxic effector protein (Fig. 3f,g). 
This is further supported by the lack of killing of P. aureofaciens 
and KT2442 by the double mutant Δ32-33, although we were 

unable to restore killing by complementation. We used sodium 
dodecyl-sulfate polyacrylamide gel electrophoresis (SDS–PAGE) 
to investigate expression in the complemented strain. While we 
observed a band corresponding to the immunity protein, we could 
not detect the toxin, indicating that the immunity protein is pro-
duced in excess compared with the toxin (Extended Data Fig. 6b). 
We therefore hypothesize that killing was not restored because of 
an unphysiological overexpression of the immunity protein in the 
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Fig. 3 | An E-I pair is encoded within the kib gene cluster. a, Left: contact-dependent killing of the ΔT4B mutant against the IsoF wild type and the  
ΔdotHGF deletion mutant. right: c.f.u.s of the competing strains determined after 24 h of co-inoculation. b, An effector will be toxic for the cell in the absence 
of its cognate immunity protein. The following conditions were used to challenge an IsoF Tn23 mutant library: (i) growth in liquid medium with shaking 
to prevent cell-to-cell contact, (ii) growth on an agar surface either alone or (iii) in the presence of the rival strain P. aureofaciens to promote competition 
(mixed). c, The unique insertion density approach of the Tn-Seq Explorer software was used to identify genes that provide a fitness benefit for growth under 
different growth conditions65. Left: PisoF_02332 (blue) was found to have very few transposon insertions under all growth conditions tested. right: a putative 
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right: c.f.u.s of the competing strains determined after 24 h of co-inoculation. e, Left: CDK of the IsoF wild type against mutants ΔT4B/pBBr::32 and Δ32-
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are mean ± s.d. of 3 independent replicates (n = 3). Unpaired t-test, *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
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complemented strain that effectively neutralized the effector. In 
competition against the IsoF wild type, mutant Δ33 and its comple-
mented derivative survived, indicating that both strains are immune 
to the IsoF effector toxin. By contrast, mutant Δ32-33 was killed by 
IsoF, while the complemented strain co-existed with IsoF, imply-
ing that PisoF_02332 confers immunity to kib-mediated killing  
(Fig. 3d). To further test this, mutants ΔT4B and Δ32-33 were 
complemented with PisoF_02332 on a plasmid (pBBR::32) and the 
resulting strains were used in killing assays against IsoF. While strain 
Δ32-33/pBBR::32 co-existed with IsoF, mutant ΔT4B/pBBR::32 was 
killed (Fig. 3e). SDS–PAGE analysis showed that PisoF_02332 is not 
expressed in the ΔT4B mutant background, explaining its sensitiv-
ity to kib-mediated killing and suggesting that the kib gene cluster 
encodes functions required for the expression of PisoF_02332 or 
affects its stability (Extended Data Fig. 6b).

The kib system enables IsoF to invade an established biofilm. In 
our CDK assays, growth of IsoF was restricted to the initial inocula-
tion area after 24 h of incubation, probably because dead cells cre-
ated a barrier that prevented further killing36 (Fig. 1b). However, 
upon prolonged incubation of CDK plates, we observed that IsoF 
began to invade the space occupied by the target strain and formed 

satellite colonies after 72 h (Fig. 4c and Supplementary Fig. 5). We 
hypothesized that killed cells eventually lysed and no longer consti-
tuted a barrier against invasion, indicating that contact-dependent 
killing might be an efficient way to eliminate competitors in poly-
microbial biofilms. To evaluate the role of kib-mediated killing in 
mixed-species biofilms, we decided to use IsoF and KT2442, which 
are both good biofilm producers. To this end, we first established a 
KT2442::Gfp (green) biofilm in a flow-cell system and then intro-
duced IsoF::mCherry (blue) (Fig. 4a). Within 1 d, IsoF cells attached 
to the surface began to proliferate and formed numerous micro-
colonies. After 2 d, IsoF had formed a mature biofilm by invading 
and displacing the KT2442 biofilm. The volume of KT2442 bio-
film decreased by approximately 40% between 24 and 48 h post 
IsoF inoculation, which reached equal biomass with KT2442 after 
2 d of competition (Fig. 4b). Without competition, the biomass of 
the KT2442 biofilm increased steadily over time (Extended Data 
Fig. 8a,c). When a pre-established KT2442 biofilm was challenged 
with the kib mutants ΔdotHGF or Δ23-trbN-dotD, neither mutant 
was able to form microcolonies or invade the existing biofilm  
(Fig. 4a,b). Importantly, ΔdotHGF and Δ23-trbN-dotD mutants 
in isolation formed biofilms similar to the IsoF wild-type strain 
(Extended Data Fig. 8b,d). We hypothesized that IsoF employed 
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its T4BSS to kill KT2442 cells upon contact, creating space for the 
expansion of the IsoF biofilm. To test this, we inoculated flow cells 
with IsoF::Cfp (cyan) and KT2442::Gfp (yellow) with equivalent 
numbers of cells and monitored the fate of KT2442 microcolonies 
neighbouring IsoF microcolonies by adding PI (red) as an indica-
tor of cell death. Dead cells were observed at positions where the 
two strains were in direct contact (Fig. 4d,f). We determined that 
the biofilm volume of KT2442 was reduced by approximately 20%  
(Fig. 4g). We next visualized killing of KT2442 by IsoF::Gfp in a 
mixed monolayer biofilm on the surface of a minimal medium 
agar pad (Fig. 4d). After 18 h, we observed that 92% of the dead 
KT2442 cells (magenta) were located next to IsoF::Gfp (green) cells, 
demonstrating that kib-mediated killing is strictly dependent on 
cell-to-cell contact (Fig. 4e). When KT2442 was challenged with 
either the ΔdotHGF or the Δ23-trbN-dotD mutant (green), very few 
dead cells were observed, similar to monoculture biofilm controls 
(Fig. 4d,e). These results suggest that the kib system not only allows 
IsoF to defend itself against competitors but also to kill bacteria that 
live within an established biofilm community.

The kib locus is required for biocontrol activity of IsoF. In vitro 
competition experiments showed that IsoF killed R. solanacearum, 
while the ΔT4B mutant did not (Fig. 5a). To assess whether the kib 
killing system could be useful for biocontrol applications, we tested 
whether IsoF is able to protect tomato plants from infection with 
R. solanacearum, a major pathogen causing bacterial wilt in a wide 
range of crops37. Considering that R. solanacearum is a soil-borne 

pathogen that enters the plant through natural openings such as 
emerging lateral roots or wounds38, we injured established tomato 
seedlings with small incisions (Fig. 5b). At 22 d post infection, con-
trol plants inoculated with R. solanacearum were severely wilted, 
with signs of chlorosis and arrested development of the root and 
shoot systems. By contrast, 90% of the seedlings inoculated with a 
mixture of R. solanacearum and IsoF showed no signs of wilting  
(Fig. 5d). However, when seedlings were co-inoculated with a 
mixture of R. solanacearum and the kib mutant ΔT4B, wilting and 
underdevelopment were observed in 85% of the plants, indicating 
that IsoF prevented R. solanacearum from spreading into the plant 
tissues by kib-mediated killing. To precisely evaluate wilt develop-
ment, we determined the chlorophyll content and measured shoot 
area and root weight of individuals from the treatment groups as a 
proxy for plant health (Extended Data Fig. 9). These data were sub-
jected to principal component analysis and hierarchical clustering  
(Fig. 5e). The first two components accounted for 93.7% of the vari-
ance, and a score scatterplot clearly clustered the single inoculation 
with IsoF and ΔT4B groups together with untreated plants, confirm-
ing that the strains do not harm tomato plantlets. Plants co-inoculated 
with R. solanacearum and IsoF preferentially clustered with 
healthy plants, while those co-inoculated with ΔT4B grouped with  
R. solanacearum-infected plants. This indicates that IsoF decreased 
the pathogen load in the injured tomato tissues in a kib-dependent 
manner. To verify that IsoF indeed killed R. solanacearum,  
we recovered the bacteria attached to the roots and determined 
the c.f.u.s. This showed that the number of R. solanacearum cells  
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present after co-inoculation with IsoF was significantly lower than 
after inoculation with the ΔT4B mutant (Fig. 5c). To evaluate the 
biocontrol potential of IsoF under more natural conditions, we used 
a soil-based infection model as detailed in Methods (Fig. 6a). First, 
we tested the activity of R. solanacearum only on non-sterile soil 
drenched with different c.f.u. amounts employing uninjured and 
injured seedlings. The dosage of 108 c.f.u. ml−1 of R. solanacearum 
on injured seedlings showed the strongest effect on the plantlets 
where ~66% of the plants did not progress beyond the 2-leaf stage 
(Fig. 6b,c). When non-sterile soil was drenched with a mixture of 
IsoF and R. solanacearum, 84% of the plants developed as well as 
the control plants, whereas in the plants co-inoculated with R. sola-
nacearum and the kib mutant ΔT4B, only 53% of the plants devel-
oped their second pair of leaves (Fig. 6d–f). C.f.u. counts recovered 
from the rhizosphere showed no decrease of R. solanacearum c.f.u.s 
when co-inoculated with either IsoF or the ΔT4B mutant, suggest-
ing that R. solanacearum killing might locally prevent plant tissue 
invasion from the pathogen entry points (Fig. 6g). Collectively, 
these results demonstrate that the biocontrol capacity of IsoF against  
R. solanacearum depends on the kib locus.

Discussion
While various pathogens use T4BSSs to translocate effector mole-
cules into their eukaryotic host cells25,26,30, we show here that P. putida 
IsoF uses a T4BSS to kill a wide range of soil and plant-associated 
Gram-negative bacteria in a contact-dependent manner, extending  

the range of organisms targeted by T4BSSs to prokaryotes. Our data 
suggest that the kib locus is part of a recently acquired genomic 
island that encodes all components of the killing machinery. The 
kib cluster may provide IsoF with a competitive advantage for sur-
vival in the environment, as IsoF was shown to be an excellent colo-
nizer of tomato roots29,39. IsoF killed various environmental strains, 
most notably P. putida KT2442, which was demonstrated to use its 
K1-T6SS as an antibacterial killing device40. IsoF does not harbour 
a homologue of the K1-T6SS gene cluster and thus was expected to 
be sensitive to killing by KT2442. However, when the two wild-type 
strains were competed against each other, IsoF eliminated KT2442, 
indicating that T4BSS-mediated killing may occur before KT2442 
can fire its T6SS apparatus (Figs. 1a and 3g). Previous work has 
shown that bacteria have different strategies for deploying their 
T6SS. While some strains of Vibrio cholerae use their T6SS in an 
untargeted fashion and assemble and fire their apparatus in random 
locations within the cell, P. aeruginosa assembles and fires its organ-
elle only after detecting an attack from another nearby bacterium41,42, 
a strategy that has been termed the T6SS tit-for-tat response43. 
More recent work has shown that P. aeruginosa senses outer mem-
brane perturbations caused by the attack of competitors, treatment 
with the membrane-targeting antibiotic polymyxin, or interfer-
ence with outer membrane biogenesis via a signal transduction 
pathway that triggers the tit-for-tat response44. At present, neither  
the triggers of the KT2442 K1-T6SS nor those of the IsoF kib sys-
tem are known. However, that IsoF kills KT2442 may indicate 
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that kib is constitutively expressed and fires in a random fashion, 
while the K1-T6SS of KT2442 is only activated upon attack. This is 
reminiscent of the finding that a T6SS-negative V. cholerae strain is 
not killed by P. aeruginosa, whereas V. cholerae is efficiently killed 
in co-cultures with P. aeruginosa when both organisms contain a 
functional T6SS43. This would explain why all kib mutants of IsoF 
co-existed with KT2442. Additional work will be required to elu-
cidate whether differences in the triggers or efficacies of the killing 
systems are responsible for the superior performance of the IsoF kib 
system. It is worth noting that IsoF killed many bacteria known to 
use T6SSs for interbacterial killing (Extended Data Fig. 10).

We demonstrated that P. putida IsoF has an unprecedented abil-
ity to invade and replace an established biofilm in a kib-dependent 
manner. In addition to kib, the production of the biosurfactant 
putisolvin, which enables the strain to swarm over semisolid sur-
faces, may contribute to the invasion competence of IsoF45,46. When 
mixed biofilms were grown in flow cells, killed cells were removed 
by the shear forces of the nutrient flow. The freed space was then 
occupied by IsoF, which eventually led to the replacement of the 
pre-established biofilm. Of note, putisolvin can effectively disperse 
biofilms grown on polyvinyl chloride and glass surfaces45. It will 
therefore be an interesting line of future research to elucidate the 
role of this biosurfactant in the removal of dead cells or the trans-
location of IsoF cells into the freed spaces in established biofilms.

We demonstrate that IsoF not only antagonizes several economi-
cally relevant phytopathogens but also protects tomato plants from 
R. solanacearum (Figs. 5 and 6). The presence of microbes secret-
ing bacteriocins, antifungals or antibiotics in the rhizosphere is well 
known to be an effective strategy to suppress plant pathogens15,47,48. 
This study adds biofilm invasion through contact-dependent kill-
ing to the list of bacterial biocontrol functions. Given that a major 
limitation in biocontrol applications is that inoculants are unable 
to establish themselves in the environment, IsoF, which utilizes kib 
for attack as well as for defence, could be harnessed for eco-friendly 
farming strategies.

Methods
Bacterial growth conditions and media. Bacterial strains used in this study are 
listed in Supplementary Table 1. Most bacterial overnight cultures were grown in 
Lysogeny Broth (LB, Difco, 240210) at 30 °C (Pseudomonas species) or at 37 °C 
(Escherichia coli). R. solanacearum, Pectobacterium carotovorum, Pseudomonas 
syringae overnight cultures and experiments were done in LB media without 
salt (LB−) at 30 °C. All other experiments were performed in AB medium49 
supplemented with 10 mM sodium citrate (indicated as ABC medium). If 
indicated, ABC was supplemented with 4 μg ml−1 propidium iodide (PI, Thermo 
Fisher, P3566). Additionally, ABC was supplemented with 0.2% casamino acids 
if indicated (ABCAS). For selection of Pseudomonas mutants or transconjugants, 
Pseudomonas isolation agar (PIA, Difco, 292710) was used. If required, antibiotics 
were added at the following final concentrations: for E. coli: 100 μg ml−1 ampicillin, 
25 μg ml−1 kanamycin (Km), 10 μg ml−1 gentamycin (Gm), 10 μg ml−1 tetracycline; 
for Pseudomonas species: 75 or 100 μg ml−1 kanamycin, 20 or 30 μg ml−1 
gentamycin, 20 μg ml−1 tetracycline.

Construction of fluorescently tagged strains. The mini-Tn7 system50 was 
employed to integrate the gene encoding red fluorescent protein (mCherry) or 
Gfp into the chromosome of the strains listed in Supplementary Table 1. Mini-Tn7 
tagged strains were obtained by tri-parental mating using the donor strain E. 
coli S17-1 carrying pUCT18-mini-Tn7 and the helper plasmid pUX-BF1351–53. 
Briefly, overnight cultures of the recipient strain, the helper strain and the 
donor strain were washed with 0.9% NaCl and then mixed in a 1:2:2 ratio 
(recipient:helper:donor). The strains were inoculated on LB plates as 50 μl drops 
and incubated at 30 °C overnight. Bacteria were resuspended in 1 ml 0.9% NaCl 
and plated on media containing Gm. Plates were incubated overnight at 30 °C and 
fluorescent colonies were selected.

Tn5 mutant library, screening and mutant identification. The transposon 
mutant library of IsoF was generated using the mini-Tn5 delivery vector pUT/
mini-Tn5 Km54. Approximately 40,000 independent transposon insertion mutants 
were obtained after conjugation. Aliquots of the library were saved and stored at 
−80 °C. To perform the screening, individual mutants were grown overnight in 
100 µl LB on 96-well plates, then the cultures were gently combined with 100 µl of 
P. aureofaciens::mCherry. The mixed-inocula were transferred to ABC medium 

agar plates using a 96-pin replicator. Approximately 5,000 single Tn5 mutants were 
independently co-inoculated with P. aureofaciens::mCherry and incubated for 24 h at 
30 °C. Mixed bacterial colonies were examined by means of fluorescence microscopy 
where competitions that showed red fluorescence indicated Tn5 mutants defective 
in killing. Initial hits were validated by contact-dependent killing assays as described 
later. Identification of the Tn5 insertion mutants was done by arbitrary PCR as 
previously described55. After the second round of PCR, reactions were cleaned with 
the PCR purification kit (Qiagen, 28006) and sequenced. Sequences were analysed 
and compared with the genome of IsoF and with NCBI Blast.

CDK assays. Overnight cultures were adjusted to an optical density (OD)600 of 1 
and dilutions were made to determine the number of c.f.u.s of each competitor. 
For the CDK assays, competitors were mixed in a 1:1 c.f.u. ratio. ABC, ABCAS or 
LB medium was inoculated with 5 μl of mixed culture. To determine the bacterial 
population in the mixed macrocolonies, c.f.u.s were counted at 0 h and at 24 h. 
At 24 h, two macrocolonies were resuspended in 500 μl of 0.9% NaCl and serial 
dilutions were plated on PIA and PIA Gm, the latter to select tagged strains. For the 
macrocolony overlaying killing assay, IsoF::Gfp was first inoculated and incubated 
at 30 °C for 1 h, then KT2442 was inoculated to cover half of the IsoF colony. 
Fluorescence of the mono and mixed cultures was examined using a Leica M165 
FC fluorescence stereomicroscope.

Monolayer killing assays. On a microscope slide, 8–9 mm Ø × 1 mm depth 
adhesive silicon isolators (Grace BioLabs, JTR8R-1.0) were attached and filled 
with 62 μl ABC with 0.7% agar supplemented with PI. The middle of the agar 
was inoculated with 1 μl of the bacterial 1:1 mixed culture (IsoF::Gfp:competitor 
strain). The cover slip was placed on top after the inoculant had dried and killing 
was monitored with a confocal laser scanning microscope (CLSM) every 15 min 
for about 3 h. A final time point was recorded after 18–22 h of incubation at r.t., 
including samples of the monocultures. Image acquisition was done using a CLSM 
(Leica TCS SPE, DM5500) equipped with a ×100/1.44 oil objective. Images were 
analysed with ImageJ56.

Construction of P. putida IsoF deletion mutants. IsoF derivatives with single 
and triple gene deletions and the deletion of the kib cluster (49.5 kbp) were 
constructed using SceI-based mutagenesis as described in ref. 57. First, the plasmid 
pGPI-SceI (which carries an I-SceI recognition site) was modified by cloning 
tetAR, which encodes a tetracycline efflux pump into the PstI restriction site to 
give pGPI-SceI::TetAR. Next, two homology regions flanking the region to be 
deleted were cloned into pGPI-SceI::TetAR. The plasmid was introduced via 
conjugation and integrated into the genome of P. putida IsoF by single homologous 
recombination, giving two copies of the homologous regions in the chromosome. 
The plasmid pDAI::GmR

, which carries the I-SceI nuclease, was then conjugated 
into the single-crossover IsoF strain. The I-SceI nuclease produced a double-strand 
DNA break at its recognition site, linearizing the chromosome and requiring 
recombination for the survival of the cell. This occurred preferentially at the 
repeated homologous regions. For both conjugations, the pRK2013 helper plasmid 
was used to provide the genes encoding the conjugation machinery. Ex-conjugants 
were selected on PIA Gm plates and screened by PCR using the check primers. 
Colonies were patched on PIA and PIA Gm20 to select colonies from which the 
pDAI plasmid had been cured. All primers and restrictions enzymes used for 
cloning are listed in Supplementary Table 2.

Construction of pBBR1MCS derivative plasmids. For complementation of the 
Δ32-33 and Δ33 mutants, plasmids pBBR::32-33 and pBBR::33 were constructed. 
Additionally, pBBR::32 was constructed. In each case, the coding sequence plus 
the native promoter region was amplified using an IsoF cell lysate as a template 
and cloned into pBBR1MCS-2 using primers and restriction sites as listed in 
Supplementary Tables 1 and 2. E. coli MC1061 was transformed with the ligated 
vectors, which were then transferred into the IsoF deletion mutants by tri-parental 
mating using E. coli DH5α pRK2013 as the helper strain. Complementation was 
checked by colony PCR using primers listed in Supplementary Table 2.

Expression of PisoF_02332 and PisoF_02333. Proteins produced from the genes 
PisoF_02332 and PisoF_02333 cloned into pBBR1MCS-2 were analysed by SDS–
PAGE on a 15% gel as previously described58. Overnight cultures were lysed by 
sonication and protein concentration was estimated using the Bradford method 
(Sigma-Aldrich, B6916-500ML).

Comparative genomic analysis. Identification of Pseudomonas strains carrying 
the T4BSS gene cluster elements was performed using NCBI BLAST. The online 
tool ICEfinder was used to determine the boundaries of IsoF’s genomic island (GI). 
The region containing the IsoF GI was compared against the 11 other Pseudomonas 
strains carrying T4BSS elements using the MAUVE v2.4.0 alignment tool with 
default settings59. MultiGeneBlast v.1.1.14 was done using the 11 Pseudomonas 
strains, IsoF and 8 additional known species in which the T4BSS has been 
described60. Alignment and comparison were done using the following settings to 
search for tightly coupled operons: gene identity threshold, 30%; number of hits 
mapped, 1,000; maximum distance between the genes in a locus, 10 kb. Alignment 
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for the phylogenetic trees was performed with CLC Genomics alignment tool and 
then manually curated, and the trees were reconstructed with RaxMLGUI v2.0 with 
100 bootstrap repetitions. The final tree figures were done using FigTree v1.4.4.

Tn-seq methodology. Transposon mutagenesis was performed by tri-parental 
conjugation. First, the resistance properties of the donor plasmid pLG99 (carrying 
a Tn23 transposon) were modified by cloning a kanamycin resistance gene into 
the AatII restriction site. Overnight cultures of the recipient strain P. putida 
IsoF, the helper strain E. coli DH5α pRK2013 and the donor strain E. coli CC118 
λ-pir pLG99::Km were washed with 0.9% NaCl and then mixed in a 1:2:2 ratio 
(recipient:helper:donor). The conjugation was plated on LB plates in drops of 
50 μl and incubated for 2 h at 37 °C, followed by incubation at 30 °C overnight. The 
mating drops were resuspended in 6 ml 0.9% NaCl and plated on PIA containing 
Km. Plates were incubated at 30 °C overnight and the resulting colonies were 
washed from the plate with LB supplemented with Km. The resuspended mutant 
library was then mixed with an equal amount of 50% glycerol and kept at −80 °C. 
From three independent conjugations with approximately 70 matings, an estimated 
700,000 mutants were generated.

For the Tn-seq experiments, the pooled mutant library was first grown for 16 h 
in liquid ABC media supplemented with 0.2% rhamnose until stationary phase. 
The OD600 was then adjusted to 0.05 for growth in liquid medium (condition 1), 
and to an OD600 of 1 for growth on solid medium as a monoculture (condition 
2) and on solid medium as a co-culture (condition 3). For the growth in liquid 
medium, the Tn library was incubated at 30 °C for 4.5 h with 220 r.p.m. shaking, 
then cells were collected and pelleted for DNA extraction. For treatments 2 and 3, 
400 drops of 5 μl each of the bacterial culture were plated. For the mixed condition 
(condition 3), P. aureofaciens was co-inoculated with the Tn mutant library in 
a 1:1 c.f.u. ratio. Both plated conditions were incubated for 8.5 h at 30 °C. Cells 
were scraped from the plate with 0.9% NaCl and adjusted to an OD600 of 2 before 
being pelleted and kept at −20 °C for later DNA extraction. DNA extraction was 
done using the bacterial genomic DNA kit (Sigma-Aldrich, NA2110-1KT). All 
sequencing steps were performed using the previously described circle method61, 
with several modifications described in ref. 62.

Tn‐seq data analysis and bioinformatics. The Illumina sequencing reads were 
trimmed using Trimmomatic-0.32 (leading, 30; trailing, 30; slidingwindow, 4:20; 
Minlen, 60)63. Adapter sequences were removed with Cutadapt v1.964. Tn-Seq 
Explorer was used to analyse the resulting Tn-seq data65. NCBI protein (.ptt) 
and RNA (.rnt) table files were generated from the IsoF genbank file (.gbff) and 
provided as input to Tn-Seq Explorer to infer the coordinates of proteins and 
RNA coding regions. Trimmed reads were mapped to the chromosome using the 
Bowtie2 plugin of Tn-Seq Explorer (–very-sensitive- command)66. A sequence 
alignment map (SAM) file was produced. For each dataset, the subsequent SAM 
generated with Bowtie2 was evaluated by Tn-Seq Explorer to assess essentiality. 
In the analysis, transposons mapping within 5% of the start codon and 20% of the 
stop codon were excluded. An estimated cut-off UID (unique insertion density) 
was established to separate essential from non-essential genes65. This was done by 
dividing the number of unique insertions by the gene length, resulting in a UID 
for that specific gene. The number of genes with the given insertion density versus 
the insertion density per bp was represented in a plot, usually showing a bimodal 
distribution. Here the genes with low or no-insertions appeared on the left side of 
the plot. The point where the plot rises again indicates the threshold for genes that 
can tolerate transposon insertions61. This point indicates the cut-off for essential 
genes, which was set for each growth condition: liquid, 0.013; plate, 0.011; mixed, 
0.014 (UID). Genes showing higher UID values were considered non-essential 
since high number of transposon insertions was detected per gene. Mapped 
transposon insertions are listed in Supplementary Figs. 2–4.

Flow-cell biofilms, microscopy and image analysis. Biofilms were grown in a 
flow-cell system67,68 with continuous flow of liquid AB medium supplemented 
with 0.1 mM sodium citrate at a rate of 0.2 mm s−1 using a Watson-Marlow 205S 
peristaltic pump. Briefly, the flow-cell chambers were inoculated with P. putida 
cultures at an OD600 of 0.1 and biofilm development was followed every 24 h 
for up to 5 d. For the competition experiment, the strain inoculated on top of 
the pre-established biofilm was adjusted to an OD600 of 0.5. For the two-species 
biofilm, strains were mixed in a 1:1 ratio and cultivated for up to 48 h. Shortly 
before 40 h of cultivation, PI was added. Photomicrographs were taken every 24 h 
with a CLSM (Leica TCS SPE, DM5500) equipped with a 63 ×1.3 oil objective. 
Monolayer killing assays were imaged with a 100 ×1.44 oil objective. Images were 
analysed with the Leica Application Suite, the Imaris v9.6.0 software package 
(Bitplane) and with ImageJ56.

Plant assay on MS plates. Micro-Tom Solanum lycopersicum L. seeds (Tuinplus 
bv. Heerenveen, Holland) were surface-sterilized with 1% sodium hypochlorite 
solution for 10 min, washed 4 times with sterile distilled water (dH2O) and placed 
at 4 °C for 2 d in the dark. Seeds were then sown on 0.8% water agar plates and 
kept at 30 °C for 2 d in the dark. Germinated seeds were incubated at 22 °C in 
long-day conditions (16 h, 100 μmol m−2 s−1 photon flux, 20 °C light and 8 h, 18 °C 
dark regime at 60% relative humidity) and seedlings were further grown for 

7–8 d until lateral root emergence. Seedlings were injured twice with a 0.4 mm 
diameter needle at the root-shoot junction. The roots of the seedlings were then 
submerged for 10 s each in a bacterial suspension set to a final OD600 of 0.5 in 
1 mM MgSO4. Inoculated seedlings were next placed on half strength Murashige 
and Skoog (MS) medium (Sigma-Aldrich, M5519-50L) with 1.5% agar and grown 
for 22 d under the long-day conditions indicated above. Each tomato plant root 
was washed and sonicated and roots were then placed in an Eppendorf tube with 
750 µl of 1 mM MgSO4

69. The washing step consisted of shaking the tube for 15 min 
at 160 r.p.m., followed by sonication for 15 min. The obtained cell suspensions 
were serial-diluted to allow for c.f.u. quantification. Principal component analysis 
and hierarchical clustering were performed on individual root weight, shoot area 
and chlorophyll values. Unit variance scaling was applied and the single value 
decomposition with imputation used to calculate principal components. Prediction 
ellipses were used to display the 95% confidence intervals. Root parameters were 
clustered using correlation distance and complete linkage, and plant samples 
were clustered using Euclidean distance and complete linkage (n = 180). Three 
independent biological replicates were performed, with a minimum of 28 plants 
for each treatment. Shoot area and chlorophyll estimations were obtained from 
calibrated RGB photographs using ImageJ70, adapting previous methods71. 
Essentially, individual RGB values were extracted from blue channel-thresholded 
plant pictures and normalized to total RGB. Normalized green and red channel 
values were used to calculate a greenness index (Greendex = 4G – 3R). Greendex 
values and acetone-extracted total chlorophyll per shoot weight of single infected 
or healthy tomato plantlets were linearly correlated (R2 = 0.7373, n = 21)72. Principal 
component analysis and hierarchical clustering data visualization were done using 
ClustVis Webtool (https://bio.tools/clustvis).

Infection of tomato seedlings by soil drenching. The protocol from ref. 73 was 
used with the following modifications: bacterial dilutions were done with room 
temperature tap water and high-volume inocula were prepared (OD600 of 0.1, 
0.01 and 0.001) of R. solanacearum, approximately equivalent to 108 c.f.u. ml−1, 
107 c.f.u. ml−1 and 106 c.f.u. ml−1 and (OD600 of 1) of IsoF/ΔT4B, approximately 
equivalent to 107 c.f.u. ml−1. For the trial assay with R. solanacearum only, 
non-sterile soil was drenched with different c.f.u. amounts (see above) and 
uninjured and injured seedlings were tested (n = 1, 20 plants per treatment). The 
dosage of 108 c.f.u. ml−1 of R. solanacearum on injured seedlings was the treatment 
chosen as it showed the strongest effect on the plantlets where ~66% of the 
plants did not progress beyond the 2-leaf stage. Eight-day-old tomato seedlings 
were slightly injured at the root-stem junction. Before potting the seedlings, the 
non-sterile soil (used 7 × 7 × 6 cm pots, Desch Plantpak, 100003) was drenched 
with 50 ml of the following bacterial suspensions: monocultures of Ralstonia::Gfp, 
IsoF::mCherry and ΔT4B::mCherry; and mixed cultures of Ralstonia::Gfp + 
IsoF::mCherry and Ralstonia::Gfp + ΔT4B::mCherry. In the mixed cultures, the 
OD600 was adjusted so that the final concentration of both bacterial competitors 
was 108 c.f.u. ml−1. Plantlets were grown in a light chamber for 20 d and bacterial 
c.f.u.s were recovered from the rhizosphere. Three independent biological 
replicates were carried out, with a total of 41 plants per treatment (number of 
seedlings per replicate: 1st = 20, 2nd = 11, 3rd = 10). Leaf area was measured using 
RGB value-thresholded images with ImageJ.

Statistics and reproducibility. Statistical significance was assessed by appropriate 
tests as stated in figure legends. Analyses were performed using GraphPad Prism 
v8.4.1, with P < 0.05 considered significant. Student’s t-tests were employed and 
asterisks indicate the level of significance: *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. When required, significantly different means in analysis of variance 
(ANOVA) with Tukey’s multiple comparisons (P < 0.05) are indicated by different 
letters. No statistical method was used to predetermine sample size and investigators 
were not blinded to allocation during experiments and outcome assessment. The 
experiments were not randomized and no data were excluded from the analyses.

Reporting summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
The genome sequence of IsoF has been deposited in NCBI under accession  
number CP072013. FASTQ files generated from the Illumina MiSeq platform 
are publicly available at the NCBI short reads archive (SRA) under BioProject 
PRJNA730700. Individual datasets have the following accession numbers: Liquid, 
SRR14612110; Plate, SRR14612109; and Mixed, SRR14612108. Source data are 
provided with this paper.
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Extended Data Fig. 1 | Inoculation of Kt2442::mCherry and IsoF separated by a filter. a, IsoF was inoculated on an ABC plate, a filter was placed atop the 
bacteria, which was subsequently inoculated with KT2442 or vice versa. b, CFUs were determined after 24 h of incubation. Data are mean ± s.d. from four 
independent replicates (n = 4).
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Extended Data Fig. 2 | Contact-dependent killing (CDK) assays. a, IsoF mini-Tn5-insertion mutants versus P. aureofaciens. The mCherry (red) signal 
indicates the survival of P. aureofaciens::mCherry in competition with the mini-Tn5 insertion mutants. b, CDK of defined mutants against KT2442. The 
wild-type strain and the deletion mutants ΔdotHGF, Δ23, ΔdotD, Δ23-trbN-dotD and ΔT4B were co-inoculated with KT2442 tagged with mCherry. CFUs 
were determined after 24 h of incubation. Data are mean ± s.d. of three independent biological replicates (n = 3). Unpaired t-test, **P < 0.01; ***P < 0.001. 
representative pictures of at least 3 replicates are shown. Scale bar, 5 mm.
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Extended Data Fig. 3 | Multiple genome alignment of kib loci. The kib regions from eleven Pseudomonas strains were compared and aligned with the 
IsoF-GI region using the Mauve software1. P. putida KT2440 (AE015451.2) was used as a reference strain not carrying this genomic element. regions 
with identical colors represent local collinear blocks (LCB) of conserved DNA sequence. Low identity regions are shown without LCB. The kib gene cluster 
regions are indicated in light blue. The rectangular box (black) indicates the same position in a homologous region that is shared by all strains. The strains’ 
accession numbers are: Pseudomonas sp. Irchel (NZ_FYDW01000002), P. putida KF715 (AP015029.1), P. putida H8234 (CP005976.1), P. putida B1 (NZ_
CP022560.1), P. putida TS312 (NZ_AP022324.1), P. monteilli TC1-CK1 (NZ_CP040324.1), P. putida N1r (NZ_LT707061.1), P. putida JB (NZ_CP016212.1), P. 
putida BIrD-1 (CP002290.1), P. putida S12 (NZ_CP009974.1), Pseudomonas sp. SWI36 (NZ_CP026675.1).
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Extended Data Fig. 4 | MultiGeneBlast alignment of IsoF kib genes with homologs of Pseudomonas and other t4BSS-encoding bacteria. MultiGeneBlast 
Alignment2 of homologous regions from eleven Pseudomonas strains (P-T4BSS) and eight T4BSS-encoding bacteria as described by Nagai and Kubori, 
20113 (L-T4BSS). Arrows represent genes and the color conservation indicates homology > 30 %. Gene identity threshold: 30%, hits mapped: 1000. 
Maximum distance between the genes in a locus is 10 kb.

NAtuRE MICROBIOLOGy | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


Articles NaTurE MIcroBIoloGyArticles NaTurE MIcroBIoloGy

Extended Data Fig. 5 | CDK between the IsoF wildtype and mutants ΔdotHGF::mCherry and Δ23-trbN-dotD::mCherry. Both mutant strains survived after 
24 h of coincubation. CFUs are mean ± s.d. from three independent replicates (n = 3). representative images are shown. Scale bar, 5 mm.
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Extended Data Fig. 6 | Ectopic expression of PisoF_02332 and PisoF_02333 from plasmids pBRR::32, pBRR::33 and pBRR::32-33 in different genetic 
backgrounds. a, The length, expected mass (kDa) and predicted subcellular location of the effector-immunity pair proteins are indicated. The C-termini 
of both proteins were examined for conserved recognition sequences such as hydrophobic residues (red), EExxE and FxxxLxxxK domains (underlined)4–7. 
* The last 25 aa residues of the c-terminus region are indicated; ** LocTrEE and PSOrTb web tools were employed. An unusual glutamine-rich domain 
(blue) was observed in the C-terminal region of the effector PisoF_02333. b, SDS-PAGE of cell lysates. Proteins were separated on 15% polyacrylamide 
gels and stained with Coomassie Blue r-250. Dotted squares indicate PisoF_02332 (31.9 kDa). PisoF_02333 could not be detected in any of the samples. 
Black arrow indicates plasmid-encoded proteins.
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Extended Data Fig. 7 | Phylogenetic trees of all orthologs of the kib cluster, the E-I genes PisoF_02332-33, and eight housekeeping genes (HKG). The kib 
cluster tree is based on the T4BSS orthologs Piso_02313 to icmW and the HKG tree based on eight concatenated genes of the listed species (gyrB, rpoD, 
16 s, argS, dnaN, dnaQ, gltA, rpoB). Coloured bars indicate four distinct lineages. The bootstrap values are displayed on the trees.
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Extended Data Fig. 8 | Biofilm development of Kt2442 (green), IsoF, ΔdotHGF and Δ23-trbN-dotD (red). a, representative pictures of KT2442 biofilm 
development over 120 h. b, representative images of biofilm development over 96 h. c,d, Quantification of biomass (relative volume) increase over time. 
Biofilms were visualized by CLSM using a 63 ×1.3 oil objective. Biomass (volume) of the biofilm was quantified by the Imaris software (Bitplane). Data are 
mean ± s.d. of a minimum of two biological replicates (n = 3). Scale bar, 30 µm.
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Extended Data Fig. 9 | Root weight, leaf area and chlorophyll content (Greendex) of tomato plants grown on MS plates. Treatments labelled with the 
same letter are not significantly different. ANOVA, Tukey’s test, P < 0.05. Error bars show the mean ± s.d. (n = 3).
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Extended Data Fig. 10 | IsoF kills a wide range of Gram-negative bacteria. Various fluorescently tagged bacteria were competed against the IsoF  
wildtype. Fluorescence images of the mono- and mixed-cultures after 24 h of incubation are shown. Lack of fluorescence indicates that IsoF killed the 
bacterial strain. Several bacteria that were shown to use T6SSs for interbacterial killing were killed by IsoF, including P. aeruginosa PA148, B. cenocepacia 
H1119, P. syringae10, P. chlororaphis11, P. fluorescens12, P. carotovorum13, E. amylovora14 and B. thailandensis15. Scale bar, 5 mm.
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