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Abstract

We calculate the mixing of 1, 1'' and nc in a cylinder d
ominated

model and apply our results  to the hadronic decay  $' + $71  and a number

of photonic decays, using vectdr meson dominance.  The 
results are

in excellent agreement with all experimental 
data.
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1- 1.  Introduction

In Refs.1, we have discussed Okubo-Zweig-Iizuka (OZI) Rule vio
lation in

-

'..
the context of a model in which an intermediate state mediates 

the forbidden

transitions.  Unitarity requires this intermediate state; 
whether it is a

*
cut (e.g., 0 + DD  + pn in 9 decay) or a real particle (a glue ball, an

empty bag, an "0-meson," a closed string), it seems  to be rather well param-

1
etrized by a pole in the J  = 1- and 0  channels we address

ed in Refs.1,

which included some of the more interesting decays of $ and t' as well as

-           the classical 9 + PA rate.

This model will be extended here to OZI violating transitions in 
the

0- channel, which has been treated by several other authors.2-6  The 
strikingly

large 9' + 99 rate, considering the small phase space, prove
s an interesting

challenge for the model; furthermore, the model provides
 an interesting alterna-

2
tive to the treatment of Harari,  who finds a huge admixture o

f charm in 1 and

1', and encounters some problems with photonic decays. (Our results are

summarized in Table II.)        
                                

                 '

Rooted in dual models and dual diagrams, the mode17 correl
ates deviations

from the ideal mixing mass formula with deviation from ideal mixing in the

states via an s-dependent interaction in the forbidden t
ransition elements.

In terms of dual diagrams the OZI forbidden process is one in which there is

a U-turn, Fig.la. If one views the quarks as being at the ends of a string,

then this can be pictured as a closing of the string into
 a circle, which then

th                              re-opens, with equal probability,   into any quark-antiquark state, according  to

SU(4) symmetry of the basic interaction.  The closed str
ing, or flux ring,

..

sweeps out a cylinder, whose moving flux line boundaries,
 when cut, form tears

in the cylinder bounded by quark lines which propagate 
in time the now open
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3

7
flux lines, Fig.lb.

'
8

Within the framework of the topological
 expansion,  the cylinder diagrams

-            are second order in a pert
urbation in higher and higher orders of

the topology;

the lowest order diagrams are the conven
tional planar graphs.

In this framework one associates the cyl
inder with the Pomeron singularity.

·                                                
                                        7Freund and Nambu,  in the context of a s

tring picture, point out that both

1.

senses of flux circulation allow for bot
h charge conjugations, and associate

the 2 , 1--, 0 closed strings with the Pomeron trajecto
ry or its daughters.++ ++

We have used these objects in Refs.1 to 
study a number of OZI rule suppressions.

In all our previous work we have been c
areful not to restrict ourselves

to a particular dynamical structure for
 the Pomeron and its associated singu-

larities.  It is our feeling that these
 objects are not simple poles even

when we often treated them as such as a 
convenient approximation.  In particular

,

the cylinder corrections may be Pomeron
-Reggeon cuts, suggesting cylinders in

all quantum number states which have Reg
geons.

Moreover, if cylinders are established-in  the  0   and 1- channels,   one

can use a topological duality to infer 
the existence of a cylinder in the 0

channel.  By topological duality we mea
n that topologically equivalent diagram

s

are   dual   in the usual sense. Consider for example   the   9 - 971 diagram.      This   is

doubly suppressed and requires two cylin
ders, Fig.lc, which has the topology

of a sphere with three holes with a part
icle attached at each hole.  It is

topologically equivalent to Fig.ld, whic
h has an 0- cylinder.  The line of

argument is analogous to pinching an ord
inary planar graph in different ways

to infer existence of quark model states
 in s and t channels.
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2.  Mass-Degenerate Matrix

As a result of the cylinder correction in the
 0- channel, the ideally

-
mixed "planar" states  will be mixed  and the masses shifted.

We take the cylinder interaction to be

0      0      0     /2 f

4                                                                           0          0          0             f

Q=
0 0 O f

A f    f      f       0

where the channels are 71, 71'' lc' and 0-meson,
respectively. In second order

this generates the interaction

.-'

2 22               /2  f2                  £2                                          0
2            2            2

S -m..
s-m 

s.-m--

0

flt t         f
2                    0

222
s-m- S -m.

s-m 0 0

0 = QPQ =

f          f
22

0

222
s -m.

s-m s-mE0

0         0         0       .2- 2 2. s-n42U 2. s-mfT .2

with

.
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.        ,                                                                             r     (,-"  )                    0                                   0                              0

-1

· "            0   s-m •2    0    0  1
P=

0                 0                (s-m,  2 -1           0
\       11    /

C

-1

0 0 0 (s-m52)
4

where the renormalized propagator is

Trcy B  =  (p-1 - Q) -1 = E  Viagip  - E    Rot P 1

i    s-m.        1    S-m.
1              1

m.
   m71

- , m ) are solutions of |TT | = 0, and1 = (mn mllc 0

p  ,(mi--f)-1   .    ,(-,2 -mi.2)-'*.    ,(m,2.- ,2)-1    .   1 

V =              f           1i

 1  +  (m 22, 2 7    1  (mi '- ,27     (m,2' , 27   >

The fourth "0" channel represents a quarkless state which mediates the

OZI violation, and is here approximated
 by a pole.  As implemented, probabilit

y

leaks into this state and we have 4 x 
4 orthogonality and completeness.  It 

is

possible to reformulate this problem in
 a physically inequivalent form with a

general interaction
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1

2          A             1

0   =   h (s)                                  /2                1                1

111

Since this is an energy-dependent interac
tion, orthogonality and completeness

hold at a given value of s.  Thus in eval
uating the residues orthogonality is

3                                                                                 -lost but completeness is realized in a 3 x 3 sense. The procedure is technically

complicated by subsidiary conditions on h
(s) which guarantee the stability of

the physical masses and the 3 X 3 complet
eness.  This will be described in

detail elsewhere. The main result of this calculation is tha
t there exists an

alternative to the 4 x 4 system we describe whose numerical output is the 3 x 3

submatrix  of  the 4 x 4 residue matrix, renormalized  so  that the diagonal residues

sum to unity  in  the   3 x 3 channel space.

Continuing with  the 4 x 4 theory,  with In: 12  =  m   and  m 2  =  2m 2-n! 2

2 2   2
specified by the ideal mixing

formula, and -m  , m. '  ' and m Ic
determined by   :

experiment [we take m  2 to be the recently discovered state at 2.80 GeV], we

C

find the theory is completely determined, 
yielding

2
f    = .1916
OP

2

m c    =  2.7 9  GeV

and the residue matrices of Table I.

With reference to the alternative 3 x 3 theory discussed above, the practical

n

effect is to drop  the "0" sector, leave the 89 and R
c residues essentially

unchanged, and increase all R' 1 residues by - 70%. Effects of this difference
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on our results  will be noted below, where MI refers  to  the 4 x 4 model  and  MII

to   the 3 X 3 model .     When the differences are small the particular model  will

-         not be identified.

3.  Hadronic Rates

We have, referring to Fig.2a,

2

pg  V'Vp 01
3G

rg, 971  -    3       4'rr     "'iyclic

If, guided by the experiencel,6 with the vector-vector-s
calar vertex which

indicate  GV,vs  x Gvvs,
we assume G and determine G from (i)

V ' VP - GVVP, Vvp
9

0
w + Tr Y via vector dominance,  (ii) w + 3TT via Gell-Mann, Sharp, Wagner inter-

2 2 2'

mediate p pole method, (iii) the SU(6) relation
G = 4G    /m  , and (iv)0 0 p TTrT P

W p"1  2           2

9 + pn, as in Ref. 1. All methods are consistent with 5 G /4Tr = G /4TT %3

Porro
v'VP

9: 2. Then

-            10
r. - (9*2)KeV (experiment 9.6 KeV).

'*' 1161

A number of other predictions follow easily:

23

e  .  t ips   lk'     4'1  ..03
w pl-r

3         2       2  2  03'-.       ( .7   (MI)    r,1,11,9 m 'IE'  (m„ -mi )   11 1. =2
r*Illu           'P    |       i     2        2)         IL          .1    (MII)   1 0,1   ml, -mop     7171
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-                         r              0 1'    <.38 (MI)  

01'.  „   11 1:1,  :71  -   1r w I

 .59 (MII) 1 71 1 62-

-                  
                   

     171

An interesting way of looking for nc is
 in the decay *' + 1cw.  Rosen-

4
sweig     pred icts   that   this   rate   is only slightly (&) suppressed relative   to

*' + *11. Within our framework, however (see Fig.2b), since the 0+ OZI transi-

tions are more copious than the 1- OZI transitions (which can be handled

perturbatively) we have

34

rg, wTIC   =       pprs           /

2f
OV                           1 .  .084

r 0, 971 2        2 1 2<     2        2 )2   -n

'11   (mw -mo 4 enco -m'1, 1  7 91
CC

This model makes predictions, of cours
e, for OZI violating production

processes as well.  Referrring to Fig.2
c, we have

da(Tr-p +11:1)  - Rll    (.2..05 (MI)  

da(Tr-p  + 71' n)         8711-    11'   "'    -1.3     (MII)  

2

where both cross sections are evaluated  at  the  same  s,   t,   and  q   .     Hopefull'y,

the   extrapolation  in  q2   from  m. 2   to  m ' 2   is   not too serious. However,   com-

parisons should   be  made   at   the same  s   and   t. We expect   the pred icted ratio

to   be  much more accurate   at t=0, since production processes   at high momentum

transfer depend more strongly on the m
ass of the produced object.  Extensive

11

data on this reaction will be available 
shortly.

It is interesting to note that in our f
ormalism we are able to account for

the masses and the OZI suppression with
 physical 1 and N' that have extremely
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small admixture of charm. In particular, referring to Table I, we f
ind .028%

.2

charm in 1 and .16% charm in 1'.  This is i
n sharp contrast to the Harari

treatment.  The origin of this is clear:  
in our treatment the OZI violation

-

contributes to both diagonal and off-diago
nal terms in the mass matrix.  Thus

we are freed from the constraint

"tt'  +  -,11,2  +  ...11,2   -  m,12  +  m ,2  +  mtt,2

which forces Harari's large charm admixture.

4.  Photonic Rates

Also in contrast to Harari, we find no serious problems
 with y-decays in

the context of the vector dominance model.  The new ingr
edient here, apart

'                                             from a different mixing,    is   the   use   of   $' as another intermed iate state   in

6

decays involving $ as an intermediate
state. We choose a judicious relative

phase.  We do not believe this is artifici
al because there is no reason why,

consistent with the assumption G ,vp RS G .P we can not have GV'vp =5 -GVvp

Moreover, alternating signs considerably e
nhance the possibility of a con-

vergent generalized VDM sum.  This additio
n of radial excitations, interesting

enough,  does not spoil rates  like  w  + Troy since  the p' electronic width  is

12

expected to be considerably smaller than the p 
electronic width, in contrast

to the $' vs. 9 electronic widths.  With t
hese preliminaries, consider the

rates, referring to Figs.2d and 2e,

 PY   3  GLP  3rm + e+e-     621r
cp + Tly  =       3

4Tr a/ m TI'll,

9

13

yielding a partial width of (44.5  *10)KeV cons istent with recent   data
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indicating an experimental partial width of 65*15 KeV. (Our quoted error is

determined  by the uncertainty  in  GMP' )

-            Similarly we have

3   2    3r                4

|Py|          VVP  (     pe+e- ) OV2G 2f

r            0      -          3              4Tr        \      aim/    /      2 2\2/2          2   2
Cp  + TT y p         (m     -m      l i m     -m      j

\9  0/ \9  W.

13

yielding a partial rate of (10.8 * 3) KeV compared with the experimental partial

rate    o f    5.9  *2.1    KeV.

Referring to Fig.2 f, with WI now $ and $', we have for 
4 + ly,

.

2

3
eF eF

*G    t- G

rt,tlY  =  41N   |P  '      Ri ic     R'12

V" 2  V'VP

m lf'

3  2         3r
l I G
IPYI   VVP M Ve e- 1.8=   3   = Ritctic cY   m$

where

8. .  G„.,  Ir,i :.i  -m'. j 2             .
GVVP 4 rge e   "'9'  

15
using r = 100 eV we find that

*lly

GN'p = -1.24, -1.98
GVVP

14  2       2

with the first root consistent  with our earlier assumption       GN' P  - GVVP'

Using this new determination we have
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3 2   3r
-                                     

                           11           +1 Py I      -VP       c          Me  e-    1

r'ty  =          3         -6.-   Rf 1            01           E;   B   =    2.2   KeV
CC

- which is now a prediction based on r
971Y '

Similarly we find

EF ,9 =  4.6  (MI)          13

r
(data 4 f 2.5)

$11Y 7.5  (MII)

Treating   the   $'  + 11cy decay in analogy  to   the   * + 11cy decay  we   find

3 2        3r

r-
1 PY 1 GVV, P Tic ge+e.  1  B'

*'
7|cY

3 4TT % c 0 m
1

0

where
P  + - mi 2

1 + GV'V'P   $'e'e   r
Ggv,p         /   r      +          m, '

V * e

2

If  we  assume  GVVPGV'V'p    SS GVV' P

rg, ly   x  50   KeV.

Continuing in this spirit,                
                                '

Gl           3/3r   *  \1
r           =  -YVP  |PY I    I     ge  e   1
9        4Tr 2 \ om  /

C +YY \ $ /

-                          2                                       P       +  -=4   -2r
7 , m"Gvv,P GNY'P  1

11' e e -15 eV.
x 1+ +2

r,-0, 4,p Gvvp      01   r         +    -mwi
- gee

(This width should be taken with caution 
since it depends on the square of the

difference of two large numbers; a factor
 of two variation in the coupling ratio

can result in a factor of 50 increase in t
he rate.)



12

Taking r full width to be 100 KeV, certainly a low
er limit, we find

TIC

rt,9cY rUcYY         -56 4*1 0
r,  r

*                     71

C

-                                               15
which is well within the experimental bound.

Finally,    consider   *'  + popoy,
which Harari points   out   may   be a possible

problem.  We have

16

r. gr = 50 KeV B 5 7 KeV, experiment

0' + popoy        *' -* YTIc B'ncpopo ncpopo

which is consistent  with a plausible branching ratio
BT'cpopo  for  llc + popo.

Our decay rates are summarized in Table I
I.

5.  Summary and Conclusions

We find

(i)  The mixing generated by 0-meson or c
ylinder correction, controlled by

the 0- masses, yields a correct  rate  for  $'  + 1/Il and results in predictions   for

a number of measurable hadronic rates, di
fferent from the predictions of

4
Rosenzweig.

(ii)  The admixture of charm in 1 and 9' i
s much smaller than the model

of Harari indicates.

(iii)  The photonic rates, calculated usi
ng this mixing and the extended

VDM, yield results consistent with experim
ent.
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Table I

1-

.39 -.45 -.010 .18

R = .53 .012 -.2111

2.8  x 10-4 4.7 x 10-3

8.1 x 10-2

.19 .28 -.018 .28

i£11, 6 .40 -.026 .40

.16  x 10-2 -.026

.41

-5                -5               -3               -4

2. 03 x 10 1.5  x 10 4.5  x 10 2.6 x 10

49' -                               -5               -3     
          -41.lx10 3.4  x 10 1.9 x 10

.997 5.7 x 10-2

3.2 x 10-3
-

I
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Table II

Rates Theory            <       Exp.

..                                                             
                                                      1

-    r (0' +.0 )
9 E 2 KeV                   9.6 f 1.8 

KeV
TI

„         r (M + Fw/r (9 +
p.) .03

0.7    (MI)

rcM+,0,(P)/r(*+Fw) 1.1 (MII)

.38 (MI)

r(*'u,Tic/r(*'frI)    ·              .59 0*II)

r($'u)Tic)/r($'
44) .084

2.05 (MI)

da(Tr-p +TIn)/da(Tr-p +71'n) 1.3         (MII)

r (9  + 71y)
44.5 E 10 KeV     ·         65 f 15 KeV

r (9 + Tr0y)
10.8 & 3 KeV

5.9 E 2.1 KeV    <

r C *Tly) normalization              100 f 25 eV

r(VAcY)
2.2 KeV

r(*n'y)/r(*+lly)
4.6 (MI) 4 * 2.5

7:5 (MII)

r(*'ncY)

50 KeV

r (9c  + YY)
15 eV

r. (0'  + popoy) < 5OB('llc + PoPo)
KeV < 7 KeV

-
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.

Figure Captions

..

Fig.1.  (a) Dual diagram for 9 + prr; (b)  Equivalent cylinder diagram;

(c)    and (d) Equivalent topological diagrams    for    4   +  99.

Fig.2.  Diagrams for various OZI for
bidden processes.

li
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Table Captions

:

Table I. Residue matrices  for Tl, 11', 'and TIc
Poles  in the 4 x 4 model  (MI) .

Table II.  Table of various rates invol
ving OZI forbidden transitions.

MI  is  the 4 x 4 model  and  MII  is  the 3 x 3 model.




