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Abstract

We consider an anti-invariant, minimal, pseudoparallel and Ricci-
generalized pseudoparallel submanifold M of a Kenmotsu space form

M̃(c), for which ξ is tangent to M .
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1. Introduction

An n-dimensional submanifold M in an m-dimensional Riemannian manifold M̃ is
pseudoparallel [1], if its second fundamental form σ satisfies the following condition

(1.1) R · σ = LσQ(g, σ).

Pseudoparallel submanifolds in space forms were studied by A.C. Asperti, G. A. Lobos
and F. Mercuri (see [1] and [2]). Also, R. Deszcz, L. Verstraelen and Ş. Yaprak [6]
obtained some results on pseudoparallel hypersurfaces in a 4-dimensional space form
N4(c). Moreover, C-totally real pseudoparallel submanifolds of Sasakian space forms
were studied by A.Yıldız, C. Murathan, K. Arslan and R. Ezentaş in [12].

On the other hand, in [9], C. Murathan, K. Arslan and R. Ezentaş defined submani-
folds satisfying the condition

(1.2) R · σ = LSQ(S, σ).
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This kind of submanifold is called Ricci-generalized pseudoparallel. In [13], A. Yıldız and
C. Murathan studied pseudoparallel and Ricci-generalized pseudoparallel invariant sub-
manifolds of Sasakian space forms. In [10], the present authors considered pseudoparallel
and Ricci-generalized pseudoparallel invariant submanifolds of contact metric manifolds.

In the present study, we consider pseudoparallel and Ricci-generalized pseudoparallel,
anti-invariant, minimal submanifolds of Kenmotsu space forms. We find a necessary
condition for the submanifold to be totally geodesic.

2. Preliminaries

Let f : Mn −→ M̃n+d be an isometric immersion of an n-dimensional Riemannian

manifold M into an (n + d)-dimensional Riemannian manifold M̃ . We denote by ∇ and

∇̃ the Levi-Civita connections of M and M̃ , respectively. Then we have the Gauss and
Weingarten formulas

(2.1) ∇̃XY = ∇XY + σ(X,Y )

and

(2.2) ∇̃XN = −ANX + ∇⊥

XN,

where ∇⊥ denotes the normal connection on T⊥M of M , and AN is the shape operator of
M , for X, Y ∈ χ(M) and a normal vector field N on M . We call σ the second fundamental

form of the submanifold M . If σ = 0 then the submanifold is said to be totally geodesic.
The second fundamental form σ and AN are related by

g(ANX, Y ) = g̃(σ(X, Y ), N),

where g is the induced metric of g̃ for any vector fields X, Y tangent to M . The mean
curvature vector H of M is given by

H =
1

n
Tr(σ).

The first derivative ∇σ of the second fundamental form σ is given by

(2.3) (∇Xσ)(Y,Z) = ∇⊥

Xσ(Y,Z) − σ(∇XY, Z) − σ(Y,∇XZ),

where ∇ is called the van der Waerden-Bortolotti connection of M [4]. If ∇σ = 0, then
f is said to be a parallel immersion.

The second covariant derivative ∇
2
σ of the second fundamental form σ is given by

(2.4)

(∇
2
σ)(Z,W, X, Y ) = (∇X∇Y σ)(Z, W )

= ∇⊥

X((∇Y σ)(Z,W ) − (∇Y σ)(∇XZ, W )

− (∇Xσ)(Z,∇Y W ) − (∇∇X Y σ)(Z, W ).

Then we have

(2.5)

(∇X∇Y σ)(Z, W ) − (∇Y ∇Xσ)(Z, W )

= (R(X, Y ) · σ)(Z, W )

= R
⊥(X, Y )σ(Z, W ) − σ(R(X,Y )Z, W ) − σ(Z, R(X,Y )W ),

where R is the curvature tensor belonging to the connection ∇, and

R
⊥(X, Y ) =

[
∇⊥

X,∇⊥
Y

]
−∇⊥

[X,Y ],

(see [4]).
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Now for a (0, k)-tensor field T , k ≥ 1, and a (0, 2)-tensor field A on (M, g), we define
Q(A,T ) (see [5]) by

(2.6)
Q(A,T )(X1, . . . , Xk; X, Y ) = −T ((X ∧A Y )X1, X2, . . . , Xk) − · · ·

· · · − T (X1, . . . , Xk−1, (X ∧A Y )Xk),

where X ∧A Y is an endomorphism defined by

(2.7) (X ∧A Y )Z = A(Y, Z)X − A(X, Z)Y.

Substituting T = σ and A = g or A = S in formula (2.6), we obtain Q(g, σ) and Q(S, σ),
respectively. In case A = g we write X ∧g Y = X ∧ Y for short.

3. Submanifolds of Kenmotsu manifolds

Let M̃ be a (2n + 1)-dimensional almost contact metric manifold with structure
(ϕ, ξ, η, g), where ϕ is a tensor field of type (1, 1), ξ a vector field, η a 1-form and g

the Riemannian metric on M̃ satisfying

ϕ
2 = −I + η ⊗ ξ, ϕξ = 0, η(ξ) = 1, η ◦ ϕ = 0,

g(ϕX, ϕY ) = g(X,Y ) − η(X)η(Y ),

η(X) = g(X, ξ), g(ϕX,Y ) = −g(X,ϕY ),

for all vector fields X, Y on M̃ [3]. An almost contact metric manifold M̃ is said to be a
Kenmotsu manifold [7] if the relation

(3.1) (∇̃Xϕ)Y = g(ϕX, Y )ξ − η(Y )ϕX

holds on M̃ , where ∇̃ is the Levi-Civita connection of g. From the above equation, for a
Kenmotsu manifold we also have

(3.2) ∇̃Xξ = X − η(X)ξ.

Moreover, the curvature tensor R̃ and the Ricci tensor S̃ of M̃ satisfy [7]

R̃(X, Y )ξ = η(X)Y − η(Y )X,(3.3)

S̃(X, ξ) = −2nη(X).(3.4)

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of ϕ equals −2dη ⊗ ξ),
but not Sasakian. Moreover, it is also not compact since from the equation (3.2) we get
divξ = 2n. In [7], K. Kenmotsu showed:

(1) That locally a Kenmotsu manifold is a warped product I×f N of an interval I and
a Kaehler manifold N , with warping function f(t) = cet, where c is a nonzero constant;
and

(2) That a Kenmotsu manifold of constant sectional curvature is a space of constant
curvature −1, and so it is locally hyperbolic space.

A plane section in the tangent space TxM̃ at x ∈ M̃ is called a ϕ-section if it is
spanned by a vector X orthogonal to ξ and ϕX. The sectional curvature K(X, ϕX)
with respect to a ϕ-section, denoted by the vector X, is called a ϕ-sectional curvature.
A Kenmotsu manifold with constant holomorphic ϕ-sectional curvature c is a Kenmotsu

space form, and is denoted by M̃(c), The curvature tensor of a Kenmotsu space form is
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given by

(3.5)

R̃(X, Y )Z =
1

4
(c − 3){g(Y,Z)X − g(X,Z)Y }

+
1

4
(c + 1){η(X)η(Z)Y − η(Y )η(Z)X

+ η(Y )g(X, Z)ξ − η(X)g(Y,Z)ξ

+ g(X, ϕZ)ϕY − g(Y,ϕZ)ϕX + 2g(X, ϕY )ϕZ}.

Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional Kenmotsu manifold

M̃ , with ξ tangent to M . Then we have from Gauss’ formula

∇̃Xξ = ∇Xξ + σ(X, ξ),

which implies from (3.2) that

(3.6) ∇Xξ = X − η(X)ξ and σ(X, ξ) = 0,

for each vector field X tangent to M (see [8]). It is also easy to see that for a submanifold

M of a Kenmotsu manifold M̃

(3.7) R(X, Y )ξ = η(X)Y − η(Y )X,

for any vector fields X and Y tangent to M . From the equation (3.7) we get

(3.8) R(ξ, X)ξ = X − η(X)ξ,

for a submanifold M of a Kenmotsu manifold M̃ . Moreover, the Ricci tensor S of M

satisfies

(3.9) S(X, ξ) = −mη(X).

We proved the following theorems in [11]:

3.1. Theorem. [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional

Kenmotsu manifold M̃ , with ξ tangent to M . If M is pseudoparallel such that Lσ 6= −1,
then it is totally geodesic.

3.2. Theorem. [11] Let M be a (m+1)-dimensional submanifold of a (2n+1)-dimensional

Kenmotsu manifold M̃ , with ξ tangent to M . If M is Ricci-generalized pseudoparallel

such that L
S
6= 1

m
, then it is totally geodesic.

The technique used in the proofs of Theorem 3.1 and Theorem 3.2 is not sufficient to
interpret the cases Lσ = −1 and LS = 1

m
. These cases are open. For this reason, we

give solutions of these cases in Section 4, for anti-invariant, minimal submanifolds of a
Kenmotsu space form.

4. Anti-invariant Submanifolds of Kenmotsu Space Forms

Let M be an (n + 1)-dimensional submanifold of a (2n + 1)-dimensional Kenmotsu

manifold M̃ . A submanifold M of a Kenmotsu manifold M̃ is called anti-invariant if
and only if ϕ(TxM) ⊂ T⊥

x M for all x ∈ M (TxM and T⊥
x M are the tangent space and

normal space of M at x, respectively).

For an anti-invariant submanifold M of a Kenmotsu space form M̃(c), with ξ tangent
to M , we have

(4.1)

R(X, Y )Z =
1

4
(c − 3)

{
g(Y,Z)X − g(X, Z)Y

}
+

1

4
(c + 1)

{
η(X)η(Z)Y

− η(Y )η(Z)X + η(Y )g(X,Z)ξ − η(X)g(Y,Z)ξ
}

+ Aσ(Y,Z)X − Aσ(X,Z)Y.
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We denote by S and r the Ricci tensor and scalar curvature of M , respectively. Then we
have

(4.2)

S(Y, Z) =
1

4
[n(c − 3) − (c + 1)]g(Y, Z) −

1

4
(n − 1)(c + 1)η(Y )η(Z)

−
∑

i

g(σ(Y, ei), σ(Z, ei))

and

(4.3) r =
1

4
[n2(c − 3) − n(c + 5)] −

∑

i,j

g(σ(ei, ej), σ(ei, ej)),

where {ei} is an orthonormal basis of M .

By an easy calculation, we have the following proposition:

4.1. Proposition. Let Mn+1 be an anti-invariant, minimal submanifold of a Kenmotsu

space form M̃2n+1(c) . Then we have

(4.4)

1

2
∆(‖σ‖2) =

∥∥∇σ
∥∥2

+

[
(n + 1)(c − 3)

4

]
‖σ‖2

−
2n+1∑

α,β=n+2

{[Tr(Aα ◦ Aβ)]2 + ‖[Aα, Aβ]‖2},

where {e1, e2, . . . , en+1} is an orthonormal basis of M such that en+1 = ξ. �

4.2. Theorem. Let Mn+1 be an anti-invariant, minimal submanifold of a Kenmotsu

space form M̃2n+1(c), with ξ tangent to M . If Mn+1 is pseudoparallel and
(n+1)(c+1)

4
≤ 0

then it is totally geodesic.

Proof. Suppose that M is an (n+1)-dimensional anti-invariant submanifold of the (2n+

1)-dimensional Kenmotsu space form M̃2n+1(c). We choose an orthonormal basis

{e1, e2, . . . , en, ξ, ϕe1 = e
∗

1, . . . , ϕen = e
∗

n}.

Then, for 1 ≤ i, j ≤ n+1, n+2 ≤ α ≤ 2n+1, the components of the second fundamental
form σ are given by

(4.5) σ
α
ij = g(σ(ei, ej), eα).

Similarly, the components of the first and the second covariant derivative of σ are given
by

(4.6) σ
α
ijk = g((∇ek

σ)(ei, ej), eα) = ∇ek
σ

α
ij

and

(4.7)

σ
α
ijkl = g((∇el

∇ek
σ)(ei, ej), eα)

= ∇el
σ

α
ijk

= ∇el
∇ek

σ
α
ij ,

respectively. Since M is pseudoparallel, then the condition

(4.8) R(el, ek) · σ = −[(el ∧g ek) · σ]

is fulfilled where

(4.9) [(el ∧g ek) · σ](ei, ej) = −σ((el ∧g ek)ei, ej) − σ(ei, (el ∧g ek)ej)

for 1 ≤ i, j, k, l ≤ n + 1.
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Using (2.7) in (4.9), we obtain

(4.10)
[(el ∧g ek) · σ](ei, ej) = −g(ek, ei)σ(el, ej) + g(el, ei)σ(ek, ej)

− g(ek, ej)σ(el, ei) + g(el, ej)σ(ek, ei).

By virtue of (2.5) we have

(4.11) (R(el, ek) · σ)(ei, ej) = (∇el
∇ek

σ)(ei, ej) − (∇ek
∇el

σ)(ei, ej).

Then using (4.5), (4.7), (4.10) and (4.11), the pseudoparallelity condition (4.8) reduces
to

(4.12) σ
α
ijkl = σ

α
ijlk + {δkiσ

α
ij − δliσ

α
kj + δkjσ

α
il − δljσ

α
ki},

where g(ei, ej) = δij and 1 ≤ i, j, k, l ≤ n + 1, n + 2 ≤ α ≤ 2n + 1.

The Laplacian ∆σα
ij of σα

ij can be written as

(4.13) ∆σ
α
ij =

n+1∑

i,j,k=1

σ
α
ijkk..

Then we get

(4.14)
1

2
∆(‖σ‖2) =

n+1∑

i,j,k,l=1

2n+1∑

α=n+2

σ
α
ijσ

α
ijkl +

∥∥∇σ
∥∥2

,

where

(4.15) ‖σ‖2 =
n+1∑

i,j,=1

2n+1∑

α=n+2

(σα
ij)

2

and

(4.16)
∥∥∇σ

∥∥2
=

n+1∑

i,j,k,l=1

2n+1∑

α=n+2

(σα
ijkl)

2

are the square of the length of the second and the third fundamental forms of M , respec-
tively. On the other hand, by the use of (4.5) and (4.7), we have

(4.17)

σ
α
ijσ

α
ijkk = g(σ(ei, ej), eα)g((∇ek

∇ek
σ)(ei, ej), eα)

= g((∇ek
∇ek

σ)(ei, ej)g(σ(ei, ej), eα), eα)

= g((∇ek
∇ek

σ)(ei, ej), σ(ei, ej)).

On the other hand, by the use of (4.17), equation (4.14) turns into

(4.18)
1

2
∆(‖σ‖2) =

n+1∑

i,j,k=1

g((∇ek
∇ek

σ)(ei, ej), σ(ei, ej)) +
∥∥∇σ

∥∥2
.

Substituting (4.17) into (4.18), we have

(4.19)

1

2
∆(‖σ‖2) =

n+1∑

i,j,k=1

[g((∇ei
∇ej

σ)(ek, ek), σ(ei, ej))

+ {g(ei, ej)g(σ(ek, ek), σ(ei, ej)) − g(ek, ej)g(σ(ek, ei), σ(ei, ej))

+ g(ek, ei)g(σ(ej, ek), σ(ei, ej)) − g(ek, ek)g(σ(ei, ej), σ(ei, ej))}]

+
∥∥∇σ

∥∥2
.
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Furthermore, by the definitions

‖σ‖2 =

n+1∑

i,j=1

g(σ(ei, ej), σ(ei, ej)),(4.20)

H
α =

n+1∑

k=1

σ
α
kk,(4.21)

‖H‖2 =
1

(n + 1)2

2n+1∑

α=n+2

(Hα)2,(4.22)

and after some calculations, we find

1

2
∆(‖σ‖2) =

n+1∑

i,j=1

2n+1∑

α=n+2

σ
α
ij(∇ei∇ej

H
α) − (n + 1) ‖σ‖2 +

∥∥∇σ
∥∥2

.

Then, by the use of the minimality condition, the last equation turns into

(4.23)
1

2
∆(‖σ‖2) = −(n + 1) ‖σ‖2 +

∥∥∇σ
∥∥2

.

Comparing the right hand sides of the equations (4.4) and (4.23), we get

(4.24)

(
−(n + 1) −

(n + 1)(c − 3)

4

)
‖σ‖2+

2n+1∑

α,β=n+2

{[
Tr(Aα◦Aβ)

]2
+‖[Aα, Aβ]‖2

}
= 0.

If (n+1)(c+1)
4

≤ 0 then Tr(Aα ◦ Aβ) = 0. In particular, ‖Aα‖
2 = Tr(Aα ◦ Aα) = 0, thus

σ = 0. This finishes the proof of the theorem. �

4.3. Theorem. Let Mn+1 be an anti-invariant, minimal submanifold of a Kenmotsu

space form M̃2n+1(c), with ξ tangent to M . If Mn+1 is Ricci-generalized pseudoparallel

and r
n
− (n+1)(c−3)

4
≥ 0, then it is totally geodesic.

Proof. If M is Ricci-generalized pseudoparallel, then as in the proof of Theorem 4.2, for
1 ≤ i, j ≤ n + 1, n + 2 ≤ α ≤ 2n + 1, we have

(4.25)

1

2
∆(‖σ‖2) =

n+1∑

i,j,k=1

[g((∇ei
∇ej

σ)(ek, ek), σ(ei, ej))

−
1

n
{S(ei, ej)g(σ(ek, ek), σ(ei, ej))

− S(ek, ej)g(σ(ek, ei), σ(ei, ej))

+ S(ek, ei)g(σ(ej, ek), σ(ei, ej))

− S(ek, ek)g(σ(ei, ej), σ(ei, ej))}] +
∥∥∇σ

∥∥2
.

Thus, by the use of (4.2), we get

(4.26)

n+1∑

i,j,k=1

S(ei, ej)g(σ(ek, ek), σ(ei, ej))

=

n+1∑

i,j,k=1

2n+1∑

α=n+2

S(ei, ej)g(Aαek, ek)g(Aαei, ej)

=

n+1∑

i,j,k=1

2n+1∑

α=n+2

S(ei, ej)Tr(Aα)g(Aαei, ej) = 0
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and

(4.27)

n+1∑

i,j,k=1

S(ek, ej)g(σ(ek, ei), σ(ei, ej))

=

n+1∑

i,j,k=1

2n+1∑

α=n+2

S(ek, ej)g(Aαei, ek)g(Aαei, ej)

=
n+1∑

i,j,k=1

2n+1∑

α=n+2

S(ek, ej)g(Aαek, ei)g(Aαej , ei)

=

n+1∑

i,j,k=1

2n+1∑

α=n+2

S(ek, ej)g(Aαek, Aαej)

=
n+1∑

i,j,k=1

2n+1∑

α=n+2

1

4
[n(c − 3) − (c + 1)]g(ek, ej)g(Aαek, Aαej)

−
1

4
(n − 1)(c + 1)g(Aαek, Aαej)

−

2n+1∑

α=n+2

g(Aαek, Aαej)g(Aαek, Aαej).

Moreover, using the equation (4.3), we have

(4.28)
n+1∑

i,j,k=1

S(ek, ek)g(σ(ei, ej), σ(ei, ej)) = r ‖σ‖2
.

Then, substituting equations (4.26) - (4.28) in (4.25), we obtain

(4.29)
1

2
∆(‖σ‖2) =

n+1∑

i,j,k=1

g((∇ei
∇ej

σ)(ek, ek), σ(ei, ej)) +
r

n
‖σ‖2 +

∥∥∇σ
∥∥2

.

Putting Hα =
n+1∑
k=1

σα
kk, the equation (4.29) turns into

(4.30)
1

2
∆(‖σ‖2) =

n+1∑

i,j,k=1

2n+1∑

α=n+2

σ
α
ij(∇ei

∇ej
H

α) +
r

n
‖σ‖2 +

∥∥∇σ
∥∥2

.

Furthermore, making use of the minimality condition, the equation (4.30) can be written
as follows

(4.31)
1

2
∆(‖σ‖2) =

r

n
‖σ‖2 +

∥∥∇σ
∥∥2

.

Consequently, comparing the right hand sides of the equations (4.4) and (4.31), we get

(
r

n
−

(n + 1)(c − 3)

4

)
‖σ‖2 +

2n+1∑

α,β=n+2

{[
Tr(Aα ◦ Aβ)

]2
+

∥∥[Aα, Aβ

]∥∥2
} = 0.

If r
n
− (n+1)(c−3)

4
≥ 0 then Tr(Aα ◦ Aβ) = 0. In particular, ‖Aα‖

2 = Tr(Aα ◦ Aα) = 0,
thus σ = 0. Therefore, our theorem is proved. �
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