PSEUDOPARALLEL ANTI-INVARIANT SUBMANIFOLDS OF KENMOTSU MANIFOLDS

Sibel Sular* ${ }^{* \dagger}$, Cihan Özgür* and Cengizhan Murathan ${ }^{\ddagger}$

Received 09:11:2009 : Accepted 18:03:2010

Abstract

We consider an anti-invariant, minimal, pseudoparallel and Riccigeneralized pseudoparallel submanifold M of a Kenmotsu space form $\widetilde{M}(c)$, for which ξ is tangent to M.

Keywords: Kenmotsu space form, Anti-invariant submanifold, Pseudoparallel submanifold, Ricci-generalized pseudoparallel submanifold.

2000 AMS Classification: 53 C 40, 53 C 25, 53 C 42.

1. Introduction

An n-dimensional submanifold M in an m-dimensional Riemannian manifold \widetilde{M} is pseudoparallel [1], if its second fundamental form σ satisfies the following condition

$$
\begin{equation*}
\bar{R} \cdot \sigma=L_{\sigma} Q(g, \sigma) \tag{1.1}
\end{equation*}
$$

Pseudoparallel submanifolds in space forms were studied by A. C. Asperti, G. A. Lobos and F. Mercuri (see [1] and [2]). Also, R. Deszcz, L. Verstraelen and Ş. Yaprak [6] obtained some results on pseudoparallel hypersurfaces in a 4-dimensional space form $N^{4}(c)$. Moreover, C-totally real pseudoparallel submanifolds of Sasakian space forms were studied by A.Yıldız, C. Murathan, K. Arslan and R. Ezentaş in [12].

On the other hand, in [9], C. Murathan, K. Arslan and R. Ezentaş defined submanifolds satisfying the condition

$$
\begin{equation*}
\bar{R} \cdot \sigma=L_{S} Q(S, \sigma) . \tag{1.2}
\end{equation*}
$$

[^0]This kind of submanifold is called Ricci-generalized pseudoparallel. In [13], A. Yıldız and C. Murathan studied pseudoparallel and Ricci-generalized pseudoparallel invariant submanifolds of Sasakian space forms. In [10], the present authors considered pseudoparallel and Ricci-generalized pseudoparallel invariant submanifolds of contact metric manifolds.

In the present study, we consider pseudoparallel and Ricci-generalized pseudoparallel, anti-invariant, minimal submanifolds of Kenmotsu space forms. We find a necessary condition for the submanifold to be totally geodesic.

2. Preliminaries

Let $f: M^{n} \longrightarrow \widetilde{M}^{n+d}$ be an isometric immersion of an n-dimensional Riemannian manifold M into an $(n+d)$-dimensional Riemannian manifold \widetilde{M}. We denote by ∇ and $\widetilde{\nabla}$ the Levi-Civita connections of M and \widetilde{M}, respectively. Then we have the Gauss and Weingarten formulas

$$
\begin{equation*}
\tilde{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y) \tag{2.1}
\end{equation*}
$$

and
(2.2) $\widetilde{\nabla}_{X} N=-A_{N} X+\nabla_{X}^{\perp} N$,
where ∇^{\perp} denotes the normal connection on $T^{\perp} M$ of M, and A_{N} is the shape operator of M, for $X, Y \in \chi(M)$ and a normal vector field N on M. We call σ the second fundamental form of the submanifold M. If $\sigma=0$ then the submanifold is said to be totally geodesic. The second fundamental form σ and A_{N} are related by

$$
g\left(A_{N} X, Y\right)=\widetilde{g}(\sigma(X, Y), N),
$$

where g is the induced metric of \widetilde{g} for any vector fields X, Y tangent to M. The mean curvature vector H of M is given by

$$
H=\frac{1}{n} \operatorname{Tr}(\sigma) .
$$

The first derivative $\bar{\nabla} \sigma$ of the second fundamental form σ is given by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \sigma\right)(Y, Z)=\nabla_{X}^{\perp} \sigma(Y, Z)-\sigma\left(\nabla_{X} Y, Z\right)-\sigma\left(Y, \nabla_{X} Z\right) \tag{2.3}
\end{equation*}
$$

where $\bar{\nabla}$ is called the van der Waerden-Bortolotti connection of M [4]. If $\bar{\nabla} \sigma=0$, then f is said to be a parallel immersion.

The second covariant derivative $\bar{\nabla}^{2} \sigma$ of the second fundamental form σ is given by

$$
\begin{align*}
\left(\bar{\nabla}^{2} \sigma\right)(Z, W, X, Y)= & \left(\bar{\nabla}_{X} \bar{\nabla}_{Y} \sigma\right)(Z, W) \\
= & \nabla_{X}^{\perp}\left(\left(\bar{\nabla}_{Y} \sigma\right)(Z, W)-\left(\bar{\nabla}_{Y} \sigma\right)\left(\nabla_{X} Z, W\right)\right. \tag{2.4}\\
& \quad-\left(\bar{\nabla}_{X} \sigma\right)\left(Z, \nabla_{Y} W\right)-\left(\bar{\nabla}_{\nabla_{X} Y} \sigma\right)(Z, W) .
\end{align*}
$$

Then we have

$$
\begin{align*}
\left(\bar{\nabla}_{X} \bar{\nabla}_{Y} \sigma\right)(Z, W)- & \left(\bar{\nabla}_{Y} \bar{\nabla}_{X} \sigma\right)(Z, W) \\
& =(\bar{R}(X, Y) \cdot \sigma)(Z, W) \tag{2.5}\\
& =R^{\perp}(X, Y) \sigma(Z, W)-\sigma(R(X, Y) Z, W)-\sigma(Z, R(X, Y) W)
\end{align*}
$$

where \bar{R} is the curvature tensor belonging to the connection $\bar{\nabla}$, and

$$
R^{\perp}(X, Y)=\left[\nabla^{\perp} X, \nabla^{\perp} Y\right]-\nabla_{[X, Y]}^{\perp}
$$

(see [4]).

Now for a $(0, k)$-tensor field $T, k \geq 1$, and a (0,2)-tensor field A on (M, g), we define $Q(A, T)$ (see [5]) by

$$
\begin{align*}
& Q(A, T)\left(X_{1}, \ldots, X_{k} ; X, Y\right)=-T\left(\left(X \wedge_{A} Y\right)\right.\left.X_{1}, X_{2}, \ldots, X_{k}\right)-\cdots \\
& \cdots-T\left(X_{1}, \ldots, X_{k-1},\left(X \wedge_{A} Y\right) X_{k}\right) \tag{2.6}
\end{align*}
$$

where $X \wedge_{A} Y$ is an endomorphism defined by

$$
\begin{equation*}
\left(X \wedge_{A} Y\right) Z=A(Y, Z) X-A(X, Z) Y \tag{2.7}
\end{equation*}
$$

Substituting $T=\sigma$ and $A=g$ or $A=S$ in formula (2.6), we obtain $Q(g, \sigma)$ and $Q(S, \sigma)$, respectively. In case $A=g$ we write $X \wedge_{g} Y=X \wedge Y$ for short.

3. Submanifolds of Kenmotsu manifolds

Let \widetilde{M} be a $(2 n+1)$-dimensional almost contact metric manifold with structure (φ, ξ, η, g), where φ is a tensor field of type (1,1), ξ a vector field, η a 1 -form and g the Riemannian metric on \widetilde{M} satisfying

$$
\begin{aligned}
& \varphi^{2}=-I+\eta \otimes \xi, \quad \varphi \xi=0, \quad \eta(\xi)=1, \quad \eta \circ \varphi=0, \\
& g(\varphi X, \varphi Y)=g(X, Y)-\eta(X) \eta(Y), \\
& \eta(X)=g(X, \xi), \quad g(\varphi X, Y)=-g(X, \varphi Y),
\end{aligned}
$$

for all vector fields X, Y on \widetilde{M} [3]. An almost contact metric manifold \widetilde{M} is said to be a Kenmotsu manifold [7] if the relation

$$
\begin{equation*}
\left(\widetilde{\nabla}_{X} \varphi\right) Y=g(\varphi X, Y) \xi-\eta(Y) \varphi X \tag{3.1}
\end{equation*}
$$

holds on \widetilde{M}, where $\widetilde{\nabla}$ is the Levi-Civita connection of g. From the above equation, for a Kenmotsu manifold we also have

$$
\begin{equation*}
\tilde{\nabla}_{X} \xi=X-\eta(X) \xi \tag{3.2}
\end{equation*}
$$

Moreover, the curvature tensor \widetilde{R} and the Ricci tensor \widetilde{S} of \widetilde{M} satisfy [7]

$$
\begin{align*}
\widetilde{R}(X, Y) \xi & =\eta(X) Y-\eta(Y) X \tag{3.3}\\
\widetilde{S}(X, \xi) & =-2 n \eta(X) \tag{3.4}
\end{align*}
$$

A Kenmotsu manifold is normal (that is, the Nijenhuis tensor of φ equals $-2 d \eta \otimes \xi$), but not Sasakian. Moreover, it is also not compact since from the equation (3.2) we get $\operatorname{div} \xi=2 n$. In [7], K. Kenmotsu showed:
(1) That locally a Kenmotsu manifold is a warped product $I \times{ }_{f} N$ of an interval I and a Kaehler manifold N, with warping function $f(t)=c e^{t}$, where c is a nonzero constant; and
(2) That a Kenmotsu manifold of constant sectional curvature is a space of constant curvature -1 , and so it is locally hyperbolic space.

A plane section in the tangent space $T_{x} \widetilde{M}$ at $x \in \widetilde{M}$ is called a φ-section if it is spanned by a vector X orthogonal to ξ and φX. The sectional curvature $K(X, \varphi X)$ with respect to a φ-section, denoted by the vector X, is called a φ-sectional curvature. A Kenmotsu manifold with constant holomorphic φ-sectional curvature c is a Kenmotsu space form, and is denoted by $\widetilde{M}(c)$, The curvature tensor of a Kenmotsu space form is
given by

$$
\begin{align*}
& \widetilde{R}(X, Y) Z=\frac{1}{4}(c-3)\{g(Y, Z) X-g(X, Z) Y\} \\
& \quad+\frac{1}{4}(c+1)\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{3.5}\\
& \\
& \quad+\eta(Y) g(X, Z) \xi-\eta(X) g(Y, Z) \xi \\
& \quad+g(X, \varphi Z) \varphi Y-g(Y, \varphi Z) \varphi X+2 g(X, \varphi Y) \varphi Z\}
\end{align*}
$$

Let M be a $(m+1)$-dimensional submanifold of a $(2 n+1)$-dimensional Kenmotsu manifold \widetilde{M}, with ξ tangent to M. Then we have from Gauss' formula

$$
\tilde{\nabla}_{X} \xi=\nabla_{X} \xi+\sigma(X, \xi),
$$

which implies from (3.2) that

$$
\begin{equation*}
\nabla_{X} \xi=X-\eta(X) \xi \text { and } \sigma(X, \xi)=0 \tag{3.6}
\end{equation*}
$$

for each vector field X tangent to M (see [8]). It is also easy to see that for a submanifold M of a Kenmotsu manifold \widetilde{M}

$$
\begin{equation*}
R(X, Y) \xi=\eta(X) Y-\eta(Y) X \tag{3.7}
\end{equation*}
$$

for any vector fields X and Y tangent to M. From the equation (3.7) we get

$$
\begin{equation*}
R(\xi, X) \xi=X-\eta(X) \xi \tag{3.8}
\end{equation*}
$$

for a submanifold M of a Kenmotsu manifold \widetilde{M}. Moreover, the Ricci tensor S of M satisfies

$$
\begin{equation*}
S(X, \xi)=-m \eta(X) \tag{3.9}
\end{equation*}
$$

We proved the following theorems in [11]:
3.1. Theorem. [11] Let M be a $(m+1)$-dimensional submanifold of a $(2 n+1)$-dimensional Kenmotsu manifold \widetilde{M}, with ξ tangent to M. If M is pseudoparallel such that $L_{\sigma} \neq-1$, then it is totally geodesic.
3.2. Theorem. [11] Let M be a $(m+1)$-dimensional submanifold of a $(2 n+1)$-dimensional Kenmotsu manifold \widetilde{M}, with ξ tangent to M. If M is Ricci-generalized pseudoparallel such that $L_{S} \neq \frac{1}{m}$, then it is totally geodesic.

The technique used in the proofs of Theorem 3.1 and Theorem 3.2 is not sufficient to interpret the cases $L_{\sigma}=-1$ and $L_{S}=\frac{1}{m}$. These cases are open. For this reason, we give solutions of these cases in Section 4, for anti-invariant, minimal submanifolds of a Kenmotsu space form.

4. Anti-invariant Submanifolds of Kenmotsu Space Forms

Let M be an $(n+1)$-dimensional submanifold of a $(2 n+1)$-dimensional Kenmotsu manifold \widetilde{M}. A submanifold M of a Kenmotsu manifold \widetilde{M} is called anti-invariant if and only if $\varphi\left(T_{x} M\right) \subset T_{x}^{\perp} M$ for all $x \in M\left(T_{x} M\right.$ and $T_{x}^{\perp} M$ are the tangent space and normal space of M at x, respectively).

For an anti-invariant submanifold M of a Kenmotsu space form $\widetilde{M}(c)$, with ξ tangent to M, we have

$$
\begin{align*}
& R(X, Y) Z=\frac{1}{4}(c-3)\{g(Y, Z) X-g(X, Z) Y\}+\frac{1}{4}(c+1)\{\eta(X) \eta(Z) Y \\
&-\eta(Y) \eta(Z) X+\eta(Y) g(X, Z) \xi-\eta(X) g(Y, Z) \xi\} \tag{4.1}\\
&+A_{\sigma(Y, Z)} X-A_{\sigma(X, Z)} Y .
\end{align*}
$$

We denote by S and r the Ricci tensor and scalar curvature of M, respectively. Then we have

$$
\begin{align*}
S(Y, Z)=\frac{1}{4}[n(c-3)-(c+1)] g(Y, Z)- & \frac{1}{4}(n-1)(c+1) \eta(Y) \eta(Z) \tag{4.2}\\
& -\sum_{i} g\left(\sigma\left(Y, e_{i}\right), \sigma\left(Z, e_{i}\right)\right)
\end{align*}
$$

and

$$
\begin{equation*}
r=\frac{1}{4}\left[n^{2}(c-3)-n(c+5)\right]-\sum_{i, j} g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right), \tag{4.3}
\end{equation*}
$$

where $\left\{e_{i}\right\}$ is an orthonormal basis of M.
By an easy calculation, we have the following proposition:
4.1. Proposition. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2 n+1}(c)$. Then we have

$$
\begin{align*}
& \frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\|\bar{\nabla} \sigma\|^{2}+\left[\frac{(n+1)(c-3)}{4}\right]\|\sigma\|^{2} \\
& \quad-\sum_{\alpha, \beta=n+2}^{2 n+1}\left\{\left[\operatorname{Tr}\left(A_{\alpha} \circ A_{\beta}\right)\right]^{2}+\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}\right\} \tag{4.4}
\end{align*}
$$

where $\left\{e_{1}, e_{2}, \ldots, e_{n+1}\right\}$ is an orthonormal basis of M such that $e_{n+1}=\xi$.
4.2. Theorem. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2 n+1}(c)$, with ξ tangent to M. If M^{n+1} is pseudoparallel and $\frac{(n+1)(c+1)}{4} \leq 0$ then it is totally geodesic.

Proof. Suppose that M is an $(n+1)$-dimensional anti-invariant submanifold of the ($2 n+$ 1)-dimensional Kenmotsu space form $\widetilde{M}^{2 n+1}(c)$. We choose an orthonormal basis

$$
\left\{e_{1}, e_{2}, \ldots, e_{n}, \xi, \varphi e_{1}=e_{1}^{*}, \ldots, \varphi e_{n}=e_{n}^{*}\right\}
$$

Then, for $1 \leq i, j \leq n+1, n+2 \leq \alpha \leq 2 n+1$, the components of the second fundamental form σ are given by

$$
\begin{equation*}
\sigma_{i j}^{\alpha}=g\left(\sigma\left(e_{i}, e_{j}\right), e_{\alpha}\right) \tag{4.5}
\end{equation*}
$$

Similarly, the components of the first and the second covariant derivative of σ are given by

$$
\begin{equation*}
\sigma_{i j k}^{\alpha}=g\left(\left(\bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right)=\bar{\nabla}_{e_{k}} \sigma_{i j}^{\alpha} \tag{4.6}
\end{equation*}
$$

and

$$
\begin{align*}
\sigma_{i j k l}^{\alpha} & =g\left(\left(\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right) \\
& =\bar{\nabla}_{e_{l}} \sigma_{i j k}^{\alpha} \tag{4.7}\\
& =\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} \sigma_{i j}^{\alpha},
\end{align*}
$$

respectively. Since M is pseudoparallel, then the condition

$$
\begin{equation*}
\bar{R}\left(e_{l}, e_{k}\right) \cdot \sigma=-\left[\left(e_{l} \wedge_{g} e_{k}\right) \cdot \sigma\right] \tag{4.8}
\end{equation*}
$$

is fulfilled where
(4.9) $\quad\left[\left(e_{l} \wedge_{g} e_{k}\right) \cdot \sigma\right]\left(e_{i}, e_{j}\right)=-\sigma\left(\left(e_{l} \wedge_{g} e_{k}\right) e_{i}, e_{j}\right)-\sigma\left(e_{i},\left(e_{l} \wedge_{g} e_{k}\right) e_{j}\right)$
for $1 \leq i, j, k, l \leq n+1$.

Using (2.7) in (4.9), we obtain

$$
\begin{align*}
& {\left[\left(e_{l} \wedge_{g} e_{k}\right) \cdot \sigma\right]\left(e_{i}, e_{j}\right)=-g\left(e_{k}, e_{i}\right) \sigma\left(e_{l}, e_{j}\right)+g\left(e_{l}, e_{i}\right) \sigma\left(e_{k}, e_{j}\right) } \\
&-g\left(e_{k}, e j\right) \sigma\left(e_{l}, e_{i}\right)+g\left(e_{l}, e_{j}\right) \sigma\left(e_{k}, e_{i}\right) \tag{4.10}
\end{align*}
$$

By virtue of (2.5) we have

$$
\begin{equation*}
\left(\bar{R}\left(e_{l}, e_{k}\right) \cdot \sigma\right)\left(e_{i}, e_{j}\right)=\left(\bar{\nabla}_{e_{l}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right)-\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{l}} \sigma\right)\left(e_{i}, e_{j}\right) \tag{4.11}
\end{equation*}
$$

Then using (4.5), (4.7), (4.10) and (4.11), the pseudoparallelity condition (4.8) reduces to
(4.12) $\sigma_{i j k l}^{\alpha}=\sigma_{i j l k}^{\alpha}+\left\{\delta_{k i} \sigma_{i j}^{\alpha}-\delta_{l i} \sigma_{k j}^{\alpha}+\delta_{k j} \sigma_{i l}^{\alpha}-\delta_{l j} \sigma_{k i}^{\alpha}\right\}$,
where $g\left(e_{i}, e_{j}\right)=\delta_{i j}$ and $1 \leq i, j, k, l \leq n+1, n+2 \leq \alpha \leq 2 n+1$.
The Laplacian $\Delta \sigma_{i j}^{\alpha}$ of $\sigma_{i j}^{\alpha}$ can be written as

$$
\begin{equation*}
\Delta \sigma_{i j}^{\alpha}=\sum_{i, j, k=1}^{n+1} \sigma_{i j k k .}^{\alpha} \tag{4.13}
\end{equation*}
$$

Then we get

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j, k, l=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} \sigma_{i j}^{\alpha} \sigma_{i j k l}^{\alpha}+\|\bar{\nabla} \sigma\|^{2} \tag{4.14}
\end{equation*}
$$

where

$$
\begin{equation*}
\|\sigma\|^{2}=\sum_{i, j,=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1}\left(\sigma_{i j}^{\alpha}\right)^{2} \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
\|\bar{\nabla} \sigma\|^{2}=\sum_{i, j, k, l=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1}\left(\sigma_{i j k l}^{\alpha}\right)^{2} \tag{4.16}
\end{equation*}
$$

are the square of the length of the second and the third fundamental forms of M, respectively. On the other hand, by the use of (4.5) and (4.7), we have

$$
\begin{align*}
\sigma_{i j}^{\alpha} \sigma_{i j k k}^{\alpha} & =g\left(\sigma\left(e_{i}, e_{j}\right), e_{\alpha}\right) g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), e_{\alpha}\right) \\
& =g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right) g\left(\sigma\left(e_{i}, e_{j}\right), e_{\alpha}\right), e_{\alpha}\right) \tag{4.17}\\
& =g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right) .
\end{align*}
$$

On the other hand, by the use of (4.17), equation (4.14) turns into

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j, k=1}^{n+1} g\left(\left(\bar{\nabla}_{e_{k}} \bar{\nabla}_{e_{k}} \sigma\right)\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)+\|\bar{\nabla} \sigma\|^{2} . \tag{4.18}
\end{equation*}
$$

Substituting (4.17) into (4.18), we have

$$
\begin{align*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)= & \sum_{i, j, k=1}^{n+1}\left[g\left(\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} \sigma\right)\left(e_{k}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right. \\
+ & \left\{g\left(e_{i}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)-g\left(e_{k}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{i}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right. \tag{4.19}\\
& \left.\left.+g\left(e_{k}, e_{i}\right) g\left(\sigma\left(e_{j}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)-g\left(e_{k}, e_{k}\right) g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right\}\right] \\
& +\|\bar{\nabla} \sigma\|^{2}
\end{align*}
$$

Furthermore, by the definitions

$$
\begin{align*}
\|\sigma\|^{2} & =\sum_{i, j=1}^{n+1} g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right) \tag{4.20}\\
H^{\alpha} & =\sum_{k=1}^{n+1} \sigma_{k k}^{\alpha} \tag{4.21}\\
\|H\|^{2} & =\frac{1}{(n+1)^{2}} \sum_{\alpha=n+2}^{2 n+1}\left(H^{\alpha}\right)^{2} \tag{4.22}
\end{align*}
$$

and after some calculations, we find

$$
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} \sigma_{i j}^{\alpha}\left(\bar{\nabla}_{e i} \bar{\nabla}_{e_{j}} H^{\alpha}\right)-(n+1)\|\sigma\|^{2}+\|\bar{\nabla} \sigma\|^{2} .
$$

Then, by the use of the minimality condition, the last equation turns into

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=-(n+1)\|\sigma\|^{2}+\|\bar{\nabla} \sigma\|^{2} \tag{4.23}
\end{equation*}
$$

Comparing the right hand sides of the equations (4.4) and (4.23), we get

$$
\begin{equation*}
\left(-(n+1)-\frac{(n+1)(c-3)}{4}\right)\|\sigma\|^{2}+\sum_{\alpha, \beta=n+2}^{2 n+1}\left\{\left[\operatorname{Tr}\left(A_{\alpha} \circ A_{\beta}\right)\right]^{2}+\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}\right\}=0 \tag{4.24}
\end{equation*}
$$

If $\frac{(n+1)(c+1)}{4} \leq 0$ then $\operatorname{Tr}\left(A_{\alpha} \circ A_{\beta}\right)=0$. In particular, $\left\|A_{\alpha}\right\|^{2}=\operatorname{Tr}\left(A_{\alpha} \circ A_{\alpha}\right)=0$, thus $\sigma=0$. This finishes the proof of the theorem.
4.3. Theorem. Let M^{n+1} be an anti-invariant, minimal submanifold of a Kenmotsu space form $\widetilde{M}^{2 n+1}(c)$, with ξ tangent to M. If M^{n+1} is Ricci-generalized pseudoparallel and $\frac{r}{n}-\frac{(n+1)(c-3)}{4} \geq 0$, then it is totally geodesic.

Proof. If M is Ricci-generalized pseudoparallel, then as in the proof of Theorem 4.2, for $1 \leq i, j \leq n+1, n+2 \leq \alpha \leq 2 n+1$, we have

$$
\begin{align*}
& \frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j, k=1}^{n+1}\left[g\left(\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} \sigma\right)\left(e_{k}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right. \\
& -\frac{1}{n}\left\{S\left(e_{i}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right. \tag{4.25}\\
& \quad-S\left(e_{k}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{i}\right), \sigma\left(e_{i}, e_{j}\right)\right) \\
& \quad+S\left(e_{k}, e_{i}\right) g\left(\sigma\left(e_{j}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right) \\
& \left.\left.\quad-S\left(e_{k}, e_{k}\right) g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)\right\}\right]+\|\bar{\nabla} \sigma\|^{2} .
\end{align*}
$$

Thus, by the use of (4.2), we get

$$
\begin{align*}
\sum_{i, j, k=1}^{n+1} S\left(e_{i}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{k}\right),\right. & \left.\sigma\left(e_{i}, e_{j}\right)\right) \\
& =\sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} S\left(e_{i}, e_{j}\right) g\left(A_{\alpha} e_{k}, e_{k}\right) g\left(A_{\alpha} e_{i}, e_{j}\right) \tag{4.26}\\
& =\sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} S\left(e_{i}, e_{j}\right) \operatorname{Tr}\left(A_{\alpha}\right) g\left(A_{\alpha} e_{i}, e_{j}\right)=0
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{i, j, k=1}^{n+1} S\left(e_{k}, e_{j}\right) g\left(\sigma\left(e_{k}, e_{i}\right), \sigma\left(e_{i}, e_{j}\right)\right) \\
&= \sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} S\left(e_{k}, e_{j}\right) g\left(A_{\alpha} e_{i}, e_{k}\right) g\left(A_{\alpha} e_{i}, e_{j}\right) \\
&= \sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} S\left(e_{k}, e_{j}\right) g\left(A_{\alpha} e_{k}, e_{i}\right) g\left(A_{\alpha} e_{j}, e_{i}\right) \\
&= \sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} S\left(e_{k}, e_{j}\right) g\left(A_{\alpha} e_{k}, A_{\alpha} e_{j}\right) \tag{4.27}\\
&= \sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} \frac{1}{4}[n(c-3)-(c+1)] g\left(e_{k}, e_{j}\right) g\left(A_{\alpha} e_{k}, A_{\alpha} e_{j}\right) \\
&-\frac{1}{4}(n-1)(c+1) g\left(A_{\alpha} e_{k}, A_{\alpha} e_{j}\right) \\
& \quad-\sum_{\alpha=n+2}^{2 n+1} g\left(A_{\alpha} e_{k}, A_{\alpha} e_{j}\right) g\left(A_{\alpha} e_{k}, A_{\alpha} e_{j}\right) .
\end{align*}
$$

Moreover, using the equation (4.3), we have

$$
\begin{equation*}
\sum_{i, j, k=1}^{n+1} S\left(e_{k}, e_{k}\right) g\left(\sigma\left(e_{i}, e_{j}\right), \sigma\left(e_{i}, e_{j}\right)\right)=r\|\sigma\|^{2} \tag{4.28}
\end{equation*}
$$

Then, substituting equations (4.26) - (4.28) in (4.25), we obtain

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j, k=1}^{n+1} g\left(\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} \sigma\right)\left(e_{k}, e_{k}\right), \sigma\left(e_{i}, e_{j}\right)\right)+\frac{r}{n}\|\sigma\|^{2}+\|\bar{\nabla} \sigma\|^{2} \tag{4.29}
\end{equation*}
$$

Putting $H^{\alpha}=\sum_{k=1}^{n+1} \sigma_{k k}^{\alpha}$, the equation (4.29) turns into

$$
\begin{equation*}
\frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\sum_{i, j, k=1}^{n+1} \sum_{\alpha=n+2}^{2 n+1} \sigma_{i j}^{\alpha}\left(\bar{\nabla}_{e_{i}} \bar{\nabla}_{e_{j}} H^{\alpha}\right)+\frac{r}{n}\|\sigma\|^{2}+\|\bar{\nabla} \sigma\|^{2} \tag{4.30}
\end{equation*}
$$

Furthermore, making use of the minimality condition, the equation (4.30) can be written as follows
(4.31) $\quad \frac{1}{2} \Delta\left(\|\sigma\|^{2}\right)=\frac{r}{n}\|\sigma\|^{2}+\|\bar{\nabla} \sigma\|^{2}$.

Consequently, comparing the right hand sides of the equations (4.4) and (4.31), we get

$$
\left(\frac{r}{n}-\frac{(n+1)(c-3)}{4}\right)\|\sigma\|^{2}+\sum_{\alpha, \beta=n+2}^{2 n+1}\left\{\left[\operatorname{Tr}\left(A_{\alpha} \circ A_{\beta}\right)\right]^{2}+\left\|\left[A_{\alpha}, A_{\beta}\right]\right\|^{2}\right\}=0
$$

If $\frac{r}{n}-\frac{(n+1)(c-3)}{4} \geq 0$ then $\operatorname{Tr}\left(A_{\alpha} \circ A_{\beta}\right)=0$. In particular, $\left\|A_{\alpha}\right\|^{2}=\operatorname{Tr}\left(A_{\alpha} \circ A_{\alpha}\right)=0$, thus $\sigma=0$. Therefore, our theorem is proved.

References

[1] Asperti, A. C., Lobos, G. A. and Mercuri, F. Pseudo-parallel immersions in space forms, Math. Contemp. 17, 59-70, 1999.
[2] Asperti, A. C., Lobos, G. A. and Mercuri, F. Pseudo-parallel submanifolds of a space form, Adv. Geom. 2 (1), 57-71, 2002.
[3] Blair, D. E. Riemannian Geometry of Contact and Symplectic Manifolds (Progress in Mathematics, 203, Birkhauser Inc., Boston, MA, 2002).
[4] Chen, B. Y. Geometry of Submanifolds and its Applications (Science University of Tokyo, Tokyo, 1981).
[5] Deszcz, R. On pseudosymmetric spaces, Bull. Soc. Belg. Math., Ser. A, 44, 1-34, 1992.
[6] Deszcz, R., Verstraelen, L. and Yaprak, S. Pseudosymmetric hypersurfaces in 4-dimensional space of constant curvature, Bull. Ins. Math. Acad. Sinica, 22, 167-179, 1994.
[7] Kenmotsu, K. A class of almost contact Riemannian manifolds, Tôhoku Math. J. 24 (2), 93-103, 1972.
[8] Kobayashi, M. Semi-invariant submanifolds of a certain class of almost contact manifolds, Tensor (N.S.) 43, 28-36, 1986.
[9] Murathan, C., Arslan, K. and Ezentaş, R. Ricci Generalized Pseudo-parallel Immersions (Differential Geometry and its Applications, Matfyzpress, Prague, 2005), 99-108.
[10] Özgür, C., Sular, S. and Murathan, C. On pseudoparallel invariant submanifolds of contact metric manifolds, Bull. Transilv. Univ. Braşov Ser. B (N.S.) 14 (49), 227-234, 2007.
[11] Sular, S., Özgür, C. and Murathan, C. On pseudoparallel, invariant submanifolds of Kenmotsu manifolds, Submitted.
[12] Yıldız, A., Murathan, C., Arslan, K. and Ezentaş, R. C-totally real pseudo-parallel submanifolds of Sasakian space forms, Monatshefte für Mathematik 151 (3), 247-256, 2007.
[13] Yıldız, A. and Murathan, C. Invariant submanifolds of Sasakian space forms, Journal of Geometry 95 (1-2), 135-150, 2009.

[^0]: *Department of Mathematics, Balıkesir University, 10145 Balıkesir, Turkey.
 E-mail: (S. Sular) csibel@balikesir.edu.tr (C. Özgür) cozgur@balikesir.edu.tr
 ${ }^{\dagger}$ Corresponding Author.
 ${ }^{\ddagger}$ Department of Mathematics, Uludağ University, 16059 Bursa, Turkey.
 E-mail: cengiz@uludag.edu.tr

