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We present a method for overcoming the pixel-limited resolution of digital imagers. Our method combines
optical point-spread function engineering with subpixel image shifting. We place an optimized pseudo-
random phase mask in the aperture stop of a conventional imager and demonstrate the improved
performance that can be achieved by combining multiple subpixel shifted images. Simulation results
show that the pseudorandom phase-enhanced lens (PRPEL) imager achieves as much as 50% resolution
improvement over a conventional multiframe imager. The PRPEL imager also enhances reconstruction
root-mean-squared error by as much as 20%. We present experimental results that validate the predicted
PRPEL imager performance. © 2007 Optical Society of America
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1. Introduction

Semiconductor detector arrays are rapidly replacing
film as the recording medium of choice within many
modern imagers.1 This trend has led to a preponder-
ance of digital cameras in nearly all applications
ranging from consumer photography to modern bio-
medical imaging. Digital imager design, therefore,
is becoming an increasingly important activity. With-
in the traditional (i.e., film-based) design paradigm
the optical point-spread function (PSF) is typically
viewed as the resolution-limiting element and thus
optical designers strive for an impulse-like PSF. Dig-
ital imagers, however, may employ photodetectors
that are large relative to the extent of the PSF and in
such cases the resulting pixel blur and�or aliasing
can become the dominant distortion limiting overall
imager performance. This is illustrated by Fig. 1(a).
This figure is a 1D depiction of the image formed by
a traditional camera when two point objects are sep-
arated by a subpixel distance. We see that the result-
ing impulse-like PSFs are imaged onto essentially
the same pixel leading to spatial ambiguity and hence

a loss of resolution. In such an imager, the resolution
is said to be pixel limited.2

The effect depicted in Fig. 1(a) may also be under-
stood by noting that the detector array undersamples
the image and therefore produces aliasing. The gen-
eralized sampling theorem by Papoulis3 provides a
mechanism through which this aliasing distortion can
be mitigated. The theorem states that a band-limited
signal ��� � � � �� can be completely and perfectly
reconstructed from the sampled outputs of R nonre-
dundant (i.e., diverse) linear channels, each of which
employs a sample rate of 2��R (i.e., each of the R
signals is undersampled at 1�R the Nyquist rate). This
theorem suggests that aliasing distortion can be re-
duced by combining multiple undersampled and low-
resolution images to obtain a high-resolution image. A
detailed description of this technique can be found in
Borman.4 This approach has been used by several re-
searchers in the image processing community2,5–9 and
was recently adopted for use in the thin observing
module with bounded optics (TOMBO) imaging archi-
tecture.10,11 The TOMBO system was designed to si-
multaneously acquire multiple low-resolution images
of an object through multiple lenslets in an integrated
aperture. The resulting collection of low-resolution
measurements is then processed to yield a high-
resolution image. Within the TOMBO system the mul-
tiple nonredundant images were obtained via a diverse
set of subpixel shifts. The use of other forms of diver-
sity including magnification, rotation, and defocus has
also been discussed.12 It is important to note that these
methods of obtaining measurement diversity do not
fully exploit the optical degrees of freedom available to
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the designer. The approach described herein will uti-
lize PSF engineering to obtain additional diversity
from a set of subpixel shifted measurements.

The optical PSF of a digital imager may be viewed
as a mechanism for encoding object information so as
to better tolerate distortions introduced by the detec-
tor array. From this viewpoint an impulse-like optical
PSF may be suboptimal.13,14 This assertion is made
plausible by considering Fig. 1(b), in which we depict
an image of two point objects formed using a non-
impulse-like PSF. The point objects are spaced as in
Fig. 1(a). We see that the use of an extended PSF
makes possible the extraction of subpixel position
information from the sampled detector outputs. For
example, a simple correlation-based processor15 can
yield the PSF centroid–point-source location to sub-
pixel accuracy, given sufficient measurement signal-
to-noise ratio (SNR). In this paper, we study the
performance of one such extended PSF design ob-
tained by placing a pseudorandom phase mask in the
aperture stop of a conventional imager. Our choice of
pseudorandom phase mask has been motivated in
part by the pseudorandom sequences found in code-
division multiple access multiuser communication
systems16,17 and in part by our previous study,18

which found pseudorandom phase masks efficient in
an information-theoretic sense for imaging sparse
volumetric scenes. In the context of multiuser com-
munications, pseudorandom sequences are used to
encode the information of each end user. These en-
coded messages are combined and transmitted over a
common channel. The structure of the encoding is
then used at the receiver side to extract individual
messages from the superposition. In a digital imaging
system, the optical PSF serves a similar purpose in

terms of encoding the location of individual resolution
elements that comprise the object. The pixels within
a semiconductor detector array measure a superpo-
sition of response from each resolution element in the
object. Further the spatial integration across the fi-
nite pixel size of the detector array leads to spatial
blurring. These signal transformations imposed by
the detector array must be inverted via decoding. In
Section 2, we describe the mathematical model of the
imaging system and the pseudorandom phase mask
used to obtain the extended optical PSF.

2. Imaging Model

Consider a linear model of a digital imaging system.
Mathematically, we can represent the system as

g � Hcd fc � n, (1)

where fc is the continuous object, g is the detector-
array measurement, Hcd is the continuous-to-discrete
imaging operator, and n is additive measurement
noise. For simulation purposes we use a discrete rep-
resentation f of the continuous object fc. This discrete
representation f can be obtained from fc as follows19

fi ��
S��i

fc�r���i�r��dr2, (2)

where S is the object support, ��i� is an analysis basis
set, �i is the support of ith basis function �i and fi is
the ith element of the object vector f. Note that we
obtain an approximation fa of the original continuous
object fc from its discrete representation f as follows19

fa�r�� � �
i�1

N

fi	i�r��, (3)

where N is the dimension of the discrete object vector
and �	i� is a synthesis basis set that can be chosen to
be the same as the analysis basis set ��i�. Here we use
the pixel function to construct our analysis and syn-
thesis basis sets. The pixel function is defined as

�i�r� �
1

�r

rect�r � i�r

�r
	,

�
�i��j

�i�r��j�r�dr2 � 
ij, (4)

where 2�r is the size of the resolution element in the
continuous object that can be accurately represented
by this choice of basis set. Note that the pixel functions
��i� form an orthonormal basis. We set the object res-
olution element size equal to the diffraction-limited
optical resolution of the imager to ensure that the dis-
crete representation of the object does not incur any
loss of spatial resolution. Here we adopt the Rayleigh’s
criteria20 to define resolution. Henceforth, all refer-
ences to resolution will represent the Rayleigh resolu-
tion.

Fig. 1. Schematic depicting the effect of pixel-limited resolution.
(a) Optical PSF is impulse-like and (b) engineered optical PSF is
extended.
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The imaging equation can be modified to include
the discrete object representation as follows

g � Hf � n, (5)

where H is the equivalent discrete-to-discrete imag-
ing operator: H is therefore a matrix. The imaging
operator H includes the optical PSF, the detector
PSF, and the detector sampling. The vectors f, g, and
n are lexicographically arranged one-dimensional rep-
resentations of the 2D object, image, and noise arrays,
respectively.

Consider a diffraction-limited PSF of the form:
h�r� � sinc2�r�R�, with Rayleigh resolution R. The
Nyquist sampling theorem requires the detector
spacing to be at most R�2. When this requirement is
met, the imaging operator H has full rank (condition–
number → 1) allowing a reconstruction of the object
up to the optical resolution. However, when the op-
tical PSF has an extent (2R) that is smaller than the
detector spacing, the image measurement is aliased
and the imaging operator H becomes singular
(condition–number → �). Under these conditions the
object cannot be reconstructed up to the optical res-
olution. Also note that due to undersampling, the
imaging operator H is no longer shift invariant but
only blockwise shift invariant even if the imaging
optics itself is shift invariant.

As mentioned in Section 1, one method to overcome
the resolution constraint imposed by the pixel size
is to use multiple subpixel shifted image measure-
ments. The subpixel shift � may be obtained either by
a shift in the imager position or through object move-
ment. The ith subpixel shifted image measurement gi

with shift 
i can be represented as

gi � Hif � ni, (6)

where Hi represents the imaging operator associated
with the subpixel shift �i. For a set of K such mea-
surements, we can write the composite image mea-
surement by concatenating the individual vectors as,
g � �g1 g2 · · · gK� and similarly n � �n1 n2 · · · nK�.
Now we can express the overall multiframe compos-
ite imaging system as

g � Hcf � n, (7)

where Hc is now the composite imaging operator. By
combining several subpixel shifted image measure-
ments, the condition number of the composite imag-
ing operator Hc can be progressively improved and
the overall resolution approaches the optical resolu-
tion limit. Ideally, the subpixel shifts should be cho-
sen in multiples of D�K so as to minimize the
condition number of the forward imaging operator
Hc, where D is the detector spacing.21

We are interested in designing an extended optical
PSF for use within the subpixel shifting framework.
The use of an extended optical PSF can improve the
condition number of the imaging operator Hc. We

consider an extended optical PSF obtained by placing
a pseudorandom phase mask in the aperture stop of
a conventional imager, as shown in Fig. 2. For sim-
ulation purposes, the aperture stop is defined on a
discrete spatial grid. Therefore, the pseudorandom
phase mask is represented by an array, each element
of which corresponds to the phase at given a position
on the discrete spatial grid. The pseudorandom phase
mask is synthesized in two steps: (1) generate a set of
identical independently distributed random numbers
distributed uniformly on the interval 
0, �� to popu-
late the phase array, and (2) convolve this phase
array with a Gaussian filter kernel that is a Gaussian
function with standard deviation �, sampled on the
discrete spatial grid. The resulting set of random
numbers define the phase distribution ��r� of the
pseudorandom phase mask. The phase mask is thus
a realization of a spatial Gaussian random process,
which is parameterized by its roughness � and cor-
relation length �. The autocorrelation function of this
phase distribution is given by

R���r� �
�2

12
exp��

r2

42. (8)

The resulting incoherent PSF is related to the
phase-mask profile ��r� as follows9

psf�r� �
Ac

��f �4�Tpupil��
r

�f	�
2

, (9)

Tpupil��� � ��exp
j2��n � 1���r����tap�r��, (10)

where Ac is normalization constant with units of area,
n is the refractive index of the lens, f is the back focal
length, tap�r� is the aperture function, and � denotes
the forward Fourier transform operator.

Figure 3(a) shows a simulated impulse-like PSF
and Fig. 3(b) shows an extended PSF resulting from
simulating a pseudorandom phase mask with param-
eters � � 1.5�c and  � 10�c, where �c is the operating
center wavelength. Here we set �c � 550 nm and the
imager F�# � 1.8. Assuming a detector size of
7.5 �m, the extended PSF spans over roughly six
detectors, in contrast with a subpixel extent of 2 �m
for the impulse-like PSF. The extended PSF will
therefore accomplish the desired encoding; however,

Fig. 2. Imaging system setup used in the simulation study.
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it will do so at the cost of measurement SNR. Because
the extended PSF is spread over several pixels, its
photon count per detector is lower than that for the
impulse-like PSF for a pointlike object. Assuming a
constant detector noise, the measurement SNR per
detector for the extended PSF is thus lower than that
of the impulse-like PSF. For more general objects, the
extended PSF results in a reduced contrast image
with a commensurate SNR reduction, though smaller
than for point-like objects. In Section 3, we present a
simulation study to quantify the trade-off between
the overall imaging resolution and the SNR for two
candidate imagers that use multiple subpixel shifted
measurements: (a) the conventional imager and (b)
the pseudorandom phase-enhanced lens (PRPEL) im-
ager.

3. Simulation Results

For the purposes of the simulation study, we consider
only 1D objects and image measurements. The target
imaging system has a modest specification with an
angular resolution of 0.2 mrad and an angular field of
view (FOV) of 0.1 rad. The conventional imager uses
a lens of F�# � 1.8 and back focal length 5 mm. We
assume that the lens is diffraction limited, and the
optical PSF is shift invariant. The detector array in
the image plane has a pixel size of 7.5 �m with a

full-well capacity (FWC) of 45,000 electrons and a
100% fill factor. We further assume that the imager’s
spectral bandwidth is limited to 10 nm centered at
�c � 550 nm. For the PRPEL imager, the only mod-
ification is that the lens is followed by a pseudoran-
dom phase mask with parameters � and �.

We assume a shot-noise limited SNR � 23 dB
�10 log10 �FWC� given by the FWC of the detector el-
ement. The shot noise is modeled as equivalent addi-
tive white Gaussian noise (AWGN) with variance �2

� FWC. The undersampling factor for this imager is
F � 15. This implies that for an object vector f of size
N � 1, the resulting image measurement vector gi is
of size M � 1 where M � N�F. For the target imager,
these values are N � 512 and M � 34. Note that the
blockwise shift-invariant imaging operator Hc is of
size KM � N.

To improve the overall imager performance, we
consider multiple subpixel shifted image measure-
ments or frames. These frames result from moving
the imager with respect to the object by a subpixel
distance 
i. Here it is important to constrain the num-
ber of photons per frame to ensure a fair comparison
among imagers using multiple frames. We have two
options: (a) assume that each imager has access to the
same finite number of photons and (b) assume that
each frame of each imager has access to the same
finite number of photons. Option (b) may be physical
under certain conditions; however, the results that
are obtained will be unable to distinguish between
improvements arising from frame diversity versus
improvements arising from increased SNR. We
therefore utilize option (a) because it is the only op-
tion that allows us to study how best to use fixed
photon resources. As a result, the photon count for
each frame is normalized to F�K in this simulation
study.

The inversion of the composite imaging Eq. (7), is
based on the optimal linear-minimum mean-squared
error (LMMSE) operator W. The resulting object es-
timate is given by

f̂ � Wg, (11)

where W is defined as22

W � RfHc
T�HcRfHc

T � Rn��1, (12)

Rf is the autocorrelation matrix for the object vector
f and Rn is the autocorrelation matrix of the noise
vector n. Because the composite imaging operator Hc

is not shift invariant, the LMMSE solution does not
reduce to the well known Wiener filter. The noise
autocorrelation matrix reduces to a diagonal matrix
under the assumption of independent and identically
distributed noise and, therefore, can be written as
Rn � �2I. The object autocorrelation matrix Rf incor-
porates object prior knowledge within the reconstruc-
tion process as a regularizing term. Here we obtain
the object autocorrelation matrix from a power-law
power spectral density �PSD�: 1�f �, that serves as a

Fig. 3. Example simulated PSFs. (a) Conventional sinc2(·) PSF
and (b) PSF obtained from PRPEL imager.
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good model for natural images.23–25 A power-law PSD
was computed to model the class of ten objects shown
in Fig. 4(a) chosen to represent a wide variety of
scenes (rows and columns of these scenes are used as
1D objects). Figure 4(b) shows several power-law
PSDs plotted along with the PSD obtained using
Burg’s26 method on three objects chosen from the set
in Fig. 4(a). The power-law PSD �� � 1.4� is used to
model the PSD of the object class as it is applicable to
a wider range of natural images compared with PSD
models such as Burg’s that are obtained for a specific
set of objects. The value of power-law PSD parameter
� was obtained by a least-squares fit to Burg’s26 PSD
estimate.

To quantify the performance of both the PRPEL
and the conventional imaging systems, we employ
two metrics: (a) Rayleigh resolution and (b) normal-
ized root-mean-square error (RMSE). The Rayleigh
resolution of a composite multiframe imager is found
by using a point-source object and applying the
LMMSE operator to the K image frames. The result-
ing point-source reconstruction represents the over-
all PSF of the computational imager and is used to
estimate the Rayleigh resolution. A least-squares fit
of a diffraction-limited sinc2�·� PSF to the overall im-
ager PSF is used to obtain the resolution estimate.
Figure 5 illustrates this resolution estimation method
with an example of a postprocessed PSF and the as-
sociated sinc2�·� fit. The second imager performance

metric uses RMSE to quantify the quality of a recon-
structed object. The RMSE metric is defined as

RMSE �
���f̂ � f �2�

255
� 100%, (13)

where 255 is the peak object pixel value. Here, the
expectation �·� is taken over both the object and the
noise ensembles. We have used all columns and rows
of the 2D objects shown in Fig. 4(a) to form a set of 1D
objects for computing the RMSE metric in the simu-
lation study.

First, we consider the conventional imager. The
subpixel shift for each frame is chosen randomly. The
performance metrics are computed and averaged
over 30 randomly chosen subpixel shift sets for each
value of K. Figure 6 shows a plot of the RMSE versus
the number of frames K. We see that the RMSE de-
creases with the number of frames, as expected. This
result demonstrates that additional object informa-
tion is accumulated through the use of diverse (i.e.,
shifted) channels: as the number of frames increases,
the condition number of the composite imaging oper-
ator Hc improves. The reason that the RMSE does not
converge to zero for K � 16 is because detector noise
ultimately limits the minimum reconstruction error.

Fig. 4. Reconstruction incorporates object priors. (a) Object class
used for training and (b) PSD obtained from the object class and
the best power-law fit used to define the LMMSE operator.

Fig. 5. Rayleigh resolution estimation for multiframe imagers
using a sinc2(·) fit to the postprocessed PSF.

Fig. 6. RMSE versus number of frames for a conventional im-
ager.

2260 APPLIED OPTICS � Vol. 46, No. 12 � 20 April 2007



The resolution of the overall imager is plotted against
the number of frames K in Fig. 7. Observe that the
resolution improves with increasing K, converging
toward the optical resolution limit of 0.2 mrad. Note
that the resolution data for K � 16 is not equal to the
diffraction limit because this data represents an av-
erage resolution over a set of random subpixel shift
sets. When the subpixel shifts are chosen as multi-
ples of D�F, the resolution achieved for K � 16 is
indeed equal to the optical resolution limit.

The PRPEL imager employs a pseudorandom
phase mask to modify the impulse-like optical PSF.
The phase-mask parameters � and � jointly deter-
mine the statistics of the spatial intensity distribu-
tion and the extent of the optical PSF. We design an
optimal phase mask by setting � to a constant �10�c�
and finding the value of � that maximizes the imager
performance for a given K. Figure 8 presents some
representative data quantifying imager resolution as
a function of � with  � 10�c and K � 3. This plot
shows the fundamental trade-off between the condi-
tion number of the imaging operator and the SNR
cost. Note that for small values of � the PSF is
impulse-like. As the value of � increases the PSF
becomes more diffuse as shown in Fig. 3(b). This re-
sults in an improvement in condition number; how-
ever, as the PSF becomes more diffuse the photon

count per detector decreases resulting in an overall
decrease in measurement SNR. Figure 8 shows that
optimal resolution is achieved for � � 7�c. Figure 9
demonstrates a similar trend in RMSE versus � with
 � 10�c and K � 3. The optimal value of � under the
RMSE metric is � � 1.5�c. Note that the optimal
values of � are different for the resolution and RMSE
metrics. The resolution of an imager is determined by
its spatial-frequency response alone; whereas, the
RMSE is dependent on the spatial-frequency re-
sponse as well as the object statistics. Therefore, the
value of � that maximizes the resolution metric
may result in an imager with a particular spatial-
frequency response that may not achieve the mini-
mum RMSE given the object statistics and detector
noise. All the subsequent results for the PRPEL im-
ager are obtained for the optimal value of � that will
therefore be a function of K, �, and the metric (RMSE
or resolution).

Figure 10 presents the resolution performance of
both the PRPEL and the conventional imagers as a
function of the number of frames K. We note that the
PRPEL imager converges faster than the conven-
tional imager. A resolution of 0.3 mrad is achieved
with only K � 4 by the PRPEL imager in contrast
with K � 12 for the conventional imager. A plot com-
paring RMSE performance of the two imagers is

Fig. 7. Rayleigh resolution versus number of frames for a con-
ventional imager.

Fig. 8. Example Rayleigh resolution versus mask roughness pa-
rameter � for � � 10�c and K � 3.

Fig. 9. Example RMSE versus mask roughness parameter � for
� � 10�c and K � 3.

Fig. 10. Rayleigh resolution versus number of frames for both
PRPEL and conventional imagers.
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shown in Fig. 11. We note that the PRPEL imager is
consistently superior to the conventional imager. For
K � 4, the PRPEL imager achieves an RMSE of 3.5%
as compared with RMSE of 4.3% for the conventional
imager.

4. Experimental Results

An experimental demonstration of the PRPEL im-
ager was undertaken in order to validate the perfor-
mance improvements predicted by simulation. Figure
12 shows the experimental setup along with the rel-
evant physical dimensions. A Santa Barbara Instru-
ment Group (Santa Barbara, Calif., USA) ST2000XM
CCD was used as the detector array. The CCD di-
mensions are 1600 � 1200 pixels with a detector size
of 7.4 �m with 100% fill factor and a FWC of 45,000
electrons. The detector output from the CCD is
quantized with a 16 bit analog-to-digital convertor
yielding a dynamic range of 0–64,000. During the
experiment, the CCD is cooled to �10 °C, to minimize
electronic noise. The experimental imager uses a
Fujinon’s (Wayne, N.J., USA) CF16HA-1 TV lens op-
erated at F�# � 4.0. A circular holographic diffuser
from Physical Optical Corporation (Torrance, Calif.,
USA) is used as a pseudorandom phase mask. The
divergence angle (full width at half-maximum) of the
diffuser is 0.1°. A zoom lens with magnification 2.5� is
used to decrease the divergence angle of the diffuser.
The actual phase statistics of the diffuser are not
made available by the manufacturer. Therefore, to
relate the physical diffuser to the pseudorandom

phase-mask model, we compute phase-mask param-
eters � and � that yield a PSF similar to the one
produced by the physical diffuser. The phase-mask
parameters � � 2.0�c and  � 175�c yield the PSF
shown in Fig. 13(c). Comparing this with the PRPEL
experimental PSF shown in Fig. 13(b), we note that
they are similar in appearance. This comparison al-
though qualitative suggests that the physical diffuser
might possess statistics similar to the pseudorandom
phase mask model described here.

The Rayleigh resolution of the optical PSF was
estimated to be 5 �m or 0.31 mrad. This yields an
undersampling factor of F � 3 along each direction.
This implies that a total of F2 � 9 frames are required
to achieve the full optical resolution. The FOV for the
experiment is 10 mrad � 10 mrad consisting of 64
� 64 pixels each of size 0.156 mrad � 0.156 mrad.
The highly undersampled nature of the conventional

Fig. 11. RMSE versus number of frames for both PRPEL and
conventional imagers.

Fig. 12. Schematic of the optical setup used for experimental
validation of the PRPEL imager.

Fig. 13. Experimentally measured PSFs obtained from the (a)
conventional imager, (b) PRPEL imager, and (c) simulated PRPEL
PSF with phase-mask parameters � � 2.0�c and  � 175�c.
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imager as well as the extended nature of the PRPEL
PSF demand careful system calibration. Our calibra-
tion apparatus consisted of a fiber-tip point-source
mounted on an X-Y translation stage that can be
scanned over the object FOV. The 50 �m fiber core
diameter in object space yields a 0.6 �m diameter

point in image space (system magnification �
1

84�),
which is much smaller than the detector size of
7.4 �m. Therefore, we can assume that the fiber tip
serves as a good point-source approximation for im-
ager calibration purpose. Also note that the exiting
radiation from the fiber tip (numerical aperture
� 0.22) overfills the entrance aperture of the imager
optics by a factor of 12. The motorized translation
stage is controlled by a Newport EPS300 (Irvine,
Calif., USA) motion controller. The fiber tip is illumi-

nated by a white-light source filtered by a 10 nm
bandpass filter centered at �c � 535 nm. The calibra-
tion procedure involves scanning the fiber tip over
each object pixel position in the FOV and for each
such position, recording the discrete PSF at the CCD.
We obtain reliable PSF data during calibration by
averaging 32 CCD frames to increase the measure-
ment SNR. To obtain PSF data with a particular
subpixel shift, the calibration process is repeated af-
ter shifting the FOV by that subpixel amount. This
calibration data is subsequently used to construct the
composite imaging operator Hc and compute the
LMMSE operator W using Eq. (12). The same cali-
bration procedure is used for both the conventional
and the PRPEL imagers.

The experimental PSFs for these two imagers are
shown in Fig. 13. The PSF of the conventional imager
is seen to be impulse-like; whereas, the PSF of the
PRPEL imager has a diffuse or extended shape as
expected. The resolution estimation procedure de-
scribed in Section 3 is employed to estimate the res-
olution of the two experimental imagers. Figure 14
presents the plot of experimental resolution versus
number of frames K. Three data points are obtained
from the experiment at K � 1, 4, and 9. The subpixel
shifts (in micrometers) used for these measurements
were: (0, 0) for K � 1, (0, 0), (0, 3.7), (3.7, 0), (3.7, 3.7)
for K � 4, and (0, 0), (0, 2.5), (0, 5), (2.5, 0), (2.5, 2.5),
(2.5, 5), (5, 0), (5, 2.5), (5, 5) for K � 9. Imager reso-
lution is estimated using test data that are distinct
from the calibration data. As predicted in simulation,
we see that the PRPEL imager outperforms the con-

Fig. 14. Experimentally measured Rayleigh resolution versus
number of frames for both the PRPEL and conventional imagers.

Fig. 15. USAF resolution target (a) group 0 element 1 and (b)
group 0 elements 2 and 3.

Fig. 16. Raw detector measurements obtained using USAF group
0 element 1 from (a) the conventional imager and (b) the PRPEL
imager.
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ventional imager at all values of K. We note that the
PRPEL resolution nearly saturates by K � 4. A max-
imum resolution gain of 13% is achieved at K � 4 by
the PRPEL imager relative to the conventional im-
ager. Note that even at K � 9, the resolution achieved
by both the imagers is slightly poorer than the esti-
mated optical resolution of 0.31 mrad. This can be
attributed to errors in the calibration process, which
include nonzero noise in the PSF measurements and
shift errors due to the finite positioning accuracy of
the computer-controlled translation stages.

A U.S. Air Force (USAF) resolution target was used
to compare the object reconstruction quality of the
two imagers. Because the imager FOV is relatively
small �10 mrad � 10 mrad�13.44 mm � 13.44 mm�,
we used two small areas of the USAF resolution tar-
get shown in Figs. 15(a) and 15(b). In Fig. 15(a), the
spacing between lines of group 0 element 1 is 500 �m
in object space or equivalently 0.37 mrad. Similarly
in Fig. 15(b), the line spacings for group 0 elements 2
and 3 are 0.33 mrad and 0.30 mrad, respectively.
Given the optical resolution of the experimental sys-
tem, we expect that group 0 element 3 should be

resolvable by both the conventional and PRPEL im-
agers.

Figure 16 presents the raw detector measurements
of USAF group 0 element 1 from the two imagers.
Consistent with the measured degree of undersam-
pling, the imagers are unable to resolve the constit-
uent line elements in the raw data. Figure 17 shows
reconstructions from the two multiframe imagers for
the same object using K � 1, 4, and 9 subpixel shifted
frames. We observe that for K � 1 neither imager can
resolve the object. For K � 4, however, the PRPEL
imager clearly resolves the lines in the object;
whereas, the conventional imager does not resolve
them clearly. Figure 18(a) shows a horizontal line
scan through the object and LMMSE reconstructions
for K � 4, affirming our observation that the PRPEL
imager achieves superior contrast to that of the
conventional imager. For K � 9, we note that both
imagers resolve the object equally well. Next we con-
sider USAF group 0 elements 2 and 3 object recon-
structions that are shown in Fig. 19. As before, for
K � 1 neither imager can resolve the object. However,
for K � 4, the PRPEL imager clearly resolves element
2 and barely resolves element 3. In contrast, the con-
ventional imager barely resolves element 2 only. This
is also evident in the horizontal line scan of the object
and the LMMSE reconstructions shown in Fig. 18(b).

Fig. 17. LMMSE reconstructions of USAF group 0 element 1 with
left column for PRPEL imager and right column for conventional
imager. Top row, K � 1; middle row, K � 4; bottom row, K � 9.

Fig. 18. (Color online) Horizontal line scans through the USAF
target and its LMMSE reconstruction for conventional and PRPEL
imagers for K � 4. (a) Group 0 elements 1 and (b) group 0 elements
2 and 3.
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Both imagers achieve comparable performance for
K � 9, completely resolving the object.

We observe that despite having precise channel
knowledge, we obtain poor reconstruction results
for the case K � 1. This points to the limitations of
linear reconstruction techniques that cannot in-
clude powerful object constraints such as positivity
and finite support. However, nonlinear reconstruc-
tion techniques such as iterative back projection27

and maximum-likelihood expectation-maximization
(MLEM)28 can easily incorporate these constraints.
The Richardson–Lucy (RL) algorithm29,30 based on the
MLEM principle has been shown to be one such effec-
tive reconstruction technique. The RL algorithm is a
multiplicative iterative scheme where the k � 1th ob-

ject update denoted by f̂ �k�1� is defined as19

f̂n
�k�1� � f̂n

�k�
1

sn
�

m�1

KM gm

�Hcf̂
�k��m

�Hc�mn
,

sn � �
m�1

KM

�Hc�mn
, (14)

where the subscript denotes the corresponding ele-
ment of a vector or a matrix. Note that if all elements
of the composite imaging matrix Hc, the raw image

measurement g, and the initial object estimate f̂ �0� are
positive then all subsequent estimates of the object
are guaranteed to be positive, thereby achieving the
positivity constraint. Further, by setting the appro-

priate elements of f̂ �0� to 0, we can implement the
finite support constraint in the RL algorithm.

We apply the RL algorithm to the experimental
data in an effort to improve reconstruction quality,
especially for K � 1. A constant positive vector is used

as an initial object estimate, i.e., f̂ �0� � c where ci

� a � 0, ∀ i. Figures 20 and 21 show the RL object
reconstructions of the USAF group 0 element 1 and
USAF group 0 elements 2 and 3, respectively. As ex-
pected, the RL algorithm yields a substantial improve-
ment in reconstruction quality over the LMMSE
processor. This improvement is most notable for the
K � 1 case. In Fig. 20, we observe that the PRPEL
imager delivers better results compared with the con-
ventional imager for K � 1 and 4. The horizontal line
scans in Fig. 22(a) show that the PRPEL imager

Fig. 19. LMMSE reconstructions of USAF group 0 element 2 and
3 with left column for PRPEL imager and right column for con-
ventional imager. Top row, K � 1; middle row, K � 4; bottom row,
K � 9.

Fig. 20. RL reconstructions of USAF group 0 element 1 with left
column for PRPEL imager and right column for conventional im-
ager. Top row, K � 1; middle row, K � 4; bottom row, K � 9.
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maintains a superior contrast compared with the con-
ventional imager for K � 4. From Fig. 21, we see that
for K � 1, the PRPEL imager begins to resolve ele-
ment 2 whereas the conventional imager still fails to
resolve element 2. For K � 4, element 2 is clearly
resolved and element 3 is just resolved by the PRPEL
imager. In comparison, the conventional imager
barely resolves element 2. These observations are
confirmed by the horizontal line scan plots shown in
Fig. 22(b). Overall the experimental reconstruction
and resolution results confirm the conclusions drawn
from our simulation study; the PRPEL imager offers
superior resolution and reconstruction performance
compared with the conventional multiframe imager.

5. Imager Parameters

The results reported here have demonstrated the
utility of the PRPEL imager. To motivate a more
general applicability of the PRPEL approach, there
are two important parameters that require further
investigation: pixel size and spectral bandwidth. We
consider two case studies in which these imaging

system parameters are modified in order to study
their impact on overall imager performance.

A. Pixel Size

Here we consider the effect of smaller pixel size that
is typical of complementary metal-oxide semiconduc-
tor detectors arrays, now commonly employed in
many imagers. Consider a sensor having a pixel size
of 3.2 �m resulting in a less severe undersampling as
compared with the 7.5 �m pixel size assumed earlier.
This detector has a 100% fill factor and a smaller

Fig. 23. Rayleigh resolution versus number of frames for multi-
frame imagers that employ smaller pixels and lower measurement
SNR.

Fig. 21. RL reconstructions of USAF group 0 element 2 and 3
with left column for PRPEL imager and right column for conven-
tional imager. Top row, K � 1; middle row, K � 4; bottom row,
K � 9.

Fig. 22. (Color online) Horizontal line scans through the USAF
target and its RL reconstruction for conventional and PRPEL im-
agers for K � 4. (a) Group 0 elements 1 and (b) group 0 elements
2 and 3.
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FWC of 28,000 electrons (lower SNR). All other pa-
rameters of the imaging system remain unchanged.
The undersampling factor for the new sensor is
F � 7 and the photon-limited SNR is now 22 dB. We
repeat the simulation study of the overall imaging
system performance for both the conventional imager
and the PRPEL imager. Figure 23 shows a plot of the
resolution versus the number of frames for both im-
aging systems. This plot shows that for K � 2, the
PRPEL imager achieves a resolution of 0.3 mrad
while the conventional imager resolution is only 0.5
mrad. Figure 24 shows the RMSE performance of the
two imagers versus number of frames. For K � 2, the
PRPEL imager achieves a RMSE of 3.2% compared
with 4.0% for the conventional imager, an improve-
ment of nearly 20%. From these results we conclude
that the PRPEL imager remains a useful option for
imagers with CMOS sensors that have smaller pixels
and a lower SNR.

B. Broadband Operation

Recall that all our simulation studies have assumed
a 10 nm spectral bandwidth so far. In this section, we
will relax this constraint and allow the spectral band-
width to increase to 150 nm, roughly equal to the
bandwidth of the green band of the visible spectrum.
All other imaging system parameters remain un-
changed (using the original 7.5 �m sensor). There is

a twofold implication of the increased bandwidth.
First, because we accept a wider bandwidth, the pho-
ton count increases resulting in an improved mea-
surement SNR. Within the PRPEL imager, however,
this SNR increase is accompanied by increased chro-
matic dispersion and a smoothing of the PRPEL PSF.
This smoothing results in a worsening of the condi-
tion number for the PRPEL imager. To illustrate the
dispersion effect, Fig. 25 shows a plot of the extended
PRPEL PSF for both the 10 nm and the 150 nm
bandwidths. The smoothing of the PSF affects the
optical transfer function of the imager by attenuating
the higher spatial frequencies. Hence, we can expect
a trade-off between the higher SNR and the worsen-
ing of the condition number, especially for the PRPEL
imaging system. The plot in Fig. 26 shows that the
conventional imager resolution is relatively unaf-
fected by broadband operation. The PRPEL imager
performance, on the other hand, suffers due to dis-
persion despite the increase in SNR. Similar trends
in RMSE performance can be observed for the two
imagers as shown by the plot in Fig. 27. The perfor-
mance of the broadband PRPEL imager deteriorates
relative to narrowband operation for small values of
K; however, note that for medium and large values of
K the performance of the PRPEL imager actually
improves due to increased SNR.

Fig. 25. Optical PSF obtained using PRPEL with both narrow-
band �10 nm� and broadband �150 nm� illumination.

Fig. 24. RMSE versus the number of frames for multiframe im-
agers that employ smaller pixels and lower measurement SNR.

Fig. 26. Rayleigh resolution versus the number of frames for
broadband PRPEL and conventional imagers.

Fig. 27. RMSE versus the number of frames for broadband
PRPEL and conventional imagers.
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6. Conclusions

We have presented a new approach to overcoming the
pixel-limited resolution in digital imagers. We have
described a method of engineering the optical PSF in
order to better tolerate the undersampling and alias-
ing that can degrade the performance of digital im-
agers. Our simulation study of the PRPEL imager
predicts substantial performance improvements over
a conventional multiframe imager. The PRPEL im-
ager was shown to offer as much as 50% resolution
improvement and 20% RMSE improvement as com-
pared to the conventional imager. The experimental
results confirmed these predicted performance im-
provements. We also applied the nonlinear Richardson–
Lucy reconstruction technique to the experimental
data. The results obtained showed that imager per-
formance is substantially improved with nonlinear
techniques. We have also begun to look into alternate
parameterizations of phase masks for PSF engineer-
ing and initial results suggest that a superposition of
sinusoids may provide further improvements in im-
ager performance.31
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