Pseudorandom Generators from One-Way Functions: A Simple Construction for Any Hardness

Thomas Holenstein
ETH Zurich, Department of Computer Science, CH-8092 Zurich
thomahol@inf.ethz.ch

Abstract

In a seminal paper, Håstad, Impagliazzo, Levin, and Luby showed that pseudorandom generators exist if and only if one-way functions exist. The construction they propose to obtain a pseudorandom generator from an n-bit one-way function uses $\mathcal{O}\left(n^{8}\right)$ random bits in the input (which is the most important complexity measure of such a construction). In this work we study how much this can be reduced if the one-way function satisfies a stronger security requirement. For example, we show how to obtain a pseudorandom generator which satisfies a standard notion of security using only $\mathcal{O}\left(n^{4} \log ^{2}(n)\right)$ bits of randomness if a one-way function with exponential security is given, i.e., a one-way function for which no polynomial time algorithm has probability higher than $2^{-c n}$ in inverting for some constant c. Using the uniform variant of Impagliazzo's hard-core lemma given in [7] our constructions and proofs are self-contained within this paper, and as a special case of our main theorem, we give the first explicit description of the most efficient construction from [6].

1 Introduction

A pseudorandom generator is a deterministic function which takes a uniform random bit string as input and outputs a longer bit string which cannot be distinguished from a uniform random string by any polynomial time algorithm. This concept, introduced in the fundamental papers of Yao [16] and Blum and Micali [1] has many uses. For example, it immediately gives a semantically secure cryptosystem: the input of the pseudorandom generator is the key of the cryptosystem, and the output is used as a one-time pad. Other uses of pseudorandom generators include the construction of pseudorandom functions 2, pseudorandom permutations [11, statistically binding bit commitment [13, and many more.

Such a pseudorandom generator can be obtained from an arbitrary one-way function, as shown in [6]. The given construction is not efficient enough to be used in practice, as it requires $\mathcal{O}\left(n^{8}\right)$ bits of input randomness (for example, if one would like to have approximately the security of a one-way function with $n=100$ input bits, the resulting pseudorandom generator would need several
petabits of input, which is clearly impractical). On the other hand, it is possible to obtain a pseudorandom generator very efficiently from an arbitrary one-way permutation [4] or from an arbitrary regular one-way function [3] (see also [5]), i.e., a one-way function where every image has the same number of preimages. In other words, if we have certain guarantees on the combinatorial structure of the one-way function, we can get very efficient reductions.

In this paper we study the question whether a pseudorandom generator can be obtained more efficiently under a stronger assumption on the computational difficulty of the one-way function. In particular, assume that the one-way function is harder to invert than usually assumed. In this case, one single invocation of the one-way function could be more useful, and fewer invocations might be needed. We will see that is indeed the case, even if the pseudorandom generator is supposed to inherit a stronger security requirement from the one-way function, and not only if it is supposed to satisfy the standard security notion.

2 Overview of the Construction

The construction given in [6] uses several stages: first the one-way function is used to construct a false entropy generator, i.e., a function whose output is computationally indistinguishable from a distribution with more entropy. (This is the technically most difficult part of the construction and the security proof can be significantly simplified by using the uniform hard-core lemma from [7].) Next, the false entropy generator is used to construct a pseudoentropy generator (a function whose output is computationally indistinguishable from a distribution which has more entropy than the input), and finally a pseudorandom generator is built on top of that. If done in this way, their construction is very inefficient (requiring inputs of length $\mathcal{O}\left(n^{34}\right)$), but it is also sketched in 6] how to "unroll" the construction in order to obtain an $\mathcal{O}\left(n^{10}\right)$ construction. Similarly it is mentioned that an $\mathcal{O}\left(n^{8}\right)$ construction is possible (by being more careful).

Fig. 1. Overview of our construction.

In this work we explicitly describe an $\mathcal{O}\left(n^{8}\right)$ construction (in an unrolled version the construction we describe is the one sketched in [6]). Compared to [6]
we choose a different way of presenting this construction; namely we use a twostep approach (see Figure 1). First, (in Section 4) we use the one-way function to construct a pair (g, P) where g is an efficiently evaluable function and P is a predicate. The pair will satisfy that predicting $P(x)$ from $g(x)$ is computationally difficult (in particular, more difficult than it would be information theoretically). In 5 the term pseudo-entropy pair is coined for such a pair and we will use this term as well. In a second step we use many instances of such a pseudo-entropy pair to construct a pseudorandom generator.

Further, we generalize the construction to the case where stronger security guarantees on the one-way function are given. This enables us to give more efficient reductions under stronger assumptions.

Indepenently of this work, Haitner, Harnik, and Reingold [5] give a better method to construct a pseudo-entropy pair from a one-way function. Their construction has the advantage that the entropy of $P(x)$ given $g(x)$ can be estimated, which makes the construction of the pseudorandom generator from the pseudo-entropy pair more efficient.

3 Definitions and Result

3.1 Definitions and Notation

Definition 1. A one-way function with security $s(n)$ against $t(n)$-bounded inverters is an efficiently evaluable family of functions $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ such that for any algorithm running in time at most $t(n)$

$$
\operatorname{Pr}_{x \leftarrow R\{0,1\}^{n}}[f(A(f(x)))=f(x)]<\frac{1}{s(n)}
$$

for all but finitely many n.
For example the standard notion of a one-way function is a function which is one-way with security $p(n)$ against $p(n)$-bounded inverters for all polynomials $p(n)$.

In [15] it is shown that a random permutation is $2^{n / 10}$-secure against $2^{n / 5}$ bounded inverters, and also other reasons are given why it is not completely unreasonable to assume the existence of one-way permutations with exponential security. In our main theorem we can use one-way functions with exponential security, a weaker primitive than such permutations.

Definition 2. A pseudorandom-generator with security $s(\ell)$ against $t(\ell)$-bounded distinguishers is an efficiently evaluable family of (expanding) functions $h:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell+1}$ such that for any algorithm running in time at most $t(\ell)$

$$
\left|\operatorname{Pr}_{x \leftarrow R\{0,1\}^{\ell}}[A(h(x))=1]-\operatorname{Pr}_{u \leftarrow R\{0,1\}^{\ell+1}}[A(u)=1]\right| \leq \frac{1}{s(\ell)},
$$

for all but finitely many ℓ.

The standard notion of a pseudorandom generator is a pseudorandom generator with security $p(\ell)$ against $p(\ell)$-bounded distinguishers, for all polynomials $p(\ell)$.

As mentioned above, we use pseudo-entropy pairs as a step in our construction. For such a pair of functions we first define the advantage an algorithm A has in predicting $P(w)$ from $g(w)$ (by convention, we use the letter w to denote the input here).

Definition 3. For any algorithm A, any function $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and any predicate $P:\{0,1\}^{n} \rightarrow\{0,1\}$, the advantage of A in predicting P given g is

$$
\operatorname{Adv}^{A}(g, P):=2\left(\operatorname{Pr}_{w \leftarrow R\{0,1\}^{n}}[A(g(w))=P(w)]-\frac{1}{2}\right) .
$$

The following definition of a pseudo-entropy pair contains (somewhat surprisingly) the conditioned entropy $H(P(W) \mid g(W))$; we give an explanation below.

Definition 4. A pseudo-entropy pair with gap $\phi(n)$ against $t(n)$-bounded predictors is a pair (g, P) of efficiently evaluable functions $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and $P:\{0,1\}^{n} \rightarrow\{0,1\}$ such that for any algorithm A running in time $t(n)$

$$
\operatorname{Adv}^{A}(g, P) \leq 1-H(P(W) \mid g(W))-\phi,
$$

for all but finitely many n (where W is uniformly distributed over $\{0,1\}^{n}$).
The reader might think that it would be more natural if we used the best advantage for computationally unbounded algorithms (i.e., the information theoretic advantage), instead of $1-H(P(W) \mid g(W))$. Then ϕ would be the gap which comes from the use of $t(n)$-bounded predictors. We quickly explain why we chose the above definition. First, to get an intuition for the expression $1-H(P(W) \mid g(W))$, assume that the pair (g, P) has the additional property that for every input $w, g(w)$ either fixes $P(w)$ completely or does not give any information about it, i.e., for a fixed value v either $H(P(W) \mid g(W)=v)=1$ or $H(P(W) \mid g(W)=v)=0$ holds. Then, a simple computation shows that $1-H(P(W) \mid g(W))$ is a tight upper bound on the advantage of computationally unbounded algorithms, i.e., in this case our definition coincides with the above "more natural definition". We mention here that the pairs (g, P) we construct will be close to pairs which have this property. If there are values v such that $0<H(P(W) \mid g(W)=v)<1$, the expression $1-H(P(W) \mid g(W))$ is not an upper bound anymore and in fact one might achieve significantly greater advantage than $1-H(P(W) \mid g(W))$. Therefore in this case, Definition 4 requires something stronger than the "more natural definition", and, consequently, constructing a pseudorandom generator from a pseudo-entropy pair becomes easier ${ }^{1}$

We use \| to denote concatenation of strings, ax denotes the multiplication of bitstrings a and x over $\operatorname{GF}\left(2^{n}\right)$ (with an arbitrary representation), and $\left.x\right|_{\lambda}$

[^0]denotes the first $\lfloor\lambda\rfloor$ bits of the bit string x. For fixed x and $\bar{x}, x \neq \bar{x}$, the probability that $\left.(a x)\right|_{i}$ equals $\left.(a \bar{x})\right|_{i}$ for uniformly chosen a can be computed as
\[

$$
\begin{equation*}
\operatorname{Pr}_{a \leftarrow\{0,1\}^{n}}\left[\left.(a x)\right|_{i}=\left.(a \bar{x})\right|_{i}\right]=\operatorname{Pr}_{a \leftarrow\{0,1\}^{n}}\left[\left.(a(x-\bar{x}))\right|_{i}=0^{i}\right]=2^{-i} \tag{1}
\end{equation*}
$$

\]

an expression we will use later.
For bitstrings x and r of the same length n we use $x \odot r:=\bigoplus_{i=1}^{n} x_{i} r_{i}$ for the inner product. We use the convention that $f^{-1}(y):=\left\{x \in\{0,1\}^{n} \mid f(x)=y\right\}$, i.e., f^{-1} returns a set.

For two distributions $P_{X_{0}}$ and $P_{X_{1}}$ over \mathcal{X} the statistical distance is

$$
\Delta\left(X_{0}, X_{1}\right):=\frac{1}{2} \sum_{x \in \mathcal{X}}\left|P_{X_{0}}(x)-P_{X_{1}}(x)\right|
$$

We also say that a distribution is ε-close to another distribution if the statistical distance of the distributions is at most ε. For a distribution P_{X} over \mathcal{X} the min-entropy is $H_{\infty}(X):=-\log \left(\max _{x \in \mathcal{X}} P_{X}(x)\right)$. For joint distributions $P_{X Y}$ over $\mathcal{X} \times \mathcal{Y}$ the conditional min-entropy is defined with $H_{\infty}(X \mid Y):=$ $\min _{y \in \mathcal{Y}} H_{\infty}(X \mid Y=y)$.

Finally, we define $[n]:=\{1, \ldots, n\}$.

3.2 Result

We give a general construction of a pseudorandom generator from a one-way function. The construction is parametrized by two parameters ε and ϕ. The parameter ε should be chosen such that it is smaller than the target indistinguishability of the pseudorandom generator: an algorithm which distinguishes the output of the pseudorandom generator with advantage less than ε will not help us in inverting f. The second parameter ϕ should be chosen such that the given one-way function cannot be inverted with probability more than about $2^{-n \phi}$ (as an example, for standard security notions choosing $\phi=\frac{1}{n}$ and $\varepsilon=2^{-n}$ would be reasonable - these should be considered the canonical choices).

Theorem 1. Let functions $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, \phi: \mathbb{N} \rightarrow[0,1], \varepsilon: \mathbb{N} \rightarrow[0,1]$ be given, computable in time poly (n), and satisfying $2^{-n} \leq \varepsilon \leq \frac{1}{n} \leq \phi$.

There exists an efficient to evaluate oracle function $h_{\varepsilon, \phi}^{f}$ with the following properties:
$-h_{\varepsilon, \phi}^{f}$ is expanding,

- $h_{\varepsilon, \phi}^{f}$ has input of length $\mathcal{O}\left(\frac{n^{4}}{\phi^{4}} \log \left(\frac{1}{\varepsilon}\right)\right)$, and
- an algorithm A which distinguishes the output of $h_{\varepsilon, \phi}^{f}$ from a uniform bit string with advantage γ can be used to get an oracle algorithm which inverts f with probability $\mathcal{O}\left(\frac{1}{n^{3}}\right) 2^{-n \phi}$, using $\operatorname{poly}\left(n, \frac{1}{\gamma-\varepsilon}\right)$ calls to A.

For example, if we set $\phi:=\log (n) / n$ and $\varepsilon:=n^{-\log (n)}=2^{-\log ^{2}(n)}$ and use a standard one-way function in the place of f, then $h_{\varepsilon, \phi}^{f}$ will be a standard pseudorandom generator, using $\mathcal{O}\left(n^{8}\right)$ bits 2 of randomness.
Corollary 1. Assume that $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a one-way function with security $p(n)$ against $p(n)$-bounded inverters, for all polynomials $p(n)$. Then there exists a pseudorandom generator $h:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell+1}$ with security $p(\ell)$ against $p(\ell)$-bounded distinguishers, for all polynomials $p(\ell)$. The construction calls the one-way function for one fixed n dependent of ℓ and satisfies $\ell \in \mathcal{O}\left(n^{8}\right)$.

Alternatively if we have a much stronger one-way function which no polynomial time algorithm can invert with better probability than $2^{-c n}$ for some constant c, we can set ϕ to some appropriate small constant and $\varepsilon:=n^{-\log (n)}$, which gives us a pseudorandom generator using $\mathcal{O}\left(n^{4} \log ^{2}(n)\right)$ bits of input:
Corollary 2. Assume that $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ is a one-way function with security $2^{-c n}$ against $p(n)$-bounded inverters, for some constant c and all polynomials $p(n)$. Then there exists a pseudorandom generator $h:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell+1}$ with security $p(\ell)$ against $p(\ell)$-bounded distinguishers, for all polynomials $p(\ell)$. The construction calls the one-way function for one fixed n dependent of ℓ, and satisfies $\ell \in \mathcal{O}\left(n^{4} \log ^{2}(n)\right)$.

If we want a pseudorandom generator with stronger security we set ε smaller in our construction. For example, if a one-way function f has security $2^{c n}$ against $2^{c n}$ bounded distinguishers, we set ϕ (again) to an appropriate constant and $\varepsilon:=2^{-n}$. With these parameters our construction needs $\mathcal{O}\left(n^{5}\right)$ input bits, and, for an appropriate constant d, an algorithm with distinguishing advantage $2^{-d n}$, and running in time $2^{d n}$, can be used to get an inverting algorithm which contradicts the assumption about f. (A corollary similar to the ones before could be formulated here).

The proof of Theorem 1 is in two steps (see Figure 1). In Section 4 we use the Goldreich-Levin Theorem and two-universal hash-functions to obtain a pseudoentropy pair. In Section 5 we show how such a pair can be used to obtain a pseudorandom generator.

3.3 Extractors

Informally, an extractor is a function which can extract a uniform bit string from a random string with sufficient min-entropy. The following well known left-over hash lemma from [10] shows that multiplication over $\mathrm{GF}\left(2^{n}\right)$ with a randomly chosen string a and then cutting off an appropriate number of bits can be used to extract randomness. For completeness we give a proof (adapted from [12]).
Lemma 1 (Left-over hash lemma). Let $x \in\{0,1\}^{n}$ be chosen according to any source with min-entropy λ. Then, for any $\varepsilon>0$, and uniform random a, the distribution of $\left(\left.(a x)\right|_{\lambda-2 \log \left(\frac{1}{\varepsilon}\right)} \| a\right)$ is $\frac{\varepsilon}{2}$-close to a uniform bit string of length $\left\lfloor\lambda-2 \log \left(\frac{1}{\varepsilon}\right)\right\rfloor+n$.

[^1]Proof. Let $m:=\left\lfloor\lambda-2 \log \left(\frac{1}{\varepsilon}\right)\right\rfloor$, and $P_{V A}$ be the distribution of $\left.(a x)\right|_{m} \| a$. Further, let P_{U} be the uniform distribution over $\{0,1\}^{m+n}$. Using the Cauchy-Schwartz inequality $\left(\sum_{i=1}^{k} a_{i}\right)^{2} \leq k \sum_{i=1}^{k} a_{i}^{2}$ we obtain for the statistical distance in question

$$
\begin{align*}
\Delta(V A, U) & =\frac{1}{2} \sum_{v \in\{0,1\}^{m}, a \in\{0,1\}^{n}}\left|P_{V A}(v, a)-\frac{1}{2^{n} 2^{m}}\right| \\
& \leq \frac{1}{2} \sqrt{2^{n} 2^{m}} \sqrt{\sum_{v, a} P_{V A}^{2}(v, a)-2 \sum_{v, a} \frac{P_{V A}(v, a)}{2^{n} 2^{m}}+\sum_{v, a}\left(\frac{1}{2^{n} 2^{m}}\right)^{2}} \\
& =\frac{1}{2} \sqrt{2^{n} 2^{m}} \sqrt{\sum_{v, a} P_{V A}^{2}(v, a)-\frac{1}{2^{n} 2^{m}}} . \tag{2}
\end{align*}
$$

Let now X_{0} and X_{1} be independently distributed according to P_{X} (i.e., the source with min-entropy λ). Further, let A_{0} and A_{1} be independent over $\{0,1\}^{n}$. The collision probability of the output distribution is

$$
\operatorname{Pr}\left[\left(\left.\left(X_{0} A_{0}\right)\right|_{m} \| A_{0}\right)=\left(\left.\left(X_{1} A_{1}\right)\right|_{m} \| A_{1}\right)\right]=\sum_{v, a} P_{V A}^{2}(v, a)
$$

Thus we see that equation (2) gives an un upper bound on $\Delta(V A, U)$ in terms of the collision probability of two independent invocations of the hash-function on two independent samples from the distribution P_{X}. We can estimate this collision probability as follows:

$$
\begin{align*}
\operatorname{Pr} & {\left[\left(\left.\left(X_{0} A_{0}\right)\right|_{m} \| A_{0}\right)=\left(\left.\left(X_{1} A_{1}\right)\right|_{m} \| A_{1}\right)\right] } \\
& =\operatorname{Pr}\left[A_{0}=A_{1}\right] \operatorname{Pr}\left[\left.\left(X_{0} A_{0}\right)\right|_{m}=\left.\left(X_{1} A_{0}\right)\right|_{m}\right] \\
& \leq \operatorname{Pr}\left[A_{0}=A_{1}\right]\left(\operatorname{Pr}\left[X_{0}=X_{1}\right]+\operatorname{Pr}\left[\left.\left(X_{0} A_{0}\right)\right|_{m}=\left.\left(X_{1} A_{0}\right)\right|_{m} \mid X_{0} \neq X_{1}\right]\right) \\
& \leq \frac{1}{2^{n}}\left(\frac{1}{2^{m+2 \log (1 / \varepsilon)}}+\frac{1}{2^{m}}\right)=\frac{1+\varepsilon^{2}}{2^{n} 2^{m}} \tag{3}
\end{align*}
$$

where we used (1) in the last inequality. We now insert (3) into (2) and get $\Delta(V A, U) \leq \frac{\varepsilon}{2}$.

Using the usual definition of an extractor, the above lemma states that multiplying with a random element of $\mathrm{GF}\left(2^{n}\right)$ and then cutting off the last bits is a strong extractor. Consequently, we will sometimes use the notation $\operatorname{Ext}_{m}(x, a)$ to denote the function $\operatorname{Ext}_{m}(x, a):=\left.(a x)\right|_{m} \| a$, extracting $\lfloor m\rfloor$ bits from x.

Further we use the following proposition on independent repetitions from [8, which is a quantitative version of the statement that for k independent repetitions of random variables, the min-entropy of the resulting concatenation is roughly k times the (Shannon-)entropy of a single instance (assuming k large enough and tolerating a small probability that something improbable occured). A similar lemma with slightly weaker parameters is given in [10] (the latter would be sufficient for our application, but the expression from [8] is easier to use).

Proposition 1. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ i.i.d. according to $P_{X Y}$. For any ε there exists a distribution $P_{\bar{X} \bar{Y}}$ which has statistical distance at most $\frac{\varepsilon}{2}$ from $\left(X_{1}, \ldots, X_{k}, Y_{1}, \ldots, Y_{k}\right)$ and satisfies

$$
H_{\infty}(\bar{X} \mid \bar{Y}) \geq k H(X \mid Y)-6 \sqrt{k \log (1 / \varepsilon)} \log (|\mathcal{X}|)
$$

We can combine the above propositions as follows:
Lemma 2. Let k, ε with $k>\log (1 / \varepsilon)$ be given. Let $\left(X_{1}, Y_{1}\right), \ldots,\left(X_{k}, Y_{k}\right)$ i.i.d. according to $P_{X Y}$ over $\mathcal{X} \times \mathcal{Y}$ with $\mathcal{X} \subseteq\{0,1\}^{n}$. Let A be uniform over $\{0,1\}^{k n}$.

Then,

$$
\operatorname{Ext}_{k H(X \mid Y)-8 \log (|\mathcal{X}|) \sqrt{k \log (1 / \varepsilon)}}\left(X_{1}\|\cdots\| X_{k}, A\right)\left\|Y_{1}\right\| \cdots \| Y_{k}
$$

is ε-close to $U \times Y^{k}$, where U is an independent uniform chosen bitstring of length $\lfloor k H(X \mid Y)-8 \log (|\mathcal{X}|) \sqrt{k \log (1 / \varepsilon)}\rfloor+k n$.

Proof. Combine Lemma 1 and Proposition 1.

4 A Pseudo-entropy Pair from any One-way Function

The basic building block we use to get a pseudo-entropy pair is the following theorem by Goldreich and Levin [4] (recall that $x \odot r=x_{1} r_{1} \oplus \cdots \oplus x_{n} r_{n}$ is the inner product of x and r):

Proposition 2 (Goldreich-Levin). There is an oracle algorithm $B^{(\cdot)}$ such that for any $x \in\{0,1\}^{n}$ and any oracle A satisfying

$$
\operatorname{Pr}_{r \leftarrow R\{0,1\}^{n}}[A(r)=x \odot r] \geq \frac{1}{2}+\gamma
$$

B^{A} does $\mathcal{O}\left(\frac{n}{\gamma^{2}}\right)$ queries to A and then efficiently outputs a list of $\mathcal{O}\left(\frac{1}{\gamma^{2}}\right)$ elements such that x is in the list with probability $\frac{1}{2}$.

This proposition implies that for any one-way function f, no efficient algorithm will be able to predict $x \odot r$ from $f(x)$ and r much better than random guessing, as otherwise the one-way function can be broken.

This suggests the following method to get a pseudo-entropy pair: if we define $g(x, r):=f(x) \| r$ and $P(x, r):=x \odot r$, then predicting $P(x, r)$ from $g(x, r)$ is computationally hard. The problem with this approach is that since $f(x)$ may have many different preimages, $H(P(X, R) \mid g(X, R)) \approx 1$ is possible. In this case, $P(x, r)$ would not only be computationally unpredictable, but also information theoretically unpredictable, and thus (g, P) will not be a pseudo-entropy pair.

The solution of this problem (as given in [6]), is that one additionally extracts some information of the input x to f; the amount of information extracted is also random. The idea is that in case one is lucky and extracts roughly
$\log \left(\left|f^{-1}(f(x))\right|\right)$ bits, then these extracted bits and $f(x)$ fix x in an information theoretic way, but computationally $x \odot r$ is still hard to predict because of Proposition 2

Thus, we define functions $g:\{0,1\}^{4 n} \rightarrow\{0,1\}^{m+4 n}$ and $P:\{0,1\}^{4 n} \rightarrow\{0,1\}$ as follows (where $i \in[n]$ is a number ${ }^{3}, x, a$, and r are bitstrings, and we ignore padding which should be used to get ($a x)\left.\right|_{i}$ to length n)

$$
\begin{align*}
g(x, i, a, r) & :=f(x)\|i\| a\left\|\left.(a x)\right|_{i}\right\| r \tag{4}\\
P(x, i, a, r) & :=x \odot r . \tag{5}
\end{align*}
$$

We will alternatively write $g(w)$ and $P(w)$, i.e., we use w as an abbreviation for (x, i, a, r). We will prove that (g, P) is a pseudo-entropy pair in case f is a one-way function. Thus we show that no algorithm exceeds advantage $1-$ $H(P(W) \mid g(W))-\phi$ in predicting $P(w)$ from $g(w)$ (the gap ϕ does not appear in the construction, but the pair will have a bigger gap if the one-way function satisfies as stronger security requirement, as we will see).

We first give an estimate on $H(P(W) \mid g(W))$. The idea is that we can distinguish two cases: either $i \geq \log \left(\left|f^{-1}(f(x))\right|\right)$, in which case $H(P(W) \mid g(W)) \approx 0$, since $\left.(a x)\right|_{i}, a$, and $f(x)$ roughly fix x, or $i<\log \left(\left|f^{-1}(f(x))\right|\right)$, in which case $H(P(W) \mid g(W)) \approx 1$.
Lemma 3. For the functions g and P as defined above

$$
H(P(W) \mid g(W)) \leq \frac{\mathrm{E}_{x \leftarrow R\{0,1\}^{n}}\left[\log \left(\left|f^{-1}(f(x))\right|\right)\right]+2}{n}
$$

Proof. From (1) and the union bound we see that if $i>\log \left(\left|f^{-1}(y)\right|\right)$ the probability that x is not determined by the output of g is at most $2^{-\left(i-\log \left(\left|f^{-1}(y)\right|\right)\right)}$. This implies $H(P(W) \mid g(W), f(X)=y, I=i) \leq 2^{-\left(i-\log \left(\left|f^{-1}(y)\right|\right)\right)}$, and thus

$$
\begin{aligned}
H(P(W) \mid g(W)) & =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} H(P(W) \mid g(W), f(X)=f(x)) \\
& =\frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}} \frac{1}{n} \sum_{i=1}^{n} H(P(W) \mid g(W), f(X)=f(x), I=i) \\
& \leq \frac{1}{2^{n}} \sum_{x \in\{0,1\}^{n}}\left(\frac{\log \left(\left|f^{-1}(f(x))\right|\right)}{n}\right. \\
& \quad+\frac{1}{n} \sum_{i=\left\lceil\log \left(\left|f^{-1}(f(x))\right|\right)\right\rceil}^{2^{n}} \sum_{x \in\{0,1\}^{n}} \frac{\log \left(\left|f^{-1}(f(x))\right|\right)+2}{n}
\end{aligned}
$$

[^2]$$
=\frac{\mathrm{E}_{x \leftarrow R\{0,1\}^{n}}\left[\log \left(\left|f^{-1}(f(x))\right|\right)\right]+2}{n} .
$$

We can now show that (g, P) is a pseudo-entropy pair. For this, we show that any algorithm which predicts P from g with sufficient probability can be used to invert f. Recall that ϕ is usually $\frac{1}{n}$.

Lemma 4. Let $f:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$ and $\phi: \mathbb{N} \rightarrow[0,1]$ be computable in time $\operatorname{poly}(n)$. Let functions g and P be as defined above. There exists an oracle algorithm $B^{(\cdot)}$ such that, for any A which has advantage $\operatorname{Adv}^{A}\left(g^{f}, P^{f}\right) \geq 1-$ $H\left(P^{f}(W) \mid g^{f}(W)\right)-\phi$ in predicting P^{f} from g^{f}, B^{A} inverts f with probability $\Omega\left(\frac{1}{n^{3}}\right) 2^{-n \phi}$ and $\mathcal{O}\left(n^{3}\right)$ calls to A.

We find it convenient to present our proof using random experiments called "games", similar to the method presented in [14].

Proof. Assume that a given algorithm $A(y, i, a, z, r)$ has an advantage exceeding the bound in the lemma in predicting P from g. To invert a given input $y=f(x)$, we will choose i, a, and z uniformly at random. Then we run the GoldreichLevin algorithm using $A(y, i, a, z, \cdot)$, i.e., the Goldreich-Levin calls $A(y, i, a, z, r)$ for many different r, but always using the same y, i, a, and z. This gives us a list L containing elements from $\{0,1\}^{n}$. For every $\bar{x} \in L$ we check whether $f(\bar{x})=y$. If at least one $\bar{x} \in L$ satisfies this we succeeded in inverting f.

In order to see whether this approach is successful, we first define α to be the advantage of A for a fixed y, i, a and z in predicting $\bar{x} \odot r$ for a preimage \bar{x} of y :

$$
\alpha(y, i, a, z):=\max _{\bar{x} \in f^{-1}(y)}\left(2 \operatorname{Pr}_{r \leftarrow\{0,1\}^{n}}[A(y, i, a, z, r)=\bar{x} \odot r]-1\right) .
$$

We maximize over all possible $\bar{x} \in f^{-1}(y)$, since it is sufficient if the above method finds any preimage of y. We will set the parameters of the algorithm such that it succeeds with probability $\frac{1}{2}$ if $\alpha(y, i, a, z)>\frac{1}{4 n}$ (i.e., with probability $\frac{1}{2}$ the list returned by the algorithm contains \bar{x}). It is thus sufficient to show for uniformly chosen x, i, a, and z the inequality $\alpha(f(x), i, a, z)>\frac{1}{4 n}$ is satisfied with probability $\Omega\left(\frac{1}{n^{3}}\right) 2^{-n \phi}$.

Together with Lemma 3, the requirement of this lemma implies that in the following Game 0 the expectation of the output is at least $1-H\left(P^{f}(W) \mid g^{f}(W)\right)-$ $\phi \geq 1-\frac{1}{n} \mathrm{E}_{x}\left[\log \left(\left|f^{-1}(f(x))\right|\right)\right]-\frac{2}{n}-\phi$ (this holds even without the maximization in the definition of α and using $\bar{x}=x$ instead - clearly, the maximization cannot reduce the expected output of Game 0).

Game 0:

$$
\begin{aligned}
& x \leftarrow_{R}\{0,1\}^{n}, y:=f(x), i \leftarrow_{R}[n] \\
& a \leftarrow_{R}\{0,1\}^{n}, z:=\left.(a x)\right|_{i} \\
& \text { output } \alpha(y, i, a, z)
\end{aligned}
$$

Note that even though we can approximate $\alpha(y, i, a, z)$ we do not know how to compute the exact value in reasonable time. However, we do not worry about finding an efficient implementation of our games.

If i is much larger than $\log \left(\left|f^{-1}(y)\right|\right)$ then predicting $P(w)$ from $g(w)$ is not very useful in order to invert f, since $\left.(a x)\right|_{i}$ gives much information about x which we do not have if we try to invert y. Thus, we ignore the cases where i is much larger than $\log \left(\left|f^{-1}(y)\right|\right)$ in Game 1.

Game 1:

```
x \leftarrow\leftarrowR {0,1}}\mp@subsup{}}{}{n},y:=f(x),i\mp@subsup{\leftarrow}{R}{}[n
if i\leqlog(|f
    a\leftarrowR {0,1}}\mp@subsup{}{}{n},z:=(ax)\mp@subsup{|}{i}{
    output }\alpha(y,i,a,z
fi
output 0
```

It is not so hard to see that the probability that the if clause fails is at most $1-\frac{1}{n} E_{x}\left[\log \left(\left|f^{-1}(f(x))\right|\right)\right]-\frac{3}{n}-\phi$. Thus, in Game 1 the expectation of the output is at least $\frac{1}{n}$ (because the output only decreases in case the if clause fails, and in this case by at most one).

In Game 2, we only choose the first j bits of z as above, where j is chosen such that these bits will be $\frac{1}{4 n}$-close to uniform (this will be used later). We fill up the rest of z with the best possible choice; clearly, this cannot decrease the expectation of the output.

Game 2:

```
\(x \leftarrow_{R}\{0,1\}^{n}, y:=f(x), i \leftarrow_{R}[n]\)
    if \(i \leq \log \left(\left|f^{-1}(y)\right|\right)+n \phi+3\) then
        \(j:=\min \left(\left\lfloor\log \left(\left|f^{-1}(y)\right|\right)-2 \log (4 n)\right\rfloor, i\right)\)
        \(a \leftarrow_{R}\{0,1\}^{n}, z_{1}:=\left.(a x)\right|_{j}\)
        set \(z_{2} \in\{0,1\}^{j-i}\) such that \(\alpha\left(y, i, a, z_{1} \| z_{2}\right)\) is maximal
        output \(\alpha\left(y, i, a, z_{1} \| z_{2}\right)\)
fi
output 0
```

We now chose z_{1} uniformly at random. Lemma 1 implies that the statistical distance of the previous distribution of z_{1} to the uniform distribution (given a, i, and y but not x) is at most $\frac{1}{4 n}$. Thus, the expecation of the output is at least $\frac{1}{2 n}$.

Game 3:

```
\(x \leftarrow_{R}\{0,1\}^{n}, y:=f(x), i \leftarrow_{R}[n]\)
if \(i \leq \log \left(\left|f^{-1}(y)\right|\right)+n \phi+3\) then
    \(j:=\min \left(\left\lfloor\log \left(\left|f^{-1}(y)\right|\right)-2 \log (4 n)\right\rfloor, i\right)\)
    \(a \leftarrow_{R}\{0,1\}^{n}, z_{1} \leftarrow_{R}\{0,1\}^{j}\)
    set \(z_{2} \in\{0,1\}^{j-i}\) such that \(\alpha\left(y, i, a, z_{1} \| z_{2}\right)\) is maximal
    output \(\alpha\left(y, i, a, z_{1} \| z_{2}\right)\)
fi
output 0
```

As mentioned above, we will be satisfied if we have values $y, i, a,\left(z_{1} \| z_{2}\right)$ such that $\alpha\left(y, i, a, z_{1} \| z_{2}\right) \geq \frac{1}{4 n}$. In Game 4 , we thus do not compute the expectation of α anymore, but only output success if this is satisfied, and fail otherwise.

Game 4:

```
x \leftarrow}\mp@subsup{R}{R}{}{0,1\mp@subsup{}}{}{n},y:=f(x),i\mp@subsup{\leftarrow}{R}{}[n
if i\leqlog(|f}\mp@subsup{f}{}{-1}(y)|)+n\phi+3\mathrm{ then
    j:= min}(\lfloor\operatorname{log}(|\mp@subsup{f}{}{-1}(y)|)-2\operatorname{log}(4n)\rfloor,i
    a\leftarrowR {0,1}}\mp@subsup{}{}{n},\mp@subsup{z}{1}{}\mp@subsup{\leftarrow}{R}{}{0,1\mp@subsup{}}{}{j
    set }\mp@subsup{z}{2}{}\in{0,1\mp@subsup{}}{}{j-i}\mathrm{ such that }\alpha(y,i,a,\mp@subsup{z}{1}{}|\mp@subsup{z}{2}{})\mathrm{ is maximal
    if \alpha(y,i,a,z_||\mp@subsup{z}{2}{})>\frac{1}{4n}
            output success
        fi
fi
output fail
```

The usual Markov style argument shows that the probability that the output is success is at least $\frac{1}{4 n}$ (this is easiest seen by assuming otherwise and computing an upper bound on the expectation of the output in Game 3: it would be less than $\frac{1}{2 n}$).

In Game 5 , we choose all of z uniformly at random.

Game 5:

```
\(x \leftarrow_{R}\{0,1\}^{n}, y:=f(x), i \leftarrow_{R}[n]\)
if \(i \leq \log \left(\left|f^{-1}(y)\right|\right)+n \phi+3\) then
        \(a \leftarrow_{R}\{0,1\}^{n}, z \leftarrow_{R}\{0,1\}^{i}\)
        if \(\alpha(y, i, a, z)>\frac{1}{4 n}\)
            output success
        fi
fi
output fail
```

In Game 5 , we can assume that z is still chosen as $z_{1} \| z_{2}$. For z_{1}, the distribution is the same as in Game 4 , for z_{2}, we hope that we are lucky and choose it exactly as in Game 4. The length of z_{2} is at most $2 \log (4 n)+n \phi+3$, and thus this happens with probability at least $\frac{1}{128 n^{2}} 2^{-n \phi}$. Thus, in Game 4, with probability at least $\frac{1}{512 n^{3}} 2^{-n \phi}$ the output is success. As mentioned at the start of the proof, in this case running the Goldreich-Levin algorithm with parameter $\frac{1}{4 n}$ will invert f with probability $\frac{1}{2}$, which means that in total we have probability $\Omega\left(\frac{1}{n^{3}}\right) 2^{-n \phi}$ in inverting f.

5 A Pseudorandom Generator from a Pseudo-entropy Pair

We now show how we can obtain a pseudorandom generator from a pseudoentropy pair (g, P) as constructed in the last section. The idea here is that we use many (say k) parallel copies of the function g. We can then extract about
$k H(g(W))$ bits from the concatenated outputs of g, about $k H(W \mid g(W) P(W))$ bits from the concatenated inputs, and about $k(H(P(W) \mid g(W))+\phi)$ bits from the concatenated outputs of P. Using the identity $H(g(W))+H(P(W) \mid g(W))+$ $H(W \mid g(W) P(W))=H(W)$, we can see that this will be expanding, and we can say that the $k \phi$ bits of pseudorandomness from P are used to get the expanding property of h.

The key lemma in order to prove the security of the construction is the following variant of Impagliazzo's hard-core lemma [9] proven in [7] For a set \mathcal{T} let $\chi_{\mathcal{T}}$ be the characteristic function of \mathcal{T} :

$$
\chi_{\mathcal{T}}(x):= \begin{cases}1 & x \in \mathcal{T} \\ 0 & x \notin \mathcal{T} .\end{cases}
$$

Proposition 3 (Uniform Hard-Core Lemma). Assume that the given functions $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}, P:\{0,1\}^{n} \rightarrow\{0,1\}, \delta: \mathbb{N} \rightarrow[0,1]$ and $\gamma: \mathbb{N} \rightarrow[0,1]$ are computable in time $\operatorname{poly}(n)$, where δ is noticeable and $\gamma>2^{-n / 3}$.

Further, assume that there exists an oracle algorithm $A^{(\cdot)}$ such that, for infinitely many n, the following holds: for any set $\mathcal{T} \subseteq\{0,1\}^{n}$ with $|\mathcal{T}| \geq \delta 2^{n}$, $A^{\chi \tau}$ outputs a circuit C satisfying

$$
\mathrm{E}\left[\operatorname{Pr}_{x \leftarrow R} \mathcal{T}[C(g(x))=P(x)]\right] \geq \frac{1+\gamma}{2}
$$

(where the expectation is over the randomness of A).
Then, there is an algorithm B which calls A as a black box poly $\left(\frac{1}{\gamma}, n\right)$ times, such that

$$
\operatorname{Adv}^{B}(g, P) \geq 1-\delta
$$

for infinitely many n. The runtime of B is bounded by poly $\left(\frac{1}{\gamma}, n\right)$ times the runtime of A.

The advantage of using Proposition 3 is as follows: in order to get a contradiction, we will use a given algorithm A as oracle to contradict the hardness of a pseudo-entropy pair, i.e., we will give B such that $\operatorname{Adv}^{B}(g, P) \geq 1-$ $H(P(W) \mid g(W))-\phi$. Proposition 3 states that for this it is sufficient to show how to get circuits which perform slightly better than random guessing on a fixed set of size $2^{n}(H(P(W) \mid g(W))+\phi)$, given access to a description of this set. Often, this is a much simpler task.

In the following construction of a pseudorandom generator from a pseudoentropy pair we assume that parameters ε and ϕ are provided (thus they reappear in Theorem(1). The parameter ε describes how much we lose in the indistinguishability (by making our extractors imperfect), while ϕ is the gap of the pseudo-entropy pair.

[^3]Further we assume that parameters α and β are known which give certain information about the combinatorial structure of the given predicate. We will get rid of this assumption later by trying multiple values for α and β such that one of them must be correct ${ }^{5}$

Lemma 5. Let g and P be efficiently evaluable functions, $g:\{0,1\}^{n} \rightarrow\{0,1\}^{m}$, $P:\{0,1\}^{n} \rightarrow\{0,1\}, \varepsilon:[0,1] \rightarrow \mathbb{N}$, and $\phi:[0,1] \rightarrow \mathbb{N}$ be computable in polynomial time, $\phi>\frac{1}{n}$. Assume that parameters α and β are such that

$$
\begin{aligned}
& \alpha \leq H(P(W) \mid g(W)) \leq \alpha+\phi / 4 \\
& \beta \leq H(g(W)) \leq \beta+\phi / 4
\end{aligned}
$$

There is an efficient to evaluate oracle function $h_{\alpha, \beta, \varepsilon, \phi}^{g}$ with the following properties:

- $h_{\alpha, \beta, \varepsilon, \phi}^{g}$ is expanding,
- $h_{\alpha, \beta, \varepsilon, \phi}^{g}$ has inputs of length $\mathcal{O}\left(n^{3} \frac{1}{\phi^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$, and
- any algorithm A which distinguishes the output of $h_{\alpha, \beta, \varepsilon, \phi}^{g}$ from a uniform bit string with advantage γ can be used to get an oracle algorithm B^{A} satisfying $\operatorname{Adv}^{B}(g, P) \geq 1-H(P(W) \mid g(W))-\phi$ which does poly $\left(\frac{1}{\gamma-\varepsilon}, n\right)$ calls to A.

Proof. Let $k:=4096 \cdot\left(\frac{n}{\phi}\right)^{2} \cdot \log \left(\frac{3}{\varepsilon}\right)$ be the number of repetitions (this is chosen such that

$$
\begin{equation*}
\frac{k \phi}{8}=512 \frac{n^{2}}{\phi} \log \left(\frac{3}{\varepsilon}\right)=8 n \sqrt{k \log \left(\frac{3}{\varepsilon}\right)} \tag{6}
\end{equation*}
$$

which we use later). To simplify notation we set $\lambda:=n-\alpha-\beta-\phi / 2$. Using the notation $w^{k}:=w_{1}\|\ldots\| w_{k}, g^{(k)}\left(w^{k}\right):=g\left(w_{1}\right)\|\ldots\| g\left(w^{k}\right)$ and $P^{(k)}\left(w^{k}\right):=$ $P\left(w_{1}\right)\|\ldots\| P\left(w_{k}\right)$, the function $h_{\alpha, \beta, \varepsilon, \phi}$ is defined as

$$
\begin{aligned}
& h_{\alpha, \beta, \varepsilon, \phi}\left(w^{k}, s_{1}, s_{2}, s_{3}\right):= \\
& \operatorname{Ext}_{k(\beta-\phi / 8)}\left(g^{(k)}\left(w^{k}\right), s_{1}\right)\left\|\operatorname{Ext}_{k(\alpha+7 \phi / 8)}\left(P^{(k)}\left(w^{k}\right), s_{2}\right)\right\| \operatorname{Ext}_{k(\lambda-\phi / 8)}\left(w^{k}, s_{3}\right)
\end{aligned}
$$

Clearly, the input length is $\mathcal{O}\left(n^{3} \frac{1}{\phi^{2}} \log \left(\frac{1}{\varepsilon}\right)\right)$. We further see by inspection that, excluding the additional randomness s_{1}, s_{2}, and s_{3}, the function h maps $k n$ bits to at least $k(\alpha+\beta+\lambda)+5 k \frac{\phi}{8}-3=k\left(n-\frac{\phi}{2}\right)+k \frac{5 \phi}{8}-3=k\left(n+\frac{\phi}{8}\right)-3>k n$ bits. Since the additional randomness is also completely contained in the output, $h_{\alpha, \beta, \varepsilon, \phi}$ is expanding for almost all n.

We now show that an algorithm A which has advantage γ in distinguishing $h_{\alpha, \beta, \varepsilon, \phi}\left(w^{k}, s_{1}, s_{2}, s_{3}\right)$ from a uniform bit string of the same length can be used to predict $P(w)$ given $g(w)$ as claimed above. Per definition the probability that the output is true in the following game is at least $\frac{1+\gamma}{2}$.

[^4]
Game 0:

$$
\begin{aligned}
& \left(w_{1}, \ldots, w_{k}\right) \leftarrow_{R}\{0,1\}^{n k} \\
& b \leftarrow_{R}\{0,1\} \\
& \text { if } b=0 \text { then (Run A with the output of } h \text {) } \\
& s_{1} \leftarrow_{R}\{0,1\}^{m k}, v_{1}:=\operatorname{Ext}_{k(\beta-\phi / 8)}\left(g^{(k)}\left(w^{k}\right), s_{1}\right) \\
& s_{2} \leftarrow_{R}\{0,1\}^{k}, v_{2}:=\operatorname{Ext}_{k(\alpha+7 \phi / 8)}\left(P^{(k)}\left(w^{k}\right), s_{2}\right) \\
& s_{3} \leftarrow_{R}\{0,1\}^{n k}, v_{3}:=\operatorname{Ext}_{k(\lambda-\phi / 8)}\left(w^{k}, s_{3}\right)
\end{aligned}
$$

We now make two transition based on statistical indistinguishability. First, we replace the last part v_{3} in the $i f$-clause of Game 0 with uniform random bits. Because $H(W \mid g(W) P(W))=H(W)-H(g(W))-H(P(W) \mid g(W)) \geq n-$ $\alpha-\beta-\frac{\phi}{2}=\lambda$, Lemma 2 implies that conditioned on the output of $g^{(k)}$ and $P^{(k)}$ (and thus also conditioned on the extracted bits of those outputs) $\operatorname{Ext}_{k \lambda-k \phi / 8}\left(w^{k}, s_{3}\right)=\operatorname{Ext}_{k \lambda-8 n \cdot \sqrt{k \log \left(\frac{3}{\varepsilon}\right)}}\left(w^{k}, s_{3}\right)$ is $\frac{\varepsilon}{3}$-close to the uniform distribution (here we used (6)). Thus this only loses $\varepsilon / 3$ of the advantage γ in distinguishing.

Second, we replace v_{1} in the else-clause with $\operatorname{Ext}_{k(\beta-\phi / 8)}\left(g^{(k)}\left(w^{k}\right), s_{1}\right)$. Since $H(g(W)) \geq \beta$, Lemma 2 implies that we only lose $\varepsilon / 3$ in the advantage again. In total, in the following Game 1 we have advantage at least $\gamma-2 \varepsilon / 3$ over random guessing.

Game 1:

$$
\begin{aligned}
& \left(w_{1}, \ldots, w_{k}\right) \leftarrow_{R}\{0,1\}^{n k} \\
& b \leftarrow_{R}\{0,1\} \\
& \text { if } b=0 \text { then } \\
& \quad s_{1} \leftarrow_{R}\{0,1\}^{m k}, v_{1}:=\operatorname{Ext}_{k(\beta-\phi / 8)}\left(g^{(k)}\left(w^{k}\right), s_{1}\right) \\
& \quad s_{2} \leftarrow_{R}\{0,1\}^{k}, v_{2}:=\operatorname{Ext}_{(\alpha+7 \phi / 8)}\left(P^{(k)}\left(w^{k}\right), s_{2}\right) \\
& \quad v_{3} \leftarrow_{R}\{0,1\}^{n k+k(\lambda-\phi / 8)} \\
& \text { else } \\
& \quad s_{1} \leftarrow_{R}\{0,1\}^{m k}, v_{1}:=\operatorname{Ext}_{k(\beta-\phi / 8)}\left(g^{(k)}\left(w^{k}\right), s_{1}\right) \\
& \quad v_{2} \leftarrow_{R}\{0,1\}^{k+k(\alpha+7 \phi / 8)} \\
& \quad v_{3} \leftarrow R\{0,1\}^{n k+k(\lambda-\phi / 8)} \\
& \text { fi } \\
& \text { output } b=A\left(v_{1}\left\|v_{2}\right\| v_{3}\right)
\end{aligned}
$$

We would like to ignore the parts which are the same in case $b=0$ and $b=1$. It is easy to see that A^{\prime} in Game 2 can be designed such that it calls A with the same distribution as in Game 1.

Game 2:

```
\(\left(w_{1}, \ldots, w_{k}\right) \leftarrow_{R}\{0,1\}^{n k}\)
\(b \leftarrow_{R}\{0,1\}\)
if \(b=0\) then
    \(s \leftarrow_{R}\{0,1\}^{k}, v:=\operatorname{Ext}_{k(\alpha+7 \phi / 8)}\left(P^{(k)}\left(w^{k}\right), s\right)\)
else
    \(v \leftarrow_{R}\{0,1\}^{k+k(\alpha+7 \phi / 8)}\)
fi
output \(b=A^{\prime}\left(g^{(k)}\left(w^{k}\right) \| v\right)\)
```

Later we want to use Proposition 3. Thus we will have an oracle $\chi_{\mathcal{T}}$ which implements the characteristic function of a set \mathcal{T} of size at least $(\alpha+\phi) 2^{n}$. From now on we will use the oracle implicitly in the games by testing whether $w \in \mathcal{T}$.

In Game 3 it is easy to check that in case $b=0$ the distribution with which A^{\prime} is called does not change from Game 2. On the other hand, if $b=1$, then (since $\left.|\mathcal{T}| \geq 2^{n}(\alpha+\phi)\right)$ the p_{i} contain independent random variables with entropy at least $\alpha+\phi$ (where the entropy is conditioned on $g\left(w_{i}\right)$). Using Lemma 2 we see that in this case v is $\frac{\varepsilon}{3}$-close to uniform, implying that in Game 3 the advantage of A^{\prime} in predicting b is still $\gamma-\varepsilon$.

Game 3:

```
\(\left(w_{1}, \ldots, w_{k}\right) \leftarrow_{R}\{0,1\}^{n k}\)
    \(b \leftarrow_{R}\{0,1\}\)
    for \(i \in[n]\) do
        if \(w_{i} \in \mathcal{T} \wedge b=1\) then
        \(p_{i} \leftarrow_{R}\{0,1\}\)
            else
        \(p_{i}:=P\left(w_{i}\right)\)
            fi
    od
    \(s \leftarrow_{R}\{0,1\}^{k}, v:=\operatorname{Ext}_{k(\alpha+7 \phi / 8)}\left(p^{k}, s\right)\)
    output \(b=A^{\prime}\left(g^{(k)}\left(w^{(k)}\right) \| v\right)\)
```

From Game 3, we will now apply a standard hybrid argument to get a predictor for a single position. For this, consider Game 4.

Game 4:

```
\(\left(w_{1}, \ldots, w_{k}\right) \leftarrow_{R}\{0,1\}^{n k}\)
    \(j \leftarrow_{R}[n]\)
for \(i \in\{1, \ldots, j-1\}\) do
        if \(w_{i} \in \mathcal{T}\) then \(p_{i} \leftarrow_{R}\{0,1\}\) else \(p_{i}:=P\left(w_{i}\right)\) fi
    od
    for \(i \in\{j+1, \ldots, n\}\) do \(p_{i}:=P\left(w_{i}\right)\) od
    \(b \leftarrow_{R}\{0,1\}\)
    if \(w_{j} \in \mathcal{T} \wedge b=1\) then \(p_{j} \leftarrow_{R}\{0,1\}\) else \(p_{j}:=P\left(w_{j}\right) \mathbf{f i}\)
    \(s \leftarrow_{R}\{0,1\}^{k}, v:=\operatorname{Ext}_{k(\alpha+7 \phi / 8)}\left(p^{k}, s\right)\)
    output \(b=A^{\prime}\left(g^{(k)}\left(w^{(k)}\right) \| v\right)\)
```

The distribution A^{\prime} is called in Game 4 in case $b=0$ and $j=1$ is the same as in Game 3 in case $b=0$; the distribution used in Game 4 in case $b=1$ and $j=n$ is the same as in Game 3, in case $b=1$. Further, the distribution in Game 4 does not change if b is set from 1 to 0 and j is increased by one. This implies that the advantage of A^{\prime} in predicting b is $(\gamma-\varepsilon) / k$.

In Game 5 , we replace A^{\prime} with $A^{\prime \prime}$ which does all the operations common in case $b=0$ and $b=1$ (the w chosen in Game 5 corresponds to w_{j} in Game 4, and $A^{\prime \prime}$ chooses the value of j, and all other w_{i} before calling A^{\prime}).

Game 5:

$$
\begin{aligned}
& w \leftarrow_{R}\{0,1\}^{n} \\
& b \leftarrow R\{0,1\} \\
& \text { if } w \in \mathcal{T} \wedge b=1 \text { then } \\
& \quad p \leftarrow R\{0,1\} \\
& \quad \text { output } A^{\prime \prime}(g(w) \| p)=b \\
& \text { else } \\
& \quad \text { output } A^{\prime \prime}(g(w) \| P(w))=b \\
& \text { fi }
\end{aligned}
$$

An easy calculation now yields that for $w \leftarrow_{R} \mathcal{T}$ and $p \leftarrow_{R}\{0,1\}$ the probabillity that

$$
1 \oplus p \oplus A^{\prime \prime}(g(w) \| p)=P(w)
$$

is at least $\frac{1}{2}+\frac{\gamma-\varepsilon}{k}$. Since this works for any \mathcal{T} with $|\mathcal{T}| \geq(\alpha+\phi) 2^{n}$, and thus for every \mathcal{T} with $|\mathcal{T}| \geq(H(P(W) \mid g(W))+\phi) 2^{n}$, we can apply Proposition 3 and get the lemma.

With this lemma, we can now prove Theorem 1.
Proof (of Theorem 1). Given ε and ϕ, we use the construction of Lemma 4 to get a predicate which we use in the construction of Lemma 5 for $\frac{16 n}{\phi^{2}}$ different values of α and β (note that $0 \leq H(g(W)) \leq n$), such that for at least one of those choices the requirements of Lemma 5 hold. Further, in those applications we use $\varepsilon^{\prime}:=\Omega\left(\varepsilon \frac{\phi^{4}}{n^{5}}\right)$ in place of ε. Since $\varepsilon^{\prime}=\Omega\left(\varepsilon^{10}\right)$, this satisfies $\mathcal{O}\left(\log \left(\frac{1}{\varepsilon}\right)\right)=\mathcal{O}\left(\log \left(\frac{1}{\varepsilon^{\prime}}\right)\right)$.

For every choice of α and β we concatenate $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{\ell+1}$ with itself, in order to obtain a function $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}^{\prime}:\{0,1\}^{\ell} \rightarrow\{0,1\}^{16 n \phi^{-2} \ell+1}$, i.e., the first part of the output of $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}$ is used to call $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}$ again, and this process is repeated $16 n \phi^{-2} \ell \in \mathcal{O}\left(n^{5} \frac{1}{\phi^{4}}\right)$ times, and every time we get one more bit of the final output.

The function $h_{\varepsilon, \phi}:\{0,1\}^{16 n \phi^{-2} \ell} \rightarrow\{0,1\}^{16 n \phi^{-2} \ell+1}$ divides its input into $\frac{16 n}{\phi^{2}}$ blocks of length ℓ, calls the functions $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}^{\prime}$ with seperate blocks, and XORs the outputs.

Assume now that an algorithm A can distinguish the output of $h_{\varepsilon, \phi}$ from a unifrom random string with advantage γ. For every choice of α and β (and in particular the choice which satisfies the requirements of Lemma 5) we try
the following to invert f. First, since we can simulate the other instances, we see that we have advantage γ in distinguishing the output of $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}^{\prime}$ from a random string. We can use the hybrid argument to get an algorithm which has advantage $\gamma^{\prime}:=\Omega\left(\gamma \phi^{4} n^{-5}\right)$ in distinguishing the output of $h_{\alpha, \beta, \varepsilon^{\prime}, \phi}$ from a random string. From Lemma 5 we get an algorithm which predicts P from g with advantage at least $1-H(P(W) \mid g(W))-\phi$, and the number of calls is bounded by $\operatorname{poly}\left(\frac{1}{\gamma^{\prime}-\varepsilon^{\prime}}, n\right)=\operatorname{poly}\left(\frac{1}{\gamma-\varepsilon}, n\right)$. Finally, Lemma 4 implies that we can get an inverter with the claimed complexity and success probability.

Acknowledgments

I would like to thank Ueli Maurer, Krzysztof Pietrzak, Dominik Raub, Renato Renner, Johan Sjödin, and Stefano Tessaro for helpful comments and discussions. Also, I would like to thank the anonymous referees who provided helpful criticism about the presentation of this paper. I was supported by the Swiss National Science Foundation, project no. 200020-103847/1.

References

1. Manuel Blum and Silvio Micali. How to generate cryptographically strong sequences of pseudo-random bits. Siam Journal on Computation, 13(4):850-864, 1984.
2. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM, 33(4):792-807, 1986.
3. Oded Goldreich, Hugo Krawczyk, and Michael Luby. On the existence of pseudorandom generators. Siam Journal on Computation, 22(6):1163-1175, 1993.
4. Oded Goldreich and Leonid A. Levin. A hard-core predicate for all one-way functions. In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 25-32, 1989.
5. Iftach Haitner, Danny Harnik, and Omer Reingold. On the power of the randomized iterate. Technical Report TR05-135, Electronic Colloquium on Computational Complexity (ECCC), 2005.
6. Johan Håstad, Russell Impagliazzo, Leonid A. Levin, and Michael Luby. A pseudorandom generator from any one-way function. Siam Journal on Computation, 28(4):1364-1396, 1999.
7. Thomas Holenstein. Key agreement from weak bit agreement. In Proceedings of the Thirty Seventh Annual ACM Symposium on Theory of Computing, pages 664-673, 2005.
8. Thomas Holenstein and Renato Renner. On the smooth Rényi entropy of independently repeated random experiments. In preparation, 2005.
9. Russell Impagliazzo. Hard-core distributions for somewhat hard problems. In The 36th Annual Symposium on Foundations of Computer Science, pages 538545, 1995.
10. Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation from one-way functions (extended abstract). In Proceedings of the Twenty First Annual ACM Symposium on Theory of Computing, pages 12-24, 1989.
11. Michael Luby and Charles Rackoff. How to construct pseudorandom permutations from pseudorandom functions. Siam Journal on Computation, 17(2):373-386, 1988.
12. Michael Luby and Avi Wigderson. Pairwise independence and derandomization. Technical Report ICSI TR-95-035, International Computer Science Institute, Berkeley, CA, 1995.
13. Moni Naor. Bit commitment using pseudorandomness. Journal of Cryptology, 4(2):151-158, 1991.
14. Victor Shoup. Sequences of games: a tool for taming complexity in security proofs. Technical Report 332, http://eprint.iacr.org/2004/332, 2004.
15. Hoeteck Wee. On obfuscating point functions. In Proceedings of the Thirty Seventh Annual ACM Symposium on Theory of Computing, pages 523-532, 2005.
16. Andrew C. Yao. Theory and applications of trapdoor functions (extended abstract). In The 23rd Annual Symposium on Foundations of Computer Science, pages 80-91, 1982.

[^0]: ${ }^{1}$ In fact, we do not know a direct way to construct a pseudorandom generator from a pseudo-entropy pair with the "more natural definition".

[^1]: ${ }^{2}$ This could be insignificantly reduced by choosing ε slightly bigger.

[^2]: ${ }^{3}$ Technically, we should choose i as a uniform number from $[n]$. We can use an n bit string to choose a uniform number from $\left[2^{n}\right]$ and from this we can get an "almost" uniform number from $[n]$ (for example by computing the remainder when dividing by n). This only gives an exponentially small error which we ignore from now on.

[^3]: ${ }^{4}$ The proposition here is slightly stronger then the corresponding lemma in 7], as we do not require γ to be noticeable. It is easy to see that the proof in 7] works in this case as well.

[^4]: ${ }^{5}$ Haitner, Harnik, and Reingold [5] construct a pseudo-entropy pair for which $H(P(W) \mid g(W))=\frac{1}{2}$ is fixed. Because of this, they are able to save a factor of n in the seed length under standard assumptions (they do not need to try different values for α).

